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Verification problems can often be encoded as first-order validity or satisfiability problems.
The availability of efficient automated theorem provers is a crucial pre-requisite for au-
tomating various verification tasks as well as their cooperation with specialized decision
procedures for selected theories, such as Presburger Arithmetic. In this paper, we investi-
gate how automated provers based on a form of equational reasoning, called paramodula-
tion, can be used in verification tools. More precisely, given a theory T axiomatizing some
data structure, we devise a procedure to answer the following questions. Is the satisfiability
problem of T decidable by paramodulation? Can a procedure based on paramodulation for
T be efficiently combined with other specialized procedures by using the Nelson–Oppen
schema? Finally, if paramodulation decides the satisfiability problem of two theories, does
it decide satisfiability in their union?
The procedure capable of answering all questions above is based on Schematic Saturation;
an inference system capable of over-approximating the inferences of paramodulation when
solving satisfiability problems in a given theory T . Clause schemas derived by Schematic
Saturation describe all clauses derived by paramodulation so that the answers to the ques-
tions above are obtained by checking that only finitely many different clause schemas are
derived or that certain clause schemas are not derived.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

An increasing number of verification tools, such as verification condition generators [9], software model-checkers [3],
or static analyzers [6], require the use of Automated Theorem Provers (ATP) for First-Order Logic (FOL) to implement the
back-ends for the automatic analyses of specifications and properties. This is so because verification problems can often be
encoded as validity (or, dually, satisfiability) problems and the availability of efficient ATPs becomes a crucial pre-requisite
for automating the various verification tasks.

Despite the great progress in the last twenty years in automated theorem proving in FOL, general-purpose ATPs cannot
be used off-the-shelf to work with the sort of formulae generated by verification tools. The main reason is that these tools
are not interested in validity in general but in validity with respect to some background theory, that fixes the interpretations
of certain predicates and function symbols. For instance, in verification problems involving the integers, one is not interested

✩ Preliminary versions of the results in this paper appear in Lynch and Morawska (2002) [18], Kirchner et al. (2006) [16], Lynch and Tran (2007) [19].
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in showing that the formula ∀x, y.(x < y ⇒ x < y + y) is true for all possible interpretations of the non-logical symbols <

and +, but only for those interpretations in which < is the usual ordering over the integers and + is the addition function.
When proving the validity of a formula, general-purpose ATPs have only one way to consider the interpretations allowed
by a background theory T : add as a premise to the formula a conjunction of the axioms for T . There are several important
theories of data structures admitting finite axiomatizations; e.g., lists, arrays, records, and integer-offsets. Unfortunately,
there are also ubiquitous theories in verification such as Presburger Arithmetic which can only be approximated by finite
sets of axioms (see, e.g., [6]). However, even when finite axiomatizations exist for the background theory T , the performance
of an ATP is usually poor for realistic verification applications when it is used off-the-shelf (see [28] for an extensive
discussion on this issue and possible solutions).

There exist specialized reasoning methods for many background theories of interest, such as the ones listed above,
which go under the name of Satisfiability Modulo Theories (SMT) solvers, but they are limited to the particular class of
FOL formulae without quantifiers. While being able to cope only with quantifier-free formulae is not an obstacle for some
verification applications, it may become a serious limitation in the verification of complex data structures. Finding good
heuristics for lifting SMT techniques from ground to quantified formulas is a hot line of current (see, e.g., [12]) and future
research. On the other hand, ATPs are—at least in principle—capable of handling arbitrary FOL formulae, including those
containing quantifiers.

Finally, to make the situation even more complex, most verification problems involve more than one theory, so that
methods to combine theories, such as the one pioneered by Nelson and Oppen [22], are required to modularly re-use
procedures for the component theories.

Given the large variety of FOL formulae generated by verification tools, especially in the context of software verification
where formulae containing quantifiers are quite frequently obtained, it is desirable to make ATPs and specialized decision
procedures cooperate so as to augment the degree of automation of verification techniques. In this paper, we consider the
problem of embedding ATPs in verification tools and devise methods for their cooperation with other specialized decision
procedures. In this respect, it is crucial to develop a general framework for

1. establishing the termination of ATPs on selected classes of FOL formulae,
2. guaranteeing the modular termination of an ATP, i.e. a procedure to check the termination of an ATP on the union of

two theories when the ATP terminates on each component theory, and
3. providing an efficient way to combine ATPs with ad hoc decision procedures so that theories not admitting finite ax-

iomatizations, like Presburger Arithmetic, can be precisely handled.

Automatic decidability. The rewriting approach in [2] proposes a methodology to build satisfiability procedures which
consists in showing the termination of a fair theorem proving strategy of a refutation complete calculus (namely, paramod-
ulation [23]) on a set of clauses obtained as the union of the axioms Ax(T ) of the background theory T and a finite set S
of ground literals in T . A drawback of [2] is that the proof of termination must be repeated for each theory T .

The first contribution of this paper (along the lines of [18]) is a procedure for checking the termination of any fair
theorem proving strategy of the paramodulation calculus (denoted with P C ). The procedure is based on Schematic Saturation,
an inference system working on constrained clauses, denoted with S P C . The key insight is that constrained clauses derived
by S P C schematize the clauses that can be obtained by a fair theorem proving strategy of P C on the axioms Ax(T ) of the
theory T and a set of constrained clauses, schematizing any finite set of ground literals of a particular form, called “flat”.
Our main result is that if S P C halts on the union of Ax(T ) and the schematic representation of an arbitrary set of ground
flat literals, P C also halts on the union of Ax(T ) and an arbitrary set of ground flat literals. By the refutation completeness
of P C , we are entitled to conclude that the satisfiability problem of T is decidable. To illustrate our approach, we show
that S P C halts for the theories in [2] as well as others, such as the theory of selection functions (an approximation of the
theory of recursively defined data structures considered by Oppen in [24]).

Moreover, when S P C halts, it does not only show the decidability of the satisfiability problem for T , but it also gives an
upper bound on the number of clauses that will be derived in the limit (also called persistent clauses), while applying the
fair theorem proving strategy of P C . In general, the number of persistent clauses is exponential in the number of symbols
in the input set of clauses. If the set Ax(T ) of axioms of the theory T contains only literals, then the bound on the number
of persistent clauses is simply polynomial. The time complexity of a paramodulation-based satisfiability procedure can be
obtained by refining our bounds on the number of persistent clauses along the lines of [18,10]. We do not do this here to
maintain the paper to a reasonable size and since we interested to investigate other problems to satisfy desiderata (2) and
(3) above.

Our procedure for checking the decidability of a theory T by paramodulation is a first step to fulfill desideratum (1)
above.

Automatic combinability. As observed in [1], if two theories T1 and T2 are axiomatized by two finite sets of clauses, then it
is possible to use theorem-proving strategies to decide the satisfiability problem in their union. In this setting, combination
reduces to modularity of termination, i.e. showing that if a fair theorem proving strategy of P C decides the satisfiability
problem of T1 and T2 separately, then such a strategy decides also the satisfiability problem of their union. Under the
assumption that the theorem proving strategy of P C halts on both T1 and T2, the problem which may prevent the ter-
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mination of the strategy for their union is to have “across-theories inferences,” between one clause in T1 and one in T2,
which may contribute to generate newer and newer persistent clauses. The second contribution of this paper is a method
for checking a sufficient condition on the component theories to guarantee the absence of across-theories inferences. This is
done in three steps. First, we identify “bad” clauses that may cause across-theories inferences. Second, by restricting com-
ponent theories (similar to the one in [1]) so that P C does not derive “bad” clauses, we obtain the termination of P C for
unions of theories. Finally, we give the procedure to check that a single theory satisfies this restriction; by using again S P C
and detecting if constrained clauses schematizing “bad” clauses are derived.

Our procedure to establish the condition preventing “across-theories inferences” by paramodulation fulfills desideratum
(2) above.

Although useful, checking for modular termination of paramodulation is not enough as some theories, notably Presburger
Arithmetic, do not admit satisfiability procedures based on paramodulation. Fortunately, theories of this kind come with
specialized decision procedures for their satisfiability problem, that can be combined with others via the Nelson–Oppen
combination schema [22]. The key requirement for the correctness of this schema is that each component theory T is stably
infinite, i.e. if the set S of ground literals is satisfiable in T , then T ∪ S admits a model whose domain is infinite.

The third contribution of this paper is the design of a procedure to establish that a finitely presented theory T is stably
infinite. If S P C halts on the union of Ax(T ) and the schematic representation of an arbitrary set of ground flat literals
and it does not derive the trivial equality X = Y , then the theory T is stably infinite. In this way, S P C can recognize both
decidability and stable infiniteness of a finitely presented theory T and the resulting decision procedure for the satisfiability
problem of T can cooperate with others by the Nelson–Oppen schema. Indeed, this is only a first step towards desideratum
(3) above. In fact, one of the key problems to efficiently combine procedures à la Nelson–Oppen is to derive selected facts
which must be exchanged among procedures for their synchronization (see [22] for details). Theoretically, the problem
of computing an entailed fact has a simple solution: to derive ϕ from Γ , it is sufficient to guess ϕ and then check the
satisfiability of its negation in conjunction with Γ . In practice, guessing decreases performances unacceptably (see [8] for
an in-depth discussion of this issue), so that we require the procedure to be deduction complete, i.e. capable of deriving the
facts needed for synchronization. In [15], it is proved that—under certain assumptions—a fair theorem proving strategy of
P C derives enough facts to guarantee the completeness of the Nelson–Oppen schema. This result is not obvious since P C
is not complete for consequence finding.

The fourth contribution of this paper is a method for checking deduction completeness of paramodulation-based proce-
dures. We show how S P C can check that a Horn theory is deduction complete. This result generalizes [15] where proofs
of deduction completeness are repeatedly developed for some selected theories. We also discuss how to obtain deduction
completeness for non-Horn theories.

The checks to establish that a finitely presented theory is stably infinite and deduction complete allows us to fulfill
desideratum (3) above.

Plan of the paper. The paper is structured as follows. Section 2 introduces some background notions and briefly overviews
the main ideas underlying the paramodulation calculus and the Nelson–Oppen combination schema. Section 3 presents
Schematic Saturation and its application to check the decidability of the satisfiability problem for finitely presented the-
ories. To ease the understanding we first illustrate Schematic Saturation with equational theories, and then generalize it
to non-equational theories. Section 4 gives another application of Schematic Saturation to check the modular termination
of fair theorem proving strategies for unions of theories, as well as stable infiniteness of finitely presented theories and
deduction completeness of their paramodulation-based decision procedures. Section 5 discusses the relevance of the results
and compares them with related work. Finally, Section 6 concludes and draws some perspectives for future work.

2. Background

2.1. First-order logic

We assume the usual first-order syntactic notions of signature, term, position, and substitution, as defined, e.g., in [7].
If l and r are two terms, then l = r is an equality and ¬(l = r) (also written as l �= r) is a disequality. A literal is either

an equality or a disequality. A positive literal is an equality and a negative literal is a disequality. A first-order formula is
built in the usual way over the universal and existential quantifiers, Boolean connectives, and symbols in a given first-order
signature. We call a formula ground if it has no variables. A clause is a disjunction of literals. A clause ¬A1 ∨ · · · ∨ ¬An ∨
B1 ∨ · · · ∨ Bn is sometimes written in sequent style as {A1, . . . , An} ⇒ {B1, . . . , Bm}, where the Ai ’s and B j ’s are equalities.
A unit clause is a clause with only one disjunct, equivalently a literal. The empty clause, denoted ⊥, is the clause with no
disjunct, and it is equivalent to an unsatisfiable formula.

Definition 1 (Elementary clause). An elementary clause is a clause of the form x1 = y1 ∨· · ·∨xn = yn , where xi, yi are distinct
constants or variables for i = 1, . . . ,n and n � 1.

We define a function depth such that for a term t , depth(t) = 0, if t is a constant or a variable, and depth( f (t1, . . . , tn)) =
1 + max{depth(ti) | 1 � i � n}. A term is flat if its depth is 0 or 1. For a literal, depth(l 	
 r) = depth(l) + depth(r), where
	
 ∈ {=, �=}. A positive literal is flat if its depth is 0 or 1. A negative literal is flat if its depth is 0. We use the following
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Right Paramodulation

Γ ⇒ �, l[u′] = r Π ⇒ Σ, u = t
σ(Γ,Π ⇒ �,Σ, l[t] = r)

if σ(u) �� σ(t), u = t is selected in its clause, σ(l[u′]) �� σ(r),
and l = r is selected in its clause.

Left Paramodulation

Γ, l[u′] = r ⇒ � Π ⇒ Σ, u = t
σ(l[t] = r,Γ,Π ⇒ �,Σ)

if σ(u) �� σ(t), u = t is selected in its clause, σ(l[u′]) �� σ(r),
and l = r is selected in its clause.

Reflection

Γ, u′ = u ⇒ �
σ(Γ ⇒ �)

if u′ = u is selected in its clause.

Eq. Factoring

Γ ⇒ �, u = t, u′ = t′
σ(Γ, t = t′ ⇒ �, u = t′)

if σ(u) �� σ(t), u = t is selected in its clause, σ(t) �� σ(t′) and
σ(u′) �� σ(t′).

Above, σ is the most general unifier of u and u′ . In the rules Left paramodulation
and Right paramodulation, u′ is not a variable.

Fig. 1. Expansion inference rules P C .

notations: ≡ is identity, l, r, u, t are terms, v, w, x, y, z are variables, all other lower case letters are constant or function
symbols.

We also assume the usual first-order notions of model, satisfiability, validity, logical consequence.
A first-order theory (over a finite signature) is a set of first-order formulae with no free variables. When T is a finitely

axiomatized theory, Ax(T ) denotes the set of axioms of T . All the theories in this paper are first-order theories with equality,
which means that the equality symbol = is always interpreted as the equality relation. A formula is satisfiable in a theory T
if it is satisfiable in a model of T . The satisfiability problem for a theory T amounts to establishing whether any given finite
conjunction of literals (or equivalently, any given finite set of literals) is T -satisfiable or not. A satisfiability procedure for T
is any algorithm that solves the satisfiability problem for T (the satisfiability of any quantifier-free formula can be reduced
to the satisfiability of sets of literals by converting to disjunctive normal form and then splitting on disjunctions).

2.2. A paramodulation calculus

The calculus P C consists of the rules in Figs. 1 and 2. A fundamental feature of P C is the usage of a reduction ordering
� which is total on ground terms, for example the lexicographic path ordering [7]. The ordering � is extended to positive
literals by considering them as multisets of terms, and then to the clauses by considering them as multisets of positive
literals. P C uses a selection function sel such that for each clause C , sel(C) contains a negative literal in C or all maximal
literals in C wrt. �.

A clause C is redundant with respect to a set S of clauses if either C ∈ S or S can be obtained from S ∪ {C} by a
sequence of application of the contraction rules of Fig. 2. An inference is redundant with respect to a set S of clauses if
its conclusion is redundant with respect to S . A set S of clauses is saturated with respect to P C if every inference of P C
with a premise in S is redundant with respect to S . A derivation is a sequence S0, S1, . . . , Si, . . . of sets of clauses where at
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Subsumption

S ∪ {C, C ′}
S ∪ {C}

if for some substitution θ , θ(C) ⊆ C ′ .

Simplification

S ∪ {C[l′], l = r}
S ∪ {C[θ(r)], l = r}
if l′ ≡ θ(l), θ(l) � θ(r), and C[l′] � (θ(l) = θ(r)).

Tautology Deletion
S ∪ {Γ ⇒ �, t = t}

S

Above, C and C ′ are clauses and S is a set of clauses.

Fig. 2. Contraction inference rules P C .

each step an inference of P C is applied to generate and add a clause (cf. expansion rules in Fig. 1) or to delete or reduce
a clause (cf. contraction rules in Fig. 2). A derivation is characterized by its limit, defined as the set of persistent clauses
S∞ = ⋃

j�0
⋂

i> j Si . A derivation S0, S1, . . . , Si, . . . with limit S∞ is fair with respect to P C if for every inference in P C
with premises in S∞ , there is some j � 0 such that the inference is redundant in S j .

Theorem 1. (See [23].) If S0, S1, . . . is a fair derivation of P C , then (i) its limit S∞ is saturated with respect to P C , (ii) S0 is unsatisfiable
iff the empty clause is in S j for some j, and (iii) if such a fair derivation is finite, i.e. it is of the form S0, . . . , Sn, then Sn is saturated
and logically equivalent to S0 .

2.3. Paramodulation-based satisfiability procedure

We assume the following:

Assumption 1. If a term t is not a variable or a constant, then for any constant c we have that t � c.

The paramodulation-based methodology [2] to build satisfiability procedures consists of two phases.

1. Flattening: all ground literals are flattened by introducing new constants, yielding an equisatisfiable set of ground flat
literals.

2. Ordering selection and termination: any fair derivation of P C is shown to be finite when applied to an arbitrary set of
ground flat literals together with the axioms of T , provided that � satisfies Assumption 1.

If T is a theory for which the paramodulation-based methodology applies, a T -satisfiability procedure can be built by
implementing the flattening (this can be done once and for all), and by using a prover mechanizing P C with a suit-
able ordering �. If the final set of clauses returned by the prover contains the empty clause, then the T -satisfiability
procedure returns unsatisfiable; otherwise, it returns satisfiable. A satisfiability procedure built using this approach is said
paramodulation-based.

2.4. Nelson–Oppen combination method

The Nelson–Oppen combination method [22] allows us to solve the problem of checking the satisfiability of a conjunction
Φ of ground literals in the union of two signature-disjoint theories T1 and T2 such that a Ti -satisfiability procedure is
available, for i = 1,2. Since the literals in Φ may be built over symbols in T1 or in T2, we need to purify them by introducing
fresh constants to abstract subterms. This process leaves us with a conjunction Φ1 ∧Φ2 which is equisatisfiable to Φ where
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Φi contains only literals built over the signature of Ti , for i = 1,2. In this way, literals in Φi can be dispatched to the available
decision procedure for Ti . The next step of the method consists in exchanging ground elementary clauses (or equivalently
disjunctions of equalities between constants) between the two procedures until either unsatisfiability is derived by one of
the component decision procedures, or no more ground elementary clauses can be exchanged. In the first case, we derive
the unsatisfiability of the input formula; in the second case, we derive its satisfiability. To show the correctness of the
Nelson–Oppen method [21,30,25], the theories T1 and T2 must be stably infinite.

Definition 2 (Stably infinite theory). Let T be a consistent theory. T is stably infinite if every T -satisfiable conjunction ϕ of
ground literals is T -satisfiable in an infinite model.

When combining convex theories, the Nelson–Oppen combination method works without affecting completeness by
exchanging only ground elementary equalities.

Definition 3 (Convex theory). A theory is convex if for any conjunction Γ of equalities, a disjunction D of equalities is entailed
by Γ if and only if some disjunct of D is entailed by Γ .

Examples of convex theories are the theory of equality, the theory of lists, and Linear Arithmetic over the Rationals.
To be efficiently combined à la Nelson–Oppen, the component satisfiability procedures must be capable of deriving

sufficiently many ground elementary clauses which are implied by the input set of literals. Such satisfiability procedures are
said deduction complete.

Definition 4 (Deduction complete satisfiability procedure). A T -satisfiability procedure is deduction complete if for any T -
satisfiable conjunction φ of ground literals it returns, in addition to satisfiable, a set Se of ground elementary clauses such
that for every ground elementary clause C , the following holds: T |� φ ⇒ C iff Se |� C .

3. Automatic decidability

Schematic Saturation works by saturating the axioms Ax(T ) of a theory T along with the set G T
0 schematizing any finite

set of ground flat literals built out of the symbols in the signature ΣT of T , with respect to the inference system S P C (see
Figs. 3 and 4). If S P C halts on Ax(T ) ∪ G T

0 , then any saturation of Ax(T ) ∪ S by P C is finite, for every set S of ground
flat literals built over ΣT . Consequently the T -satisfiability problem is decidable. Before being able to present Schematic
Saturation, we need to introduce a couple of preliminary notions.

Definition 5 (Constraint). An atomic constraint is of the form t � t′ or t �� t′ . A constraint is a conjunction of atomic con-
straints.

A substitution λ satisfies a constraint φ if λ(φ) is true. A constraint φ is satisfiable if there exists a substitution λ

satisfying φ. In the sequel, by c� , we mean the biggest constant wrt. �. For example, a constraint of the form t � c� is true
if t is a constant, it is false if t is a term of depth at least 1 (i.e. containing a function symbol) and it is satisfiable if t is a
variable.

Definition 6 (Constrained clause). A constrained clause is of the form C ‖ φ, where C is a clause and φ is a constraint.

We say that λ(C) is an instance of C ‖ φ if λ is a substitution satisfying φ.

Definition 7 (Constrained variable). A variable x is constrained in a constrained clause C ‖ φ if x � c� is in φ; otherwise it is
unconstrained.

In fact, a constrained variable is a schematization of constants. A unconstrained variable is a universal variable, which is
different from a constrained variable. A constrained variable could only be instantiated with a constant, whereas a uncon-
strained variable could be instantiated with any term.

Definition 8 (Constraint instance). We say that λ(C) is a constraint instance of C ‖ φ if the domain of λ contains all the
constrained variables in C ‖ φ, the range of λ contains only constants, and λ(φ) is satisfiable.

For example, the clause f (a) = X is a constraint instance of the constrained clause f (x) = X ‖ x � c� , where a is a
constant, x is a constrained variable and X is an unconstrained variable. It is important to underline that we can use a
constrained clause to schematize the set of all its constraint instances.
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Right Paramodulation

Γ ⇒ �, l[u′] = r ‖ φ Π ⇒ Σ, u = t ‖ ϕ
σ(Γ,Π ⇒ �,Σ, l[t] = r ‖ φ ∧ ϕ)

if σ(u) �� σ(t), u = t is selected in its clause, σ(l[u′]) �� σ(r),
and l = r is selected in its clause.

Left Paramodulation

Γ, l[u′] = r ⇒ � ‖ φ Π ⇒ Σ, u = t ‖ ϕ
σ(l[t] = r,Γ,Π ⇒ �,Σ ‖ φ ∧ ϕ)

if σ(u) �� σ(t), u = t is selected in its clause, σ(l[u′]) �� σ(r),
and l = r is selected in its clause.

Reflection

Γ, u′ = u ⇒ � ‖ φ
σ(Γ ⇒ � ‖ φ)

if u′ = u is selected in its clause.

Eq. Factoring

Γ ⇒ �, u = t, u′ = t′ ‖ φ

σ(Γ, t = t′ ⇒ �, u = t′ ‖ φ)

if σ(u) �� σ(t), u = t is selected in its clause, σ(t) �� σ(t′) and
σ(u′) �� σ(t′).

Above, σ is the most general unifier of u and u′ . In the rules Left Paramodulation
and Right Paramodulation, u′ is not a unconstrained variable.

Fig. 3. Expansion inference rules S P C .

Definition 9 (Constrained variant). Let C ‖ φ and C ′ ‖ φ′ be two constrained clauses. We say that C ‖ φ is a constrained variant
of C ′ ‖ φ′ if there exists a renaming λ from the set of all constrained variables of C ‖ φ to the one of C ′ ‖ φ′ such that
λ(C ′) = C and λ(φ′) ⊆ φ.

For instance, the clause f (X) = x ∨ x = g(Y ) ‖ x � c� ∧ g(Y ) �� x ∧ f (X) �� x is a constrained variant f (X) = y ∨ y =
g(Y ) ‖ y � c� as the renaming λ = {x → y} satisfies all the conditions in Definition 9.

For a given theory T with signature ΣT , we define G T
0 as follows:

G T
0 = {⊥}

∪ {
x = y ‖ x � c� ∧ y � c�}

∪ {
x �= y ‖ x � c� ∧ y � c�}

∪
⋃

f ∈ΣT

{
f (x1, . . . , xn) = x0 ‖

n∧
i=0

xi � c�
}

Notice that G T
0 schematizes any set of ground flat equalities and disequalities built over ΣT , along with the empty clause.

We assume the following:
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Subsumption

S ∪ {C ‖ φ, C ′ ‖ φ′}
S ∪ {C ‖ φ}

if (a) C ∈ Ax(T ), φ is empty and for some substitution θ ,
θ(C) ⊆ C ′; or (b) C ‖ φ and C ′ ‖ φ′ are renamings of each
other.

Simplification

S ∪ {C[l′] ‖ φ, l = r}
S ∪ {C[θ(r)] ‖ φ, l = r}
if l = r ∈ Ax(T ), l′ ≡ θ(l), θ(l) � θ(r), and C[l′] � (θ(l) = θ(r)).

Tautology Deletion
S ∪ {Γ ⇒ �, t = t ‖ φ}

S

Deletion

S ∪ {Γ ⇒ � ‖ φ}
S

if φ is unsatisfiable.

Above, C ‖ φ and C ′ ‖ φ′ are constrained clauses and S is a set of constrained
clauses.

Fig. 4. Contraction inference rules S P C .

Assumption 2. The ordering � used in P C is extended to constrained clauses in such a way that a constrained clause C ‖ φ

is smaller than a constrained clause C ′ ‖ φ′ if all constraint instances of C ‖ φ are smaller wrt. � than all constraint instances
of C ′ ‖ φ′ .

The inference system S P C (Figs. 3 and 4) is almost identical to P C . The main difference is that all clauses now have con-
straints; unconstrained clauses are considered to have empty constraints. Constraints are inherited by the conclusions of an
inference. In the rules Left Paramodulation and Right Paramodulation of S P C (Fig. 3) the condition u′ is not a unconstrained
variable means that these inferences are allowed to perform into constrained variables. This is so because a constrained vari-
able is a schematization of constants therefore if we exclude Left Paramodulation and Right Paramodulation into constrained
variables in S P C then we are no longer able to simulate all inferences Left Paramodulation and Right Paramodulation into
constants in P C . Constrained Contraction Inference Rules (of Fig. 4) have different applicability conditions since we cannot
simulate every subsumption, or simplification as we cannot assume that ground literals are always present in a saturation
of Ax(T ) ∪ S , on which such contraction inferences depend. In other words, subsuming and simplifying clauses must be
present in the saturation Ax(T ) ∪ S for every set S of ground flat literals built over ΣT , and only clauses in Ax(T ) would
satisfy this property.

3.1. Schematic Saturation for equational theories

By Schematic Saturation for a theory T , we mean a saturation of Ax(T ) ∪ G T
0 with respect to the inference system S P C .

The key idea underlying Schematic Saturation is the following. We would like to show that there are finitely many clauses
generated in a saturation. Since there are finitely many constants in the input, this boils down to prove, by induction on
the length of the saturation, that there are finitely many forms of clauses generated. Here we use G T

0 to schematize sets
of ground flat literals and show, by induction on the length of the derivation by P C , that for each clause C generated by
an inference of P C , there is an inference of S P C generating a constrained clause schematizing C . In this way, Schematic
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Saturation is used to over-approximate any saturation of P C , and therefore if Schematic Saturation halts then any saturation
must halt. Let us illustrate this idea by considering an example.

Example 1. In [2], it is shown that the saturation by P C of any set of ground flat literals and the axioms of the theory of
lists is finite. We would like to prove this result by using Schematic Saturation. The theory L of lists is axiomatized by the
following saturated set Ax(L) of axioms:

car
(
cons(X, Y )

) = X (L1)

cdr
(
cons(X, Y )

) = Y (L2)

cons
(
car(X), cdr(X)

) = X (L3)

where X and Y are implicitly universally quantified variables. The set G L
0 consists of the following clauses:

x = y ‖ x � c� ∧ y � c� (L4)

x �= y ‖ x � c� ∧ y � c� (L5)

car(x) = y ‖ x � c� ∧ y � c� (L6)

cdr(x) = y ‖ x � c� ∧ y � c� (L7)

cons(x, y) = z ‖ x � c� ∧ y � c� ∧ z � c� (L8)

A Right Paramodulation of S P C between (L1) and (L8) yields

car(x) = y ‖ x � c� ∧ y � c�

which is immediately deleted because it is a constrained variant of the third member of G L
0 . We have a similar case for

(L2) and (L8).
A Right Paramodulation of S P C between (L3) and (L6) yields

cons
(
x, cdr(y)

) = z ‖ x � c� ∧ y � c� ∧ z � c�

Similarly, a Right Paramodulation of S P C between (L3) and (L7) gives

cons
(
car(x), y

) = z ‖ x � c� ∧ y � c� ∧ z � c�

Finally, Schematic Saturation contains, apart from all the clauses in Ax(L) ∪ G L
0 , the following clauses:

cons
(
car(x), y

) = z ‖ x � c� ∧ y � c� ∧ z � c� (L9)

cons
(
x, cdr(y)

) = z ‖ x � c� ∧ y � c� ∧ z � c� (L10)

It is easy to see that given a finite set of constants, there are only a finite number of possible instantiations of all the
constrained variables in Schematic Saturation for L. We conclude that the saturation of any set of ground flat literals and
the axioms of the theory L of lists is finite. �

We now show that Schematic Saturation provides us with a method of checking the decidability of satisfiability problems
modulo an arbitrary equational theory.

Theorem 2. Let T be a theory axiomatized by a finite set Ax(T ) of equalities, which is saturated with respect to P C . Let G T∞ be the
set of all clauses in a saturation of Ax(T ) ∪ G T

0 by S P C . Then for every set S of ground flat ΣT -literals, every clause in a saturation of
Ax(T ) ∪ S by P C is a constraint instance of some clause in G T∞ .

Proof. The proof is by induction on the length of derivations of P C . The base case is obvious. For the inductive case, we
need to show two facts:

1. each clause added in the process of saturation of Ax(T ) ∪ S is a constraint instance of some clause in the saturation of
Ax(T ) ∪ G T

0 by S P C , and
2. if a clause is deleted by Subsumption Tautology Deletion or Deletion from (or simplified by Simplification in) the saturation

of Ax(T ) ∪ G T
0 by S P C , then all constraint instances of the latter will also be deleted from (or simplified in) the

saturation of Ax(T ) ∪ S by P C .
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Proof of (1). Consider Right Paramodulation of P C . By induction hypothesis l[u′] = r and u = t are constraint instances of
some clause in G T∞ , i.e. there is some clause D in G T∞ and a substitution θ such that θ(D) ≡ l[u′] = r, and some clause
D ′ in G T∞ such that θ(D ′) ≡ u = t . But then there must exist a Right Paramodulation inference of S P C in the saturation of
Ax(T )∪ G T

0 by S P C , whose premises are D and D ′ with conclusion D ′′ such that we can extend θ so that θ(D ′′) ≡ σ(l[t] =
r). Hence σ(l[t] = r) is a constraint instance of some clause in the saturation of Ax(T ) ∪ G T

0 by S P C .
The rules Left Paramodulation, Reflection of P C can be handled in a similar way to Right Paramodulation above and there-

fore omitted. Eq. Factoring of P C does not play any role as every saturation contains only unit clauses.

Proof of (2). Let us consider Subsumption of S P C . The case (b) of Subsumption is just a matter of deleting duplicates. For case
(a), assume that there are a clause A deleted from the saturation of Ax(T ) ∪ G T

0 by S P C and a clause B in the saturation
of Ax(T ) ∪ S by P C , which is a constraint instance of A. Then there must exist a clause C ∈ Ax(T ) and some substitution
θ such that θ(C) ⊆ A. Since all the clauses in Ax(T ) persist, there must be a substitution θ ′ such that θ ′(C) ⊆ B . Thereby B
must also be deleted from the saturation of Ax(T ) ∪ S by P C .

A similar argument can be given for Simplification of S P C . Assume that there are a clause C[l′] ‖ φ in the saturation of
Ax(T )∪ G T

0 by S P C simplified by an equality l = r (l = r ∈ Ax(T )) into C[θ(r)] ‖ φ. Let σ be a substitution such that σ(C[l′])
is a constraint instance of C[l′] ‖ φ. Since l = r persists in the saturation of Ax(T ) ∪ S by P C , there must be a simplification
of σ(C[l′]) = σ(C)[σ(θ(l))] by l = r into σ(C)[σ(θ(r))] = σ(C[θ(r)]), which is a constraint instance of C[θ(r)] ‖ φ.

For the Tautology Deletion rule of S P C , it is easy to see that a constraint instance of a tautology is also a tautology.
For the Deletion rule of S P C , notice that clauses with an unsatisfiable constraint have no constraint instances. �
Using Schematic Saturation, we can also determine an upper bound on the number of clauses generated in a saturation

by P C by simply counting the number of possible ground instantiations of constrained variables, given a finite set of
constants. It is not difficult to see that the number of possible instantiations polynomially depends on the number of
constants in the input set of ground flat literals.

Theorem 3. Let T be a theory axiomatized by a finite set Ax(T ) of equalities, which is saturated with respect to P C . Let G T∞ be the set
of all clauses in a finite saturation of Ax(T ) ∪ G T

0 by S P C . Then for every set S of ground flat ΣT -literals, the number of clauses in a
saturation Ax(T ) ∪ S by P C is bounded by |G T∞| × |S|V , where |S| is the number of constants in S, |G T∞| is the number of literals in
G T∞ and V is the number of constrained variables in G T∞ .

Proof. There are |S|V ways to instantiate the constrained variables in G T∞ . So there are at most |G T∞| × |S|V literals in a
saturation Ax(T ) ∪ S by P C . By Theorem 2, we can conclude that there are at most |G T∞| × |S|V literals. �

We notice that Theorems 2 and 3 straightforwardly generalize to theories axiomatized by sets of unit clauses as it is
apparent by inspecting their proofs.

3.2. Extending Schematic Saturation to non-equational theories

We first discuss some difficulties to generalize Theorem 2 to theories presented by a set of (possibly) non-unit clauses.
Bear in mind that we allow inferences (of S P C ) into constrained variables as so to simulate all possible inferences (of

P C ) into constants. Let us illustrate the importance of this by the following example.

Example 2. Let T be the theory axiomatized by the following set of clauses

X = Y ∨ Y = Z ∨ Z = X

f (X) = g(X)

G T
0 contains the following clauses

x = y ‖ x � c� ∧ y � c�

x �= y ‖ x � c� ∧ y � c�

f (x) = y ‖ x � c� ∧ y � c�

g(x) = y ‖ x � c� ∧ y � c�

Suppose that no inference into (constrained and unconstrained) variables is possible in Schematic Saturation. Then it is easy
to see that G T∞ is exactly Ax(T ) ∪ G T

0 . Now let us consider the set S = { f (c) = c′}. The saturation of Ax(T ) ∪ S by P C
generates the clause

f (Y ) = c′ ∨ Y = Z ∨ Z = c
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which is neither subsumed by another clause nor schematized by any clause in G T∞ . The problem is that in Schematic
Saturation, inferences into variables are excluded, but in a saturation of Ax(T )∪ S there might be inferences from a variable
into a constant.

Now assume that inferences into constrained variables are possible in Schematic Saturation, then the clause

f (Y ) = c′ ∨ Y = Z ∨ Z = c

is schematized by the clause

f (Y ) = y ∨ Y = Z ∨ Z = x ‖ x � c� ∧ y � c�

which is inferred from the clauses

X = Y ∨ Y = Z ∨ Z = X

f (x) = y ‖ x � c� ∧ y � c� �
Unfortunately, inferences into constrained variables may have some undesired consequences; especially, when they in-

volve two clauses containing only constrained variables, as illustrated by the following example.

Example 3. Let S C 2 be the theory finitely presented by the following set Ax(S C) of clauses:

(Sel): s1
(
c(x1, . . . , xn)

) = x1

...

sn
(
c(x1, . . . , xn)

) = xn

(Injc): c(x1, . . . , xn) = c(y1, . . . , yn) ⇒ x1 = y1

...

c(x1, . . . , xn) = c(y1, . . . , yn) ⇒ xn = yn

The clause

c(x1, . . . , xn) = x0 ‖ x0 � c� ∧ · · · ∧ xn � c�

will paramodulate with the clause

c(x1, . . . , xn) = c(y1, . . . , yn) ⇒ x1 = y1

to generate

x0 = c(y1, . . . , yn) ⇒ x1 = y1 ‖ x0 � c� ∧ · · · ∧ xn � c�

The latter again paramodulates with

c(x1, . . . , xn) = x0 ‖ x0 � c� ∧ · · · ∧ xn � c�

to generate

x0 = y0 ⇒ x1 = y1 ‖ x0 � c� ∧ yn � c� ∧ x1 � c� ∧ y1 � c�

This clause will paramodulate with a renamed version of itself to generate a bigger clause and so on. Thus Schematic
Saturation will diverge, although we can show that any saturation by P C on instances of the clause terminates. �

Another problem when simulating P C is that Schematic Saturation may introduce infinitely many new constrained
variables within a clause which contains unconstrained variables. Again, saturation may halt but Schematic Saturation does
not. To illustrate this point, let us consider the example of the theory of arrays.

2 The theory we consider here is an adaptation of the theory of recursively data structures considered by D.C. Oppen in [24].
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Schematic Deletion

S ∪ {D ∨ l1 ∨ · · · ∨ ln ‖ φ}
S

if

• D ∨ l1 ∨ · · · ∨ ln ‖ φ is a non-unit clause containing only
equalities or disequalities between constrained variables,
or else

• n � 0, D ‖ φ is a constrained variant of some clause D ′ ‖
φ′ in S , and li ‖ φ is a constrained variant of l ‖ φ, where
l is a non-maximal literal in D , for i = 1, . . . ,n.

Fig. 5. Schematic deletion rule.

Example 4. The theory A of arrays is axiomatized by the following finite set Ax(A) of axioms, where A, I, J , E are implicitly
universally quantified variables:

select
(
store(A, I, E), I

) = E

I = J ∨ select
(
store(A, I, E), J

) = select(A, J )

In [2], it is shown that for every set S of ground flat ΣA -literals, any saturation of Ax(A) ∪ S by P C is finite.
Unfortunately, Schematic Saturation diverges. In fact, it generates the clause

select(x, I) = select(z, I) ∨ y = I ‖ x � c� ∧ y � c� ∧ z � c�

which will paramodulate with a renamed copy of itself, i.e.

select
(
x′, I ′

) = select
(
z′, I ′

) ∨ y′ = I ′ ‖ x′ � c� ∧ y′ � c� ∧ z′ � c�

to generate a clause of a new form, namely

select(x, I) = select(z, I) ∨ y = I ∨ w = I ‖ x � c� ∧ y � c� ∧ z � c� ∧ w � c�

The process continues to generate longer and longer clauses so that Schematic Saturation will diverge. �
To cope with the aforementioned problems, we design the Schematic Deletion rule to delete constrained clauses that are

not relevant for simulating inferences of P C . The key idea of Schematic Deletion (cf. Fig. 5) is the following. We would like
to schematize every clause generated by P C but we do not know in advance how many constants there are in the input set
of ground flat literals. On the other hand we would like to avoid inferences introducing new constrained variables because
that might cause Schematic Saturation to diverge. This happens when inferences introduce unlimited duplications of literals
obtained by renaming constrained variables within the same clause. For example the clause

select(x, I) = select(z, I) ∨ y = I ∨ w = I ‖ x � c� ∧ y � c� ∧ z � c� ∧ w � c�

will make Schematic Saturation to diverge with the current version of S P C . The role of Schematic Deletion is precisely to
avoid this by deleting unnecessary clauses which may generate longer and longer clauses. However if this is done carelessly,
we may loose literals on which inferences may apply; and thereby we may loose track of the conclusion of such inferences.
For instance, we cannot delete the clause X = x ∨ X = y ‖ x � c� ∧ y � c� in which X = y is obtained from X = x by
renaming the constrained variable x into y. This is so because both X = x and X = y are maximal in X = x ∨ X = y ‖ x �
c� ∧ y � c� , and there might by inferences from (resp. into) them.

Considering these observations, constrained clauses which can be deleted by Schematic Deletion is a disjunction of
(dis)equalities between constrained variables, or a disjunction of a constrained clause in Schematic Saturation and non-
maximal literals in this constrained clause. We delete disjunctions of (dis)equalities between constrained variables, as they
might paramodulate with themselves to generate infinitely many disjunction of (dis)equalities between constrained vari-
ables, as in Example 3. We delete disjunctions of a constrained clause in Schematic Saturation and non-maximal literals in
this constrained clause because they might paramodulate with themselves generating infinitely many new disjunctions of
this kind, like in Example 4.

From now on, by Schematic Saturation we denote the saturation of Ax(T ) ∪ G T
0 by S P C augmented with Schematic

Deletion. We are now ready to prove that Schematic Saturation can be used to check decidability of finitely presented
theories.
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Theorem 4 (Automatic termination). Let T be a theory axiomatized by a finite set Ax(T ) of clauses, which is saturated with respect to
P C . Let G T∞ be the set of all clauses in a saturation of Ax(T )∪ G T

0 by S P C . Then for every set S of ground flat ΣT -literals, every clause
in a saturation Ax(T ) ∪ S by P C is a clause of the form

C ∨ l1 ∨ · · · ∨ ln (∗)

where

• n � 0, and
• C is a constraint instance of some clause C ′ in G T∞ , and
• li is

– either a constraint instance of some non-maximal literal in C ′ , or else
– a constraint instance of some maximal (dis)equality between constrained variables in C ′ , or else
– a non-maximal (dis)equality between constants.

Proof. The proof is by induction on the length of derivations of P C . The base case is obvious. For the inductive case, we
need to show three facts:

1. each clause added in the process of saturation of Ax(T ) ∪ S by P C is of the form (∗), and
2. if a clause is deleted by Subsumption or by Tautology Deletion from (or simplified by Simplification in) the saturation

of Ax(T ) ∪ G T
0 by S P C , then all clauses containing a constraint instance of the latter will also be deleted from (or

simplified in) the saturation of Ax(T ) ∪ S by P C , and
3. if a clause is deleted by Schematic Deletion from the saturation of Ax(T ) ∪ G T

0 by S P C , then all constraint instances of
this clause are of the form (∗).

Proof of (1). Let us start with the rule Right Paramodulation of P C . By induction hypothesis Γ ⇒ �, l[u′] = r and Π ⇒
Σ, u = t have the form (∗), i.e. there are some clause D ‖ φ and D ′ ‖ φ′ in G T∞ and a substitution θ such that

• θ(D ∨ l1 ∨ · · · ∨ ln ‖ φ) ≡ Γ ⇒ �, l[u′] = r, and
• θ(D ′ ∨ l′1 ∨ · · · ∨ l′m ‖ φ′) ≡ Π ⇒ Σ, u = t .

We consider all the positions where the rule Right Paramodulation of P C can be performed.

• If the Right Paramodulation inference of P C is performed at θ(D) and θ(D ′), then there must exist a Right paramodulation
inference of S P C in the saturation of Ax(T ) ∪ G T

0 by S P C , whose premises are D ‖ φ and D ′ ‖ φ′ with conclusion
D ′′ ‖ φ ∧ φ′ such that we can extend θ so that θ(D ′′ ∨ l1 ∨ · · · ∨ ln ∨ l′1 ∨ · · · ∨ l′m ‖ φ ∧ φ′) ≡ σ(Γ,Π ⇒ �,Σ, l[t] = r). We
consider two subcases:
– σ(Γ,Π ⇒ �,Σ, l[t] = r) only contains (dis)equalities between constants: then D ′′ ‖ φ∧φ′ only contains (dis)equalities

between constrained variables, and hence it will be deleted from the saturation of Ax(T )∪ G T
0 by S P C . However this

means that σ(Γ,Π ⇒ �,Σ, l[t] = r) is of the form (∗).
– σ(Γ,Π ⇒ �,Σ, l[t] = r) contains at least a non-constant term: then it is a constraint instance of D ′′ ∨l1 ∨· · ·∨ln ∨l′1 ∨

· · · ∨ l′m ‖ φ ∧ φ′ , where D ′′ ‖ φ ∧ φ′ persists in the saturation of Ax(T ) ∪ G T
0 by S P C . Hence σ(Γ,Π ⇒ �,Σ, l[t] = r)

is of the form (∗).
• If the Right Paramodulation of P C is performed at θ(l1 ∨ · · · ∨ ln) and θ(l′1 ∨ · · · ∨ l′m), meaning that selected equalities

are in these clauses and they must be maximal equalities between constants (we are considering Right Paramodulation
and hence omit disequalities). By the induction hypothesis we must have that D ≡ D1 ∨ x1 = y1 and D ′ ≡ D ′

1 ∨ x′
1 = y′

1,
where x1, y1, x′

1, y′
1 are constrained variables. But then there must exist a Right Paramodulation inference of S P C in

the saturation of Ax(T ) ∪ G T
0 by S P C , whose premises are D ‖ φ and D ′ ‖ φ′ with conclusion (D1 ∨ D ′

1 ∨ y1 = y′
1 ‖

φ ∧ φ′)[x′
1 → x1]. And thus σ(Γ,Π ⇒ �,Σ, l[t] = r) is of the form (∗).

• If the Right Paramodulation of P C is performed at θ(l1 ∨ · · · ∨ ln) and θ(D ′), then the selected equality in θ(l1 ∨ · · · ∨ ln)

is an equality between constants. By the induction hypothesis we must have that D ≡ D1 ∨ x1 = y1, where x1, y1 are
constrained variables. Then there must exist a Right Paramodulation inference of S P C in the saturation of Ax(T )∪ G T

0 by
S P C , whose premises are D ‖ φ and D ′ ‖ φ′ with conclusion (D1 ∨ D ′ ‖ φ ∧ φ′)[x1 → y1]. And σ(Γ,Π ⇒ �,Σ, l[t] = r)
is still of the form (∗).

The rule Left Paramodulation of P C is handled exactly in the same way as Right Paramodulation of P C .
For Reflection of P C , if the inference is performed in the C part then it is simulated by a Reflection inference of S P C

applied to C ′ . If the inference is performed at the l1 ∨ · · · ∨ ln part, then the disequalities involved in the Reflection inference
must be disequalities between constants. So the conclusion is still of the form (∗).

Eq. Factoring of P C can be handled similarly to Right Paramodulation of P C .
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Proof of (2). Let us consider Subsumption of S P C . The case (b) of Subsumption is just a matter of deleting duplicates. For
case (a), assume that there are a clause A deleted from the saturation of Ax(T ) ∪ G T

0 by S P C . Then there must exist a
clause C ∈ Ax(T ) and some substitution θ such that θ(C) ⊆ A. Now assume that B is a clause in the saturation of Ax(T )∪ S
by P C , which contains a constraint instance of A. Since all the clauses in Ax(T ) persist, there must be a substitution θ ′
such that θ ′(C) ⊆ B . Therefore B must also be deleted from the saturation of Ax(T ) ∪ S by P C .

A similar argument can be given for Simplification of S P C . Assume that there are a clause C[l′] ‖ φ in the saturation of
Ax(T )∪ G T

0 by S P C simplified by an equality l = r (l = r ∈ Ax(T )) into C[θ(r)] ‖ φ. Let σ be a substitution such that σ(C[l′])
is a constraint instance of C[l′] ‖ φ. Since l = r persists in the saturation of Ax(T ) ∪ S by P C , any clause containing σ(C[l′])
in the saturation of Ax(T ) ∪ S by P C will be simplified into a clause containing σ(C[θ(r)]).

For the Tautology Deletion rule of S P C , it is easy to see that a clause containing a constraint instance of a tautology is
also a tautology.

For the Deletion rule of S P C , notice that clauses with an unsatisfiable constraint have no constraint instances.

Proof of (3). Let us consider two cases of Schematic Deletion. In the first case, the fact that D ∨ l1 ∨ · · · ∨ ln ‖ φ is a non-
unit clause containing only equalities or disequalities between constrained variables means that it is a schematization of
disjunctions of (dis)equalities between constants. We can easily see that any disjunction of (dis)equalities between constants
is of the form (∗). In the second case, the fact that D ‖ φ is a constrained variant of some clause D ′ ‖ φ′ in S , and li ‖ φ is
a constrained variant of some non-maximal literal l ‖ φ in D means that any constraint instance of D ∨ l1 ∨ · · · ∨ ln ‖ φ is of
the form (∗). �
Example 5. Consider again the clauses of Example 3 in the presence of the Schematic Deletion rule, the clause

x0 = y0 ⇒ x1 = y1 ‖ x0 � c� ∧ y0 � c� ∧ x1 � c� ∧ y1 � c�

will be immediately deleted. Finally it is easy to see that Schematic Saturation will halt and the set of persistent clauses
will contain Ax(S C) ∪ G S C

0 and the following clauses:

x0 = c(y1, . . . , yn) ⇒ x1 = y1 ‖ x0 � c� ∧ · · · ∧ xn � c�

...

x0 = c(y1, . . . , yn) ⇒ xn = yn ‖ x0 � c� ∧ · · · ∧ xn � c�

For Example 4, in the presence of Schematic Deletion, the clauses generated by self-paramodulations, i.e. clauses of the
form

select(x1, I) = select(x2, I) ∨ x3 = I ∨ · · · ∨ xn = I ‖ x1 � c� ∧ · · · ∧ xn � c�

will be deleted by applying Schematic Deletion. This is so because the clause select(x, I) = select(z, I) ∨ y = I ‖ x � c� ∧ y �
c� ∧ z � c� already persists and the literals x3 = I, . . . , xn = I are actually constrained variants of the literal y = I . Therefore,
the set of persistent clauses will contain Ax(A) ∪ G A

0 and the following clauses:

select(x, I) = select(z, I) ∨ y = I ‖ x � c� ∧ y � c� ∧ z � c�

select(x, I) = z ∨ y = I ‖ x � c� ∧ y � c� ∧ z � c�

By Theorem 4, we conclude that P C is a satisfiability procedure for theory S C and the theory A of arrays. �
Similarly to the equational case, we can also determine an upper bound on the number of clauses generated in saturation.

But this time we have non-unit clauses and hence the bound on the number of persisting clauses in a saturation by P C
becomes exponential.

Theorem 5 (Automatic complexity). Let T be a theory axiomatized by a finite set Ax(T ) of clauses, which is saturated with respect to
P C . Let G T∞ be the set of all clauses in a finite saturation of Ax(T ) ∪ G T

0 by S P C . Then for every set S of ground flat ΣT -literals, the

number of clauses in a saturation Ax(T ) ∪ S by P C is bounded by 2|GT∞|×|S|V
, where |S| is the number of constants in S, |G T∞| is the

number of literals in G T∞ and V is the number of constrained variables in G T∞ .

Proof. There are |S|V ways to instantiate constrained variables in G T∞ . Hence there are at most |G T∞| × |S|V literals in a
saturation Ax(T )∪ S by P C . According to Theorem 4, all clauses in a saturation Ax(T )∪ S by P C has the form (∗), which is
actually a disjunction of literals. If we omit duplications of literals, then the number of such clauses is equal to the number
of subsets of the set of all literals. Thus there are at most 2|GT∞|×|S|V

clauses built out of |G T∞| × |S|V literals. �
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4. Automatic combinability

In this section, we consider two possible approaches for building satisfiability procedures for unions of theories: either
using P C on the union of the axioms of the theories being combined; or modularly combining satisfiability procedures
for the component theories by using the Nelson–Oppen combination method [22]. The first method only works for some
theories presented by a finite set of formulae while the latter applies to any combination of stably infinite theories. We show
that S P C can check whether P C decide some unions of finitely presented theories, as well as whether a theory can be
efficiently combined with other theories using the Nelson–Oppen method.

4.1. Modular termination

We study conditions under which the theory T1 ∪ T2 admits a paramodulation-based satisfiability procedure, provided
that T1 and T2 are disjoint theories admitting paramodulation-based satisfiability procedures. To this end, we have to
consider termination of any saturation of Ax(T1)∪ Ax(T2)∪ S by P C for an arbitrary set of ground flat literals S . Since both
T1 and T2 admit a paramodulation-based satisfiability procedure, the only source of non-termination when considering their
union (i.e., T1 ∪ T2) is due to inferences across theories. More precisely, such inferences can only take place on variables, and
constants as T1 and T2 are signature disjoint. It is easy to see that inferences on constants generate finitely many clauses
while inferences on variables might generate clauses containing mixed terms and hence might cause non-termination. Thus
it seems sufficient to exclude across theories inferences on variables to ensure modular termination. Before proving that
this is indeed the case, we need to introduce some technical results. The following concept of variable-active clause is taken
from [1].

Definition 10 (Variable-active clause). A clause C is variable-active with respect to an ordering � if C contains a maximal
(with respect to �) literal of the form X = t , where X is a variable not occurring in Var(t). A constrained clause is variable-
active with respect to � if one of its constraint instances is variable-active with respect to �.

It follows from Definition 10 that checking whether a clause is variable-active or not can be done syntactically.
From now on, when we say that a clause C is variable-active we mean that C is variable-active with respect to the

ordering � used by P C .

Lemma 1. Let T be a theory axiomatized by a finite set Ax(T ) of clauses, which is saturated with respect to P C . Assume that any
saturation of Ax(T ) ∪ G T

0 by S P C is finite and does not contain any variable-active clauses. Then for every set S of ground flat literals,
any saturation of Ax(T ) ∪ S by P C does not contain any variable-active clauses.

Proof. The proof is by contradiction. Assume that a saturation of Ax(T ) ∪ S by P C contains a variable-active clause D . By
Theorem 4, D must have the form

C ∨ l1 ∨ · · · ∨ ln

where

• n � 0, and
• C is a constraint instance of some clause C ′ in G T∞ , and
• li is

– either a constraint instance of some non-maximal literal in C ′ , or else
– a constraint instance of some maximal (dis)equality between constrained variables in C ′ , or else
– a non-maximal (dis)equality between constants.

Since D is variable-active, D must contain a maximal literal X = t such that X /∈ Vars(t). But then X = t must be in C ,
meaning also that C ′ is a variable-active constrained clause. The fact that C ′ in G T∞ would contradict the hypothesis of the
lemma. �

In the spirit of [1], the following lemma provides a sufficient condition for termination of P C on the union of the axioms
of theories along with a set of ground flat literals. This condition is based on the notion of variable-active clauses.

Lemma 2. Let Ti be a theory axiomatized by a finite set Ax(Ti) of clauses, which is saturated with respect to P C for i = 1,2. Assume
that

• the signatures of T1 and T2 are disjoint, and
• for every set S of ground flat Σi -literals, any saturation of Ax(Ti) ∪ S by P C is finite and does not contain any variable-active

clauses, for i = 1,2.

Then for every set S of ground flat Σ1 ∪ Σ2-literals, any saturation of Ax(T1) ∪ Ax(T2) ∪ S by P C is finite.
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Proof. We consider all possible across-theories inferences between clauses. Since the theories have disjoint signatures, an
across-theories inference must be one of the following types:

1. from constants into constants between clauses containing only constants. This kind of inference generate only a finite
number of clauses since we have finitely many constants.

2. from constants into constants between clauses containing only constants or variables. This kind of inference is possible
only if one of the premises is a variable-active clause, and that would contradict the hypothesis of the lemma.

3. from variables into arbitrary terms. This kind of inference is possible only if one of the premises is a variable-active
clause, and that would again contradict the hypothesis of the lemma.

Therefore under the hypothesis of the lemma, across-theories inferences generate finitely many clauses and hence any
saturation of Ax(T1) ∪ Ax(T2) ∪ S by P C is finite. �

Our main result about the modular termination of paramodulation-based satisfiability procedures is an immediate con-
sequence of Lemmas 1 and 2.

Theorem 6 (Automatic modular termination). Let Ti be a theory axiomatized by a finite set Ax(Ti) of clauses, which is already satu-
rated with respect to P C for i = 1,2. Assume that

• the signatures of T1 and T2 are disjoint, and
• any saturation of Ax(Ti) ∪ G Ti

0 by S P C is finite and does not contain any variable-active clauses, for i = 1,2.

Then, P C is a satisfiability procedure for T1 ∪ T2 .

Example 6. In [2], it is shown that any saturation of an arbitrary set of ground flat literals and the union of the axioms of
the theory L of lists and the theory A of arrays is finite. We prove this result by using Schematic Saturation.

In fact, by Examples 1 and 4, Schematic Saturation for both L and A is finite and does not contain any variable-active
clauses. It follows from Theorem 6, P C is a satisfiability procedure for L ∪ A. �

Theorem 6 provides a modular decidability result for finitely presented theories having a paramodulation-based decision
procedure. However, the absence of variable-active clauses in any finite saturation is too strong a requirement as there exist
theories not satisfying the hypothesis of Theorem 6 that can still be combined with other theories using the Nelson–Oppen
method if they are stably infinite. Consider the following example.

Example 7. Let T be the theory presented by the clause

f (X) = a ∨ X = Y ∨ f (Y ) = a

In our settings, G T
0 contains

x = y ‖ x � c� ∧ y � c�

x �= y ‖ x � c� ∧ y � c�

x = a ‖ x � c�

x = b ‖ x � c�

f (x) = y ‖ x � c� ∧ y � c�

and Schematic Saturation will contain the axiom, G T
0 and the following set of clauses

X �= x ∨ f (y) = a ∨ f (X) = a ‖ x � c� ∧ y � c�

f (x) = a ‖ x � c�

f (x) = a ∨ f (y) = a ‖ x � c� ∧ y � c�

X = y ∨ x = a ∨ f (X) = a ‖ x � c� ∧ y � c�

X = y ∨ x = a ∨ f (X) = a ∨ f (z) = a ‖ x � c� ∧ y � c� ∧ z � c�

By Theorem 4, T has decidable satisfiability problem. However, the theory presentation has a variable-active clause, so
Theorem 6 does not apply. But we can show that the theory is stably infinite. Therefore, we can still combine T with
theories having similar properties or with theories being stably infinite (and possibly non finitely axiomatizable) using the
Nelson–Oppen method. In fact, proving that T is stably infinite by hand is not so straightforward. Fortunately, we provide,
in the next section (cf. Theorem 7), a method of checking stable infiniteness of finitely presented theories. �
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4.2. Stable infiniteness

The Nelson–Oppen combination method [22] allows us to combine satisfiability procedures for the class of stably infinite
theories in a modular way. Although stable infiniteness is undecidable in general (see, e.g., [5] for more details), it is
interesting to develop automated techniques to prove it for a subclass of first-order theories, in particular those admitting
paramodulation-based satisfiability procedures. Here we develop such a technique by using Schematic Saturation.

Definition 11 (Elementary constrained clause). A constrained clause is elementary if one of its constraint instance is elemen-
tary.

Definition 12 (Finite cardinality clause). A clause is a finite cardinality clause if it has the form∨
0� j �=k�n

(x j = xk)

where n is a positive integer and xi is a variable, for i = 0, . . . ,n.

The following result follows from the compactness of first-order logic (see, e.g., [33]).

Lemma 3. Let T be a satisfiable set of formulae. If T has no infinite models then T entails a finite cardinality clause.

The following result applies to paramodulation calculi, which are stable under signature extension (for instance P C ), i.e.,
extending the initial signature with new symbols does not destroy completeness.3

Lemma 4. Let T be a consistent theory axiomatized by a finite set Ax(T ) of clauses and S be a finite T -satisfiable set of ground literals.
If T ∪ S entails a finite cardinality clause, then any saturation of Ax(T ) ∪ S by P C contains a non-ground elementary clause.

Proof. The proof uses the model generation technique (see, e.g., [23] for more details). Let S be a set of ground clauses
and C be a clause in S . Then Gen(C) = {l → r}, and C is said to generate the rule {l → r}, if and only if, C is of the form
Γ ⇒ �, l = r and the following conditions hold:

1. R∗
C �|� C ,

2. l � r and l � Γ and l = r �mul u = v for all u = v ∈ �, where �mul is the multiset extension of � (see, e.g., [23] for
more details),

3. l is irreducible by RC ,
4. R∗

C �|� r = t′ for every l = t′ ∈ �,

where RC = ⋃
C�D Gen(D), and R∗

C is the congruence induced by RC . In all other cases, Gen(C) = ∅. Finally, R denotes the
set of all rules generated by clauses of S , that is R = ⋃

D∈S Gen(D).
Now assume that T ∪ S entails a finite cardinality clause with n distinct variables. Let S ′ be the saturation of Ax(T ) ∪ S

by P C . Since S ′ and Ax(T ) ∪ S are logically equivalent, we have that S ′ entails the same finite cardinality clause. This
also means that S ′ ∪ ⋃

0� j �=k�n{c j �= ck} is unsatisfiable, where c0, . . . , cn are new constants. Let R S ′ be the set of all rules
generated by the clauses in grd(S ′), where grd(S ′) denotes the set of all ground instances of the clauses in S ′ . By model
generation technique, S ′ ∪ ⋃

0� j �=k�n{c j �= ck} is unsatisfiable only if there exists a constant ci reducible by R S ′ , because
otherwise S ′ ∪ ⋃

0� j �=k�n{c j �= ck} is satisfiable. We can without loss of generality assume that ci is the smallest (wrt. �)
among the constants reducible by R S ′ .

Assume that ci is reduced by a rule ci → r in R S ′ . Then ci → r must be in a clause C which generates ci → r. Since ci is
a constant, r must also be a constant and C must be a disjunction of equalities or disequalities between constants. Assume
that C is a ground instance of some clause C ′ in S ′ . As ci is a fresh constant and it is not in S ′ , C generates the rule ci → r
only if C ′ contains an equality of the form x = y, where at least x must be a variable. Therefore, C ′ must have the form
x = y ∨ x1 	
 y1 ∨ · · · ∨ xn 	
 yn, where n � 0, y, x1, y1, . . . , xn, yn are constants or variables, x is a variable, and 	
 ∈ {=, �=}.

We prove that C ′ is a non-ground elementary clause. To this end, it is sufficient to show that C ′ does not contain
any disequalities. Since ci is the smallest reducible constant, C ′ must not contain any disequalities containing a constant
(occurring in S ′), otherwise condition 2 of model generation would not be satisfied and ci → r would not be generated.
Assume that C ′ contains a disequality between variables, say xi �= yi (i ∈ {1, . . . ,n}). If xi ≡ x or yi ≡ x then C contains both
ci = r and ci �= r′ . In this case, condition 2 of model generation would not again be satisfied and consequently C could not

3 This is not restrictive because many state of the art paramodulation-based provers enjoy this property, except those which interpret ordering constraints
as symbolic constraint solving problems in the original signature (see [23,5] for a more detailed discussion).
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generate ci → r. So xi, yi must be different from x. But then Reflection applies to C ′ to infer a clause C ′′ containing x = y,
and which has one literal less. We now show that there is a ground instance of C ′′ which contains ci = r as maximal literal
and is smaller than every ground instance of C ′ which contains ci = r. Indeed, consider the instantiation σ in which x
is instantiated with ci , y is instantiated with r and each other variable is instantiated with the smallest constant wrt. �.
Clearly σ(C ′′) is that ground instance. This means that C could not generate ci → r because σ(C ′′) would generate ci → r.
Summing up, in all cases C ′ must contain no disequalities and this completes the proof of the lemma. �

By Theorem 4, if a non-ground elementary clause C occurs in a saturation of a set S of ground flat literals along
with Ax(T ), then there must exist an elementary constrained clause C ′ containing a unconstrained variable in Schematic
Saturation for T . By analyzing the form of C ′ we can show that either Schematic Saturation diverges or it will derive the
trivial equality X = Y . This result is formally stated in the following theorem.

Theorem 7 (Automatic stable infiniteness). Let T be a consistent theory axiomatized by a finite set Ax(T ) of clauses, which is saturated
with respect to P C . Let G T∞ be the set of all clauses generated in a finite saturation of Ax(T ) ∪ G T

0 by S P C . If G T∞ does not contain
X = Y , then T is stably infinite.

Proof. The proof is by contradiction. Assume that T is not stably infinite. Then there exists a T -satisfiable set S of ground
flat ΣT -literals such that T ∪ S has no infinite models. By Lemma 3, T ∪ S must entail a finite cardinality clause. Let S ′ be
the saturation of Ax(T ) ∪ S by P C . By Lemma 4, S ′ contains a non-ground elementary clause C . We consider two cases:

1. C is a unit clause, i.e. C ≡ X = y where X is a variable and y is a variable or a constant. If y is a variable, then
by Theorem 4, X = y must be a constraint instance of some clause in G T∞ , which must be an equality between two
unconstrained variables, i.e. X = Y ; a contradiction. Now, consider the case where y is a constant. Then again by
Theorem 4, X = y is a constraint instance of the clause X = y ‖ y � c� . But X = y ‖ y � c� will paramodulate with a
renamed version of itself to generate X = X ′ in G T∞; a contradiction.

2. C is a non-unit clause. By Theorem 4, C is a clause of the form D ∨ l1 ∨· · ·∨ ln , where D is a constraint instance of some
clause D ′ in G T∞ , and (for i = 1, . . . ,n and n � 0) either li is constraint instance of some literal in D ′ or a (dis)equality
between constants. We argue that D ′ is non-ground elementary (i.e. containing an unconstrained variable). This is so
because if D ′ is ground any constraint instance of D ′ would be ground and this would imply that D and C are ground.
We can assume wlog. that every equality in D ′ is non-ground (because otherwise an application of Paramodulation
between D ′ and the disequality x �= y ‖ x � c� ∧ y � c� followed by Reflection would generate a new clause D ′′; if
D ′′ is not already an elementary clause containing only non-ground equalities, then we repeat the same process on D ′′
and eventually get an elementary clause containing only non-ground equalities). If D ′ is a unit clause, then we are in
case (1). Let us consider D ′ to be non-unit, then D ′ has one of the following forms, where X, Y , Z are unconstrained
variables:
(a) X = x∨ X = y ∨ D1 ‖ x � c� ∧ y � c� ∧φ: then D ′ will paramodulate with a renamed copy of itself, i.e. X ′ = x′ ∨ X ′ =

y′ ∨ D ′
1 ‖ x′ � c� ∧ y′ � c� ∧ φ′ , to infer the clause X = X ′ ∨ Y = y ∨ Y ′ = y′ ∨ (D1[x → x′]) ∨ D ′

1 ‖ ((x � c� ∧ y �
c� ∧ φ ∧ φ′)[x → x′]). Notice that the paramodulation is performed at constrained variables, and its conclusion,
which contains new unconstrained variables, is longer than its premises. Schematic Deletion cannot be applied to the
new clause since it contains new unconstrained variables. This new clause will again paramodulate with a renamed
version of itself to generate an even longer clause with new unconstrained variables. The process continues infinitely
to generate longer and longer clauses with new unconstrained variables. Therefore G T∞ will be infinite.

(b) X = x ∨ X = Z ∨ D1 ‖ x � c� ∧ φ: then D ′ will paramodulate with x′ = y′ ‖ x′ � c� ∧ y′ � c� to infer the clause
X = x ∨ X = y′ ∨ (D1[Z → x′]) ‖ ((x � c� ∧ x′ � c� ∧ y′ � c� ∧ φ)[Z → x′]), which is in the form (a); and G T∞ will be
infinite.

(c) X = Y ∨ X = Z ∨ D1 ‖ φ: then D ′ will paramodulate with x = y ‖ x � c� ∧ y � c� to generate the clause X = y ∨ X =
Z ∨ (D1[Y → x]) ‖ ((x � c� ∧ y � c� ∧ φ)[Y → x]), which is in the form (b). But then G T∞ will also be infinite.

Summing up, in all cases if T is not stably infinite, then either the trivial equality X = Y is in G T∞ or G T∞ is infinite, and
this contradicts the hypothesis of the theorem. �
Example 8. Consider again Example 7. We can see that Schematic Saturation for T terminates and does not derive the trivial
equality X = Y . By Theorem 7, T is stably infinite. �
4.3. Deduction completeness

The crux of the Nelson–Oppen combination method is to exchange entailed equalities between satisfiability procedures.
There does not seem to be any problem in using a satisfiability procedure to check whether a set S of literals entails a
formula φ in a theory since we can check whether S and the negation of φ is unsatisfiable. However, to implement the



1044 C. Lynch et al. / Information and Computation 209 (2011) 1026–1047
Nelson–Oppen combination method efficiently, the satisfiability procedure for the component theories must be capable to
derive the ground elementary clauses to be exchanged with other procedures.

As mentioned previously, it is sufficient to exchange only ground elementary equalities when combining convex theories
without affecting the correctness of the Nelson–Oppen method. The reader may wonder why we do not study the convexity
of theories in our framework as it is crucial for the efficiency of combination methods (see, e.g., [22] for a discussion on this
point). Fortunately, it is possible to come up with a semi-automatic check for convexity by re-using a result of Lewis [17],
which provides a sufficient (and necessary) condition for the existence of a renaming function bringing a set S of clauses
to Horn form by checking the consistency of a certain associated set Sa of clauses. Indeed, the consistency of Sa can be
checked by using any refutation complete calculus (such as P C ). Since any Horn theory is convex, the successful application
of Lewis’ method entitles us to conclude that S is convex as it can be presented by a Horn theory.

Below, we show that for a theory presented by a set of Horn clauses, if we consider a variant of P C with negative
selection, then its paramodulation-based satisfiability procedure (if exists) is deduction complete.

Theorem 8 (Automatic deduction completeness). Assume

• P C uses a selection function sel such that for each clause C , sel(C) contains either a negative literal in C , or a maximal positive
literal if C does not contain any negative literals; and similarly for S P C ;

• T to be a theory axiomatized by a finite set Ax(T ) of Horn clauses, which is saturated with respect to P C ;
• G T∞ to be the set of all clauses in a finite saturation of Ax(T ) ∪ G T

0 by S P C such that G T∞ does contains the clause X = Y .

Then, S P is a deduction complete T -satisfiability procedure with respect to elementary equalities.

Proof. Let S be a finite T -satisfiable set of ground flat literals and S ′ be a saturation of Ax(T ) ∪ S by P C . We need to show
that for every elementary equality c = c′ such that Ax(T ) ∪ S |� c = c′ , we have that S ′

e |� c = c′ , where S ′
e is the subset

containing all elementary equalities in S ′ . Assume that there is some elementary equality c = c′ such that T ∪ S |� c = c′ .
Reasoning by refutation, T ∪ S |� c = c′ iff S ∧ c �= c′ is T -unsatisfiable. Hence, it must be possible to derive the empty clause
by applying P C to the set S ′ ∪ {c �= c′}. We are going to show that it must be possible to derive the empty clause using P C
from S ′

e ∪ {c �= c′}. The proof is by induction on the order of c �= c′ wrt. the ordering �.
The basic case, where c and c′ are the same smallest constant wrt. the ordering �, is obvious. Only c �= c′ would be

sufficient to derive the empty clause.
Now let us consider the inductive case. Since S ′ is T -satisfiable and saturated, only inferences involving both clauses from

(or inferred from) S ′ and c �= c′ can yield the empty clause. Let us analyze such inferences, i.e. inferences between c �= c′ and
some clause C ′ in S ′ . If there is an inference between c �= c′ and C ′ , then the inference must be a Left Paramodulation and
the literal selected in C ′ must be an equality. Also C ′ only contains constants or variables because c and c′ are constants.
By the hypotheses of the theorem, sel always selects a negative literal in a clause first if the latter contains negative literals.
This means that each literal in C ′ must be an equality. On the other hand, the fact that T is a Horn theory implies that
any saturation of Ax(T ) ∪ S by P C only contains Horn clauses. Therefore C ′ must contain exactly one equality. Now if C ′
contains a variable, then G T∞ must contain X = Y ; that would contradict the assumption of the theorem. If C ′ only contains
constants, then C ′ is a ground elementary equality, which also means that C ′ is in S ′

e . Moreover the clause inferred from
c �= c′ and C ′ must be a disequality between constants, let us say c1 �= c′

1. We know that c1 �= c′
1 is smaller than c �= c′ wrt.

the ordering �. By induction hypothesis, it must be possible to derive the empty clause using P C from S ′
e ∪ {c1 �= c′

1}. This
means that it must be possible to derive the empty clause using P C from S ′

e ∪ {c �= c′}, or equivalently, S ′
e |� c = c′ . �

Example 9. Considering again Example 3. Schematic Saturation contains Ax(S C), G S C
0 , and the following clauses:

x = c(y1, . . . , yn) ⇒ x1 = y1 ‖ x1 � c� ∧ x � c�

...

x = c(y1, . . . , yn) ⇒ xn = yn ‖ xn � c� ∧ x � c�

Schematic Saturation is finite and does not contain the equality X = Y . By Theorem 8, S P is a deduction complete S C -
satisfiability procedure with respect to elementary equalities. �

For non-Horn theories, the situation becomes more complicated as some inferences on non-unit ground elementary
clauses may be blocked due to the ordering used in P C . To illustrate the problem, let us consider the following example.

Example 10. Let S be the following set of clauses

i �= i′

select
(
a′, i′

) = e′
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store(a, i, e) = a′

select
(
a, i′

) = e′

A saturation of S along with the axioms Ax(A) of the theory of arrays yields Ax(A) ∪ S and the following clauses

e′ = e ∨ i = i′

select
(
a, i′

) = e′

select
(
a, i′

) = e ∨ i = i′

select(a, J ) = select
(
a′, J

) ∨ J = i

It is easy to see that {i �= i′, e′ = e ∨ i = i′} implies e′ = e, and hence we have that S ′ entails e′ = e. But the set {e′ = e ∨ i = i′}
of ground elementary clauses of S ′ does not entail e′ = e if we consider an ordering � such that e′ � e � i � i′ . �

In order to obtain deduction completeness for non-Horn theories, [32] proposes to use a splitting rule (along the lines
of [27]) to activate every possible inference among ground elementary clauses and therefore derive sufficiently many dis-
junctions of ground elementary equalities. The idea of the splitting rule is to split any clause of the form A ∨ B into two
clauses A ∨ p and B ∨ ¬p, where p is a new propositional variable and A, B do not share any variables. By using this rule,
we can split any ground elementary clause into clauses containing exactly one (dis)equality and possibly new propositional
variables. Moreover we consider an ordering such that p is the smallest one, and thereby activate every inference on ground
elementary (dis)equalities. In this way, as soon as the set of clauses is saturated, we can compute a complete set of ground
elementary clauses by eliminating all new propositional variables introduced by splitting. For Example 10, e′ = e ∨ i = i′
would be split into e′ = e ∨ p and i = i′ ∨ ¬p. But then i = i′ ∨ ¬p would paramodulate with i �= i′ to yield i′ �= i′ ∨ ¬p to
which Reflection applies yielding ¬p. Then we can to get rid of the propositional variable p by resolving e′ = e ∨ p and ¬p
to derive e′ = e. Notice also that if we use splitting, negative selection is no longer necessary. We refer to [32] for more
details.

5. Related work

The research described in this paper is in the spirit of the seminal work [20] by McAllester, where it is given a procedure
for automatically recognizing presentations of theories whose satisfiability problem can be checked in polynomial time.
Other papers (see, e.g., [13,4,10]) have built upon McAllester’s work to derive automatic decidability results for larger classes
of theories. Unfortunately, the formal framework underlying these works does not allow one to consider equality as built-
in, so that available efficient approaches for equational reasoning cannot be used. Our work can be seen as an attempt
to overcome this problem by using paramodulation, a state-of-the-art automated reasoning techniques that treats equality
as built-in by using efficient rewriting techniques. In contrast with the approaches à la McAllester, our investigations do
not focus on polynomial-time decidability but are concerned to design automatic checks for properties which are relevant
for theorem proving in unions of theories (e.g., stably infiniteness or deduction completeness), which are crucial to embed
automated-theorem proving techniques in verification tools.

The work described in this paper unifies and generalizes previous results on paramodulation-based decision procedures
for satisfiability problems. In [2], the rewriting-approach to paramodulation-based satisfiability procedures is introduced and
applied to some relevant theories for verification such as lists, arrays, and their combination. In [18], an automatic procedure
to build paramodulation-based satisfiability procedure is described by using the meta-saturation calculus, which simulates
(some of) the inferences of paramodulation. In [1], further theories are shown amenable to the rewriting-approach (e.g.,
records and integer off-sets), the class of variable-inactive theories is defined, and a result for the modular termination of
saturation is proved for such a class of theories. In [15], it is shown that—under negative selection—a saturation of theories
axiomatized by Horn clauses derives enough implied equalities to guarantee the completeness of the Nelson–Oppen schema.
In [16], an automatic method is designed (using the meta-saturation calculus in [18]) for checking a condition for variable-
activity (similar to the one proposed in this paper), stable infiniteness, and deduction completeness for finitely presented
theories. Finally, an extension of the results in [18,16] has been recently given in [19], to handle theories for which [18,
16] fail (such as the theory of arrays). Schematic Saturation presents a lot of similarities with the meta-saturation of [18].
The main difference is that meta-saturation uses constraints so as to ensure that constrained variables are instantiated by
constants and it excludes every inference into variables. However, as illustrated in Example 2, if we exclude inferences into
constrained variables, we cannot simulate every inference into constants anymore. Another difference between Schematic
Saturation and meta-saturation is the Schematic Deletion rule. This rule makes Schematic Saturation terminate on examples
where meta-saturation diverges (see e.g., Example 4).

In [16], the authors define the notion of variable-active clause so that if, for a given theory T axiomatized by the set
Ax(T ) of clauses, any saturation of Ax(T ) ∪ S halts and does not infer any variable-active clauses, then T is stably infinite.
Notice that if for an arbitrary set of ground flat literals S , any saturation of Ax(T ) ∪ S does not derive any variable-active
clauses, then the theory T is variable-inactive, in the sense of [1]. The work in [16] goes two steps beyond that in [1].
First, it shows that the absence of variable-active clauses in any saturation implies stable infiniteness. Second, it provides an
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automatic check of the absence of variable-active clauses by meta-saturation. However, this condition is rather too strong
a requirement for combination as there exist theories for which paramodulation derives variable-active clauses which are
stably infinite as illustrated by Example 7. The results of this paper are more general in this respect, as Schematic Saturation
(initially designed in [19]) can automatically check stable infiniteness without relying on the variable-activity condition of
[16]. A further generalization is that Schematic Saturation does not need to assume anymore that a negative selection
function is used by paramodulation as it was the case in [16]. This is again a rather strong requirement, which narrows
the scope of applicability of the method in [16] because there exist theories for which Schematic Saturation halts with one
special ordering but not with others. Let us illustrate the problem on an example.

Example 11. The theory presented by the clause

Nat(X) �= True ∨ Nat
(
s(X)

) = True (N1)

is stably infinite. However if we consider negative selection, then the clause Nat(x) = y ‖ x � c� ∧ y � c� will paramodulate
with (N1) to generate the clause y �= True ∨ Nat(s(x)) = True ‖ x � c� ∧ y � c� . Reflection applies to the last clause yielding
Nat(s(x)) = True ‖ x � c� . The new clause, in turn, will paramodulate with (N1) again and Schematic Paramodulation will
not halt.

As an alternative, we may consider an ordered selection function sel such that

sel
(
Nat(X) �= True ∨ Nat

(
s(X)

) = True
) = {

Nat
(
s(X)

) = True
}
.

It is easy to see that Schematic Saturation will contain (N1), the (finite) set of constrained unit literals G T
0 schematizing an

arbitrary set of ground flat literals, and the following set of clauses:

Nat(x) �= True ‖ x � c�

Nat
(
s(x)

) = True ‖ x � c�

Nat(y) = True ‖ x � c� ∧ y � c�

Hence, the saturated set of clauses is finite and does not contain the trivial equality X = Y . By Theorem 7, we are entitled
to conclude that the theory axiomatized by (N1) is stably infinite. �

This example illustrates that Schematic Saturation only requires fairness on the computation of saturated sets of clauses
and it makes no assumptions on the selection function. Therefore, it is likely to handle more theories than the method in
[16].

6. Conclusions and future work

We have introduced Schematic Saturation as a means to over-approximate the inferences that paramodulation can gener-
ate while solving the satisfiability problem for a certain theory T , i.e. computing the set of persistent clauses deriving from
the union of the set of axioms of T and an arbitrary set of ground flat literals. Schematic Saturation is the key ingredient
to design procedures capable of answering the following questions about T . (a) Is T decidable? (b) Is T stably infinite?
(c) Is T deduction complete? Also, given two theories T1 and T2, (d) can paramodulation decide the satisfiability problem
in the union of T1 and T2, when it can decide the satisfiability of T1 and T2 separately? Being able to answer questions (b)
and (c) enable us to combine paramodulation-based procedures with black-box procedures for theories not amenable to the
rewriting-approach, such as the quantifier-free fragment of Linear Arithmetic, by the Nelson–Oppen combination schema.

There are two main lines of research for future work. First, we intend to investigate further applications of Schematic
Saturation. For example, in [31,26], new combination schemas for non-stably infinite theories are described. It would be
interesting to identify sufficient conditions for the correctness of the combination methods in [31,26], which can be checked
by Schematic Saturation. Second, we want to find further ways to handle fragments of Presburger Arithmetic in the context
of paramodulation. In this respect, it seems promising to design an extension of Schematic Saturation in order to simulate
saturations modulo Abelian groups [11,34,29,14].
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