
J Autom Reasoning (2011) 47:161–189
DOI 10.1007/s10817-010-9213-y

On Deciding Satisfiability by Theorem Proving
with Speculative Inferences

Maria Paola Bonacina · Christopher A. Lynch ·
Leonardo de Moura

Received: 22 February 2010 / Accepted: 1 December 2010 / Published online: 22 December 2010
© Springer Science+Business Media B.V. 2010

Abstract Applications in software verification often require determining the sat-
isfiability of first-order formulae with respect to background theories. During de-
velopment, conjectures are usually false. Therefore, it is desirable to have a theorem
prover that terminates on satisfiable instances. Satisfiability Modulo Theories (SMT)
solvers have proven to be highly scalable, efficient and suitable for integrated
theory reasoning. Inference systems with resolution and superposition are strong
at reasoning with equalities, universally quantified variables, and Horn clauses.
We describe a theorem-proving method that tightly integrates superposition-based
inference system and SMT solver. The combination is refutationally complete if
background theory symbols only occur in ground formulae, and non-ground clauses
are variable-inactive. Termination is enforced by introducing additional axioms as
hypotheses. The system detects any unsoundness introduced by these speculative
inferences and recovers from it.

Keywords Program checking · Theorem proving · Satisfiability modulo theories ·
Combination of theories

The first author was supported in part by grant no. 2007-9E5KM8 of the Ministero
dell’Istruzione Università e Ricerca.

M. P. Bonacina (B)
Dipartimento di Informatica, Università degli Studi di Verona,
Strada Le Grazie 15, 37134 Verona, Italy
e-mail: mariapaola.bonacina@univr.it

C. A. Lynch
Department of Mathematics and Computer Science, Clarkson University,
Potsdam, NY 13699-5815, USA
e-mail: clynch@clarkson.edu

L. de Moura
Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA
e-mail: leonardo@microsoft.com



162 M.P. Bonacina et al.

1 Introduction

Applications in software verification have benefited greatly from recent advances
in automated reasoning. Reasoning about programs often requires determining the
satisfiability of first-order formulae with respect to some background theories. In
numerous contexts in software verification, quantifiers are also needed. For example,
they are used for capturing frame conditions over loops, axiomatizing type systems,
summarizing auxiliary invariants over heaps, and for supplying axioms of theories
that are not already equipped with decision procedures for ground formulae. Thus,
many verification problems consist in determining the satisfiability of a set of
formulae R � P modulo a background theory T , where R is a set of non-ground
clauses without occurrences of T -symbols, and P is a large ground formula, or set
of ground clauses, that typically contains T -symbols. The set of formulae R can
be viewed as the axiomatization of an application specific theory. The background
theory T is a combination T = ⋃n

i=1 Ti of theories Ti, 1 ≤ i ≤ n, commonly used in
hardware and software verification, such as linear arithmetic.

Satisfiability Modulo Theories (SMT) solvers have proven highly scalable,
efficient and suitable for integrated theory reasoning. Most SMT solvers are re-
stricted to ground formulae, and integrate the Davis-Putnam-Logemann-Loveland
procedure (DPLL) for propositional logic [25, 26], with satellite solvers for ground
satisfiability problems in the theories Ti, 1 ≤ i ≤ n, that are therefore built into
the SMT solver. The resulting integration is called DPLL(T ), where T = ⋃n

i=1 Ti.
General treatments appeared in [55, 61]. For quantifiers, there are situations where
the needed instances of universally quantified variables can be computed without loss
of completeness: for instance, for certain fragments of the theories of arrays [17, 21]
and pointers [52], or for local theory extensions [43, 63]. Otherwise, techniques to
guess how to instantiate variables, based on heuristics and user annotations, were
investigated [27, 34, 39]. They are known as “triggering,” because the terms to be
instantiated are called “triggers.” These techniques can be very efficient when they
succeed, but they require expensive user guidance, and their incompleteness causes
false positives in the program verification tools that use the SMT-solver.

In comparison with SMT solvers, generic inference systems based on superpo-
sition and resolution are refutationally complete for first-order logic with equality;
they are strong at reasoning with equalities, universally quantified variables, and
Horn clauses. Available surveys include [10, 48, 56]. A standard superposition-based
inference system was proved to terminate and hence to be a satisfiability procedure
for several theories of data structures, including arrays and recursive data structures,
and their combinations [3–5, 15].

The DPLL(�) system of [28] integrates an SMT solver with a generic inference
system � based on superposition and resolution. The DPLL engine works by building
a candidate model: if the construction succeeds, it returns satisfiable; if it fails
definitely, it returns unsatisfiable. The inference system � works by deducing clauses
from clauses and removing redundant clauses: if it generates the empty clause �,
that represents contradiction, it returns unsatisfiable. The key to their integration
is that the literals in the candidate model built by the DPLL engine can occur as
premises of �-inferences. The resulting system aims at uniting the strengths of SMT
solvers—propositional efficiency, fast theory solvers, tight integration—with those of
superposition-based theorem provers, especially general reasoning about quantifiers
without recurring to incomplete heuristics.



Theorem Proving with Speculative Inferences 163

However, in general, DPLL(�) is not refutationally complete, when both T and
R are not empty, even when T -symbols do not occur in R. For example, assume
R = {x � a ∨ x � b} and P = ∅, and the background theory T is arithmetic. The
clause x � a ∨ x � b implies that any model has a domain with at most two elements,
which is clearly incompatible with any model for arithmetic, that requires an infinite
domain. In other words, DPLL(�) does not have a way to detect unsatisfiability
due to the lack of models with infinite domain. A first contribution of this article
is a revised version of DPLL(�), named DPLL(� +T ), with sufficient conditions to
make it refutationally complete when T is not empty.

DPLL(� +T ) has to combine the built-in theories in T = ⋃n
i=1 Ti and the ax-

iomatized theory R. Combination of built-in theories is usually done by the equality
sharing method of [53], later dubbed “Nelson–Oppen scheme” from the names
of the authors. This method has three requirements. First, the theories cannot
share function symbols. Second, each Ti must be stably inf inite. A theory Ti is
stably infinite if every Ti-satisfiable ground formula has a Ti-model with domain of
infinite cardinality. Third, every Ti-solver must be capable of generating all entailed
disjunctions of equalities between shared constants. The third requirement is relaxed
in model-based theory combination [29], which is a version of equality sharing,
where it is sufficient that each Ti-solver generates the equalities between shared
constants that are true in the current candidate Ti-model. Thus, this method requires
that each Ti-solver generates a candidate model. On the other hand, combination
of axiomatized theories in a superposition-based engine requires that they do not
share function symbols and are variable-inactive: under these hypotheses, if the
superposition-based system terminates on satisfiability problems in each theory, it
also terminates on satisfiability problems in their union [3, 4]. A second contribution
of this article is to explain how to apply known results on variable inactivity [4, 17, 18]
to combine built-in theories by model-based theory combination and axiomatized
theories in DPLL(� +T ).

In software verification, during development time, several conjectures are false
because of errors in the implementation or specification. Therefore, it is desirable to
have a theorem prover that terminates on satisfiable instances. In general, this is not
a realistic goal since pure first-order logic is not decidable, and, even worse, there is
no sound and complete procedure for first-order logic formulae of linear arithmetic
with uninterpreted functions [41]. Axioms such as transitivity

¬(x � y) ∨ ¬(y � z) ∨ x � z

and monotonicity

¬(x � y) ∨ f (x) � f (y)

are problematic for any resolution-based �, since they tend to generate an un-
bounded number of clauses, even with a selection function that selects negative
literals to prevent self-resolutions. Such axioms may arise in formalizations of type
systems for programming languages. In that context, the symbol � represents a
subtype relationship, and the monadic function f represents a type constructor, such
as Array-of.

As an example, assume that the axiomatization contains a monotonicity axiom

¬(x � y) ∨ f (x) � f (y).



164 M.P. Bonacina et al.

Unrestricted resolution would resolve it with itself, that is, with a variant

¬(x′ � y′) ∨ f (x′) � f (y′)

to generate ¬(x � y) ∨ f 2(x) � f 2(y), hence the infinite series

{¬(x � y) ∨ f i(x) � f i(y)}i≥0,

where at each step the original axiom resolves with ¬(x � y) ∨ f i−1(x) � f i−1(y)

to yield its successor. A selection function that selects negative literals prevents all
these inferences, because f (x′) � f (y′) cannot resolve with ¬(x � y), if ¬(x′ � y′)
is selected. However, even resolution with negative selection generates an infinite
series

{ f i(a) � f i(b)}i≥0

from monotonicity and each literal a � b in the input. In practice, it is seldom the
case that we need to go beyond f (a) � f (b) or f 2(a) � f 2(b) to show satisfiability.

A third contribution of this article is a new version of DPLL(� +T ) with
speculative inferences, a feature suggested by [49]. The idea is to allow the prover,
or the experimenter, to guess additional axioms, that avoid infinitary behaviors such
as that induced by the monotonicity axiom. If the additional axioms are a cause
of unsoundness, by turning a satisfiable set into an unsatisfiable one, the prover
detects it and recovers from it automatically. The resulting method yields decision
procedures for several axiomatizations of type systems that are relevant to software
verification.

This article is organized as follows. Section 2 provides the background. Section 3
shows how to apply previous results on superposition and variable-inactive theo-
ries in DPLL(� +T ); it states the requirements on the problem R � P and the
background theory T , setting the stage for the sequel. Section 4 presents the new
DPLL(� +T ) system with speculative inferences. Section 6 introduces the notion
of essentially f inite theories—a generalization of the f inite model property—exhibits
essentially finite theories, and shows how DPLL(� +T ) with speculative inferences
yields a decision procedure for them and their combinations. Section 7 concludes
with summary of the results, comparison with related work, and directions for further
research. A short version of this article appeared in [20].

2 Background

We assume basic notions from logic used in theorem proving. Let � be a signature
consisting of a set of function and predicate symbols, each with its arity, denoted by
arity( f ), for symbol f . We call 0-arity function symbols constant symbols, and use a,
b , c, d for constants, f , g, h for non-constant function symbols, p for a predicate
symbol, x, y, z, u for variables, � for equality, and 
� for either � or ��: these
three symbols are symmetric. Two signatures are disjoint if they share no function
or predicate symbol other than�. Terms, literals, clauses, sentences and formulæ are
defined as usual. A clause (i.e., a disjunction of literals) is positive if all its literals
are; it is Horn if it has at most one positive literal. We use t, s, l, r for terms, l, m
for literals, C, D for clauses, � for the empty clause, which denotes contradiction,



Theorem Proving with Speculative Inferences 165

and F, N, P, S for sets of clauses. Var(l) is the set of variables occurring in l.
The notation l[t] means that t appears as subterm of l. A first-order �-theory is
presented, or axiomatized, by a set of �-sentences. Two theories are disjoint if their
signatures are. We reserve calligraphic letters, such as T and R, for presentations
of theories. A Horn presentation is a set of non-negative Horn clauses. Def ined,
or interpreted, symbols are those symbols whose interpretation is restricted to the
models of a theory, whereas free, or uninterpreted, symbols are those symbols whose
interpretation is unrestricted.

A �-structure � consists of a non-empty universe, or domain, |�|, and an
interpretation for variables and symbols in �. We use v, w for elements of |�|. For
each f ∈ �, the interpretation of f is denoted by �( f ). For a function symbol f
with arity( f ) = n, �( f ) is an n-ary function on |�| with range(�( f )) = {w | ∃v ∈
|�|, �( f )(v) = w}. For a predicate symbol p with arity(p) = n, �(p) is a subset of
|�|n. The interpretation of a term t is denoted by �(t). If t is a variable or constant,
�(t) is an element in |�|. Otherwise, �( f (t1, . . . , tn)) = �( f )(�(t1), . . . , �(tn)). If
S is a set of terms, �(S) = {�(t) | t ∈ S}. Satisfaction � |= C is defined as usual; if
� |= C, then � is a model of C. For refutational completeness in first-order theorem
proving it is sufficient to consider Herbrand interpretations, where the domain is the
Herbrand universe and constant and function symbols are interpreted as themselves.

An inference system � is a set of inference rules. Ordering-based inference systems
use an ordering � on terms and literals to restrict expansion inferences, that expand
the existing set by generating clauses, and to define contraction inferences, that
contract the set by removing clauses. This ordering is assumed to be a complete
simplif ication ordering: it is stable (if s � t then sσ � tσ for all substitutions σ ),
monotone (if s � t then l[s] � l[t] for all l), it has the subterm property (l[t] � t
for all t and l �= t), hence it is well-founded (there is no infinite decreasing chain
t1 � t2 � . . . ti � ti+1 � . . .) [31], and it is total on ground terms and literals (if s �= t,
then either s � t or t � s). The ordering is extended to equations and clauses by
multiset extension, which preserves well-foundedness [33]. An inference rule with n
premises has a main premise and n− 1 side premises. For an expansion rule, the main
premise yields the conclusion in the context of the side premises; such a rule is sound
if the conclusion is a logical consequence of the premises. For a contraction rule, the
main premise is reduced to the conclusion or removed; such a rule is sound if the main
premise is a logical consequence of side premises and conclusion, if present. Premises
and conclusion of an inference γ are denoted by P(γ ) and C(γ ), respectively. We
write γ ∈ � to say that γ is an application of an inference rule in �.

Clauses deleted by contraction are redundant. Redundancy is defined based on
well-founded orderings on clauses, whereby a ground clause is redundant in a set of
clauses, if it is entailed by smaller ground clauses in the set, and a clause is redundant
if all its ground instances are [6], or well-founded orderings on proofs, whereby a
clause is redundant in a set of clauses, if it does not affect its minimal proofs [19].
An inference is redundant if it uses or generates a redundant clause. A clause or
inference that is not redundant is irredundant. A set of clauses N is saturated with
respect to �, or �-saturated, if all �-inferences in N are redundant. Given an input
set of clauses S0, a �-derivation is a sequence S0 �� S1 �� . . . Si �� Si+1 �� . . . where
at each step Si+1 is derived from Si by a �-inference; its limit is the set of persistent
clauses S∞ = ⋃

i≥0
⋂

j≥i S j. A �-derivation is fair, if all expansion inferences from
persistent irredundant premises are done eventually. If a �-derivation is fair, its limit



166 M.P. Bonacina et al.

is saturated. Since � is non-deterministic, there may be more than one �-derivation
from a given S0. The combination of � with a search plan, that controls the choice
of inferences, yields a deterministic theorem-proving strategy, or proof procedure,
termed �-strategy, or �-procedure, whose derivation is unique given S0. A strategy
or procedure is fair if all its derivations are. A recent abstract treatment of these
notions, with references to their history, appeared in [12].

Let I be a mapping, called a model functor, that assigns to each set of ground
clauses N, not containing �, a Herbrand interpretation IN , called the candidate
model. A clause C is a counterexample for IN if IN �|= C; C is a minimal counterex-
ample if, in addition, there is no other counterexample D for IN such that C � D.
An inference system � has the reduction property for counterexamples, if for all sets
N of clauses and counterexamples C for IN in N, there is an inference in � from N
with main premise C, side premises that are true in IN , and conclusion D that is a
smaller counterexample for IN than C. This property is used in proofs of refutational
completeness since at least [6] according to the following standard:

Theorem 1 If N is a �-saturated set of ground clauses and � has the reduction
property for counterexamples, then N is unsatisf iable if and only if it contains �.

Proof The “if” direction is trivial. To prove the “only if” direction, one proves its
contrapositive: if N does not contain �, then it is satisfiable. By way of contradiction,
assume that it is not. Then, for every candidate model IN there is a counterexample
in N. Let C be a minimal counterexample for IN in N. By the reduction property for
counterexamples, there is a smaller counterexample D, conclusion of a �-inference.
If D ∈ N, then C would not have been minimal to begin with. If D �∈ N, then N is
not saturated, which contradicts the hypothesis. ��

We do not assume a specific inference system: � is a parameter for DPLL(� +T ).
Since examples and proofs for specific theories mention concrete inference rules,
and in order to make this article self-contained, typical expansion and contraction
rules are collected in Fig. 1: in contraction, what is above the double inference
line is replaced by what is below, whereas in expansion, as usual, what is below
the single inference line is added to what is above. In resolution, l and l′ are
the literals resolved upon. In paramodulation, l[s′] (C ∨ l[s′]) is the literal (clause)
paramodulated into, and s � t (D ∨ s � t) is the literal (clause) paramodulated from.
The same terminology applies to superposition.1 Resolution, paramodulation and
superposition originally appeared in [59], [57] and [45], respectively. Since then,
they were the object of decades of research: contemporary versions of these rules
appeared in [6, 19, 42, 60]; more references and history can be found in [10–12, 48, 56].

In addition to the ordering, expansion inference rules can be restricted by a
selection function, that selects negative literals [6]. A clause can have all, some,
or none of its negative literals selected, depending on the selection function. In
resolution with negative selection, paramodulation with negative selection and su-
perposition with negative selection, the ordering constraint on the negative literal

1We use superposition when the literal paramodulated into is equational, and paramodulation
otherwise. Other articles reserve superposition to unit clauses or positive equations.



Theorem Proving with Speculative Inferences 167

resolved upon, on the literal paramodulated into (i.e., condition (iii) in Fig. 1) and
on the literal superposed into (i.e., condition (v) in Fig. 1) is lifted, and replaced by
two requirements: the negative literal resolved upon, the literal paramodulated into
and the literal superposed into must be selected, and the other premise contains no
selected literal. If some negative literal is selected for each clause containing one,
one premise in each resolution, paramodulation or superposition inference will be a
positive clause, yielding a positive strategy; if, in addition, all clauses are Horn, only
positive unit clauses can be resolved upon or superposed or paramodulated from,
yielding a unit strategy with unit resolution and unit superposition [32]. Contemporary

Fig. 1 Sample expansion and contraction rules: in expansion what is below the inference line is
added to the clause set that contains what is above the inference line; in contraction what is above
the double inference line is removed and what is below is added



168 M.P. Bonacina et al.

theorem provers, including the implementation of DPLL(� +T ) on top of Z3 [30],
use resolution with negative selection to implement hyperresolution [58]. In hyper-
resolution, the side premises, termed satellites, are positive clauses that resolve away
all negative literals in the main premise, termed nucleus, generating a positive clause,
in a single step with a simultaneous unifier of all pairs of literals resolved upon.2

A selection function that selects some negative literal in each clause containing one
induces resolution to simulate hyperresolution as a macro inference involving several
steps of resolution. In this article, hyperresolution is realized via resolution with
negative selection.

3 Variable Inactivity in DPLL(� + T )

In this section we see how previous results from [4, 17, 18] can be imported into
DPLL(� +T ) to combine a built-in theory T and an axiomatized theory R, where
both T and R can be themselves unions of theories. In a purely rewrite-based
approach there is no T and all axioms are part of the input in R. The ordering �
of � is required to be good [4, 16], meaning that t � c for all ground compound term
t and constant c. A fair �-strategy is shown to be an R-satisfiability procedure, by
showing that it is guaranteed to terminate on R-satisfiability problems R � S, where
S is a set of ground unit R-clauses. Variable-inactivity was introduced in [3, 4]:

Definition 1 A clause C is variable-inactive if no maximal literal in C is an equation
t � x where x �∈ Var(t). A set of clauses is variable-inactive if all its clauses are.

Definition 2 A theory presentation R is variable-inactive for an inference system �

if the limit S∞ of a fair �-derivation from S0 = R � S is variable-inactive, where S is
a set of ground unit R-clauses.

It was proved in [4] (cf. Theorem 4.1 and Corollary 3) that termination is modular:

Theorem 2 [4] Let R1, . . . ,Rn be disjoint and variable-inactive for �, and let R =⋃n
i=1 Ri. If a fair �-strategy terminates on Ri-satisf iability problems, for 1 ≤ i ≤ n,

then it terminates also on R-satisf iability problems.

A cardinality constraint is a clause containing only non-trivial (i.e., other than x �
x) positive equations between variables (e.g., y � x ∨ y � z). Such a clause is clearly
not variable-inactive. The following key lemma was proved in [18] (cf. Lemma 5.2):

Lemma 1 [18] If S0 is a f inite satisf iable set of clauses, then S0 admits no inf inite
models if and only if the limit S∞ of a fair �-derivation from S0 contains a cardinality
constraint.3

2This instance of the rule is called positive hyperresolution. The dual rule named negative hyperres-
olution operates in the same way with polarities exchanged. Since selection functions are defined to
select negative literals, negative hyperresolution falls outside of this discussion.
3Lemma 5.2 in [18] requires that the superposition-based inference system is invariant with respect
to renaming finitely many constants. Most inference systems satisfy a stronger requirement, namely
they allow signature extensions, e.g., to introduce Skolem constants.



Theorem Proving with Speculative Inferences 169

It follows that (cf. Theorem 4.5 in [4]):

Theorem 3 [4] If R is variable-inactive for �, then it is stably-inf inite.

Thus, � reveals the lack of stable infiniteness by generating a cardinality con-
straint. The original versions of Theorem 2, Lemma 1 and Theorem 3 were proved
in a context where equality was the only predicate and superposition the main
expansion inference rule of �. It is trivial to extend them to the case where the
signature of R introduces predicate symbols other than equality, and � features also
resolution and paramodulation. For instance, for Theorem 2, the essence of the proof
is to show that there are only finitely many inferences across theories: disjointness of
the signatures prevents not only superpositions, but also paramodulations from com-
pound terms, and resolutions; variable inactivity prevents not only superpositions,
but also paramodulations from variables; thus, the only inferences across theories are
superpositions and paramodulations from shared constants, that are finitely many.

It is useful to import results from the rewrite-based approach to DPLL(� +T ),
applied to a problem R � P modulo T , because DPLL(� +T ) uses � as an R-
solver applied to R-satisfiability problems R � S, where S is a set of ground unit
R-clauses. The initial set of ground clauses P typically contains also T -symbols.
However, P is subject to purif ication, which is a standard step in the Nelson-Oppen
method. This transformation, also known as separation [37], separates occurrences of
function symbols from different signatures occurring in ground terms, by introducing
new constant symbols. For example, f (g(a)) � b , where f and g belong to different
signatures, becomes f (c) � b ∧ g(a) � c, where c is new. Since only constants are
introduced, the set remains ground. Thus, P is transformed in two disjoint sets P1

and P2, where P1 contains only R-symbols and P2 only T -symbols. Since a key
feature of DPLL(� +T ) is that � deals only with non-ground clauses and ground
unit clauses, it is indeed the case that � works on an R-satisfiability problems R � S:
initially, S will be the subset of unit clauses from P1.

DPLL(� +T ) needs to combine T1, . . . ,Tn,R in the Nelson-Oppen scheme,
which requires that the theories are disjoint, stably infinite, and each solver generates
all entailed disjunctions of equalities between shared constants. We assume that
T1, . . . ,Tn satisfy these requirements and that R is disjoint from each of them.
For stable infiniteness of R, we require that R is variable-inactive and apply
Theorem 3. In practice, this condition is checked dynamically: in the implementation
of DPLL(� +T ) on top of Z3, the superposition-based engine is equipped with
a test that detects the generation of variable-inactive clauses, hence cardinality
constraints, and discovers whether R is not stably infinite. Such a test also excludes
upfront a situation such as R = {x � a ∨ x � b} of the example in Section 1. For
the generation of disjunctions of equalities between shared constants by the R-
solver �, the fairness of the �-derivation ensures that every theorem is implied by
some generated formulae.4 An explicit proof that the superposition-based engine
generates formulae that entail all disjunctions of equalities between constants in the
axiomatized theory was given in [17] (cf. Theorem 71). If contraction is also done
systematically, only irredundant clauses generated by � are kept and passed to the
DPLL(T ) core.

4Fairness guarantees even more: every theorem has a minimal proof in the limit; see [12] for details.



170 M.P. Bonacina et al.

The following definition summarizes the problem requirements for the sequel:

Definition 3 A set of formulae S = R � P is smooth with respect to a background
theory T = ⋃n

i=1 Ti, or T -smooth for short, if

– T1, . . . ,Tn and R are pairwise disjoint,
– T1, . . . ,Tn are stably infinite,
– R is variable-inactive, and
– P is a set of ground formulae P1 � P2, where P1 contains only R-symbols, and

P2 only T -symbols.

Note that uninterpreted symbols are R-symbols. In summary, variable inactivity
is an ingredient for: (1) modularity of termination of �, when R is a union of axioma-
tized theories [4]; (2) stable infiniteness of R [18], hence combination of axiomatized
theories and built-in theories; (3) refutational completeness of DPLL(� +T ) when
both T and R are not empty (cf. Theorem 4 in the next section).

4 A New DPLL(� + T ) System with Speculative Inferences

DPLL(� +T ) works on hypothetical clauses of the form H 
 C, where C is a clause,
and the hypothesis H is a set of ground literals. The hypothesis is interpreted as
a conjunction, and a hypothetical clause (l1 ∧ . . . ∧ ln) 
 (l′1 ∨ . . . ∨ l′m) is interpreted
as ¬l1 ∨ . . . ∨ ¬ln ∨ l′1 ∨ . . . ∨ l′m. As we shall see, the literals in H come from the
candidate model built by DPLL(� +T ), and are the literals that C depends on, in
the sense that they were used as premises to infer C by �-inferences. As it was done in
[28] for DPLL(�), DPLL(� +T ) is described as a transition system with two modes:
search mode and conf lict resolution mode.

In search mode, the state of the system has the form M || F, where M is a sequence
of assigned literals, and F a set of hypothetical clauses. Intuitively, M represents a
partial assignment to ground literals, possibly with a justification, and therefore it
represents a partial model, or a set of candidate models. An assigned literal can be
either a decided literal or an implied literal. A decided literal represents a guess, and
has no justification. An implied literal lC is a literal l justified by a clause C: all other
literals of C are false in M so that l needs to be true. No assigned literal occurs twice
in M nor does it occur negated in M. If neither l nor ¬l appears in M, then l is said
to be undef ined.

In conflict resolution mode, the state has the form M || F ||C, where C is a ground
clause whose literals are all false under M. Such a clause is in conf lict. If C is
l1 ∨ . . . ∨ ln, then¬C is the formula¬l1 ∧ . . . ∧ ¬ln. We could state that C is in conflict
by writing M |= ¬C. In DPLL(� +T ), the DPLL engine accepts only propositional
clauses, whereas the theory solvers accept ground first-order clauses and � accepts
first-order clauses. To bridge this gap, an abstraction function maps first-order ground
atoms to propositional atoms. Thus, it is customary to write M |=P ¬C, read M
“propositionally satisfies” ¬C, to say that M satisfies the propositional abstraction
of ¬C.



Theorem Proving with Speculative Inferences 171

Definition 4 Given an input set of clauses S = R � P, a DPLL(� +T )-derivation
is a sequence of state transitions

�0 =⇒ �1 =⇒ . . . �i =⇒ �i+1 =⇒ . . .

where ∀i ≥ 0, �i is of the form Mi || Fi or Mi || Fi ||Ci, each transition is determined by
a DPLL(� +T )-rule, and �0 = || F0 for F0 = {∅ 
 C | C ∈ S}.

In the sequel, we use C for ∅ 
 C, clauses(F) to denote the set {C | H 
 C ∈ F},
ngclauses(F) for the subset of non-ground clauses of clauses(F), lits(M) to denote
the set of assigned literals, litsR(M) for the subset of assigned R-literals and
clauses�(M || F) for ngclauses(F) ∪ litsR(M).

4.1 Speculative Inferences in DPLL(� +T )

In theorem proving applied to mathematics, most conjectures are true. Thus, it is
customary to sacrifice completeness for efficiency, and retain soundness, which is
necessary to attribute unsatisfiability to the input set of clauses if a proof is found.
A traditional example is deletion by weight [51], where clauses that are too “heavy”
are deleted. In theorem proving applied to verification, most conjectures are false.
Thus, it was suggested in [49] to sacrifice soundness for termination, and retain
completeness, which is necessary to establish satisfiability if a proof is not found.
Dually to deletion by weight, an unsound inference could suppress literals in clauses
that are too heavy. We call speculative an inference that may turn out to be unsound.

We consider a single speculative inference rule: adding an arbitrary clause C. Such
a step may be unsound because C may not be implied by the given set. This rule is
simple, but can simulate different kinds of speculative inferences. Suppose we want to
suppress the literals D in C ∨ D, then we can simply add C, which subsumes C ∨ D.
Suppose a clause C[t] contains a deep term t, and we want to replace it with a constant
a. We can accomplish this by adding t � a.

The idea is to extend DPLL(� +T ) with a reversible transition rule Specula-
tiveIntro for speculative inferences. Rather than merely adding a clause C, Specula-
tiveIntro introduces a hypothetical clause �C� 
 C into F and it adds �C� to M: �C�
is a new propositional variable used as a label for clause C. By adding �C� to M, the
system records the fact that it is guessing C. SpeculativeIntro is reversible, because
the system uses �C� to track the consequences of having added C. The hypothetical
clause �C� 
 C is semantically equivalent to ¬�C� ∨ C. This clause does not change
the satisfiability of the input formula because �C� is a new propositional variable:

SpeculativeIntro

M || F =⇒ M �C� || F, �C� 
 C if

⎧
⎨

⎩

C �∈ clauses(F),

�C� is new,

�C�,¬�C� �∈ M.

Note that �C� is added to M as a decided literal. The first condition says that we
do not guess a clause that we already have. The second condition requires �C� to
be a new symbol with respect to the initial signature. The third condition prevents
the system from adding C, if it was already done (�C� ∈ M), or if the addition was
already discovered to be inconsistent with the current partial model M (¬�C� ∈ M).



172 M.P. Bonacina et al.

4.2 Model-Based Theory Combination in DPLL(� +T )

In order to combine the theories in T = ⋃n
i=1 Ti and R in the Nelson-Oppen

scheme, every Ti-solver, 1 ≤ i ≤ n, needs to communicate to the other theories,
including R, the (disjunctions of) equalities between shared constants entailed by Ti

and P. The next transition rule takes care of this requirement, according to model-
based theory combination [29]. We assume that every Ti-solver builds a specific
candidate Ti-model for M, that we denote by modeli(M). For instance, solvers for
linear arithmetic satisfy this requirement [35]. The idea is to inspect modeli(M) and
propagate all the equalities it implies, hedging that they are consistent with the other
theories, including R. Since these equalities are guesses, if one of them turns out to
be inconsistent, backtracking will be used to fix modeli(M). The rationale for this
approach is practical: it is generally far less expensive to enumerate the equalities
satisfied in a particular Ti-model than those satisfied by all Ti-models consistent with
M; in most experiments, the number of equalities that are really relevant turns out
to be small.

PropagateEq

M || F =⇒ M t � s || F if

⎧
⎪⎪⎨

⎪⎪⎩

t and s are ground,
t, s occur in F,

(t � s) is undefined in M,

modeli(M)(t) = modeli(M)(s),

for every theory Ti, 1 ≤ i ≤ n. Since the Ti-solvers only deal with ground clauses,
this rule treats only ground equalities, and therefore only ground terms that appear
in F. The reason why it adds equalities between ground terms and not only between
shared constants will be explained in relation to the Deduce rule.

4.3 The Core Transition Rules of DPLL(� +T )

Figure 2 reports the basic and theory propagation rules of DPLL(� +T ) from [28].
The Decide rule is not concerned with literals in hypotheses, since such literals

already come from M. The Deduce rule realizes the interface with �: assume γ is
an inference of � with n premises, {H1 
 C1, . . . , Hm 
 Cm} is a set of hypothetical
clauses in F, {lm+1, . . . , ln} is a set of assigned literals in M, and H(γ ) denotes the set
H1 ∪ . . . ∪ Hm ∪ {lm+1, . . . , ln}; if γ with premises P(γ ) = {C1, . . . , Cm, lm+1, . . . , ln}
yields C(γ ), the latter is added to F as H(γ ) 
 C(γ ). The hypotheses of the clauses
Hi 
 Ci are hidden from the inference rules in �. Our Deduce rule differs from
its predecessor in [28], named Deduce	, in the range of allowed premises from F.
Deduce	 allowed � to use as premises lits(M), and non-ground clauses and ground
unit clauses from clauses(F). Our Deduce allows � to use only clauses�(M || F) =
ngclauses(F) ∪ litsR(M). This is a consequence of the addition of PropagateEq,
which adds the relevant ground unit clauses directly to M, so that � finds them in
litsR(M). This is the reason why we let PropagateEq add equalities between ground
terms and not only between shared constants.

A hypothetical clause H 
 C is in conf lict if every literal in C is complementary
to an assigned literal. The Conflict rule converts a hypothetical conflict clause H 
 C
into a regular clause by negating its hypotheses, and puts the DPLL(� +T ) system
in conflict resolution mode. The Explain rule unfolds literals from conflict clauses



Theorem Proving with Speculative Inferences 173

that were produced by unit propagation. Any clause derived by Explain can be
added to F by the Learn rule, because it is a logical consequence of the original set
of clauses. The Backjump rule drives the DPLL(� +T ) system back from conflict
resolution mode to search mode, and it unassigns at least one decided literal, named
l′ in the rule definition in Fig. 2. A typical choice is that l′ be the least recently decided
literal that satisfies the conditions of the rule. All hypothetical clauses H 
 C which
contain hypotheses that will be unassigned by the Backjump rule are deleted. Note
that a learnt clause D may contain ¬�C�. In this case, the clause D is recording the
context where guessing the clause C is unsound.

Figure 3 reproduces from [28] the contraction transitions that import the contrac-
tion rules of � in DPLL(� +T ): note that they apply only in search mode. These
transitions and their explanation, that follows, refer to generic contraction rules

Fig. 2 Basic and theory propagation rules of DPLL(� +T )



174 M.P. Bonacina et al.

Fig. 3 Contraction transitions of DPLL(� +T ): the notation in the conditions is explained in the
text

schemas, and not to the concrete contraction rules of Fig. 1, in order to show that
this way of integrating contraction is general, and applies to the contraction rules of
Fig. 1 as well as to others. Any sound contraction inference taking a single premise
(e.g., tautology deletion) can be easily incorporated into DPLL(� +T ). Given a
hypothetical clause H 
 C, such a rule is just applied to C. Contraction rules with
more than one premise need special treatment. We use γd(C, C2, . . . , Cm) to denote
the application of a generic sound deletion rule

C, C2, . . . , Cm

C2, . . . Cm

where a redundant main premise C is deleted, and γs(C, C2, . . . , Cm, C′) to denote
the application of a generic sound simplification rule

C, C2, . . . , Cm

C′, C2, . . . Cm

where a redundant main premise C is replaced by C′. DPLL(� +T ) assigns a scope
level to each literal in M:

Definition 5 The scope level of a literal l, denoted level(l), in M l M′, is equal to the
number of decided literals in M l. The scope level of a set of literals H is

level(H) =
{

max{level(l) | l ∈ H} if H �= ∅,
0 otherwise.

A contraction inference γ from � is generalized to hypothetical clauses as
follows: given main premise H 
 C, taken from ngclauses(F), and side premises
H2 
 C2, . . . , Hm 
 Cm, lm+1, . . . , ln, taken from ngclauses(F) and litsR(M), re-
spectively, let H′ = H2 ∪ . . . ∪ Hm ∪ {lm+1, . . . , ln}. Assume that γ has premises
C, C2, . . . , Cm, lm+1, . . . , ln. First, for a simplification γs, H 
 C is replaced by



Theorem Proving with Speculative Inferences 175

(H ∪ H′) 
 C′. Second, for both γd and γs, H 
 C is deleted only if level(H) ≥
level(H′). Indeed, this condition prevents the situation where backjumping removes
side premises (e.g., simplifiers or subsumers) before removing the main premise
H 
 C (i.e., the simplified or subsumed clause). Such a situation must be prevented,
because otherwise the system would reach an unsound state, where H 
 C was
deleted, but the clauses that made it redundant and justified its deletion are no longer
there. For this reason, if level(H) < level(H′), then H 
 C is only disabled. In Fig. 3 a
disabled clause is surrounded by square brackets and bears as subscript the level of
the set of side premises that disabled it. A disabled clause is not deleted, but it is not
used as premise. When level(H′) is backjumped, all disabled clauses with subscript
level(H′) will be re-enabled and will be available again as premises.

4.4 Refutational Completeness of DPLL(� +T )

It was proved in [28] that DPLL(�) is refutationally complete when T is empty. We
prove a stronger result for the case where both T and R are not empty. We start
with definitions that adapt to DPLL(� +T ) the classical notions of redundancy,
fairness and saturation (cf. Section 2). We use �-based transitions for Deduce and
the contraction transitions of Fig. 3.

Definition 6 A �-based transition is redundant in state M || F if the corresponding
�-inference is redundant in clauses�(M || F).

Note that �-based transitions apply only in search mode.

Definition 7 A DPLL(� +T )-derivation is fair if all applicable transitions are
applied eventually, except SpeculativeIntro and redundant �-based transitions.

We recall that: (1) contraction rules are part of �; (2) �, and therefore con-
traction rules, only sees clauses�(M || F) = ngclauses(F) ∪ litsR(M); (3) contraction
inferences delete only clauses in ngclauses(F). All other transitions do not use
ngclauses(F) and are therefore sheltered from contraction. Thus, the only transitions
that are affected by contraction, and for which we need to stipulate that only
irredundant inferences are considered, are �-based transitions.

Definition 8 A DPLL(� +T ) state is saturated if it is

– either unsat
– or a state M || F such that the only applicable transitions are SpeculativeIntro

transitions or redundant �-based transitions.

Clearly, a fair derivation yields a saturated state eventually. In order to prove
refutational completeness – whenever the input set S is unsatisfiable, DPLL(� +T )
reaches the unsat state – we prove as usual its contrapositive:

Theorem 4 If the initial set of clauses S = R � P is T -smooth, and � has the
reduction property for counterexamples, whenever DPLL(� +T ) reaches a saturated
state M || F, the input set S is satisf iable modulo T .



176 M.P. Bonacina et al.

Proof We need to show that if M || F is saturated, then clauses(F) ∪ lits(M) is sat-
isfiable. Satisfiability of S will follow, because the transition rules in DPLL(� +T )
are sound and therefore preserve satisfiability. Let N be clauses(F) ∪ lits(M). The
set N has the form R ′ � M1 �G1 � M2 �G2, where R ′ contains non-ground clauses
(i.e., R ′ = ngclauses(F)), M1 �G1 � M2 �G2 is ground, M1 � M2 = lits(M), R ′ �
G1 �G2 = clauses(F), G1 � M1 contains only R-symbols (i.e., M1 = litsR(M)), and
G2 � M2 contains only T -symbols.

– We consider first R ′ �G1 � M1. In a standard proof of completeness for � alone,
we would have that R ′ �G1 � M1 is �-saturated, because the �-derivation is fair.
For DPLL(� +T ) we need to show that R ′ �G1 � M1 is �-saturated, even if �-
based transitions do not use G1. Since M || F is saturated, for every clause C ∈ Gi,
for i ∈ {1, 2}, there is a literal l of C in Mi. Indeed, if this were not the case, the
Decide rule could apply, violating the hypothesis that M || F is saturated. Thus,
every clause C ∈ G1 is subsumed by a literal in M1, therefore it is redundant in
M1 �G1, and every �-based transition that uses C is redundant. Then, R ′ � M1

alone is �-saturated: if it were not, an irredundant �-based transition could apply,
violating the hypothesis that M || F is saturated. It follows that R ′ �G1 � M1 is
�-saturated. Since R ′ �G1 � M1 does not contain �, and � has the reduction
property for counterexamples, R ′ �G1 � M1 is satisfiable by Theorem 1.

– We consider next G2 � M2: this set is satisfiable modulo T , because if it were
not, the T-Conflict rule would apply, and M || F would not be saturated.

– By the hypothesis that the initial set S = R � P is T -smooth (cf. Definition 3), R
is variable-inactive. By Definition 2, R ′, which is derived from R and ground unit
R-clauses, is also variable-inactive, hence stably infinite by Theorem 3. Thus,
R ′ �G1 � M1 has a model with infinite domain. Again by the hypothesis that
R � P is T -smooth, T is a union of stably infinite theories. Thus, G2 � M2 has
a T -model with infinite domain. Since all the requirements for a Nelson-Oppen
combination are fulfilled, these two models can be combined in a T -model of N
by the completeness of equality sharing, establishing that clauses(F) ∪ lits(M) is
satisfiable. ��

All inference systems considered in the sequel have the reduction property
for counterexamples [6, 56]. The proof of Theorem 4 shows that the integration
of the components in DPLL(� +T ) is designed in such a modular way that its
completeness descends from the completeness of its components.

5 Towards Decision Procedures: DPLL(� + T )-Strategies

The combination of the transition system DPLL(� +T ) with a search plan, which
controls the application of transition rules, yields a DPLL(� +T )-strategy, or
DPLL(� +T )-procedure. Similar to DPLL(T ), a search plan for DPLL(� +T ) is
a depth-first search plan. A standard way to ensure fairness with a depth-first search
plan is iterative deepening. This section describes first a DPLL(� +T )-procedure
with iterative deepening, and then a way to use it with SpeculativeIntro to get decision
procedures for smooth sets.



Theorem Proving with Speculative Inferences 177

Definition 9 For all states M || F, for all C ∈ clauses(F), for all implied literals lC ∈
lits(M), and for all decided literals l ∈ lits(M), the inference depth is given by

– inf Depth(C) =
⎧
⎨

⎩

0 if C ∈ F0,
n+ 1 if C = C(γ ) and

n = max {inf Depth(D) | D ∈ P(γ )} in a Deduce step,
– inf Depth(lC) = inf Depth(C) and
– inf Depth(l) = min {inf Depth(D) | D ∈ clauses(F), l ∈ D}.

Informally, the inference depth of a clause indicates the depth of the inference tree
that produced it; the inference depth of an implied literal is the inference depth of
the clause that implied it; and the inference depth of a decided literal is the minimum
inference depth of a clause that includes it.

In order to have a DPLL(� +T )-procedure with iterative deepening, both rules
susceptible of yielding infinitely many steps need to be bounded:

Definition 10 DPLL(� +T ) is 〈kd, ku〉-bounded, for kd, ku > 0, if Deduce is re-
stricted to premises C with inf Depth(C) < kd, and SpeculativeIntro can be applied
at most ku times.

This notion leads to termination:

Theorem 5 〈kd, ku〉-bounded DPLL(� +T ) is guaranteed to terminate for all initial
sets of clauses S = R � P.

Proof By Definition 10, there are only finitely many applications of Deduce and
SpeculativeIntro. The other DPLL(T ) transition rules are known to terminate (e.g.,
[55], cf. Theorems 2.10 and 3.7). ��

Definition 11 DPLL(� +T ) is stuck at kd in state M || F if the only applicable tran-
sitions are SpeculativeIntro transitions and Deduce transitions involving premises C
with inf Depth(C) ≥ kd.

A DPLL(� +T )-procedure with iterative deepening, abbreviated ID-DPLL(� +
T )-procedure, is a DPLL(� +T )-procedure where DPLL(� +T ) is 〈kd, ku〉-
bounded, and kd and ku are increased whenever DPLL(� +T ) gets stuck. The
following example shows how fairness is not obvious without iterative deepening:

Example 1 Let � be an inference system with resolution and let F0 include the
following clauses:

(1) ¬p(x, y) ∨ p( f (x), f (y)) ∨ p(g(x), g(y)),
(2) p(a, b),
(3) g(x) �� x,
(4) g(c) � c ∨ g(d) � d.

Initially, � sees clauses (1) and (3), because they are in ngclauses(F), while litsR(M)

is empty. If Decide adds p(a, b) to M, � sees also (2) and may generate

p( f (a), f (b)) ∨ p(g(a), g(b))



178 M.P. Bonacina et al.

from (1) and (2) by resolution. If Decide adds p( f (a), f (b)) to M, and � generates

p( f ( f (a)), f ( f (b))) ∨ p(g( f (a)), g( f (b))),

this alternation of decision and resolution steps may yield an infinite unfair derivation
that does not detect the unsatisfiability of F0. Iterative deepening prevents this kind
of behavior: when the depth of the clauses generated by resolution reaches the
bound, further such steps are forbidden and the system is forced to consider steps
with clauses of lower depth. When Decide adds to M first g(c) � c and then g(d) � d
and each yields � by resolution with g(x) �� x, inconsistency is detected.

Let S be a smooth set, and let U denote a sequence of “speculative axioms,” in
the signature of S, that are introduced by SpeculativeIntro. In order to get a decision
procedure, one needs to show that for some sequence U , there exist bounds kd and
ku, such that 〈kd, ku〉-bounded DPLL(� +T ) is guaranteed to terminate in the unsat
state, whenever S is unsatisfiable, and in a state M || F such that DPLL(� +T ) is not
stuck at kd, whenever S is satisfiable; note that this means that M || F is saturated. The
second example illustrates this idea:

Example 2 Let R be

{¬(x � y) ∨ ¬(y � z) ∨ x � z, ¬(x � y) ∨ f (x) � f (y)},
and P be

{a � b , a � f (c), ¬(a � c)}.
Assume � features resolution, superposition and simplification. If SpeculativeIntro
adds

� f (x) � x� 
 f (x) � x,

the monotonicity axiom is rewritten to a tautology and a � f (c) is also rewritten.
Note that � f (x) � x� is a decision literal, and level(� f (x) � x�) = 1. Thus, the
rewriting steps only disable the monotonicity axiom and a � f (c), whose scope
level is 0, and add � f (x) � x� 
 a � c to F. Resolution generates the conflict clause
� f (x) � x� 
�. In conflict resolution mode, the literal ¬� f (x) � x� is added to M,
preventing DPLL(� +T ) from guessing f (x) � x again. Next, if SpeculativeIntro
adds

� f ( f (x)) � x� 
 f ( f (x)) � x,

monotonicity and a � b produce only f (a) � f (b), while monotonicity and a �
f (c) produce only f (a) � f ( f (c)), which is disabled and replaced by � f ( f (x)) =
x� 
 f (a) � c. Then, DPLL(� +T ) reaches a saturated state, and satisfiability is
detected.

The third example shows a case where PropagateEq plays the key rôle:

Example 3 Let � have hyperresolution, superposition and simplification, T be the
theory of linear integer arithmetic, R be

{¬(x � y) ∨ ¬(y � z) ∨ x � z}



Theorem Proving with Speculative Inferences 179

and P be

{a � b 1, b 2 � c, ¬(a � c), b 1 ≤ b 2, b 1 > b 2 − 1}.
UnitPropagate adds the literals of P to M. In the model modelLA(M) maintained by
the linear arithmetic solver, modelLA(M)(b 1) = modelLA(M)(b 2). Thus, Propaga-
teEq guesses the equation b 1 � b 2. Say b 2 � b 1 in the ordering� of �: simplification
rewrites b 2 � c to b 1 � c. Hyperresolution derives a � c from a � b 1, b 1 � c and
the transitivity axiom, so that an inconsistency is detected. DPLL(� +T ) backtracks
and adds ¬(b 1 � b 2) to M. T-Conflict detects the inconsistency between this literal
and {b 1 ≤ b 2, b 1 > b 2 − 1}. The conflict resolution rules are applied again and the
empty clause is produced.

6 Decision Procedures for Axiomatizations of Type Systems

In this section we study specific theories of interest for software verification and we
obtain decision procedures for them.

Definition 12 A structure � is essentially f inite with respect to a function symbol f
if range(�( f )) is finite.

Essential finiteness is weaker than finiteness, because it admits an infinite domain
provided range(�( f )) is finite.

Theorem 6 If � is an essentially f inite structure with respect to a monadic function
symbol f , then there exist k1, k2 ≥ 0, k1 �= k2, such that � |= f k1(x) � f k2(x).

Proof For all v ∈ |�|, we call f -chain starting at v, the sequence:

v = �( f )0(v), �( f )1(v), �( f )2(v), . . . , �( f )i(v), . . .

Since �( f ) has finite range, there exist q1, q2, with q1 �= q2, such that �( f )q1(v) =
�( f )q2(v). Say that q1 > q2. Then we call size, denoted sz(�, f, v), and pref ix,
denoted pr(�, f, v), of the f -chain starting at v, the smallest q1 and q2, respectively,
such that �( f )q1(v) = �( f )q2(v) and q1 > q2. We term lasso, denoted ls(�, f, v), of
the f -chain starting at v, the difference between size and prefix, that is, ls(�, f, v) =
sz(�, f, v)− pr(�, f, v). We say that �( f )n(v) is in the lasso of the f -chain starting
at v, if n ≥ pr(�, f, v). Clearly, for all elements w in the lasso of the f -chain
starting at v, �( f )n(w) = w, when n = ls(�, f, v). Also, for all multiples of the
lasso, that is, for all n = j · ls(�, f, v) for some integer j > 0, �( f )n(w) = w. Let q =
max{pr(�, f, v) | v ∈ range(�( f ))} + 1 and n = lcm{ls(�, f, v) | v ∈ range(�( f ))},
where lcm abbreviates least common multiple. We claim that � |= f q+n(x) � f q(x),
that is, k1 = q+ n and k2 = q. By way of contradiction, assume that for some v ∈ |�|,
�( f )q+n(v) �= �( f )q(v). Take the f -chain starting at v: �( f )q(v) is in the lasso
of this chain, because q > pr(�, f, v). Since n is a multiple of ls(�, f, v), we have
�( f )q+n(v) = �( f )n(�( f )q(v)) = �( f )q(v), a contradiction. ��

Example 4 Let � be a structure such that |�| = {v0, v1, v2, . . . , v9, . . .}, and let �( f )
be the function defined by the following mapping: {v0 �→ v1, v1 �→ v2, v2 �→ v3, v3 �→



180 M.P. Bonacina et al.

v4, v4 �→ v2, v5 �→ v6, v6 �→ v7, v7 �→ v8, v8 �→ v5, ∗ �→ v9}, where ∗ stands for any
other element. The f -chain starting at v0 has pr(�, f, v0) = 2, sz(�, f, v0) = 5 and
ls(�, f, v0) = 3. The f -chain starting at v5 has pr(�, f, v5) = 0, sz(�, f, v5) = 4 and
ls(�, f, v5) = 4. Then, q = max{2, 0} + 1 = 3, n = lcm{3, 4} = 12, k1 = q+ n = 15
and k2 = q = 3, and � |= f 15(x) � f 3(x).

To identify classes of problems for which an ID-DPLL(� +T )-procedure is a
decision procedure, we focus on theories R that satisfy the following property:

Definition 13 A presentation R is essentially f inite if its signature contains a single
monadic function symbol f , and for all sets P of ground R-clauses, such that R � P
is satisfiable, R � P has an essentially finite model � with respect to f .

We show that ID-DPLL(� +T ) is a decision procedure for essentially finite
theories if the number of literals in clauses is bounded:

Theorem 7 Let R be an essentially f inite presentation. Consider an ID-DPLL(� +
T )-procedure where every SpeculativeIntro transition adds an equation f j(x) �
f k(x) with j > k, for increasing values of j and k. If there exists an n such that no
clause generated by DPLL(� +T ) contains more than n literals, ID-DPLL(� +T )
is a decision procedure for the satisf iability modulo T of T -smooth problems R � P.

Proof If R � P is unsatisfiable, then, by refutational completeness, DPLL(� +T )
will reach the state unsat when kd becomes large enough. If R � P is satisfiable, it has
an essentially finite model �, because R is essentially finite. Choose ku large enough
that the axiom f k1(x) � f k2(x) satisfied by � according to Theorem 6 is added by
SpeculativeIntro. We need to prove that if kd is large enough, DPLL(� +T ) will not
get stuck at kd. To do that, we prove that only a finite number of clauses are generated
for unbounded kd for the chosen ku. Say that k1 > k2: the axiom f k1(x) � f k2(x) is
applied as a rewrite rule f k1(x) → f k2(x) to simplify5 all clauses that contain a term
f k(t) with k > k1. This guarantees that no such term will be kept and that the depth
of terms in clauses is bounded. Since the number of literals in clauses is also bounded
by the hypothesis that no clause can contain more than n literals, only a finite number
of clauses can be derived for unbounded kd. Thus, DPLL(� +T ) will halt without
getting stuck and will detect satisfiability. ��

From now on, unless otherwise stated, � is superposition with negative selection,
hyperresolution, factoring and simplification.

Lemma 2 If R is Horn, the number of literals in clauses generated by DPLL(� +T )
from a T -smooth R � P is bounded.

Proof In the Horn case, superposition is unit superposition, which does not increase
the number of literals, and hyperresolution only generates positive unit clauses. ��

5Of course, this assumes that � features simplification.



Theorem Proving with Speculative Inferences 181

If R is a set of non-equational clauses with no more than two literals each, and � is
resolution, factoring and simplification (to apply f k1(x) → f k2(x)), then all generated
clauses contain at most two literals. To give further examples, we need the following:

Definition 14 A clause C = ¬l1 ∨ . . . ∨ ¬ln ∨ ln+1 ∨ . . . ∨ ln+q is ground-preserving if

n+q⋃

j=n+1

Var(l j) ⊆
n⋃

j=1

Var(l j).

A set of clauses is ground-preserving if all its clauses are.

In a ground-preserving set the only positive clauses are ground.6

Lemma 3 If R is essentially f inite and ground-preserving, and every SpeculativeIntro
transition adds an equation f j(x) � f k(x) with j > k, for increasing values of j and k,
DPLL(� +T ) generates f initely many clauses from a T -smooth R � P.

Proof Hyperresolution only generates positive ground clauses, because all variables
get instantiated by resolving the negative literals with positive clauses. Superposition
with negative selection superposes a ground positive clause into a ground-preserving
clause, which generates either a ground clause, or a non-ground ground-preserving
clause with no more variable positions than its non-ground parent. It follows that
superposition creates no new non-ground term, and only finitely many non-ground
ground-preserving clauses can be derived. Since term depth is limited by simplifica-
tion by f k1(x) → f k2(x), only finitely many ground clauses can be generated. ��

Next, we consider some specific theories relevant to the axiomatization of type
systems in programming languages. Given the axioms

Reflexivity x � x (1)

Transitivity ¬(x � y) ∨ ¬(y � z) ∨ x � z (2)

Anti-Symmetry ¬(x � y) ∨ ¬(y � x) ∨ x � y (3)

Monotonicity ¬(x � y) ∨ f (x) � f (y) (4)

Tree-Property ¬(z � x) ∨ ¬(z � y) ∨ x � y ∨ y � x (5)

{(1), (2), (3)} presents a poset (partially ordered set), MI = {(1), (2), (3), (4)} a type
system with multiple inheritance, and SI = MI � {(5)} a type system with single
inheritance, where � is the subtype relationship and f is a type constructor. MI and
SI are essentially finite, because they satisfy a stronger property:

Definition 15 R has the f inite model property, if for all sets P of ground R-clauses,
such that R � P is satisfiable, R � P has a model � with finite |�|.

6Definition 14 is a weakening of that of positive variable dominated clause of [22] (cf. Definition
3.18), and it is dual to that of ground-preserving clause of [47], which required that negative literals
do not contain variables that do not appear in positive ones. Our definition is for a positive strategy
in the non-Horn case, hence forward reasoning, whereas that of [47] was for linear input proofs in
the Horn case, hence backward reasoning.



182 M.P. Bonacina et al.

Theorem 8 SI has the f inite model property hence it is essentially f inite.

Proof Assume SI � P is satisfiable, and let � be a model for it. It is sufficient to show
there is a finite model �′. Let TP be the set of subterms of terms in P, and VP be the
set �(TP). Since P is finite and ground, VP is finite. Let |�′| be VP ∪ {vm}, where vm

is an element not in VP. Then, we define �′(�)(v1, v2) as:

v2 = vm or (v1, v2) ∈ �(�).

Intuitively, vm is a new maximal element. 〈|�′|,�′(�)〉 is a poset and �′(�) satisfies
the Tree-Property. Now, we define an auxiliary function g : |�′| → |�′| as:

g(v) =
{

�( f )(v) if f (t) ∈ TP, and �(t) = v;
vm otherwise.

Let dom f , the relevant domain of f , be the set {�(t) | f (t) ∈ TP} ∪ {vm}. With a
small abuse of notation, we use v � w to denote (v,w) ∈ �′(�). Then, we define
�′( f )(v) as g(w), where w is an element in |�′| such that v � w, w ∈ dom f , and for
all w′, v � w′ and w′ ∈ dom f imply w � w′. This function is well defined because
vm ∈ dom f , vm is the maximal element of |�′|, and �′(�) satisfies the Tree-Property,
which ensures uniqueness of the image. Moreover, �′( f ) is monotonic with respect
to �′(�). ��

Definition 16 Let 〈A,�〉 be a poset. The Dedekind–MacNeille completion [50] of
〈A,�〉 is the unique complete lattice 〈B, 〉 satisfying the following properties:

– There is an injection α from A to B such that: v1 � v2 iff α(v1)  α(v2),
– Every subset of B has greatest and least lower bound, and
– B is finite if A is finite. Actually, B is a subset of 2A.

Theorem 9 MI has the f inite model property hence it is essentially f inite.

Proof The construction used for SI does not work for MI, because without the Tree-
Property the w in the definition of �′( f )(v) may not be unique for a given v. First, we
define an auxiliary structure �0 such that |�0| = VP, �0(�) = �(�)|VP , and �0( f ) is
defined as:

�0( f )(v) =
{

�( f )(v) if f (t) ∈ TP, and �(t) = v,

w otherwise,

where w is some element of VP. Note that 〈VP,�0(�)〉 is a poset. Let dom f be the set
{�(t) | f (t) ∈ TP}. Then, following [23] we use the Dedekind-MacNeille completion
to complete 〈VP,�0(�)〉 into a complete lattice 〈B, 〉. We use glb(S) to denote the
greatest lower bound of a subset S of B. Now, we define a finite model �′ for MI � P
with domain |�′| = B, in the following way:

�′(c) = α(�0(c)) for every constant c in TP,
�′(�) =  ,

�′( f )(v) = glb({α(�0( f )(w)) | w ∈ VP, w ∈ dom f , v  α(w)}).
The function �′( f ) is monotonic with respect to �′(�). The structure �′ satisfies P
because for every term t in TP, we have �′(t) = α(�(t)). Moreover, the �-literals in



Theorem Proving with Speculative Inferences 183

P are satisfied because the lattice 〈B, 〉 is a Dedekind–MacNeille completion of �0

which is a restriction of �. ��

Now we show that ID-DPLL(� +T ) is a decision procedure for MI and SI.

Theorem 10 An ID-DPLL(� +T )-procedure where every SpeculativeIntro transi-
tion adds an equation f j(x) � f k(x) with j > k, for increasing values of j and k, is a
decision procedure for the satisf iability modulo T of T -smooth problems MI � P.

Proof It follows from Theorem 7 and Lemma 2, because MI is essentially finite and
Horn. ��

Theorem 11 An ID-DPLL(� +T )-procedure where every SpeculativeIntro transi-
tion adds an equation f j(x) � f k(x) with j > k, for increasing values of j and k, is a
decision procedure for the satisf iability modulo T of T -smooth problems SI � P.

Proof Since SI is essentially finite and ground-preserving, except for Reflexivity, it
follows from Theorem 7 and Lemma 3, provided Reflexivity does not affect the result
of Lemma 3. This is the case, since an hyperresolution involving Reflexivity generates
either a tautology or a subsumed clause or a ground clause. ��

In Spec# [7], the axiomatization of the type system also includes TR = {g(x) ��
null, h(g(x)) � x}, where g represents the type representative of some type. The first
axiom states that the representative is never the constant null, which means null has
no pre-image, hence g is not surjective. The second axiom states that g has a left
inverse, hence it is injective. It is well-known that a set with an injective but not
surjective function is infinite (e.g., Lemma 1 in [24]), so that any model of TR is
infinite.

Theorem 12 An ID-DPLL(� +T )-procedure where every SpeculativeIntro tran-
sition adds an equation f j(x) � f k(x) with j > k, for increasing values of j and
k, is a decision procedure for the satisf iability modulo T of T -smooth problems
MI � TR � P and SI � TR � P.

Proof Superposition applied to an axiom in TR and a ground equation generates
a ground equation smaller than its ground parent in the � ordering (e.g., under a
precedence g � h � null), so that � terminates on TR-satisfiability problems. Since
MI (or SI) and TR are disjoint and variable inactive, � terminates also on satisfiability
problems in MI � TR (or SI � TR) by Theorem 2. Thus, the combination with TR does
not change that only finitely many clauses can be generated. The claim follows from
Theorem 10 and this observation for problems MI � TR � P, and from Theorem 11
and this observation for problems SI � TR � P. ��

7 Discussion

The DPLL(� + T ) system integrates DPLL(T ) with a first-order engine �, to
combine the strengths of DPLL and efficient solvers for special theories, such as



184 M.P. Bonacina et al.

linear arithmetic, with those of superposition and resolution. DPLL(T )-based SMT-
solvers and general theorem provers grew independently for several years. The
increasing recognition that their features are complementary, and necessary to solve
frontier problems in fields such as program verification, is leading to study their
interaction.

The rewrite-based approach to satisfiability procedures developed in [3–5, 15, 18]
was concerned with using first-order engines as decision procedures for satisfiability
problems. In [14, 16] it was generalized from satisfiability problems, given by sets
of ground unit clauses, to decision problems given by sets of ground clauses. The
first-order engine alone was used as decision procedure, with no integration with an
SMT-solver. The two-stage method of [13, 17] lets a first-order engine and an SMT-
solver cooperate, including allowing both a union R of variable-inactive axiomatized
theories, and a union T of Nelson-Oppen built-in theories: the first-order engine
was applied as a pre-processor to compile R and reduce it to a theory that DPLL(T )
alone could handle. Thus, the two reasoners were applied in sequence. The systems
in [1, 46] explored embedding a T -solver for linear arithmetic into a superposition-
based theorem prover, while the study of iterated schemata in [2] offers another
perspective on the integration of propositional and arithmetical reasoning.

In DPLL(� + T ) the first-order engine � is tightly integrated within DPLL(T ),
resulting in one single system. This is a main difference with respect to the two-
stage approach of [13, 17]. DPLL(� + T ) and systems such as those in [1, 46] can
be considered symmetric: in DPLL(� + T ) the superposition-based engine � is a
satellite of DPLL(T ); in [1, 46] the T -solver is a satellite of the superposition-based
engine. A first version of DPLL(� + T ) appeared in [28]. It was called DPLL(�),
because it was known to be refutationally complete only in the case where the
background theory T is empty. A first contribution of this article was to advance
the DPLL(� + T ) approach by giving conditions under which it is refutationally
complete when both R and T are not empty.

Combination of theories is of paramount importance to reason about software.
In previous work, it was known how to combine built-in theories, according to the
equality sharing method pioneered by Nelson and Oppen [53], and studied since then
by many authors (e.g., [37, 54, 65] for some of the most recent extensions). This style
of combination requires one to embed in the prover a decision procedure for each
theory of interest. While decision procedures are available for several theories, it
might not be the case for each and every group of axioms that may appear in program
checking problems. This is a main reason why we need an axiomatized theory R and
� to reason about it. A second main contribution of this article was to show how
to let combination of built-in theories à la Nelson-Oppen, and union of axiomatized
theories under variable inactivity, coexist and work together in DPLL(� +T ).

We presented a new DPLL(� +T ) system that combines DPLL(� +T ) with
speculative inferences. The purpose is to enforce termination by introducing ad-
ditional axioms as hypotheses. This idea was inspired by the “unsound theorem
proving” concept of [49]. The additional axioms may cause unsoundness, by making
unsatisfiable what was a satisfiable set. We provided a mechanism for the prover to
detect any unsoundness introduced by the added axioms and recover from it. This
mechanism is based on the backtracking scheme that is native of a DPLL search: an
inconsistency due to a speculative inference is an “unnatural failure” that the prover



Theorem Proving with Speculative Inferences 185

treats like a “natural failure” (a proper inconsistency) by backtracking. Furthermore,
it keeps memory of the failure to avoid repeating it. An idea of speculative inferences
may be implicit in bottom-up model generation approaches [9]. In those contexts the
speculation consists of trying in turn each case in a case analysis. In our method, the
speculative inferences assert additional clauses, on top of the native case analysis of
DPLL on the input clauses. Considering each of the two horns of a case analysis
can be seen either as an inference step or as a search step on existing data. Our
speculative inferences are more like guessing additional features that a model may
satisfy.

DPLL(� +T ) equipped with an iterative deepening search plan forms an ID-
DPLL(� +T )-procedure. We showed that ID-DPLL(� +T ) with speculative in-
ferences is a decision procedure for theories that axiomatize type systems relevant to
program checking. Their crucial feature is that they are essentially f inite: they have
one unary function symbol whose range is finite. However, we gave examples where
ID-DPLL(� +T ) is a decision procedure also when more function symbols are
involved via combination of theories. Another way to approach the axiomatizations
in Section 6 is locality, proposed for Horn theories [40], and then extended beyond
the Horn case and developed in [8, 43, 44, 63, 64]. In a local theory, validity of a con-
jecture can be decided by considering only finitely many of its ground instances. We
emphasize that DPLL(� +T ) yields a decision procedure for the axiomatizations
in Section 6 united with an arbitrary built-in T , provided the problem T �R � P
is T -smooth. In applications, there is no guarantee that all relevant instances of
T �R will be local. Thus, speculative inferences and locality can be considered
complementary.

There are several directions for future work. One is to extend the approach
to more presentations, including cases where the signature of R features also
non-monadic function symbols. For example, consider the axiom y � x ∧ u � z ⇒
map(x, u) � map(y, z), where � is a subtype relation, and map(x, u) represents the
type of maps from type x to type u. If y � x, a value of type y can be used whenever
a value of type x is used. For maps f ∈ map(x, u) and g ∈ map(y, z) this is the case if
y � x, which means f can take whatever g takes, and u � z, which means whatever
f yields is within what g yields. Such an axiom with a dyadic function symbol may
be useful for an axiomatization of maps. Another open issue is the duplication of
reasoning on ground unit equational clauses in DPLL(� + T ), due to the fact that
they are seen by both � and the congruence closure (CC) algorithm within DPLL(T ).
Using the CC algorithm to compute the completion of the set of ground equations
[38, 62], and pass the resulting canonical system to �, would not solve the problem,
because this solution is not incremental, as the addition of a single ground equation
requires recomputing the canonical system. It would be ideal to automate the choice
of clauses to be added by SpeculativeIntro. However, this manual component of
DPLL(� + T ) is at a higher level of abstraction than triggering, and it is certainly
not heavier.

Another topic for future investigation is how to improve the capability of the
system to discover unsatisfiability due to the lack of finite models. By detecting
the generation of a cardinality constraint by �, DPLL(� +T ) can discover that an
axiomatized theory R is not variable-inactive and not stably infinite. In other words,
it can discover the lack of infinite models. On the other hand, it does not have a



186 M.P. Bonacina et al.

general way to discover the lack of finite models, or that there are only models with
the “wrong” cardinality: for example, R only features models with a certain finite
cardinality, when T requires a different finite cardinality.

The class of formulae that can be decided by DPLL(� + T ) includes axiomati-
zations of type systems, used in tools such as ESC/Java [36] and Spec# [7], which
represents significant evidence of the relevance of this work to applications.

Acknowledgements Part of this research initiated during a visit of the first author with the Software
Reliability Group of Microsoft Research in Redmond. We thank the anonymous reviewers whose
suggestions allowed us to improve an earlier version of this article.

References

1. Ernst, E., Kruglov, E., Weidenbach, C.: Superposition modulo linear arithmetic SUP(LA). In:
Ghilardi, S., Sebastiani, R. (eds.) Proceedings of the Seventh Symposium on Frontiers of Com-
bining Systems (FroCoS). Lecture Notes in Artificial Intelligence, vol. 5749, pp. 84–99. Springer
(2009)

2. Vincent, V., Caferra, R., Peltier, N.: A decidable class of nested iterated schemata. In: Giesl,
J., Hähnle, R. (eds.) Proceedings of the Fifth International Joint Conference on Automated
Reasoning (IJCAR). Lecture Notes in Artificial Intelligence, vol. 6173, pp. 293–308. Springer
(2010)

3. Armando, A., Bonacina, M.P., Ranise, S., Schulz, S.: On a rewriting approach to satisfiability
procedures: extension, combination of theories and an experimental appraisal. In: Gramlich, B.
(ed.) Proceedings of the Fifth Workshop on Frontiers of Combining Systems (FroCoS). Lecture
Notes in Artificial Intelligence, vol. 3717, pp. 65–80. Springer (2005)

4. Armando, A., Bonacina, M.P., Ranise, S., Schulz, S.: New results on rewrite-based satisfiability
procedures. ACM Trans. Comput. Log. 10(1), 129–179 (2009)

5. Armando, A., Ranise, S., Rusinowitch, M.: A rewriting approach to satisfiability procedures. Inf.
Comput. 183(2), 140–164 (2003)

6. Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with selection and
simplification. J. Log. Comput. 4(3), 217–247 (1994)

7. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# programming system: an overview. In:
Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.) Proceedings of the Work-
shop on Construction and Analysis of Safe, Secure, and Interoperable Smart Devices (CASSIS
2004). Lecture Notes in Computer Science, vol. 3362, pp. 49–69. Springer (2005)

8. Basin, D.A., Ganzinger, H.: Automated complexity analysis based on ordered resolution. J.
ACM 48(1), 70–109 (2001)

9. Baumgartner, P., Schmidt, R.A.: Blocking and other enhancements for bottom-up model gener-
ation methods. In: Furbach, U., Shankar, N. (eds.) Proceedings of the Third International Joint
Conference on Automated Reasoning (IJCAR). Lecture Notes in Artificial Intelligence, vol.
4130, pp. 125–139. Springer (2006)

10. Bonacina, M.P.: A taxonomy of theorem-proving strategies. In: Wooldridge, M.J., Veloso, M.
(eds.) Artificial Intelligence Today—Recent Trends and Developments. Lecture Notes in Ar-
tificial Intelligence, vol. 1600, pp. 43–84. Springer (1999)

11. Bonacina, M.P.: On theorem proving for program checking—historical perspective and recent
developments. In: Fernandez, M. (ed.) Proceedings of the Twelfth International Symposium on
Principles and Practice of Declarative Programming (PPDP), pp. 1–11. ACM Press (2010)

12. Bonacina, M.P., Dershowitz, N.: Abstract canonical inference. ACM Trans. Comput. Log. 8(1),
180–208 (2007)

13. Bonacina, M.P., Echenim, M.: T -decision by decomposition. In: Pfenning, F. (ed.) Proceedings
of the Twenty-First Conference on Automated Deduction (CADE). Lecture Notes in Artificial
Intelligence, vol. 4603, pp. 199–214. Springer (2007)

14. Bonacina, M.P., Echenim, M.: Rewrite-based decision procedures. In: Archer, M., de la Tour,
T.B., Munoz, C. (eds.) Proceedings of the Sixth Workshop on Strategies in Automated Deduction
(STRATEGIES), Federated Logic Conference 2006. Electronic Notes in Theoretical Computer
Science, vol. 174(11), pp. 27–45. Elsevier (2007)



Theorem Proving with Speculative Inferences 187

15. Bonacina, M.P., Echenim, M.: Rewrite-based satisfiability procedures for recursive data struc-
tures. In: Cook, B., Sebastiani, R. (eds.) Proceedings of the Fourth Workshop on Pragmatics
of Decision Procedures in Automated Reasoning (PDPAR), Federated Logic Conference 2006.
Electronic Notes in Theoretical Computer Science, vol. 174(8), pp. 55–70. Elsevier (2007)

16. Bonacina, M.P., Echenim, M.: On variable-inactivity and polynomial T-satisfiability procedures.
J. Log. Comput. 18(1), 77–96 (2008)

17. Bonacina, M.P., Echenim, M.: Theory decision by decomposition. J. Symb. Comput. 45(2), 229–
260 (2010)

18. Bonacina, M.P., Ghilardi, S., Nicolini, E., Ranise, S., Zucchelli, D.: Decidability and undecidabil-
ity results for Nelson–Oppen and rewrite-based decision procedures. In: Furbach, U., Shankar,
N. (eds.) Proceedings of the Third International Joint Conference on Automated Reasoning
(IJCAR). Lecture Notes in Artificial Intelligence, vol. 4130, pp. 513–527. Springer (2006)

19. Bonacina, M.P., Hsiang, J.: Towards a foundation of completion procedures as semidecision
procedures. Theoret. Comput. Sci. 146, 199–242 (1995)

20. Bonacina, M.P., Lynch, C.A., de Moura, L.: On deciding satisfiability by DPLL(� + T ) and
unsound theorem proving. In: Schmidt, R. (ed.) Proceedings of the Twenty-Second Conference
on Automated Deduction (CADE). Lecture Notes in Artificial Intelligence, vol. 5663, pp. 35–50.
Springer (2009)

21. Bradley, A.R., Manna, Z., Sipma, H.B.: What’s decidable about arrays? In: Emerson, E.A.,
Namjoshi, K.S. (eds.) Proceedings of the Seventh Conference on Verification, Model Checking,
and Abstract Interpretation (VMCAI). Lecture Notes in Computer Science, vol. 3855, pp. 427–
442. Springer (2006)

22. Caferra, R., Leitsch, A., Peltier, N.: Automated Model Building. Kluwer Academic Publishers,
Amsterdam (2004)

23. Cantone, D., Zarba, C.G.: A decision procedure for monotone functions over bounded and
complete lattices. In: de Swart, H. (ed.) Proc. TARSKI II. Lecture Notes in Artificial Intelligence,
vol. 4342, pp. 318–333. Springer (2006)

24. Claessen, K., Lillieström, A.: Automated inference of finite unsatisfiability. In: Schmidt, R. (ed.)
Proceedings of the Twenty-Second Conference on Automated Deduction (CADE). Lecture
Notes in Artificial Intelligence, vol. 5663, pp. 388–403. Springer (2009)

25. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Commun.
ACM 5(7), 394–397 (1962)

26. Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM 7, 201–215
(1960)

27. de Moura, L., Bjørner, N.: Efficient E-matching for SMT-solvers. In: Pfenning, F. (ed.) Pro-
ceedings of the Twenty-First Conference on Automated Deduction (CADE). Lecture Notes in
Artificial Intelligence, vol. 4603, pp. 183–198. Springer (2007)

28. de Moura, L., Bjørner, N.: Engineering DPLL(T) + saturation. In: Armando, A., Baumgartner,
P., Dowek, G. (eds.) Proceedings of the Fourth International Joint Conference on Automated
Reasoning (IJCAR). Lecture Notes in Artificial Intelligence, vol. 5195, pp. 475–490. Springer
(2008)

29. de Moura, L., Bjørner, N.: Model-based theory combination. In: Krstić, S., Oliveras, A. (eds)
Proceedings of the Fifth Workshop on Satisfiability Modulo Theories (SMT), Conference on
Automated Verification 2007. Electronic Notes in Theoretical Computer Science, vol. 198(2),
pp. 37–49. Elsevier (2008)

30. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.)
Proceedings of the Fourteenth Conference on Tools and algorithms for the Construction and
Analysis of Systems (TACAS). Lecture Notes in Computer Science, vol. 4963, pp. 337–340
(Springer).

31. Dershowitz, M.: Orderings for term-rewriting systems. Theore. Comput. Sci. 17(3), 279–301 (1982)
32. Dershowitz, N.: A maximal-literal unit strategy for Horn clauses. In: Kaplan, S., Okada, M.

(eds.) Proceedings of the Second Workshop on Conditional and Typed Term Rewriting Systems
(CTRS 1990). Lecture Notes in Computer Science, vol. 516, pp. 14–25. Springer (1991)

33. Dershowitz, N., Manna, Z.: Proving termination with multiset orderings. Commun. ACM 22(8),
465–476 (1979)

34. Detlefs, D.L., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program checking. J. ACM
52(3), 365–473 (2005)

35. Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: Ball, T., Jones, R.B.
(eds.) Proceedings of the Eighteenth Conference on Automated Verification (CAV). Lecture
Notes in Computer Science, vol. 4144, pp. 81–94. Springer (2006)



188 M.P. Bonacina et al.

36. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.: Extended static
checking for Java. In: Hendren, L.J. (ed.) ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI), pp. 234–245 (2002)

37. Fontaine, P.: Combinations of theories for decidable fragments of first-order logic. In: Ghilardi,
S., Sebastiani, R. (eds.) Proceedings of the Seventh Symposium on Frontiers of Combining
Systems (FroCoS). Lecture Notes in Artificial Intelligence, vol. 5749, pp. 263–278. Springer
(2009)

38. Gallier, J., Narendran, P., Plaisted, D.A., Raatz, S., Snyder, W.: Finding canonical rewriting
systems equivalent to a finite set of ground equations in polynomial time. J. ACM 40(1), 1–16
(1993)

39. Ge, Y., Barrett, C., Tinelli, C.: Solving quantified verification conditions using satisfiability mod-
ulo theories. In: Pfenning, F. (ed.) Proceedings of the Twenty-First Conference on Automated
Deduction (CADE). Lecture Notes in Artificial Intelligence, vol. 4603, pp. 167–182. Springer
(2007)

40. Givan, R., McAllester, D.A.: Polynomial-time computation via local inference relations. ACM
Trans. Comput. Log. 3(4), 521–541 (2002)

41. Halpern, J.Y.: Presburger arithmetic with unary predicates is π1
1 complete. J. Symb. Log. 56,

637–642 (1991)
42. Hsiang, J., Rusinowitch, M.: Proving refutational completeness of theorem proving strategies:

the transfinite semantic tree method. J. ACM 38(3), 559–587 (1991)
43. Ihlemann, C., Jacobs, S., Sofronie-Stokkermans, V.: On local reasoning in verification. In: Ra-

makrishnan, C.R., Rehof, J. (eds.) Proceedings of the Fourteenth Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS). Lecture Notes in Computer
Science, vol. 4963, pp. 265–281. Springer (2008)

44. Jacobs, S.: Incremental instance generation in local reasoning. In: Baader, F., Ghilardi, S.,
Hermann, M., Sattler, U., Sofronie-Stokkermans, V. (eds.) Notes of the First Workshop on
Complexity, Expressibility and Decidability (CEDAR). International Joint Conference on Au-
tomated Reasoning 2008, pp. 47–62 (2008)

45. Knuth, D.E., Bendix, P.B.: Simple word problems in universal algebras. In: Leech, J. (ed.)
Proceedings of the Conference on Computational Problems in Abstract Algebras, pp. 263–298.
Pergamon Press (1970)

46. Korovin, K., Voronkov, A.: Integrating linear arithmetic into superposition calculus. In: Duparc,
J., Henzinger, T.A. (eds.) Proceedings of the Sixteenth EACSL Annual Conference on Com-
puter Science Logic (CSL). Lecture Notes in Computer Science, vol. 4646, pp. 223–237. Springer
(2007)

47. Kounalis, E., Rusinowitch, M.: On word problems in Horn theories. J. Symb. Comput. 11(1–2),
113–128 (1991)

48. Lifschitz, V., Morgenstern, L., Plaisted, D.A.: Knowledge representation and classical logic. In:
van Harmelen, F., Lifschitz, V., Porter, B. (eds.) Handbook of Knowledge Representation, vol. 1,
pp. 3–88. Elsevier (2008)

49. Lynch, C.A.: Unsound theorem proving. In: Marcinkowski, J., Tarlecki, A. (eds.) Proceedings of
the Thirteenth EACSL Annual Conference on Computer Science Logic (CSL). Lecture Notes
in Computer Science, vol. 3210, pp. 473–487. Springer (2004)

50. MacNeille, H.M.: Partially ordered sets. Trans. Am. Math. Soc. 42, 416–460 (1937)
51. McCune, W.W.: Otter 3.3 Reference Manual. Technical Report ANL/MCS-TM-263, MCS Divi-

sion, Argonne National Laboratory, Argonne, IL, USA (2003)
52. McPeak, S., Necula, G.C.: Data structure specifications via local equality axioms. In: Etessami,

K., Rajamani, S.K. (eds.) Proceedings of the Seventeenth Conference on Automated Verification
(CAV). Lecture Notes in Computer Science, vol. 3576, pp. 476–490. Springer (2005)

53. Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM Trans. Pro-
gram. Lang. Syst. 1(2), 245–257 (1979)

54. Nicolini, E., Ringeissen, C., Rusinowitch, M.: Data structures with arithmetic constraints: a non-
disjoint combination. In: Ghilardi, S., Sebastiani, R. (eds.) Proceedings of the Seventh Sym-
posium on Frontiers of Combining Systems (FroCoS). Lecture Notes in Artificial Intelligence,
vol. 5749, pp. 319–334. Springer (2009)

55. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories: from an
abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). J. ACM 53(6), 937–977
(2006)

56. Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Robinson, A.,
Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. 1, pp. 371–443. Elsevier (2001)



Theorem Proving with Speculative Inferences 189

57. Robinson, G., Wos, L.: Paramodulation and theorem-proving in first-order theories with equal-
ity. In: Michie, D., Meltzer, R. (eds.) Machine Intelligence, vol. IV, pp. 135–150. Edinburgh
University Press (1969)

58. Robinson, J.A.: Automatic deduction with hyper-resolution. Int. J. Comput. Math. 1, 227–234
(1965)

59. Robinson, J.A.: A machine oriented logic based on the resolution principle. J. ACM 12(1), 23–41
(1965)

60. Rusinowitch, M.: Theorem-proving with resolution and superposition. J. Symb. Comput. 11, 21–
50 (1991)

61. Sebastiani, R.: Lazy satisfiability modulo theories. J. Sat. Bool. Model. and Comput. 3, 141–224
(2007)

62. Snyder, W.: A fast algorithm for generating reduced ground rewriting systems from a set of
ground equations. J. Symb. Comput. 15(4), 415-450 (1993)

63. Sofronie-Stokkermans, V.: Hierarchic reasoning in local theory extensions. In: Nieuwenhuis, R.
(ed.) Proceedings of the Twentieth Conference on Automated Deduction (CADE). Lecture
Notes in Artificial Intelligence, vol. 3632, pp. 219–234. Springer (2005)

64. Sofronie-Stokkermans, V., Ihlemann, C.: Automated reasoning in some local extensions of
ordered structures. J. Mult.-Valued Log. Soft Comput. 13(4–6), 397–414 (2007)

65. Wies, T., Piskac, R., Kuncak, V.: Combining theories with shared set operations. In: Ghilardi, S.,
Sebastiani, R. (eds.) Proceedings of the Seventh Symposium on Frontiers of Combining Systems
(FroCoS). Lecture Notes in Artificial Intelligence, vol. 5749, pp. 366–382. Springer (2009)


	On Deciding Satisfiability by Theorem Proving with Speculative Inferences
	Abstract
	Introduction
	Background
	Variable Inactivity in DPLL(+T)
	A New DPLL(+T) System with Speculative Inferences
	Speculative Inferences in DPLL(+T)
	Model-Based Theory Combination in DPLL(+T)
	The Core Transition Rules of DPLL(+T)
	Refutational Completeness of DPLL(+T)

	Towards Decision Procedures: DPLL(+T)-Strategies
	Decision Procedures for Axiomatizations of Type Systems
	Discussion
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
    /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
    /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
    /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
    /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
    /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
    /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0033002e00310029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


