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Abstract. Encryption ‘distributing over pairs’ is a technique employed
in several cryptographic protocols. We show that unification is decidable
for an equational theory HE specifying such an encryption. The method
consists in transforming any given problem in such a way, that the result-
ing problem can be solved by combining a graph-based reasoning on its
equations involving the homomorphisms, with a syntactic reasoning on
its pairings. We show HE-unification to be NP-hard and in NEXPTIME.

1 Introduction

Several methods based on rewriting have been proposed with success, for the
formal analysis of cryptographic protocols. The following Dolev-Yao (DY) sys-
tem underlies many of them:

(DY) p1(x.y)→ x
p2(x.y)→ y

dec(enc(x, y), y)→ x
enc(dec(x, y), y)→ x

The ‘.’ here is the ‘pairing’ operation on messages, p1, p2 are the respective
projections from pairs, and ‘dec’ (resp. ‘enc’) stands for decryption (resp. en-
cryption); the second argument of these latter functions are referred to as keys.

The so-called public collapsing theories, used in some works (e.g., [7]), are pre-
sented by rewrite systems where the rhs of every rule is a ground term or a vari-
able. Some other results assume that the rhs of any rule is a proper subterm of
the lhs. A general procedure for protocol security analysis has been given in [3]
for such systems, extensively using equational unification and narrowing. Rewrite
systems with such a ‘subterm’ property have been called dwindling in [1], where a
decision procedure was given for passive deduction (i.e., detecting secrecy attacks
by an intruder not interacting actively with the protocol sessions). The technique
used is one that combines unification and narrowing with the notion of cap closure
modeling the evolution of the intruder knowledge. The algorithm presented was
also shown to be complete for passive deduction, for a class of rewrite systems
strictly including the dwindling systems, and in particular the following
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convergent, non-dwindling system, that we shall refer to as HE; it extends DY with
the requirement that ‘encryption distributes over pairs’:

(HE)

p1(x.y)→ x
p2(x.y)→ y
enc(dec(x, y), y)→ x
dec(enc(x, y), y)→ x

enc(x.y, z)→ enc(x, z).enc(y, z)
dec(x.y, z)→ dec(x, z).dec(y, z)

We shall refer to the equational theory defined by this system HE as Ho-
momorphic Encryption, or just as HE. On protocols implementing encryption
with the so-called ECB (Electronic Code Book) block chaining – performed se-
quentially on a block decomposition of the plain text, and under the assumption
that message fields are assigned a round number of blocks – encryption can be
modeled as an homomorphism on pairs; examples of such protocols can be found
in e.g., [5]. As mentioned above, passive deduction is known to be decidable for
protocols employing HE; but the problem of active deduction for such protocols,
i.e., when the intruder is allowed to interact with the protocol steps (for instance,
to forge the identity of some honest agent), has not been studied yet. Now, the
decidability of unification modulo any given intruder theory E is known to be a
necessary condition for deciding active deduction modulo E, cf. e.g., [5]; that mo-
tivated our interest in HE-unification. Note that the homomorphism enc(−, y)
defined on terms for any given y, admits an inverse homomorphism dec(−, y)
modulo HE; as a consequence, HE-unification cannot be reduced directly to
unification modulo one-sided distributivity [12].

This paper is structured as follows: The needed preliminaries are given in
Section 2. Unification modulo HE is shown to be decidable in Section 3. The
main idea consists in reducing any given HE-unification problem into one of
solving a set of ‘simple’ equations of the form Z = enc(X, V ) or Z = dec(X, V ),
where none of the 1st arguments under enc get split into pairs by the other
equations. Solving such a set of ‘simple’ equations is essentially the unification
problem modulo the two rules for encryption and decryption:

dec(enc(x, y), y)→ x
enc(dec(x, y), y)→ x

which form a confluent, dwindling system, so has a decidable unification problem,
cf. [10]. The method we propose in this work actually combines a graph-based
algorithm reasoning modulo the group structure on homomorphisms – that is
specific to ‘simple’ HE-unification problems – with one that reasons modulo a
theory for pairings. We show that even solving ‘simple’ HE-unification problems
(i.e., without pairings) is NP-complete. A couple of examples illustrating the
method are given in Section 4.

2 Notation and Preliminaries

As usual, Σ will stand for a ranked signature, and X a countably infinite set of
variables. T = T (Σ,X ) is the algebra of terms over this signature; terms in T will
be denoted as s, t, . . ., and variables as u, v, x, y, z, . . ., all with possible suffixes.


