
Combining Instance Generation and Resolution

Christopher Lynch and Ralph Eric McGregor

Clarkson University
www.clarkson.edu/projects/carl

Abstract. We present a new inference system for first-order logic, SIG-
Res, which couples together SInst-Gen and ordered resolution into a
single inference system. Given a set F of first order clauses we create
two sets, P and R, each a subset of F . Under SIG-Res, P is saturated
by SInst-Gen and resolution is applied to pairs of clauses in P ∪R where
at least one of the clauses is in R. We discuss the motivation for this
inference system and prove its completeness. We also discuss our imple-
mentation called Spectrum and give some initial results.

1 Introduction

The most efficient propositional logic SAT solvers are those based on the DPLL
procedure [4, 5]. Given the incredible efficiency of these solvers, a great deal
of research has centered around ways to utilize the efficiency of SAT solvers
for first-order logic theorem proving. Toward this pursuit, some have lifted the
DPLL procedure to first-order logic in the form of the model evolution cal-
culus [3]. Others have used SAT solvers as auxiliary tools to determine the
satisfiability of certain fragments (or all) of first-order logic via propositional
encodings [7,11,22]. A third use of SAT solvers in first-order logic theorem prov-
ing has been in saturation-based instance generation methods which repeatedly
call upon a SAT solver to find so-called conflicts between clauses and use in-
stance generation inferences to resolve these conflicts. Notable in this last line of
research are the works by Jeroslow [12, 13] who developed the saturation-based
instance generation method called Partial Instantiation (PI), Hooker (et.al) who
developed the first complete PI method for the full first-order logic called Primal
PI [10] and Ganzinger and Korovin who among many other contributions for-
malized and proved the completeness of the instance generation inference rule,
Inst-Gen, and the extention SInst-Gen (Inst-Gen with semantic selection and
hyper inferences) in [9]. The efficiency of saturation-based instance generation
methods is demonstrated by Korovin’s implementation called IProver [15,24].

Another well known line of research in first-order logic theorem proving began
with Robinson’s landmark paper [20] which describes his resolution principle and
unification. Since then, many refinements have been made, e.g. ordered resolution
and semantic resolution [1, 16, 18]. Recent implementations of resolution have
been shown to be the top performer in the CASC competition [24].

A key benefit of resolution is the ability to restrict the search space with
the use of ordered resolution. Here, resolution inferences are only necessary on



maximal literals. Selection rules can also be applied which also restrict the search
space. Ordered resolution can be efficient in practice, because it tends to produce
literals in the conclusion of an inference that are smaller than in the premises.
This is not always the case however, because the most general unifier may prevent
that, but it often happens in practice. For the simplest example, consider a set
of clauses consisting of one non-ground clause C = ¬P (x) ∨ P (f(x)) and any
number of ground clauses. Any inference among two ground clauses will produce
another ground clause which does not introduce any new literals. Any inference
between a ground clause and C will produce a new ground clause where an
occurrence of the symbol f has disappeared. This will clearly halt. However, if
this set of clauses is fed to an instantiation-based prover, it may run forever,
depending on the model created by the SAT solver. In our experiments, this
does run forever in practice.

Although resolution methods appear to be more efficient in practice, there are
some classes of problems that are suited better for instantiation-based methods.
Instantiation-based methods work especially well on problems that are close to
propositional problems, because then the key technique is the DPLL procedure
in the SAT solver. There is even a class of first-order logic problems, problems
which contain no function symbols, called Effectively Propositional (EPR) for
which instantiation-based methods form a decision procedure, whereas resolution
methods may run forever.

Here we show that we can combine both instance generation and resolution
into a single inference system while retaining completeness with the aim of get-
ting the best of both methods. The inference system SIG-Res, given in this paper,
combines semantic selection instance generation (SInst-Gen) with ordered reso-
lution. Each clause in the given set of clauses is determined, by some heuristic,
to be an instantiation clause and placed in the set P or a resolution clause and
placed in the set R or placed in both P and R. Clauses from P are given to a
SAT solver and inferences among them are treated as in SInst-Gen, while any
inference which involves a clause in R is a resolution inference.

Our combination of instance generation and resolution differs from the method
used in the instantiation-based theorem prover IProver which uses resolution in-
ferences to simplify clauses, i.e. if a conclusion of a resolution inference strictly
subsumes one if its premise then the conclusion is added to the set of clauses sent
to the SAT solver and the subsumed premise is removed. Our inference system
also allows for the use of resolution for the simplification of the clauses in P , but
differs from IProver in that it restricts certain clauses, the clauses in R, from
any instance generation inference.

Our idea is similar to the idea of Satisfiability Modulo Theories (SMT),
where clauses in P represent data, and the clauses in R represent a theory. This
is similar to the SMELS inference system [17] and the DPLL(Γ + T ) inference
system [19]. The difference between those inference systems and ours is that in
those inference systems, P must only contain ground clauses, and the theory is
all the nonground clauses, whereas in our case we allow nonground clauses in P .



In the pages that follow, we prove the completeness of our inference sys-
tem, discuss our implementation, called Spectrum, and we present our initial
implementation results.

2 Preliminaries

We begin by defining the terminology used in this paper as is in [1,9]. The setting
we are considering is classical first order logic. Variables and constant symbols
are terms and if f is any n-ary function symbol and t1, . . . , tn are terms then
f(t1, . . . , tn) is a term. If P is a predicate symbol and t1, . . . , tn are terms then
P (t1, . . . , tn) is an atom. Formulas are constructed using the logical connectives ¬
(negation), ∨ (disjunction), ∧ (conjunction) under the standard rules of formula
construction. A literal is either an atom (positive literal) or the negation of an
atom (negative literal). If A is an atom we say that A and ¬A are complements
and we denote the complement of a literal L by L. A clause is a disjunction of
literals, however we often view a clause as a multiset of literals. A ground clause
is a clause that contains no variables. We consider a formula to be a conjunction
of clauses in conjunctive normal form and often view a formula as a set of clauses.
We denote by ∅ the empty set and denote the empty clause by �.

An ordering < on terms is any strict partial ordering that is well-founded,
stable under substitution and total on ground terms. We extend < to atoms
in such a way so that for any atom A we have A < ¬A. The ordering < is
extended to clauses by considering a clause as a multiset of literals. Given a
clause C, a literal L ∈ C is maximal in C if there is no K ∈ C such that
K > L. We define a mapping, max from clauses to multisets of literals such that
max(C) = {L|L is maximal in C}.

A substitution is a mapping from variables to terms, almost everywhere the
identity. We denote an application of a substitution σ to a clause C as Cσ.
A clause C subsumes another clause D if there exists a substitution σ such
that Cσ ⊆ D. A unifier of two literals L and K is a substitution σ such that
Lσ = Kσ. If such a unifier exists, we say that L and K are unifiable. A most
general unifier of L and K, denoted mgu(L,K), is a unifier, σ, of L and K such
that for every unifier, τ , of L and K, there exists some substitution ρ such that
τ = σρ over the variables of L and K. A renaming is an injective substitution
that maps variables to variables and we say that two literals are variants if there
exists a renaming which unifies them.

A substitution that maps at least one variable of an expression E to a non-
variable term is called a proper instantiator of E. We say that a clause C is a
(proper) instance of clause C ′ if there exists some (proper instantiator) substi-
tution σ such that C = C ′σ. For a set of clauses S, we denote the set of all
ground instances of the clauses in S as Gr(S).
⊥ is used to denote a distinguished constant and the substitution which maps

all variables to ⊥. If L is a literal then L⊥ denotes the ground literal obtained
by applying the ⊥-substitution to L and if P is a set of clauses then P⊥ denotes



the set of ground clauses obtained by applying the ⊥-substitution to the clauses
in P .

A Herbrand interpretation, I, is a consistent set of ground literals. We say
that a ground literal is undefined in I if neither it nor its complement is in I. If
a ground literal L is in I then we say that L is true in I and L is false in I. I is
a total interpretation if no ground literal is undefined in I. A ground clause C is
true in a partial interpretation I if there exists some literal L in C that is true
in I, and we say that C is satisfied by I.

A closure is denoted by the pair C ′ · σ, where C ′ is a clause and σ is a
substitution. Suppose C = C ′ · σ is a closure. As an abuse of notation we may
also refer to C as the instance of C ′ under the substitution σ, that is C ′σ. We
say that C is a ground closure if C ′σ is ground. If S is a set of clauses and C ′ ∈ S
we say that C ′σ is an instance of S. A closure ordering is any well founded and
total (modulo renaming) ordering on closures.

3 Instance Generation and Resolution

The main idea behind all saturation-based instance generation methods is to
augment a set of clauses with sufficiently many proper instances so that the
satisfiability of the set can be determined by a SAT solver. Additional instances
are generated using some form of the Inst-Gen [9] inference rule. An instance
generation with semantic selection inference system (SInst-Gen) (See Figure 1)
uses a selection function and the notion of conflicts to determine exactly which
clauses are to be used as premises in the instance generation inferences.

Let P be a set of first order clauses and view P⊥ as a set of propositional
clauses. Under this setting, if P⊥ is unsatisfiable, then P is unsatisfiable and
our work is done. Otherwise a model for P⊥ is denoted as I⊥ and we define a
selection function, sel(C, I⊥), which maps each clause C ∈ P to a singleton set
{L} such that L ∈ C and L⊥ is true in I⊥ .

We say, given a model I⊥, that two clauses Γ ∨ L and ∆ ∨K conflict if

(i) L ∈ sel(Γ ∨ L, I⊥) and K ∈ sel(∆ ∨K, I⊥)
(ii) L and K are unifiable

Instance generation with semantic selection methods saturate a set of clauses
P by repeatedly calling apon a SAT solver to obtain a model for P⊥ and resolving
all conflicts with SInst-Gen inferences 1. If P⊥ is ever found unsatisfiable, P is
unsatisfiable. If, on the other hand, P⊥ is satisfiable and no conflicts exist then
P is satisfiable. SInst-Gen is refutationally complete [9] but may not halt.

The ordered resolution and factoring inference rules are well known in the
literature. For completeness they are given in Figure 2. The strength of ordered
resolution is in its ability to reduce the search space by requiring only inferences
between clauses which conflict where max is the selection function.
1 Instance generation with selection functions mapping to singleton sets and resolving

conflicts based on these selected literals is precisely the Primal PI method in [10]



SInst-Gen

Γ ∨ L ∆ ∨K
(Γ ∨ L)τ (∆ ∨K)τ

where (i) L ∈ sel(Γ ∨ L, I⊥) and K ∈ sel(∆ ∨K, I⊥)

(ii) τ = mgu(L,K)

Fig. 1. SInst-Gen Inference Rule

The satisfiablity of a set R is determined by applying resolution and factoring
inferences rules to the clauses in R in a fair manner until either the empty clause
(�) is resolved, in which case R is unsatisfiable, or the set is saturated and � /∈ R,
in which case R is satisfiable. As is the case with SInst-Gen, ordered resolution
with factoring is refutationally complete, but for some satisfiable problems may
not halt.

Ordered Resolution

Γ ∨ L ∆ ∨K
(Γ ∨∆)τ

where (i) L ∈ max(Γ ∨ L) and K ∈ max(∆ ∨K)
(ii) τ = mgu(L,K)

Factoring

Γ ∨ L ∨K
(Γ ∨ L)τ

where τ = mgu(L,K)

Fig. 2. Ordered Resolution and Factoring Inference Rules

4 SIG-Res

The inferences in SIG-Res are variations of SInst-Gen, ordered resolution and
factoring (see Figure 3). SIG-Res is an inference system that requires two sets of
clauses. Given a set of clauses, S, which we wish to prove satisfiable or unsatis-
fiable, we create two sets of clauses, P ⊆ S and R ⊆ S, not necessarily disjoint,
such that P ∪ R = S. Given some clause C ∈ S, C is designated as either a
clause in P , a clause in R, or both, according to any distribution heuristic of our
choosing, so long as P ∪R = S.



The distribution heuristic is a key mechanism in this inference system as
it determines which inferences are applied to the clauses. Under SIG-Res, a
distribution heuristic can, at one end of the spectrum, insert all the clauses of
S in P , leaving R empty, which would make the system essentially a instance
generation inference system. On the other end of the spectrum, the distribution
heuristic can distribute all the clauses to R, leaving P empty, making the system
a resolution system. This flexibility allows any number of heuristics to be used
and heuristics to be tailored to specific classes of problems. An open question
is which heuristics perform best and for which classes of problems. In Section 6
we describe one general heuristic, GSM, which we have incorporated into our
implementation.

The selection function, sel(C, I⊥), where C ∈ P ∪ R and I⊥ is a model for
P⊥, is defined as follows. For clarity, we note that sel(C, I⊥) returns a singleton
set if C ∈ P and a non-empty set if C ∈ R.

sel(C, I⊥) =

{
{L} for some L ∈ C such that L⊥ ∈ I⊥ if C ∈ P
max(C) if C ∈ R

We will have the usual redundancy notions for saturation inference systems.
We can define deletion rules to say that a clause can be deleted if it is implied by
zero or more smaller clauses. For example, tautologies can be deleted. The clause
ordering, as we will define it in the next section, will restrict what subsumptions
can be done. In particular, if a clause C is in R, we say that C is subsumed by
a clause D if there exists a substitution σ such that Dσ is a subset of C. If C is
a clause in P , we say that C is subsumed by D if there exists a substitution σ
such that Dσ is a proper subset of C.

We will define saturation in the next section, to take into account the model
I⊥. Saturation of S under SIG-Res is achieved by ensuring that all possible
inferences are made (fairness). One way to ensure fairness, as is done in the
Primal Partial Instantiation method, is to increment a counter and only allow
inferences with premises having depth less than or equal to the counter. An
alternative method is to perform all possible inferences with the exception that
we restrict conclusions generated during each iteration from being considered
as premises until the next iteration. We have implmented IG-Res in a theorem
prover called Spectrum. Our implementation uses the latter method and follows
Algorithm 1.

5 Completeness

Let S be a set of clauses. We begin by defining an ordering ≺ on the closures in
S. Given an ordering on terms, <, we denote by ≺C any closure ordering with
the following properties: for any closures C · σ and D · τ , C · σ ≺C D · τ if

i. Cσ < Dτ or
ii. Cσ = Dτ and C = Dρ where ρ is a proper instantiator of D



SInst-Gen

Γ ∨ L ∆ ∨K
(Γ ∨ L)τ (∆ ∨K)τ

where (i) Γ ∨ L ∈ P and ∆ ∨K ∈ P
(ii) L ∈ sel(Γ ∨ L, I⊥) and K ∈ sel(∆ ∨K, I⊥)
(iii) τ = mgu(L,K)

(iv) (Γ ∨ L)τ ∈ P and (∆ ∨K)τ ∈ P

Ordered Resolution

Γ ∨ L ∆ ∨K
(Γ ∨∆)τ

where (i) Γ ∨ L ∈ R or ∆ ∨K ∈ R
(ii) L ∈ sel(Γ ∨ L, I⊥) and K ∈ sel(∆ ∨K, I⊥)
(iii) τ = mgu(L,K)

(iv) (Γ ∨∆)τ ∈ P if Γ ∨ L /∈ R or ∆ ∨K /∈ R

Factoring

Γ ∨ L ∨K
(Γ ∨ L)τ

where (i) τ = mgu(L,K)
(ii) (Γ ∨ L)τ ∈ P if Γ ∨ L ∨K /∈ R

Fig. 3. SIG-Res Inference Rules



We denote by ≺S any (subsumption) closure ordering with the following
property: for any closures C · σ and D · τ , C · σ ≺S D · τ if

i. Cσ < Dτ or
ii. Cσ = Dτ and Cρ = D where ρ is a proper instantiator of C

Given a set of clauses S = P ∪ R and orderings ≺C and ≺S we define the
ordering ≺ on the closures of S as follows. For all closures C and D of S, C ≺ D
iff

i. C and D are closures of P and C ≺C D or
ii. C and D are closures of R and C ≺S D or
iii. C is a closure of P and D is a closure of R

C · σ is a minimal closure in S if C is a closure in S and C is the minimal
representation of C ′σ in S under ≺.

A ground clause C is redundant in S if there are clauses C1, · · · , Cn in set
Gr(S) such that Ci ≺ C holds for all i, 1 ≤ i ≤ n and C1, · · · , Cn � C. A clause
C is redundant in S if all of the ground instances of C are redundant in Gr(S). A
derivation of an inference system is a sequence (S0, I0, sel0), · · · , (Si, Ii, seli), · · · ,
where each Si is a multiset of clauses divided into sets Pi and Ri, Ii is a model
of Pi⊥, seli is a selection function based on the model Ii, and Si+1 results from
applying an inference rule or deletion rule on Si. The sequence has as its limit
the set of persistent clauses S∞ =

⋃
i≥0

⋂
j≥i Sj . By definition of redundancy, if

a clause is redundant in some Si it is redundant in S∞.
We define a persistent model I∞ in the following way. Let A1, A2, · · · be an

enumeration of all the atoms. Let D0 be the derivation sequence. For each i, let
Di be the subsequence of Di−1 such that (i) if A is true in an infinite number of Ij
then Di is the subsequence of Di−1 that only contains tuples (Sj , Ij , selj) where
Ij makes A true, else (ii) if A is not true in an infinite number of Sj then Di is
the subsequence of Di−1 that only contains tuples (Sj , Ij , selj) where Ij makes A
false. If D∞ = (S0, I0, sel0), · · · , (Si, Ii, seli), · · · , then we define I∞ =

⋃
j≥0 Ij .

S∞ is called saturated if the conclusion of every inference of (S∞, I∞, sel∞) is
in S∞ or is redundant in S∞. A derivation is fair if no inference is ignored forever,
i.e. the conclusion of every inference among persistent clauses is persistent or
redundant in S∞. A fair derivation produces a saturated set.

Now we define the construction of a candidate model for the ground instances
of S. Given a clause ordering ≺ on the closures of a set of clauses, S = P ∪ R,
for every ground closure, C, of S, we define εC as a set of zero or more literals
in C. We say that C is productive if εC 6= ∅, otherwise we say that C is not
productive.

Let D be a ground closure in S. We define ID =
⋃

C≺D εC where C is a
ground closure of S and define ID = ID ∪ εD. It follows that if C ≺ D then
IC ⊆ ID. We define IS =

⋃
C εC where C is a ground closure in S.

Suppose that P⊥ is satisfied by the model I⊥ and let ≺ be a closure ordering
on the closures of S. We construct a candidate model for the ground instances
of S as follows. For all ground closures C = C ′ · σ we define εC = {Lσ} if



i. C ′σ is not true in IC and
ii. Lσ is undefined in IC and
iii. (C ′ ∈ P and L⊥ ∈ I⊥) or (C ′ ∈ R and max(C ′σ) = {Lσ})

Otherwise εC = ∅.

Theorem 1 Let S = P ∪ R be a multiset of clauses saturated under SIG-Res.
If P⊥ is satisfied by I⊥ then the set of ground instances of P is satisfiable in the
candidate model IS.

Proof. Let S = P ∪ R be a multiset of clauses saturated under SIG-Res and
suppose P⊥ is satisfied by I⊥. By the completeness of SInst-Gen [9], IP is a
model of the ground instances of P . As IP ⊆ IS and IS is consistent, it follows
that the set of ground instances of P is satisfiable in the candidate model IS .

Theorem 2 Let S = P ∪ R be a multiset of clauses saturated under SIG-Res.
S is satisfiable if P⊥ is satisfied by I⊥ and S does not contain the empty clause.

Proof. Let S = P ∪ R be a multiset of clauses saturated by SIG-Res. Suppose
P⊥ is satisfied by I⊥ and S does not contain the empty clause. We claim that
IS is a model of all ground instances of S.

Suppose on the contrary that IS is not a model for the set of ground instances
of S. Let C = C ′ ·σ be the minimal ground closure of S that is false or undefined
in IS .

As P⊥ is satisfied by I⊥, it follows that the set of ground instances of P is
satisfiable in the candidate model IS . Therefore it must be the case that C ′ ∈ R.

Let Lσ ∈ max(C). Now, suppose Lσ is undefined in IS . Then as C ′σ is not
true in IS , C is productive, a contradiction. Hence, Lσ is false in IS . If Lσ is
a duplicate in C ′σ then let B′ be the conclusion resulting from the factoring
of C ′. Then B′σ is smaller than C ′σ, thus contradicting the minimality of C ′σ.
Therefore, let us assume that Lσ is not a duplicate and let C ′ = C ′′∨L for some
C ′′.

As C is not productive and Lσ is false in IS there exists some productive
minimal ground closure D = D′ ·σ 2 such that D ≺ C and εD = {Lσ}. Therefore
D′ = D′′ ∨K where Kσ = Lσ and D′′σ is not true in ID.

Let B′ = (D′′∨C ′′)τ where τ = mgu(K,L) be the conclusion of the resolution
inference with premises D′ = D′′∨K and C ′ = C ′′∨L and let B be the minimal
representative of B′σ. Therefore B is a ground instance of B′.

Now D′ ∈ P or D′ ∈ R so we proceed by cases.
Case 1: Suppose that D′ ∈ P . Since S is saturated by SInst-Gen and C ′ ∈ R,

then the conclusion of the resolution inference between D′ and C ′, i.e. B′, is in
P or is redundant.

If B′ is in P then B′σ is satisfied in IS . If B′ is redundant then there exists
B1, B2, ..., Bn ∈ P such that B1, B2, · · · , Bn |= B′ and for all i, 1 ≤ i ≤ n, Bi

is smaller than B′. Since for all i, 1 ≤ i ≤ n, Biσ is satisfied in IS then B′σ is
satisfied in IS .
2 As clauses are standardized apart we use a single substitution σ.



Since B′σ = (D′′ ∨ C ′′)σ is true in IS and C ′′σ is not true in IS then D′′σ
must be satisfied in IS . Now as D′′σ is not true in ID, then it follows that
D ≺ B. Therefore (D′′ ∨K)σ is smaller than (D′′ ∨ C ′′)σ. Hence Kσ = Lσ is
smaller than C ′′σ, which is a contradiction as Lσ ∈ max(C).

Case 2: Suppose now that D′ ∈ R. Since εD = {Kσ}, Kσ ∈ max(D). There-
fore D′′σ is smaller than Kσ. Hence B′ is strictly smaller than C. And as D′′σ
is not true in IS and C ′′σ is not true in IS we have B′σ is not true in IS . If B′

is in S, this contradicts the minimality of C.
If B′ is redundant in S then there exists clauses B1, B2, · · · , Bn ∈ S each

smaller than B′ such that B1, B2, · · · , Bn |= B′. It follows that there exists some
0 ≤ i ≤ n such that Biσ is false in IS , hence a contradiction. ut

Since SIG-Res is refutationally complete and the inferences are sound, it
should be clear that it is only necessary that at some point in time we insert
the conclusions of SIG-Res inferences into the appropriate set as defined by the
inference rules. Prior to that time, without affecting completeness, we can insert
conclusions from inferences into P or R with disregard to the algorithm if by
doing so we can find a solution quicker.

6 Spectrum

We have implemented SIG-Res in a theorem prover for first order logic called
Spectrum. The name comes from the fact that given a set of clauses, our choices
to construct the sets P and R are among a spectrum.

Spectrum is written in C++, has a built-in parser for CNF problems in the
TPTP format [25] and outputs results in accordance to the SZS ontology [23]. It
takes as arguments a filename and mode and outputs satisfiable or unsatisfiable.
The modes determine how the clauses will be distributed to the sets P and R.
There are a number of distribution modes which Spectrum can be run in. When
running Spectrum with the -p flag, Spectrum places all clauses in P , hence makes
Spectrum run essentially as an instantiation-based theorem prover. The flag -r
makes Spectrum run essentially as a resolution theorem prover by placing all the
clauses in R. Running spectrum without a mode flag runs our default heuristic
we call Ground-Single Max (GSM).

It is well known that in general, SAT solvers are more efficient in solving
ground instances than resolution. Our GSM heuristic takes advantage of this by
placing all ground clauses in P . GSM also places all clauses with more than one
maximal literal in P . GSM places all other clauses in R.

When the program begins, the program distributes the clauses to the two sets
P and R in accordance with the distribution mode and if a clause is inserted in
R, its maximal literals are identified. After distributing the clauses, Spectrum
follows Algorithm 1.

As we begin the instance generation phase on the set P , Yices [8] is used
to check the satisfiability of the ground instances of P⊥. If Yices reports the
problem as inconsistent, Spectrum reports unsatisfiable and halts. However, if



Yices reports the problem is consistent (satisfiable) we retrieve a model from
Yices and select for each clause the first literal in the clause whose propositional
abstraction is true in the model. These are the selected literals that we use for
determining if conflicts exist. If a conflict exists we instantiate the new clauses
and check to see if the new clauses already exist in P . If not, we add them to P .
To ensure that we do not run the instance generation phase forever we do not
allow conclusions to SInst-Gen inferences to be premises until after the next call
to the SAT solver.

Following the instance generation phase, we check for resolution inferences.
We first resolve all unchecked pairs of clauses where both clauses are in R,
and then for the unchecked pairs where one clause is in P and the other is in
R. To ensure fairness, we exclude from being premises SInst-Gen conclusions
that were added during the previous instantiation phase and conclusions from
resolution and factoring inferences that are added in the current iteration. If
an inference is made, we check to see if it is the empty clause. If so, Spectrum
reports unsatisfiable and halts. Otherwise, if one of the premises is in P we
perform the simple redundancy check as stated above and when appropriate
add the conclusion to P . If, on the other hand, both premises are in R we check
for factors. If a factor is slated for R we determine if it already exists in R and if
it is forwardly-subsumed by some clause in R. If it is slated for P we only check
to see if it already exists in P .

If no new clause is added during an iteration, Spectrum reports Satisfiable
and halts, otherwise it repeats the process.

7 Experimental Results and Example

We have tested Spectrum on 450 unsatisfiable problems rated easy in the TPTP
library. These problems, in general, are not challenging for state of the art threo-
rem provers, but allow us to compare the different modes of our implementation
and give us simple proofs to analyze. Of the 450 problems we tested, Spectrum
run in GSM mode for 300 seconds solved 192 problems 3. Of these 192 problems
when given the same time limit, 18 could not be solved by Spectrum run in
-p mode where the problem is solved using only instance generation or in -r
mode where only resolution inferences are allowed. Interestingly, 16 of these are
in the LCL class of problems, the class of Propositional Logic Calculi. Many
of these problems contain the axioms of propositional logic which have clauses
that are similar to the transitivity property. These can produce a large number
of clauses under resolution. These clauses, when run under our heuristic, are
put in P to avoid this condition. Also present are clauses which we call growing
clauses because their tendency to produce larger and larger clauses. These grow-
ing clauses, e.g. ¬P (x)∨P (f(x)), contain pairs of complementary literals where
each argument in the first is a subterm of the second and there exists at least
one argument that is a proper subterm. Growing clauses, under our heuristic,
3 These results reflect that our implementation is not yet competitive and lacks some

key processes such as robust redundancy deletion.



Algorithm 1 Spectrum(P,R)
while true do
NP := ∅
NR := ∅

Run SAT on P⊥
if P⊥ is unsatisfiable then

return UNSATISFIABLE
for all C1, C2 ∈ P do

if conflict(C1, C2) = true then
NP := NP ∪ (SInst-Gen(C1, C2) \ P )

for all C1 ∈ P,C2 ∈ R do
D := Resolution(C1, C2)
if � ∈ D then

return UNSATISFIABLE
else if D 6= ∅ then
NP := NP ∪ (D \ P )

for all C1, C2 ∈ R do
D := Resolution(C1, C2)
if � ∈ D then

return UNSATISFIABLE
else if D 6= ∅ then

for all C ∈ D do
F := Factor(C)
for all B ∈ F do
T := distribute(B)
NT := NT ∪ ({B} \ T )

if NP = ∅ and NR = ∅ then
return SATISFIABLE

else
Set P = P ∪NP

Set R = R ∪NR



since they have only a single maximal literal, are put in R which avoids this
problem.

One problem in the TPTP library that illustrates another benefit of SIG-
Res with the GSM heuristic is problem GRP006-1. Spectrum using our heuristic
solved this problem in less than 1 second, but did not find a solution using in-
stantiation or resolution alone. The initial distribution of clauses and an SIG-Res
proof are given in Figure 4. As can be seen, by placing the clauses with more
than one maximal literal, specifically clauses 3 and 4, in P we avoid many reso-
lution inferences that are not necessary for the proof. We also avoid generating
many SInst-Gen inferences by placing clause 4 in P and clause 6 in R.

Before determining the problem unsatisfiable, Spectrum makes 3 passes through
the while loop generating 32 clauses. During the initial iteration, no conflicts are
found and resolution and factoring inferences produce a total of 9 new clauses.
During the second iteration, 2 conflicts produce 2 new clauses and resolution and
factoring produce 21 new clauses. During the third iteration, Yices returns back
unsatisfiable as clause 2, 13 and 14 are inconsistent. This example shows that
the clauses in a problem may have different properties and that by controlling
the types of inferences that are applied to the clauses we may eliminates unnec-
essary inferences and may produce a solution sooner than if using resolution or
instantiation inferences alone.

8 Conclusion

In this paper, we have developed an inference system which combines instance
generation and resolution. We have proved its completeness and provide some
preliminary experimental results from our implementation. The key feature of
our inference system is that clauses are partitioned into two sets: P and R.
SInst-Gen inferences are performed between members of P, while resolution is
performed between clauses when one is from R.

It is important to provide a good heuristic to decide which clauses should be
in P and which ones should be in R. Ground clauses ought to be in P, because
the SAT solver processes ground clauses most efficiently. Our heuristic puts
clauses with more than one maximal literal into P, because ordered resolution
generally does not handle these clauses well. For example, ordered resolution
with the Transitivity Axiom does not halt. In our heuristic, we put clauses with
a single maximal literal into R, because ordered resolution with those literals
will generally reduce the size of the other premise.

Our implementation is rudimentary and does not contain all the useful fea-
tures of state of the art theorem provers but is still useful for comparison pur-
poses. There are several examples from LCL, and also the GRP problem we
illustrate, where our heuristic performs better than solely using instance gener-
ation or resolution. The GRP problem is an example that contains clauses that
can cause infinite growth, so it is not good for instance generation. While at the
same time, it contains clauses similar to Transitivity where ordered resolution



Clauses in P
1. ¬E(inv(a))
2. E(a)
3. ¬P (x, y, z) ∨ ¬P (y, w, v) ∨ ¬P (x, v, t) ∨ P (z, w, t)
4. ¬P (x, y, z) ∨ ¬P (y, w, v) ∨ ¬P (z, w, t) ∨ P (x, v, t)

Clauses in R
5. ¬E(x) ∨ ¬E(y) ∨ ¬P (x, inv(y), z) ∨ E(z)
6. P (inv(x), x, id)
7. P (x, inv(x), id)
8. P (x, id, x)
9. P (id, x, x)

Res(5,7)
¬E(x) ∨ ¬E(y) ∨ ¬P (x, inv(y), z) ∨ E(z) P (x, inv(x), id)

10. ¬E(x) ∨ ¬E(x) ∨ E(id)

Factor(10)
¬E(x) ∨ ¬E(x) ∨ E(id)

11. ¬E(x) ∨ E(id)

Res(5,9)
¬E(x) ∨ ¬E(y) ∨ ¬P (x, inv(y), z) ∨ E(z) P (id, x, x)

12. ¬E(id) ∨ ¬E(x) ∨ E(inv(x))

SInst-Gen(2,11)
E(a) ¬E(x) ∨ E(id)

13. ¬E(a) ∨ E(id)

Res(1,12)
¬E(inv(a)) ¬E(id) ∨ ¬E(x) ∨ E(inv(x))

14. ¬E(id) ∨ ¬E(a)

Fig. 4. Proof of GRP006-1



is explosive. We believe these examples show the use of our technique and the
potential for further research into this area.

9 Future Work

We are continuing our experiments to determine which distribution heuristics
perform best on general sets of problems and for certain classes of problems. We
are also continuing the development of Spectrum. As a rudimentary theorem
prover, there is room for improving Spectrum’s performance by incorporating
more sophisticated data structures, heuristics and techniques that are in the
literature, e.g. implementing a more sophisticated method for choosing selected
literals for clauses in P , restricting SInst-Gen inference using dismatching con-
straints, using more efficient factoring and redundancy elimination techniques,
etc.

The Completeness Proof for SIG-Res relies on ordered resolution. It may be
interesting to determine if the completeness proof for SIG-Res can be extended
to ordered resolution with selection and if so, how it affects the implementation’s
performance.

We are also interested in investigating if the partitioning idea can be extended
to equalities. Specifically, given a problem, we are interested in developing a
method which uses a SMT solver to solve the ground equalities and Rewriting
techniques to solve the non-ground equalities.

Another area that might be worthy of investigating is determining for which
classes of problems is SIG-Res a decision procedure and for those classes, what
is the complexity?

References

1. L. Bachmair, H. Ganzinger. Resolution Theorem Proving. In J. A. Robinson and A.
Voronkovs, editors, Handbook of Automated Reasoning, volume 1, chapter 2, pages
19-99. Elsevier and MIT Press, 2001.

2. P. Baumgartner. Logical Engineering With Instance-Based Methods. In F. Pfen-
nings, editor, Proceedings of the Twenty-first International Conference on Auto-
mated Deduction (CAV’07), Berlin, Germany, volume 4590 of Lecture Notes in
Computer Science, pages 298-302. Springer 2007.

3. P. Baumgartner and C. Tinelli. The Model Evolution Calculus as a First-Order
DPLL Method. Artificial Intelligence, 172:591-632, 2008.

4. M. Davis, G. Logemann, D. Loveland. A Machine Program for Theorem Proving.
Communications of the ACM, volume 5, issue 7, pages 394-397. ACM, 1962.

5. M. Davis, H. Putnam. A Computing Procedure for Quantification Theory. Journal
of the ACM, volume 7, issue 3, pages 201-215. ACM, 1960.

6. L. de Moura and N. Bjorner. Z3: An Efficient SMT Solver. In proceedings of the 14th
International Conference on Tools and Algorithms for the Construction and Analysis
of Systems, Budapest, Hungary, Lecture Notes in Computer Science. Springer, 2008.

7. T. Deshane, W. Hu, P. Jablonski, H. Lin, C. Lynch, R. E. McGregor. Encoding First
Order Proofs in SAT. In Proceedings of The Conference on Automated Deduction,



(CADE’07), volume 4603 of Lecture Notes in Computer Science, pages 476-491.
Springer, 2007.

8. B. Dutertre, L. de Moura. The Yices SMT Solver. Available at
http://yices.csl.sri.com/tool-paper.pdf

9. H. Ganzinger and K. Korovin. New Directions in Instantiation-Based Theorem Prov-
ing. In Proc. 18th IEEE Symposium on Logic in Computer Science, (LICS’03), pages
55-64. IEEE Computer Society Press, 2003.

10. J. N. Hooker, G. Rago, V. Chandru, A. Shrivastava. Partial Instantiation Methods
for Inference in First Order Logic. Journal of Automated Reasoning, volume 28,
number 4, pages 371-396. Springer Netherlands, 2002.

11. D. Jackson. Automating First-Order Relational Logic. ACM SIGSOFT Software
Engineering Notes, volume 25, issue 6, pages 130-139. ACM, 2000.

12. R. G. Jeroslow. Computation-Oriented Reductions of Predicate to Propositional
Logic. Decision Support Systems, volume 4, pages 183-197. Elsevier Science, 1988.

13. R. G. Jeroslow. Logic-Based Decision Support: Mixed Integer Model Formulation.
Annals of Discrete Mathematics, volume 40. North-Holland, 1989.

14. K. Korovin. An Invitation to Instantiation-Based Reasoning: From Theory to Prac-
tice. Volume in Memoriam of Harald Ganzinger. LCNS, to appear.

15. K. Korovin. System Description: iProver - An Instantiation-Based Theorem Prover
for First-Order Logic. In Proceedings of the 4th International Joint Conference
on Automated Reasoning, (IJCAR’08), volume 5195 of Lecture Notes In Artificial
Intelligence, pages 292-298. Springer-Verlag, 2008.

16. A. Leitsch. The Resolution Calculus. Springer 1997.
17. C. Lynch, D. Tran. SMELS: Satisfiability Modulo Equality with Lazy Superpo-

sition. 6th International Symposium on Automated Technology for Verification
and Analysis, volume 5311 of Lecture Notes in Computer Science, pages 168-200.
Springer, 2008.

18. D. W. Loveland. Automated Theorem Proving: a Logical Basis (Fundamental Stud-
ies in Computer Science). Elsevier North-Holland 1978.

19. M. Paola Bonacina, C. Lynch and L. de Moura. On Deciding Satisfiability by
DPLL(Gamma+T) and Unsound Theorem Proving. To appear in The Proceed-
ings of The 22nd International Conference on Automated Deduction, (CADE’09).
Springer, 2009.

20. J. A. Robinson. A Machine-Oriented Logic Based on the Resolution Principle. J.
Association for Computing Machinery, volume 12, pages 23-41. ACM, 1965.

21. J. R. Slagle. Automatic Theorem Proving with Renamable and Semantic Resolu-
tion. Journal of the ACM, volume 14, issue 4, pages 687-697. ACM, 1967.

22. O. Strichman, S. A. Seshia, R. E. Bryant. Deciding Separation Formulas With
SAT. In Proceedings of the Computer Aided Verification Conference, (CAV’02),
volume 2404 of Lecture Notes in Computer Science, pages 113-124. Springer 2002.

23. G. Sutcliffe. The SZS Ontology. Available at http://www.cs.miami.edu/ tptp.
24. G. Sutcliffe. The CADE-21 Automated Theorem Proving System Competition. AI

Communications, volume 21, number 1, pages 71-82.
25. G. Sutcliffe, C. B. Suttner. The TPTP Problem Library: CNF Release v1.2.1.

Journal of Automated Reasoning, volume 21, number 2, pages 177-203. Kluwer
Academic Publishers, 1998.


