
Lecture Notes in Artificial Intelligence 4790
Edited by J. G. Carbonell and J. Siekmann

Subseries of Lecture Notes in Computer Science

Nachum Dershowitz Andrei Voronkov (Eds.)

Logic for Programming,
Artificial Intelligence,
and Reasoning

14th International Conference, LPAR 2007
Yerevan, Armenia, October 15-19, 2007
Proceedings

13

Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jörg Siekmann, University of Saarland, Saarbrücken, Germany

Volume Editors

Nachum Dershowitz
Tel Aviv University
School of Computer Science
Ramat Aviv, Tel Aviv, 69978 Israel
E-mail: nachumd@post.tau.ac.il

Andrei Voronkov
University of Manchester
School of Computer Science, Kilburn Building
Oxford Road, Manchester M13 9PL, UK
E-mail: voronkov@cs.man.ac.uk

Library of Congress Control Number: 2007937099

CR Subject Classification (1998): I.2.3, I.2, F.4.1, F.3, D.2.4, D.1.6

LNCS Sublibrary: SL 7 – Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-540-75558-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-75558-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12172481 06/3180 5 4 3 2 1 0

Preface

This volume contains the papers presented at the 14th International Conference
on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR 2007),
held in Yerevan, Armenia on October 15–19, 2007.

LPAR evolved out of the 1st and 2nd Russian Conferences on Logic Pro-
gramming, held in Irkutsk, in 1990, and aboard the ship “Michail Lomonosov”,
in 1991. The idea of organizing a conference came largely from Robert Kowal-
ski, who also proposed the creation of the Russian Association for Logic Pro-
gramming. In 1992, it was decided to extend the scope of the conference. Due
to considerable interest in automated reasoning in the former Soviet Union, the
conference was renamed Logic Programming and Automated Reasoning (LPAR).
Under this name three meetings were held in 1992–1994: on board the ship
“Michail Lomonosov” (1992); in St. Petersburg, Russia (1993); and on board
the ship “Marshal Koshevoi” (1994).

In 1999, the conference was held in Tbilisi, Georgia. At the suggestion of
Michel Parigot, the conference changed its name again to Logic for Program-
ming and Automated Reasoning (preserving the acronym LPAR!), reflecting an
interest in additional areas of logic. LPAR 2000 was held Reunion Island, France.

In 2001, the name (but not the acronym) changed again to its current form.
The 8th to the 13th meetings were held in the following locations: Havana,
Cuba (2001); Tbilisi, Georgia (2002); Almaty, Kazakhstan (2003); Montevideo,
Uruguay (2004); Montego Bay, Jamaica (2005); and Phnom Penh, Cambodia
(2006).

There were 78 submissions to LPAR 2007, each of which was reviewed by
at least four programme committee members. The committee deliberated elec-
tronically via the EasyChair system and ultimately decided to accept 36 papers.
The programme also included three invited talks by Johann Makowsky, Helmut
Veith, and Richard Waldinger, and about 15 short papers, extended abstracts
of which were distributed to participants.

We are most grateful to the 39 members of the programme committee who
agreed to serve under short notice, and to them and the 123 additional re-
viewers who performed their duties most admirably under the tightest of time
constraints.

August 2007 Nachum Dershowitz
Andrei Voronkov

Organization

Programme Chairs

Nachum Dershowitz
Andrei Voronkov

Programme Committee

Eyal Amir
Franz Baader
Matthias Baaz
Peter Baumgartner
Nikolaj Bjorner
Maria Paola Bonacina
Alessandro Cimatti
Michael Codish
Simon Colton
Byron Cook
Thomas Eiter
Christian Fermueller
Georg Gottlob
Reiner Haehnle
John Harrison
Brahim Hnich
Tudor Jebelean
Deepak Kapur
Delia Kesner
Helene Kirchner

Michael Kohlhase
Konstantin Korovin
Viktor Kuncak
Leonid Libkin
Christopher Lynch
Hrant Marandjian
Maarten Marx
Luke Ong
Peter Patel-Schneider
Brigitte Pientka
I.V. Ramakrishnan
Albert Rubio
Ulrike Sattler
Geoff Sutcliffe
Cesare Tinelli
Ralf Treinen
Toby Walsh
Christoph Weidenbach
Frank Wolter

Local Organization

Hrant Marandjian
Artak Petrosyan
Vladimir Sahakyan
Yuri Shoukourian

External Reviewers

Wolfgang Ahrendt
Jean-Marc Andreoli
Takahito Aoto

Lev Beklemishev
Christoph Benzmueller
Josh Berdine

VIII Organization

Karthikeyan Bhargavan
Benedikt Bollig
Thierry Boy de la Tour
Sebastian Brand
Jan Broersen
Richard Bubel
Diego Calvanese
Agata Ciabattoni
Horatiu Cirstea
Hubert Comon-Lundh
Giuseppe De Giacomo
Stéphanie Delaune
Bart Demoen
Stephane Demri
Roberto Di Cosmo
Lucas Dixon
Phan Minh Dung
Mnacho Echenim
Michael Fink
Sergio Flesca
Pascal Fontaine
Carsten Fuhs
Isabelle Gnaedig
John Gallagher
Silvio Ghilardi
Martin Giese
Christoph Gladisch
Lluis Godo
Mayer Goldberg
Georges Gonthier
Gianluigi Greco
Yves Guiraud
Hannaneh Hajishirzi
Patrik Haslum
James Hawthorne
Emmanuel Hebrard
Joe Hendrix
Ian Hodkinson
Matthias Horbach
Paul Houtmann
Dominic Hughes
Ullrich Hustadt
Rosalie Iemhoff
Florent Jacquemard
Tomi Janhunen

Mouna Kacimi
George Katsirelos
Yevgeny Kazakov
Benny Kimelfeld
Boris Konev
Adam Koprowski
Robert Kosik
Pierre Letouzey
Tadeusz Litak
Thomas Lukasiewicz
Carsten Lutz
Michael Maher
Toni Mancini
Nicolas Markey
Annabelle McIver
François Métayer
George Metcalfe
Aart Middeldorp
Dale Miller
Sanjay Modgil
Angelo Montanari
Barbara Morawska
Boris Motik
Normen Mueller
K. Narayan Kumar
Alan Nash
Immanuel Normann
Albert Oliveras
Joel Ouaknine
Gabriele Puppis
David Parker
Nicolas Peltier
Ruzica Piskac
Toniann Pitassi
Nir Piterman
Femke van Raamsdonk
Christian Retoré
Philipp Rümmer
Florian Rabe
C.R. Ramakrishnan
Silvio Ranise
Mark Reynolds
Alexandre Riazanov
Christophe Ringeissen
Iemhoff Rosalie

Organization IX

Riccardo Rosati
Camilla Schwind
Stefan Schwoon
Niklas Sörensson
Volker Sorge
Lutz Strassburger
Peter Stuckey
Aaron Stump
S.P. Suresh
Deian Tabakov
Ernest Teniente
Sebastiaan Terwijn
Michael Thielscher
Nikolai Tillmann
Stephan Tobies

Emina Torlak
Dmitry Tsarkov
Antti Valmari
Ivan Varzinczak
Lionel Vaux
Luca Vigano
Uwe Waldmann
Dirk Walther
Claus-Peter Wirth
Richard Zach
Alessandro Zanarini
Calogero Zarba
Chang Zhao
Hans de Nivelle

Table of Contents

From Hilbert’s Program to a Logic Toolbox (Invited Talk) 1
Johann A. Makowsky

On the Notion of Vacuous Truth (Invited Talk) . 2
Marko Samer and Helmut Veith

Whatever Happened to Deductive Question Answering?
(Invited Talk) . 15

Richard Waldinger

Decidable Fragments of Many-Sorted Logic . 17
Aharon Abadi, Alexander Rabinovich, and Mooly Sagiv

One-Pass Tableaux for Computation Tree Logic . 32
Pietro Abate, Rajeev Goré, and Florian Widmann

Extending a Resolution Prover for Inequalities on Elementary
Functions . 47

Behzad Akbarpour and Lawrence C. Paulson

Model Checking the First-Order Fragment of Higher-Order
Fixpoint Logic . 62

Roland Axelsson and Martin Lange

Monadic Fragments of Gödel Logics: Decidability and Undecidability
Results . 77

Matthias Baaz, Agata Ciabattoni, and Christian G. Fermüller

Least and Greatest Fixed Points in Linear Logic . 92
David Baelde and Dale Miller

The Semantics of Consistency and Trust in Peer Data Exchange
Systems . 107

Leopoldo Bertossi and Loreto Bravo

Completeness and Decidability in Sequence Logic . 123
Marc Bezem, Tore Langholm, and Micha�l Walicki

HORPO with Computability Closure: A Reconstruction 138
Frédéric Blanqui, Jean-Pierre Jouannaud, and Albert Rubio

Zenon: An Extensible Automated Theorem Prover Producing Checkable
Proofs . 151

Richard Bonichon, David Delahaye, and Damien Doligez

XII Table of Contents

Matching in Hybrid Terminologies . 166
Sebastian Brandt

Verifying Cryptographic Protocols with Subterms Constraints 181
Yannick Chevalier, Denis Lugiez, and Michaël Rusinowitch

Deciding Knowledge in Security Protocols for Monoidal Equational
Theories . 196

Véronique Cortier and Stéphanie Delaune

Mechanized Verification of CPS Transformations . 211
Zaynah Dargaye and Xavier Leroy

Operational and Epistemic Approaches to Protocol Analysis: Bridging
the Gap . 226

Francien Dechesne, MohammadReza Mousavi, and Simona Orzan

Protocol Verification Via Rigid/Flexible Resolution 242
Stéphanie Delaune, Hai Lin, and Christopher Lynch

Preferential Description Logics . 257
Laura Giordano, Valentina Gliozzi, Nicola Olivetti, and
Gian Luca Pozzato

On Two Extensions of Abstract Categorial Grammars 273
Philippe de Groote, Sarah Maarek, and Ryo Yoshinaka

Why Would You Trust B? . 288
Éric Jaeger and Catherine Dubois

How Many Legs Do I Have? Non-Simple Roles in Number Restrictions
Revisited . 303

Yevgeny Kazakov, Ulrike Sattler, and Evgeny Zolin

On Finite Satisfiability of the Guarded Fragment with Equivalence or
Transitive Guards . 318

Emanuel Kieroński and Lidia Tendera

Data Complexity in the EL Family of Description Logics 333
Adila Krisnadhi and Carsten Lutz

An Extension of the Knuth-Bendix Ordering with LPO-Like
Properties . 348

Michel Ludwig and Uwe Waldmann

Retractile Proof Nets of the Purely Multiplicative and Additive
Fragment of Linear Logic . 363

Roberto Maieli

Table of Contents XIII

Integrating Inductive Definitions in SAT . 378
Maarten Mariën, Johan Wittocx, and Marc Denecker

The Separation Theorem for Differential Interaction Nets 393
Damiano Mazza and Michele Pagani

Complexity of Planning in Action Formalisms Based on Description
Logics . 408

Maja Miličić

Faster Phylogenetic Inference with MXG . 423
David G. Mitchell, Faraz Hach, and Raheleh Mohebali

Enriched µ–Calculus Pushdown Module Checking . 438
Alessandro Ferrante, Aniello Murano, and Mimmo Parente

Approved Models for Normal Logic Programs . 454
Lúıs Moniz Pereira and Alexandre Miguel Pinto

Permutative Additives and Exponentials . 469
Gabriele Pulcini

Algorithms for Propositional Model Counting . 484
Marko Samer and Stefan Szeider

Completeness for Flat Modal Fixpoint Logics (Extended Abstract) 499
Luigi Santocanale and Yde Venema

FDNC: Decidable Non-monotonic Disjunctive Logic Programs with
Function Symbols . 514

Mantas Šimkus and Thomas Eiter

The Complexity of Temporal Logic with Until and Since over
Ordinals . 531

Stéphane Demri and Alexander Rabinovich

ATP Cross-Verification of the Mizar MPTP Challenge Problems 546
Josef Urban and Geoff Sutcliffe

Author Index . 561

From Hilbert’s Program to a Logic Toolbox

Johann A. Makowsky

Technion—Israel Institute of Technology
janos@cs.technion.ac.il

In this talk we discuss what, according to my long experience, every computer
scientists should know from logic. We concentrate on issues of modelling, inter-
pretability and levels of abstraction. We discuss how the minimal toolbox of logic
tools should look like for a computer scientist who is involved in designing and
analyzing reliable systems. We shall conclude that many classical topics dear to
logicians are less important than usually presented, and that less known ideas
from logic may be more useful for the working computer scientist.

N. Dershowitz and A. Voronkov (Eds.): LPAR 2007, LNAI 4790, p. 1, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

On the Notion of Vacuous Truth

Marko Samer1 and Helmut Veith2

1 Department of Computer Science
Durham University, UK

marko.samer@durham.ac.uk
2 Institut für Informatik (I-7)

Technische Universität München, Germany
veith@in.tum.de

Abstract. The model checking community has proposed numerous definitions
of vacuous satisfaction, i.e., formal criteria which tell whether a temporal logic
specification holds true on a system model for the intended reason. In this paper
we attempt to study the notion of vacuous satisfaction from first principles. We
show that despite the apparently vague formulation of the vacuity problem, most
proposed notions of vacuity for temporal logic can be cast into a uniform and
simple framework, and compare previous approaches to vacuity detection from
this unified point of view.

1 Introduction

193. What does this mean: the truth of a proposition is certain?
L. Wittgenstein, On Certainty [35]

Modern model checkers are equipped with capabilities which go well beyond deciding
the truth of a temporal specification ϕSpec on a system S. Most importantly, when a
model checker determines that the specification is violated, i.e., S �|= ϕSpec, it will out-
put a counterexample, for instance a program trace, which illustrates the failure of the
specification ϕSpec on S. This counterexample is a piece of evidence which the user can
analyze to understand and diagnose the problem. Since counterexamples should be per-
ceptually and mathematically simple, counterexample generation has both algorithmic
and psychological aspects [12,13,17].

In this paper, we are concerned with the dual situation when the model checker as-
serts S |= ϕSpec. Industrial practice shows that 20% of successful model checking
passes are vacuous, i.e., ϕSpec is satisfied for some trivial or unintended reason [4]. A
classical example of vacuity is antecedent failure, where the model checker correctly
asserts

S |= AG (trigger event ⇒ ϕ),

but a closer inspection shows that in fact trigger event is always false, and thus the
implication becomes vacuously true. The total absence of trigger event may be an in-
dicator of erroneous system behavior, and should be reported to the user.

A model checker with automated vacuity detection thus has three kinds of outputs:

N. Dershowitz and A. Voronkov (Eds.): LPAR 2007, LNAI 4790, pp. 2–14, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

On the Notion of Vacuous Truth 3

Model Theoretic Result Supporting Evidence

(i) S �|= ϕSpec Counterexample
(ii) S |= ϕSpec vacuously Explanation of Vacuity

(iii) S |= ϕSpec non-vacuously Witness of Non-Vacuity

The central question in the vacuity literature concerns the line which separates cases (ii)
and (iii). In other words: When is a specification vacuously satisfied? Similar as coun-
terexample generation, vacuity detection also relies on algorithmic and psychologi-
cal insights. A recent thread of papers [1,3,4,5,6,8,11,15,18,19,22,23,25,27,28,30,33]
have given different, sometimes competing, definitions, including one by the present
authors [28,30].

The controversial examples and discussions of vacuity in the literature have their
origin in a principal limitation of formal vacuity detection: Declaring ϕSpec to be vacu-
ous on S means that the specification ϕSpec is inadequate to capture the desired system
behavior. Adequacy of specifications however is a meta-logical property that cannot be
addressed inside the temporal logic, because we need domain knowledge to distinguish
adequate specifications from inadequate ones.

The current paper develops the line of thought started in [30] in that it focuses on the
notion of vacuity grounds as the main principle in vacuity detection. Vacuity grounds
are explanations of S |= ϕSpec, which entail the specification, but are perceptionally
simpler and logically stronger. Formally, a vacuity ground is a formula ϕFact such that

S |= ϕFact and ϕFact |= ϕSpec

where ϕFact is simpler than ϕSpec; criteria for simplicity will be discussed below. Thus,
vacuity grounds can be viewed as a form of interpolants between S and ϕSpec.

Employing vacuity grounds, it is easy to resolve conflicts between different notions
of vacuity: the same specification may be tagged as vacuous or non-vacuous, depending
on which vacuity grounds the verification engineer is willing to admit. In the antecedent
failure example mentioned above, the natural vacuity ground is AG¬trigger event.
Equipped with this feedback, the verification engineer can draw a well-informed con-
clusion about vacuous satisfaction. We thus arrive at a revised output scheme for model
checkers which support vacuity detection:

Model Theoretic Result Supporting Evidence

(i) S �|= ϕSpec Counterexample
(ii) S |= ϕSpec Vacuity grounds from which

the engineer decides on vacuity

We believe that our approach yields the first genuinely semantical definition of vacuity.
In the rest of the paper, we compare our notion of vacuity with existing definitions, and
show how our approach subsumes and uniformly explains a significant part of previous
work. Moreover, we show that our approach captures cases of vacuous satisfaction not
covered in the literature.

In Section 2, we review the capabilities and limitations of the prevailing definitions of
vacuity – which we call unicausal semantics – and argue that they have limited explana-
tory power. As they are intimately tied to the syntax of ϕSpec, two logically equivalent
specifications may become vacuous in one case and non-vacuous in the other.

4 M. Samer and H. Veith

Section 3 introduces our interpolation-based vacuity framework. We show that uni-
causal semantics yield a specific class of vacuity grounds related to uniform interpo-
lation, thus embedding unicausal semantics into our framework. We briefly review our
previously published vacuity methodology based on temporal logic query solving [30],
and derive basic complexity results for the general case presented here.

Technical Preliminaries. We assume the reader is familiar with the temporal logics
CTL and LTL, Kripke structures, and other standard notions. For Kripke structures S
and S′ we write S ∼=cnt S′ to denote that S and S′ are counting-bisimilar, and we
write S ∼= S′ to denote that S and S′ are bisimilar. We write ϕ(ψ) to denote that ψ
occurs once or several times as subformula in ϕ; we write ϕ(x) to denote the formula
ϕ[ψ ← x] obtained from ϕ by replacing all occurrences of ψ by x. The formula ϕ(x)
is called monotonic in x if α ⇒ β implies ϕ(α) ⇒ ϕ(β). It holds that ϕ is monotonic
in x if all occurrences of x are positive, and dually for anti-monotonicity. We say ϕ is
(semantically) unipolar in x if ϕ is either monotonic or anti-monotonic in x; otherwise,
we call ϕ multipolar. In the following, when we speak about unipolar formulas, we shall
without loss of generality assume monotonicity.

2 Unicausal Vacuity Semantics

199. The reason why the use of the expression “true or false” has something misleading
about it is that it is like saying “it tallies with the facts or it doesn’t”, and the very thing
that is in question is what “tallying” is here. [35]

The irrelevance of a subformula for the satisfaction of a temporal specification ϕSpec is
a natural indicator for vacuity: If on a model S, subformula ψ of ϕSpec can be arbitrarily
modified without affecting the truth of the specification, ϕSpec is declared vacuous. This
approach [4,5] has been the seminal paradigm for most of the research on vacuity. It has
the obvious advantage that the vacuity of the specification can be (syntactically) traced
back to a subformula, and that (non)-vacuity can be explained to the engineer on the
grounds of the temporal logic. Syntactic vacuity however is usually hard to evaluate and
not “robust” [1], i.e., dependent on the syntax of the specification and on changes in the
system which are not related to the specification. The quest for efficiency and robustness
has motivated new semantics for vacuity [1,8,18] which quantify over the allegedly
vacuous subformulas. We shall refer to these semantics as unicausal semantics, since
they all are attempts to obtain a (unique) formula ∀x.ϕ(x) – which we call a unicausal
vacuity ground – such that model checking S |= ∀x.ϕ(x) determines the vacuity of ϕ
on S with respect to subformula ψ. The different possibilities to define the universal
quantifier give rise to different unicausal semantics:

1. In the formula semantics, ∀x ranges over all truth functions for x over the lan-
guage L of S, i.e., ∀x.ϕ(x) amounts to a (possibly infinitary) big conjunction of
formulas

∧
θ∈L ϕ(θ).

For the following definitions, let � be a new atomic proposition which occurs neither
in S nor in ϕ. Given a structure S, a �-labeling � labels some states of S with �,
resulting in a structure �(S).

On the Notion of Vacuous Truth 5

Table 1. Evidence for non-vacuity of S |= ϕ(ψ) with respect to ψ

Formula Semantics [4,5]

A formula θ over the language of S such that S �|= ϕ(θ).

Structure Semantics [1]

A �-labeling � of S, such that �(S) �|= ϕ(�).

Tree Semantics [1]

A new structure S′ ∼=cnt S together with a �-labeling � of S′, such that �(S′) �|= ϕ(�).

Bisimulation Semantics [18]

A new structure S′ ∼= S together with a �-labeling � of S′, such that �(S′) �|= ϕ(�).

2. In the structure semantics, ∀x ranges over all labelings of S, i.e., S |= ∀x.ϕ(x)
iff for all �-labelings � it holds that �(S) |= ϕ(�).

3. In the tree semantics, ∀x ranges over all labelings of structures counting-bisimilar
to S, i.e., S |= ∀x.ϕ(x) iff for all S′ ∼=cnt S and �-labelings � of S′ it holds
that �(S′) |= ϕ(�).

4. In the bisimulation semantics, ∀x ranges over all labelings of structures bisimilar
to S, i.e., S |= ∀x.ϕ(x) iff for all S′ ∼= S and �-labelings � of S′ it holds
that �(S′) |= ϕ(�).

Importantly, all four unicausal semantics coincide when ϕ(x) is monotonic in x; in this
case, ∀x.ϕ(x) is equivalent to ϕ(false) which can be easily model checked [22,23].
Thus, the differences between the unicausal semantics appear only when ϕ(x) is multi-
polar with respect to x.

When comparing the different notions of unicausal vacuity, it is natural to consider
the evidence that the model checker can provide in case of non-vacuity, cf. item (iii)
in the first output scheme of Section 1. In the literature, this evidence was referred to
as interesting witness [5,22,23]. Table 1 summarizes the evidence we obtain for the
different unicausal semantics above.

Examples illustrating the differences between these semantics are shown in Table 2.
The specification there demonstrate that even on the small structures of Figure 1, the
unicausal semantics differ tremendously.

Remark 1. The structure quantifier guarantees ∀x.ϕ(x) |= ϕ(ψ) only when ψ is a state
formula. In case of LTL, this means that ψ is either a propositional subformula or the
whole specification.

Remark 2. The quantifiers used for unicausal vacuity detection have been studied inde-
pendently of vacuity. The extension of a modal logic by the formula quantifier remains
a modal logic, because an infinitary temporal formula cannot distinguish bisimilar mod-
els [2]. The structure quantifier can be used to distinguish bisimulation-equivalent
models, and thus, the resulting logic is not a modal logic. (For example, the formula
(∀x.x) ∨ (∀x.¬x) holds true only on a structure with a single state.) The computational

6 M. Samer and H. Veith

p

S2 S3

pp

S1

pq q

S4

Fig. 1. Examples of Kripke structures

Table 2. Vacuity of ϕ1 = A(pUAG(q → ¬p)),ϕ2 = AX p∨AX¬p,ϕ3 = AG p∨AG¬p,
and ϕ4 = AG(p→ AX¬p) with respect to p under different vacuity semantics. The structures
are given in Figure 1 and Figure 2. Note that the non-vacuity witness S4 for formula semantics
is the only witness taken from Figure 1.

Formula Structure Tree Bisimulation

S1 |= ϕ1(p) vacuous vacuous vacuous vacuous

S2 |= ϕ2(p) vacuous vacuous vacuous S′
0 �|= ϕ2(�)

S2 |= ϕ3(p) vacuous vacuous S′
3 �|= ϕ3(�) S′

3 �|= ϕ3(�)

S3 |= ϕ3(p) vacuous S′
3 �|= ϕ3(�) S′

3 �|= ϕ3(�) S′
3 �|= ϕ3(�)

S4 |= ϕ4(p) S4 �|= ϕ4(q) S′
4 �|= ϕ4(�) S′

4 �|= ϕ4(�) S′
4 �|= ϕ4(�)

price to pay for the loss of modality is the undecidability of the quantified logic [16]. In
combination with CTL, the tree quantifier is able to count the number of successors of a
state [16], and thus able to break bisimulation-equivalence. While not a modal logic, the
resulting logic is quite close to modal logic and retains decidability. The bisimulation
quantifier has been rediscovered in the literature many times, and in different contexts,
by the names of “bisimulation quantifier” [14], “Pitts quantifier” [34], “amorphous se-
mantics” [16,18], and others. It is the natural quantifier to be used in the context of
modal logic. Since it does not break bisimulation classes, it yields a conservative exten-
sion of a temporal logic. Uniform interpolation of the μ-calculus has been proved by
elimination of bisimulation quantifiers [14].

Remark 3. Recent research has also considered vacuity detection for extensions of LTL
by regular expressions [6,8]. This approach can also be viewed as an instance of uni-
causal semantics; for the sake of simplicity, however, we restrict the current paper to
temporal logics.

2.1 Ramifications of Unicausal Vacuity

In this section, we discuss several problems and anomalies which arise from unicausal
vacuity notions.

#1 Explanatory Power of Non-Vacuity Assertions
What confidence does the user gain in the model checking result when the model
checker asserts non-vacuity? Recall Table 1 for the different notions of vacuity
from this dual point of view:

On the Notion of Vacuous Truth 7

p, �

p

p

S′0

S′3

p, �p q, �

S′4

Fig. 2. Non-vacuity witnesses

• In formula semantics, the user knows that changing the specification ϕ(ψ) into
ϕ(θ) affects the truth value of the specification. Indeed, this explains the rele-
vance of subformula ψ to the specification.

• In structure semantics, tree semantics, and bisimulation semantics, however,
the evidence for non-vacuity is extremely weak: We change the specifica-
tion ϕ(ψ) into ϕ(�), where � is a new propositional symbol. Then we argue that
the system S (or a bisimilar system S′) can be labeled with � in such a way
that ϕ(�) becomes false. (Thus, our non-vacuity argument is tantamount to for-
mula semantics on a modified system with a new “imaginary” variable �.) It is
not clear how the introduction of � – which does not carry a meaning in the sys-
tem S – can give information about the relevance of subformula ψ to the user.
Table 2 and its accompanying Figures 1 and 2 clearly indicate this problem.

We see only one sound interpretation of these semantics: Suppose we know
that our system S is a coarse abstraction of the real system, i.e., our model S
is hiding many variables. Then the non-vacuity assertion states that it is con-
sistent to assume the existence of a hidden variable � in the system which, if it
were revealed, would give proof of non-vacuity in terms of formula semantics.
The three semantics differ in the role of the imaginary variable �: In structure
semantics, variable � is uniquely defined on each state of the abstract system,
while in tree semantics and bisimulation semantics, variable � depends on the
execution history. A first exploration of the relationship between vacuity and
abstraction was started in [18].

We conclude that only formula semantics gives confidence in the non-vacuity as-
sertion. The other semantics provide tangible non-vacuity evidence only in very
specific circumstances.

#2 Explanatory Power of Vacuity Assertions
What conclusions can the user draw from an assertion of vacuity? As temporal
logic does not have quantifier elimination (cf. Section 3), it is in many cases impos-
sible to write the vacuity ground ∀x.ϕ(x) in plain temporal logic. The unicausal
semantics, however, have the useful feature that each assertion of vacuity actually
points out one or several subformulas which cause vacuous satisfaction. Comparing
the different unicausal semantics, we obtain the following picture:

• In formula semantics, the vacuity assertion is relatively easy to understand: it
says that no syntactic change in the subformulas of interest causes the specifi-
cation to fail.

8 M. Samer and H. Veith

• In the other semantics, we are facing a problem dual to #1: The vacuity as-
sertion expresses the fact that no hidden imaginary variable � can make ϕ(�)
false. This criterion is stronger than the intuitive notion of vacuity – i.e., it will
detect vacuity only in few cases.

We conclude that formula semantics again yields the most natural notion of uni-
causal vacuity, while the other three semantics report vacuity too rarely. This is
dual to our observation in #1 that the semantics give weak evidence of non-vacuity.

#3 Expressive Power of Subformula Quantification
Vacuity detection by quantification over subformula occurrences entails a number
of limitations discussed below.

#3.1 Pnueli’s Observation
Pnueli [26] pointed out that a satisfied specification AGAF p may be con-
sidered vacuous, when the model checker observes that the stronger formula
AG p is true on the system. None of the unicausal vacuity notions is able to
detect this notion of vacuity.

#3.2 Syntactically Unrelated Observations
Following Pnueli’s example, there are arguable cases of vacuity where no syn-
tactic relationship exists between the specification and the observation. For ex-
ample, for a specification EF p, the model checker may observe that in fact
AX p holds. It is clear that this form of vacuity cannot be detected by uni-
causal semantics.

#3.3 Specifications with Single Propositions
The issues raised in #3.1 and #3.2 share the syntactic property that they contain
a single occurrence of a propositional variable p. Consequently, the universal
quantifier eliminates the truth-functional dependence on the propositional vari-
able, and the quantified specification is either a tautology or a contradiction.
For example, in Pnueli’s example, quantification yields the formulas AG false
and AGAF false both of which are equivalent to false.1 This proves that the
observations (vacuity grounds) such as AG p from #3.1 and AX p from #3.2
are impossible in unicausal semantics.

#3.4 Vacuity by Disjunction
In the syntactic view of unicausal vacuity, certain specifications are always
vacuous. In particular, if a disjunctive specification ϕ∨ψ holds true in a struc-
ture, then either ϕ ∨ false or false ∨ ψ holds true, and thus, the specification is
inevitably vacuous.

#3.5 Stability Under Logical Equivalence
As explained in #3.4 above, ϕ ∨ ϕ is vacuous by construction, and thus, ev-
ery specification is equivalent to a vacuous specification. A more interesting
example is given by EF p which is equivalent to p ∨ EXEF p. In the second
formulation, the specification is always vacuous.

1 Recall that in the unipolar case, universal quantification over a variable x is tantamount to
setting it false.

On the Notion of Vacuous Truth 9

Getting back to Pnueli’s problem in #3.1, we even see that a reformulation
of the specification AGAF p into the equivalent specification AG(p∨AF p)
enables us to quantify out the subformulaAF p, yielding a formula ∀x.AG(p∨
x) which is equivalent to AG(p ∨ false), and thus to AG p. Similarly, the
problem raised in #3.3 can be solved using the specification (EF p) ∨ (AX p)
instead of the (logically equivalent) specification EF p.

#4 Causality
Our final concern (and indeed the original motivation for this research) is a fun-
damental issue raised by unicausal semantics. Given a specification ϕ(ψ) and oc-
currences of a subformula ψ, each unicausal semantics associates the vacuity of ϕ
with respect to ψ with a uniquely defined formula ∀x.ϕ(x). Not only does such
a construction revert the natural order between cause (S |= ∀x.ϕ(x)) and effect
(S |= ϕ(ψ)), it is also independent of the system S. Thus, unicausal semantics
represents a fairly simple instance of logical abduction.

3 Interpolation-Based Vacuity Detection

200. Really “The proposition is either true or false” only means that it must be pos-
sible to decide for or against it. But this does not say what the ground for such a
decision is like. [35]

Recall from Section 1 that we define a vacuity ground as a simple formula ϕFact such
that

S |= ϕFact and ϕFact |= ϕSpec. (1)

Vacuity grounds serve as feedback for the verification engineer which helps him/her
to decide whether the specification ϕSpec is vacuously satisfied. For example, in the
cases #3.1, #3.2, and #3.4 above, natural candidates for vacuity grounds are AG p,
AX p, and ϕ, respectively. In general, a model checker may output multiple vacuity
grounds for a single specification.

When the vacuity grounds are chosen among modal temporal formulas, definition (1)
is equivalent to

χS |= ϕFact and ϕFact |= ϕSpec. (2)

where χS is the temporal formula which characterizes S up to bisimulation equiva-
lence. Thus, the vacuity ground ϕFact is an interpolant between the system descrip-
tion χS and the specification ϕSpec. Consequently, vacuity analysis can be viewed as the
process of finding simple interpolants between the system and the specification. Note
that, technically, ϕSpec is usually itself a Craig interpolant, but not useful in vacuity
detection. Thus, we need different notions of simplicity than the restriction to common
variables.

3.1 Unicausal Vacuity Grounds and Interpolation

The unicausal vacuity grounds of Section 2 represent a specific construction principle
for vacuity grounds using universal quantification, i.e., we have

10 M. Samer and H. Veith

S |= ∀x.ϕ(x) and ∀x.ϕ(x) |= ϕ(ψ) (3)

with the special case

S |= ϕ(false) and ϕ(false) |= ϕ(ψ) (4)

when ϕ(ψ) is unipolar. Since the implication ∀x.ϕ(x) |= ϕ(ψ) is a consequence of
the construction, a model checking result S |= ∀x.ϕ(x) indeed says that ∀x.ϕ(x) is
one vacuity ground. Consequently, with the exception of the special case mentioned
in Remark 1, unicausal vacuity semantics indeed has a natural embedding into our
framework.

The construction principle for unicausal vacuity grounds is itself closely related to
interpolation. One of the main logical motivations for the introduction of propositional
temporal quantifiers are proofs of Craig interpolation. In particular, uniform Craig in-
terpolation of the μ-calculus was shown by quantifier elimination of bisimulation quan-
tifiers [14]: Given a formula α and β where α |= β, an interpolant is obtained by the
quantified formula ∀x.β, where x is the tuple of variables occurring only in β. By con-
struction, it holds that

α |= ∀x.β and ∀x.β |= β (5)

whence it is sufficient to show that ∀x.β is equivalent to a quantifier-free formula to
prove interpolation for the μ-calculus. Since this construction depends only on β and x,
∀x.β is called a post-interpolant or right interpolant. (Existential quantification of α
naturally yields pre-interpolants or left interpolants.)

CTL and LTL are well known not to have interpolation [24] because CTL and LTL
do not admit elimination of bisimulation quantifiers. The quantified extensions of CTL
and LTL, however, do have uniform interpolation, and the post-interpolants are nat-
urally obtained by universal quantification analogously to (5). Consequently, we con-
clude that unicausal vacuity grounds are generalizations of post-interpolants: they are
the weakest formulas which imply ϕSpec without mentioning certain variables or sub-
formulas that occur in ϕSpec.

Let us note that our adversarial discussion of unicausal semantics in Section 2 does
not inhibit the use of ∀x.ϕ(x) as vacuity ground in the sense described here. The dis-
cussion of Section 2 only shows that no unicausal semantics by itself can adequately
solve the problem of vacuity detection.

3.2 Computation of Vacuity Grounds

The discussion of Section 3.1 shows that the unicausal semantics yield a natural class of
vacuity grounds. In the important unipolar case (cf. condition (4)), the vacuity grounds
ϕ(false) satisfy all important criteria: they are simpler than the specification, they are
easy to model check, and they represent tangible feedback for the verification engineer.

When the quantifier in ∀x.ϕ(x) cannot be eliminated, the situation is more compli-
cated. As discussed in Section 2 (#2), the semantics of quantified temporal formulas has
only limited explanatory value concerning vacuity. Moreover, the examples in Table 2
demonstrate that the verification engineer may obtain different vacuity feedback from

On the Notion of Vacuous Truth 11

Unsatisfied Ground

Ground

true

false

S
ϕSpec

Fig. 3. In the lattice of temporal properties, system S partitions the properties into satisfied prop-
erties (shaded dark) and unsatisfied ones. Vacuity grounds are located lower in the lattice order
than the specification, but inside the shaded area of satisfied properties. The closer a vacuity
ground is to the white area, the stronger is the intuitive strength of the vacuity assertion. The
figure shows one satisfied vacuity ground and one unsatisfied ground.

different unicausal semantics, i.e., the vacuity ground for one semantics may hold true,
while it is false for the other semantics. To appreciate this situation, the engineer has to
understand the subtleties of the different semantics.

As argued in Section 2, it is important to obtain vacuity grounds different from the
unicausal grounds. The search space for these vacuity grounds is illustrated in Figure 3.
Not surprisingly, finding small vacuity grounds has the same complexity as the respec-
tive decision problem for validity: Let VAC-CTL be the decision problem if for a given
structure S, a CTL specification ϕSpec, and an integer k < |ϕSpec|, there exists a vacuity
ground ϕFact such that |ϕFact| ≤ k and ϕSpec �≡ ϕFact. VAC-LTL is defined analogously
for LTL. Then the following theorem is not hard to show:

Theorem 1. VAC-CTL is EXPTIME-complete and VAC-LTL is PSPACE-complete.

Thus, the complexity is not worse than checking ϕFact |= ϕSpec. Nevertheless, it is a
reasonable strategy to focus on methods which systematically enumerate perceptionally
simple candidates for vacuity grounds; these methods may be based both on heuristics
and formal considerations. As in the unicausal semantics, candidates ϕFact will typically
be chosen in such a way that ϕFact |= ϕSpec follows by construction, and S |= ϕFact is
determined by the model checker, cf. condition (1).

To obtain candidate formulas without expensive validity checks, one can systemat-
ically compute the closure of the specification under two syntactic operations, namely
by rewriting and strengthening:

(i) Replace subformulas of the specification by equivalent subformulas typically in-
volving disjunction, e.g., EF p by p ∨ EXEF p, or AF p by p ∨ AXAF p, etc.2

2 Recent work by the authors [28,29,31] has characterized the distributivity over conjunction
of temporal operators which yields also an analogous characterizations for disjunction. Such
characterizations can be used to support rewriting of specifications.

12 M. Samer and H. Veith

(ii) Replace subformulas by stronger non-equivalent subformulas, e.g., replace whole
subformulas by false as in unicausal semantics, AF p by p as in Pnueli’s example,
EF p by AX p, AX p ∨ AX¬p by AG p, etc.

While this heuristic enumeration of antecedents naturally samples the space of possible
vacuity grounds for ϕSpec, each candidate has to be model checked separately, similar
as in unicausal semantics.

An alternative systematic approach for finding antecedents by strengthening subfor-
mulas in the unipolar case was presented in a predecessor paper [30] which introduced
parameterized vacuity, a new approach to vacuity using temporal logic query solving.
A temporal logic query solver [9] is a variant of a model checker which on input of
a formula ϕ(x) and a model S finds the strongest formulas ψ such that S |= ϕ(ψ).
Such a formula ψ is called a solution of ϕ(x) in S. To use temporal logic queries for
computing vacuity grounds, we are interested in solutions ψ such that ϕ(ψ) is a vacuity
ground. In this way we are able to reduce vacuity detection to temporal logic query
solving [30]. Our approach was motivated by the failure of unicausal semantics to han-
dle Pnueli’s problem. Recall that unicausal semantics cannot find vacuity ground AG p
for AFAG p, cf. Section 2 (#3.1). Instead of reducing ϕ(ψ) to a unicausal ground
ϕ(false), we use a temporal logic query solver to find a simple formula θ which im-
plies ψ. Then, by monotonicity, it follows that ϕ(θ) |= ϕ(ψ). Thus, we obtain a vacuity
ground ϕ(θ) which explains ϕ(ψ) and solves Pnueli’s problem. Several algorithms for
solving temporal logic queries have been proposed in the literature; in particular, sym-
bolic algorithms [9,28,32], automata-theoretic algorithms [7], and algorithms based on
multi-valued model checking [10,20,21].

4 Conclusion

We have argued that vacuity of temporal specifications cannot be adequately captured
by formal criteria. As vacuity expresses the inadequacy of a specification, it needs to
be addressed by the verification engineer. We have therefore proposed a new approach
to vacuity where the model checker itself does not decide on vacuity, but computes an
interpolant – called a vacuity ground – which expresses a simple reason that renders the
specification true. Candidate formulas for the interpolants can be obtained from existing
notions of unicausal vacuity, from heuristics, and from temporal logic query solving.
Equipped with the feedback vacuity grounds, the verification engineer can decide if the
specification is vacuously satisfied.

The current paper has focused on the logical nature of vacuous satisfaction rather
than on practical vacuity detection algorithms. We believe that future work should
address the systematic computation of vacuity grounds, because vacuity is in the eye
of the beholder.

Acknowledgments. The authors are grateful to Arie Gurfinkel, Kedar Namjoshi, and
Richard Zach for discussions on vacuity.

On the Notion of Vacuous Truth 13

References

1. Armoni, R., Fix, L., Flaisher, A., Grumberg, O., Piterman, N., Tiemeyer, A., Vardi, M.Y.:
Enhanced vacuity detection in linear temporal logic. In: Hunt Jr., W.A., Somenzi, F. (eds.)
CAV 2003. LNCS, vol. 2725, pp. 368–380. Springer, Heidelberg (2003)

2. Barwise, J., van Benthem, J.: Interpolation, preservation, and pebble games. Journal of Sym-
bolic Logic 64(2), 881–903 (1999)

3. Beatty, D.L., Bryant, R.E.: Formally verifying a microprocessor using a simulation method-
ology. In: DAC 1994. Proc. 31st Annual ACM IEEE Design Automation Conference, pp.
596–602. ACM Press, New York (1994)

4. Beer, I., Ben-David, S., Eisner, C., Rodeh, Y.: Efficient detection of vacuity in ACTL formu-
las. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 279–290. Springer, Heidelberg
(1997)

5. Beer, I., Ben-David, S., Eisner, C., Rodeh, Y.: Efficient detection of vacuity in temporal
model checking. Formal Methods in System Design (FMSD) 18(2), 141–163 (2001)

6. Ben-David, S., Fisman, D., Ruah, S.: Temporal antecedent failure: Refining vacuity. In:
Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 492–506.
Springer, Heidelberg (2007)

7. Bruns, G., Godefroid, P.: Temporal logic query checking. In: LICS 2001. Proc. 16th Annual
IEEE Symposium on Logic in Computer Science, pp. 409–417. IEEE Computer Society
Press, Los Alamitos (2001)

8. Bustan, D., Flaisher, A., Grumberg, O., Kupferman, O., Vardi, M.Y.: Regular vacuity. In:
Borrione, D., Paul, W. (eds.) CHARME 2005. LNCS, vol. 3725, pp. 191–206. Springer,
Heidelberg (2005)

9. Chan, W.: Temporal-logic queries. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 450–463. Springer, Heidelberg (2000)

10. Chechik, M., Gurfinkel, A.: TLQSolver: A temporal logic query checker. In: Hunt Jr., W.A.,
Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 210–214. Springer, Heidelberg (2003)

11. Chockler, H., Strichman, O.: Easier and more informative vacuity checks. In: MEMOCODE
2007, pp. 189–198. IEEE Computer Society Press, Los Alamitos (2007)

12. Clarke, E.M., Jha, S., Lu, Y., Veith, H.: Tree-like counterexamples in model checking. In:
LICS 2002. Proc. 17th Annual IEEE Symposium on Logic in Computer Science, pp. 19–29.
IEEE Computer Society Press, Los Alamitos (2002)

13. Clarke, E.M., Veith, H.: Counterexamples revisited: Principles, algorithms, applications.
In: Dershowitz, N. (ed.) Verification: Theory and Practice. LNCS, vol. 2772, pp. 208–224.
Springer, Heidelberg (2004)

14. D’Agostino, G., Hollenberg, M.: Logical questions concerning the μ-calculus: Interpolation,
Lyndon and Loś-Tarski. Journal of Symbolic Logic 65(1), 310–332 (2000)

15. Dong, Y., Sarna-Starosta, B., Ramakrishnan, C., Smolka, S.A.: Vacuity checking in the
modal mu-calculus. In: Kirchner, H., Ringeissen, C. (eds.) AMAST 2002. LNCS, vol. 2422,
Springer, Heidelberg (2002)

16. French, T.: Decidability of quantified propositional branching time logics. In: Stumptner, M.,
Corbett, D.R., Brooks, M. (eds.) AI 2001: Advances in Artificial Intelligence. LNCS (LNAI),
vol. 2256, pp. 165–176. Springer, Heidelberg (2001)

17. Groce, A., Kroening, D.: Making the most of BMC counterexamples. Electronic Notes in
Theoretical Computer Science (ENTCS) 119(2), 67–81 (2005)

18. Gurfinkel, A., Chechik, M.: Extending extended vacuity. In: Hu, A.J., Martin, A.K. (eds.)
FMCAD 2004. LNCS, vol. 3312, pp. 306–321. Springer, Heidelberg (2004)

19. Gurfinkel, A., Chechik, M.: How vacuous is vacuous? In: Jensen, K., Podelski, A. (eds.)
TACAS 2004. LNCS, vol. 2988, pp. 451–466. Springer, Heidelberg (2004)

14 M. Samer and H. Veith

20. Gurfinkel, A., Chechik, M., Devereux, B.: Temporal logic query checking: A tool for model
exploration. IEEE Transactions on Software Engineering (TSE) 29(10), 898–914 (2003)

21. Gurfinkel, A., Devereux, B., Chechik, M.: Model exploration with temporal logic query
checking. In: Proc. 10th International Symposium on the Foundations of Software Engi-
neering (FSE-10), pp. 139–148. ACM Press, New York (2002)

22. Kupferman, O., Vardi, M.Y.: Vacuity detection in temporal model checking. In: Pierre, L.,
Kropf, T. (eds.) CHARME 1999. LNCS, vol. 1703, pp. 82–96. Springer, Heidelberg (1999)

23. Kupferman, O., Vardi, M.Y.: Vacuity detection in temporal model checking. International
Journal on Software Tools for Technology Transfer (STTT) 4(2), 224–233 (2003)

24. Maksimova, L.: Absence of interpolation and of Beth’s property in temporal logics with “the
next” operation. Siberian Mathematical Journal 32(6), 109–113 (1991)

25. Namjoshi, K.S.: An efficiently checkable, proof-based formulation of vacuity in model
checking. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 57–69. Springer,
Heidelberg (2004)

26. Pnueli, A.: 9th International Conference on Computer-Aided Verification. In: Grumberg, O.
(ed.) CAV 1997. LNCS, vol. 1254, Springer, Heidelberg (1997) (cited from [5])

27. Purandare, M., Somenzi, F.: Vacuum cleaning CTL formulae. In: Brinksma, E., Larsen, K.G.
(eds.) CAV 2002. LNCS, vol. 2404, pp. 485–499. Springer, Heidelberg (2002)

28. Samer, M.: Reasoning about Specifications in Model Checking. PhD thesis, Vienna Univer-
sity of Technology (2004)

29. Samer, M., Veith, H.: Validity of CTL queries revisited. In: Baaz, M., Makowsky, J.A. (eds.)
CSL 2003. LNCS, vol. 2803, pp. 470–483. Springer, Heidelberg (2003)

30. Samer, M., Veith, H.: Parameterized vacuity. In: Hu, A.J., Martin, A.K. (eds.) FMCAD 2004.
LNCS, vol. 3312, pp. 322–336. Springer, Heidelberg (2004)

31. Samer, M., Veith, H.: A syntactic characterization of distributive LTL queries. In: Dı́az, J.,
Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 1099–
1110. Springer, Heidelberg (2004)

32. Samer, M., Veith, H.: Deterministic CTL query solving. In: TIME 2005, pp. 156–165. IEEE
Computer Society Press, Los Alamitos (2005)

33. Simmonds, J., Davies, J., Gurfinkel, A., Chechik, M.: Exploiting resolution proofs to speed
up LTL vacuity detection for BMC. In: FMCAD 2007. Proc. 7th International Conference on
Formal Methods in Computer-Aided Design, IEEE Computer Society Press, Los Alamitos
(to appear, 2007)

34. Visser, A.: Bisimulations, model descriptions and propositional quantifiers. Logic Group
Preprint Series, Nbr. 161, Dept. Philosophy, Utrecht University (1996)

35. Wittgenstein, L.: On Certainty. In: Anscombe, G.E.M., von Wright, G.H. (eds.) Harper and
Row (1968)

Whatever Happened to Deductive Question

Answering?

Richard Waldinger

Artificial Intelligence Center, SRI International

Deductive question answering, the extraction of answers to questions from
machine-discovered proofs, is the poor cousin of program synthesis. It involves
much of the same technology—theorem proving and answer extraction—but the
bar is lower. Instead of constructing a general program to meet a given specifi-
cation for any input—the program synthesis problem—we need only construct
answers for specific inputs; question answering is a special case of program syn-
thesis. Since the input is known, there is less emphasis on case analysis (to con-
struct conditional programs) and mathematical induction (to construct looping
constructs), those bugbears of theorem proving that are central to general pro-
gram synthesis. Program synthesis as a byproduct of automatic theorem proving
has been a largely dormant field in recent years, while those seeking to apply the-
orem proving have been scurrying to find smaller problems, including question
answering.

Deductive question answering had its roots in intuitionistic and constructive
logical inference systems, which were motivated by philosophical rather than
computational goals. The idea obtained computational force in McCarthy’s 1958
Advice Taker, which proposed developing systems that inferred conclusions from
declarative assertions in formal logic. The Advice Taker, which was never im-
plemented, anticipated deductive question answering, program synthesis, and
planning.

Slagle’s Deducom obtained answers from proofs using a machine-oriented in-
ference rule, Robinson’s resolution principle; knowledge was encoded in a knowl-
edge base of logical axioms (the subject domain theory), the question was treated
as a conjecture, a theorem prover attempted to prove that the conjecture fol-
lowed from the axioms of the theory, and an answer to the question was extracted
from the proof. The answer-extraction method was based on keeping track of
how existentially quantified variables in the conjecture were instantiated in the
course of the proof.

The QA3 program of Green, Yates, and Rafael integrated answer extraction
with theorem proving via the answer literal. Chang, Lee, Manna, and Waldinger
introduced improved methods for conditional and looping answer construction.
Answer extraction became a standard feature of automated resolution theorem
provers, such as McCune’s Otter and Stickel’s SNARK, and was also the basis for
logic programming systems, in which a special-purpose theorem prover served
as an interpreter for programs encoded as axioms.

Deductive databases allow question answering from large databases but use
logic programming rather than a general theorem prover to perform inference.

N. Dershowitz and A. Voronkov (Eds.): LPAR 2007, LNAI 4790, pp. 15–16, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

16 R. Waldinger

The Amphion system (of Lowry et al.), for answering questions posed by NASA
planetary astronomers, computed an answer by extracting from a SNARK proof
a straight-line program composed of procedures from a subroutine library; be-
cause the program contained no conditionals and no loops, it was possible for
Amphion to construct programs that were dozens of instructions long, com-
pletely automatically. Software composed by Amphion has been used for the
planning of photography in the Cassini mission to Saturn.

While traditional question-answering systems stored all their knowledge as
axioms in a formal language, this proves impractical when answers depend on
large, constantly changing external data sources; a procedural-attachment mech-
anism allows external data and software sources to be consulted by a theorem
prover while the proof is underway. As a consequence, relatively little informa-
tion needs to be encoded in the subject domain theory; it can be acquired if and
when needed. While external sources may not adhere to any standard representa-
tional conventions, procedural attachment allows the theorem prover to invoke
software sources that translate data in the form produced by one source into
that required by another. Procedural attachment is particularly applicable to
Semantic Web applications, in which some of the external sources are Web sites,
whose capabilities can be advertised by axioms in the subject domain theory.

SRI employed a natural-language front end and a theorem-proving central
nervous system (SNARK) equipped with procedural attachment to answer ques-
tions posed by an intelligence analyst (QUARK) or an Earth systems scientist
(GeoLogica). While non-computer-scientists found the natural language input
to be more congenial than logic, it turned out to be difficult to restrict questions
to be within the system’s domain of expertise.

In this talk we will describe recent efforts (BioDeducta) for deductive question
answering in molecular biology, done in collaboration with computational biolo-
gist Jeff Shrager. Questions expressed in logical form are treated as conjectures
and proved by SNARK from a biological subject-domain theory; access to multi-
ple biological data and software resources is provided by procedural attachment.
We illustrate this with the discovery of the gene responsible for light adaptation
in cyanobacteria, which are water bacteria capable of photosynthesis.

A proposed query-elicitation mechanism allows a biological researcher to con-
struct a logical query without realizing it, by choosing among larger and larger
English-language alternatives for fragments of the question. A projected expla-
nation mechanism constructs from the proof a coherent English explanation and
justification for the answer.

While the annotation language OWL has achieved some currency as a repre-
sentation vehicle for subject domain knowledge, we argue that it and proposed
Semantic Web rule languages built around it are inadequate to express queries
and reasoning for Semantic Web question answering. Lacking are such central
features as full quantification and equality reasoning. It is also impossible to ex-
press a closed-world assumption, which states that a particular source provides
exhaustive information on a given topic.

Decidable Fragments of Many-Sorted Logic

Aharon Abadi, Alexander Rabinovich, and Mooly Sagiv

School of Computer Science, Tel-Aviv University, Israel
{aharon,rabinoa,msagiv}@post.tau.ac.il

Abstract. We investigate the possibility of developing a decidable logic which
allows expressing a large variety of real world specifications. The idea is to define
a decidable subset of many-sorted (typed) first- order logic. The motivation is
that types simplify the complexity of mixed quantifiers when they quantify over
different types. We noticed that many real world verification problems can be
formalized by quantifying over different types in such a way that the relations
between types remain simple.

Our main result is a decidable fragment of many-sorted first-order logic that
captures many real world specifications.

1 Introduction

Systems with unbounded resources such as dynamically allocated objects and threads
are heavily used in data structure implementations, web servers, and other areas. This
paper develops new methods for proving properties of such systems. Our method is based
on two principles: (i) formalizing the system and the required properties in many-sorted
first-order logic and (ii) developing mechanisms for proving validity of formulas in that
logic over finite models (which is actually harder than validity over arbitrary models).

This paper was inspired by the Alloy Analyzer— a tool for analyzing models written
in Alloy, a simple structural modeling language based on first-order logic [10,11]. The
Alloy Analyzer is similar to a bounded model checker [8], which means that every
reported error is real, but Alloy can miss errors (i.e., produce false positives). Indeed,
the Alloy tool performs an under-approximation of the set of reachable states, and is
designed for falsifying rather than verifying properties.

Main Results. This paper investigates the applicability of first-order tools to reason
about Alloy specifications. It is motivated by our initial experience with employing off-
the-shelf resolution-based first-order provers to prove properties of formulas in many-
sorted first-order logic.

The main results in this paper are decidable fragments of many-sorted first-order
logic. Our methods can generate finite counter-examples and finite models satisfying a
given specification which is hard for resolution-based theorem prover. The rest of this
subsection elaborates on these results.

Motivation: Employing Ordered Resolution-Based Theorem Provers
Ordered Resolution-Based First-Order Systems such asSPASS [16] and Vampire [14]
have been shown to be quite successful in proving first-order theorems. Ordering dra-
matically improves the performance of a prover and in some cases can even guarantee
decidability.

N. Dershowitz and A. Voronkov (Eds.): LPAR 2007, LNAI 4790, pp. 17–31, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

18 A. Abadi, A. Rabinovich, and M. Sagiv

As a motivating experience reported in [3], we converted Alloy specifications into
formulas in first-order logic with transitive closure. We then conservatively modeled
transitive closure via sound first-order axioms similar to the ones in [12]. The result is
that every theorem proved by SPASS about the Alloy specification is valid over finite
models, but the first-order theorem prover may fail due to: (i) timeout in the inference
rules, (ii) infinite models which violate the specification, and (iii) models that violate
the specifications and the transitive closure requirement.

Encouragingly, SPASS was able to prove 8 out of the 12 Alloy examples tried with-
out any changes or user intervention. Our initial study indicates that in many of the
examples SPASS failed due to the use of transitive closure and the fact that SPASS con-
siders infinite models that violate the specifications. It is interesting to note that SPASS
was significantly faster than Alloy when the scope exceeded 7 elements in each type.

Adding Types. Motivated by our success with SPASS we investigated the possibility
of developing a decidable logic which allows to express many of the Alloy examples.
The idea is to define a decidable subset of first-order logic. Since Alloy specifications
include different types, natural specifications use many-sorted first-order logic.

The problem of classifying fragments of first-order logic with respect to the de-
cidability and complexity of the satisfiability problem has long been a major topic in
the study of classical logic. In [7] the complete classification of fragments with decid-
able validity problem and fragments with finite model property according to quantifier
prefixes and vocabulary is provided. However, this classification deals only with one-
sorted logics, and usually does not apply to specifications of practical problems, many
of which are many-sorted.

For example, finite model property fails for the formulas with the quantifier prefix
∀∀∃ and equality. Sorts can reduce the complexity of this prefix class. For example
consider the formula: ∀x, y : A ∃z : B ψ(x, y, z) where ψ is a quantifier-free formula
with equality and without functions symbols. Each model M of the formula contains a
sub-model M ′ that satisfies the formula and has only two elements. Indeed, let M be
a model of the formula; we can pick two arbitrary elements a1εA

M , b1εB
M such that

M |= ψ(a1, a1, b1) and define M ′ to be M restricted to the universe {a1, b1}. Hence,
many-sorted sentences with quantifier prefix ∀x : A∀y : A∃z : B have the finite-
model property. Usually, like in the above example, the inclusion of sorts simplifies the
verification task.

Our Contribution. The main technical contribution of this paper is identification of a
fragment of many-sorted logic which is (1) decidable (2) useful — can formalize many
of the Alloy examples that do not contain transitive closure and (3) has a finite counter-
model property which guarantees that a formula has a counter-model iff it has a finite
counter-model (equivalently formula is valid iff it is valid over the finite models).

Our second contribution is an attempt to classify decidable prefix classes of many-
sorted logic. We show that a naive extension of one-sorted prefix classes to a many-
sorted case inherits neither decidability nor finite model property.

The rest of this paper is organized as follows. In Section 2, we describe three frag-
ments of many-sorted logic and formalize some Alloy examples by formulas in these
fragments. In Section 3 we prove that our fragments are decidable for validity over

Decidable Fragments of Many-Sorted Logic 19

finite models. In Section 4, we investigate ways of generalizing decidable fragments
from first-order logic to many-sorted logic.

The reader is referred to [3] for proofs, more examples of formalizing interesting
properties using decidable logic, extensions for transitive closure, and a report on our
experience with SPASS.

2 Three Fragments of Many-Sorted First-Order Logic

Safety properties of programs/systems can be usually formalized by universal sen-
tences. The task of the verification that a program P satisfies a property θ can be reduced
to the validity problem for sentences of the form ψ ⇒ θ, where sentence ψ formulate
the behavior of P .

In this section we introduce three fragments St0, St1 and St2 of many-sorted logic
for description of the behavior of programs and systems. The validity (and validity over
the finite models) problems for formulas of the form ψ ⇒ θ, where ψ ∈ St i and θ is
universal are decidable. This allows us to prove that a given program/system satisfy a
property expressed as a universal formula.

St0 is a natural fragment of the universal formulas which has the following finite
model property: if ψ ∈ St0, then it has a model iff it has a finite model.

St0 has an even stronger satisfiability with finite extension property which we intro-
duce in Section 3. This property implies that the validity problem over finite models for
the sentences of the form ψ ⇒ θ where ψ ∈ St0 and θ is universal, is decidable. In
Section 2.3 we formalize birthday book example in St0.

Motivated by examples from Alloy we introduce in Section 2.1, a more expressive
(though less natural) set of formulas St1. The St1 formulas also have satisfiability with
finite extension property, and therefore might be suitable for automatic verification of
safety properties. The behavior of many specifications from [1] can be formalized by
St1. We also describe the Railway safety example which cannot be formalized in St1.
Our attempts to formalize the Railway safety example led us to a fragment St2 which
is defined in Section 2.4. This fragment has the satisfiability with finite extension prop-
erty. All except one specifications from [1] which do not use transitive closure can be
formalized by formulas of the form ψ ⇒ θ, where ψ ∈ St2 and θ are universal.

2.1 St0 Class

In this subsection we will describe a simple class of formulas denoted as St0.

Definition 1 (Stratified Vocabulary). A vocabulary Σ for many-sorted logic is strati-
fied if there is a function level from sorts (types) into Nat such that for every function
symbol f : A1 × . . . × Am → B level (B) < level (Ai) for all i = 1, . . . , m.

It is clear that for a finite stratified vocabulary Σ and a finite set V of variables there are
only finitely many terms over Σ with the variables in V .

St0 Syntax. The formulas in St0 are universal formulas, over a stratified vocabulary.
It is easy to show that St0 has the finite model property, due to the finiteness of

Herbrand model over St0 vocabulary. We will extend this class to the class St1.

20 A. Abadi, A. Rabinovich, and M. Sagiv

2.2 St1 Class

St1 is an extension of St0 with a restricted use of new atomic formula x ∈ Im[f], where
f is a function symbol. The formula x ∈ Im[f] is a shorthand for ∃y1 : A1 . . .∃yn :
An (x = f(y1, . . . , yn)).

This is formalized below.

St1 Vocabulary. Contains predicates, function symbols, equality symbol and atomic
formulas x ∈ Im[f] where f is a function symbol.

St1 Syntax. The formulas in St1 are universal formulas, over a stratified vocabulary
and for every function f : A1×. . .×An → B that participates in a subformula xεIm[f]
f is the only function with the range B.

The semantics is as in many-sorted logic. For the new atomic formula the semantics
is as for the formula ∃y1 : A1 . . . ∃yn : An (x = f(y1, . . . , yn)).

In section 3 we will prove that St1 has satisfiability with finite extension property
which generalize finite model property.

2.3 Examples

Most of our examples come from Alloy [10,11]1. The vast majority of Alloy exam-
ples include transitive closure, and thus cannot be formalized in our logic. We exam-
ined eight Alloy specifications without transitive closure and seven of them fit into
our logic. This is illustrated by the birthday book example. The second example is
a Railway Safety specification. This example cannot be formalized by formulas in
St1. However, it fits in St2 which is an extension of St1, and will be described in
Section 2.4.

Birthday Book. Table 1 is used to model a simple Birthday book program2. A birthday
book has two fields: known, a set of names (of persons whose birthdays are known),
and date, set of triples (birthday book, person, the birthday date of that person). The
operation getDate gets the birthday date for a given birthday book and person. The
operation AddBirthday adds an association between a name and a date. The assertion
Assert checks that if you add an entry and then look it up, you get back what you just
entered.

The specification assertion has the form ψ ⇒ θ where ψ ∈ St0 and θ is universal.
The specification contains only one function getDate : BirthdayBook×Person→

Date. We can define level as follows: level(BirthdayBook) = 1, level(Person) = 1 and
level(Date) = 0.

Railway Safety Example. A policy for controlling the motion of trains in a railway
system is analyzed. Gates are placed on track segments to prevent trains from collid-
ing. We need a criterion to determine when gates should be closed. In [4] a different

1 For details, see [1].
2 The example originates in [15] and the translation to Alloy is given as an example in the Alloy

distribution found at http://alloy.mit.edu

Decidable Fragments of Many-Sorted Logic 21

Table 1. Constants, Facts, and Formulas used in the Birthday Book example

Types Person, Date, BirthdayBook
Relations known ⊆ BirthdayBook× Person

date ⊆ BirthdayBook× Person× Date
Functions getDate : BirthdayBook× Person→ Date
constants b1, b2 : BirthdayBook

d1, d2 : Date
p1 : Person

facts ∀b : BirthdayBook ∀p : Person ∀d : Date date(b, p, d)⇒ known(b, p)
∀b : BirthdayBook ∀p : Person known(b, p)⇒ date(b, p, getDate(b, p))
∀b′ : BirthdayBook ∀p′ : Person ∀d′, d′′ : Date

date(b′, p′, d′) ∧ date(b′, p′, d′′)⇒ d′ = d′′

Formulas AddBirthday : (bb, bb′ : BirthdayBook, p : Person, d : Date)
¬known(bb, p) ∧ ∀p′ : Person ∀d′ : Date date(bb′, p′, d′)⇔
(p′ = p ∧ d′ = d) ∨ date(bb, p′, d′)

Assert Facts ∧ AddBirthday(b1, b2, p1, d1) ∧ date(b2, p1, d2)⇒ d1 = d2

Railroad crossing problem is formalized, where the time is treated as continuous time,
while we use a discrete time. The Alloy formalization in [1,2] differs slightly from our
formalization, however both of them represent the same specification. In our formaliza-
tion the type Movers and the relation moving were added to represent sets of moving
trains. In addition some of the relations and the functions have suffix current or next
to represent interpretation at the current and the next period. For example instead of
P (t) ⇒ P (t + 1) we write P current ⇒ P next. Here P (t) ⇒ P (t + 1) means that if
P holds at time t then P holds at time t + 1 and P current ⇒ P next means that if P
holds at current time then P holds at next time.

Formulas Description

– safe current and safe next operations express that for any pair of distinct trains
t1 and t2, the segment occupied by t1 does not overlap with the segment occupied
by t2.

– moveOk describes in which gate conditions it is legal for a set of trains to move.
– trainMove is a physical constraint: a driver may not choose to cross from one

segment into another segment which is not connected to it. The constraint has
two parts. The first ensures that every train that moves ends up in the next time
on a segment that is a successor of the segment it was in the previous current
time. The second ensures that the trains that do not move stay on the same
segments.

– GatePolicy describes the safety mechanism, enforced as a policy on a gate state.
It comprises two constraints. The first is concerned with trains and gates: it en-
sures that the segments that are predecessors of those segments that are occu-
pied by trains should have closed gates. In other words, a gate should be down
when there is a train ahead. This is an unnecessarily stringent policy, since it does

22 A. Abadi, A. Rabinovich, and M. Sagiv

Table 2. Types, relations, functions, constants and facts used in the train example

Types Train, Segment, GateState, Movers
Relations next ⊆ Segment × Segment

Overlaps ⊆ Segment × Segment
on current ⊆ Train× Segment
on next ⊆ Train× Segment
Occupied current ⊆ Segment
Occupied next ⊆ Segment
moving ⊆ Movers × Train
closed ⊆ GateState× Segment

Functions getSegment current : Train→ Segment
getSegment next : Train→ Segment

Constants g : GateState m : Movers
Facts –At any moment every train is on some segment

∀t : Train on current(t, getSegment current(t))
∀t : Train on next(t, getSegment next(t))
–At any moment train is at most on one segment
∀t : Train ∀s1, s2 : Segment

(on current(t, s1) ∧ on current(t, s2))⇒ s1 = s2

∀t : Train ∀s1, s2 : Segment
(on next(t, s1) ∧ on next(t, s2))⇒ s1 = s2

–Occupied gives the set of segments occupied by trains
∀s : Segment Occupied current(s)⇒ s ∈ Im[getSegment current]
∀s : Segment Occupied next(s)⇒ s ∈ Im[getSegment next]
∀t : Train ∀s : Segment on current(t, s)⇒ Occupied current(s)
∀t : Train ∀s : Segment on next(t, s)⇒ Occupied next(s)
–Overlaps is symmetric and reflexive
∀s1, s2 : Segment Overlaps(s1, s2)⇔ Overlaps(s2, s1)
∀s : Segment Overlaps(s, s)

not permit a train to move to any successor of a segment when one successor is
occupied. The second constraint is concerned with gates alone: it ensures that be-
tween any pair of segments that have an overlapping successor, at most one gate
can not be closed.

The Assert implies that if a move is permitted according to the rules of MoveOK, and
if the trains move according to the physical constraints of TrainMove, and if the safety
mechanism described by GatePolicy is enforced, then a transition from a safe state will
result in a state that is also safe. In other words, safety is preserved.

Tables 2 and 3 contains the specification of the train example.
The specification contains functions getSegment current : Train → Segment

and getSegment next : Train → Segment where getSegment current partic-
ipates in formula xεIm[getSegment current] in contrast to our requirements from
St1 formulas.

Decidable Fragments of Many-Sorted Logic 23

Table 3. Formulas and assert used in the train example

Formulas safe current :
∀t1, t2 : Train ∀s1, s2 : Segment

(t1
= t2 ∧ on current(t1, s1) ∧ on current(t2, s2))⇒
¬Overlaps(s1, s2)

safe next:
∀t1, t1 : Train ∀s1, s2 : Segment
(t1
= t2 ∧ on next(t1, s1) ∧ on next(t2, s2))⇒
¬Overlaps(s1, s2)

moveOk(g : GateState ,m : Movers) :
∀s : Segment ∀t : Train
(moving(m, t) ∧ on current(t, s))⇒
¬closed(g, s)

trainMove(m : Movers)
∀ t : Train∀s1, s2 : Segment

(moving(m, t) ∧ on next(t, s2) ∧ on current(t, s1))⇒
next(s1, s2)
∧
∀t : Train ∀s : Segment
¬moving(m, t)⇒ (on next(t, s)⇔ on current(t, s))

gatePolicy(g : GateState)
∀s1, s2, s3 : Segment

next(s1, s2) ∧ Occupied current(s3) ∧ overlaps(s2, s3))⇒
closed(g, s1)
∧
∀s1, s2, s3, s4 : Segment

(s1
= s2 ∧ next(s1, s3) ∧ next(s2, s4) ∧ overlaps(s3, s4))⇒
(closed(g, s1) ∨ closed(g, s2))

Assert (Facts ∧ safe current ∧ moveOk(g,m) ∧ trainMove(m) ∧ GatePolicy(g))⇒
safe next

2.4 St2 Class

St2 Vocabulary. Contains predicates, function symbols, equality symbol and atomic
formulas x ∈ Im[f] where f is a function symbol.

St2 Syntax. The formulas in St2 are universal formulas over a stratified vocabulary,
and for every function f : A1×. . .×Ak → B that participates in a subformula xεIm[f]
the following condition holds:

For every function symbol g : Ā1 × . . . × Āk̄ → B:

(*) ∀a1 : A1, . . . ,∀ak : Ak ∀ā1 : Ā1, . . . , ∀āk̄ : Āk̄ f(a1, . . . , ak) = g(ā2, . . . , āk̄) ⇒
k = k̄ ∧ a1 = ā2 ∧ . . . ∧ ak = āk̄.

Notice that (*) is a semantical requirement. When we say that a Str2 formula ψ is
“satisfiable”, we mean that it is satisfiable in a structure which fulfills this semantical
requirement (*) .

24 A. Abadi, A. Rabinovich, and M. Sagiv

In many cases formalized by us the requirement (*) above immediately follows from
the intended interpretation of functions. In the railway safety example some work needs
to be done to derive this requirement from the specification.

First we can notice that the specification contains functions getSegment current :
Train → Segment and getSegment next : Train → Segment. We can define
level as follows: level(Train) = 1, level(Segment) = 0, level(GateState) = 0 and
level(Movers) = 0.

It remains to prove that the semantic requirement holds. In the Train specification
there are getSegment current, getSegment next functions such that x ∈ Im[getSegment
current]

participates in the formula. Let M be model such that M � Assert Train. It suffices to
show that ∀t1, t2 : Train (t1 �= t2) ⇒ getSegment current(t1) �= getSegment next(t2).
Let t1 �= t2 and suppose that getSegment current(t1) = s. From the Train Facts
immediately follows that Occupied current(s). Hence from gatePolicy follows that all
previous Segments of s have a closed gate. Thus according to moveOk no train comes
to s at next time. But M � safe current so s �= getSegment current(t2). From this and
from the fact that no train comes to s at next time follows that s �= getSegment next(t2).

3 Decidability of Validity Problem

Let F1 and F2 be sets of formulas. We denote by F1 ⇒ F2 the set {ψ ⇒ ϕ : ψ ∈
F1 and ϕ ∈ F2}. The set of universal sentences will be denoted by UN . The main
results of this section is stated in the following theorem.

Theorem 2. The validity problem for St2 ⇒ UN is decidable.

We also prove that every sentence in St2 ⇒ UN is valid iff it holds over the class of
finite models.

The section is organized as follows. First, we introduce basic definitions. Next, fol-
lowing Beauquier and Slissenko in [5,6] we provide sufficient semantical conditions for
decidability of validity problem. Unfortunately, these semantical conditions are unde-
cidable. However, we show that the formulas in St2 ⇒ UN satisfy these semantical
conditions.

3.1 Basic Definitions

Definition 3 (Partial Model). Let L be a many-sorted first-order language. A partial
Model M ′ of L consists of the following ingredients:

– For every sort s a non-empty set D′s, called the domain of M ′.
– For every predicate symbol pi

s of L with argument types s1, . . . , sn an assignment
of an n-place relation (pi

s)M ′
in D′s1

, . . . , D′sn
.

– For every function symbol f i
s of L with type f i

s : s1×s2×. . . sn → s an assignment
of a partial n-place operation (f i

s)M ′
in D′s1

× . . . × D′sn
→ D′s.

– For every individual constant ci
s of L an assignment of an element (ci

s)M ′
of D′s.

Decidable Fragments of Many-Sorted Logic 25

We say that a partial model is finite if every D′s is finite.
A partial model M ′ is a model if every function (f i

s)
M ′

: D′s1
× . . .×D′sn

→ D′s is
total.

The following definition strengthens the notion of finite model property.

Definition 4 (Satisfiability with Finite Extension). A formula ψ is satisfiable with a
finite extension iff for every finite partial model M ′: if M ′ can be extended to a model
M of ψ, then M ′ can be extended to a finite model M̄ of ψ.

The satisfiability with finite extension definition was inspired by (but is quite different
from) the definition of C-satisfiable with augmentation for complexity (k, n) in [5,6].

Definition 5 (k-Refutability). A formula ψ is k-refutable iff for every counter-model
M of ψ there exists a finite partial model M ′ such that:

– For every sort s : |D′s| ≤ k
– M is an extension of M ′

– any extension of M ′ to a model is a counter-model of ψ.

We say that a formula is finitely refutable if it is k-refutable for some k∈ Nat.

Example 6 (k-Refutability). Recall the formula safe current of Railway Safety system:

safe current :
∀t1, t1 : Train ∀s1, s2 : Segment
(t1 �= t2 ∧ on current(t1, s1) ∧ on current(t2, s2))
⇒ ¬Overlaps(s1, s2)

The constraint ensures that at current moment for any pair of distinct trains t1 and
t2, the segment that t1 occupies is not a member of the set of segments that overlap
with the segment t2 occupies. Let us show that safe current is 2-refutable. Suppose
that safe current has a counter model M then there are: t1, t2 : TrainM , s1, s2 :
SegmentM such that M |= ¬(on current(t1, s2) ∧ on current(t2, s2) ∧ t1 �= t2 ⇒
¬Overlaps(s1, s2)). Take M ′ sub model of M with the domains TrainM ′

= {t1, t2},
SegmentM

′
= {s1, s2}. For any extension of M ′ to model M̄ it still holds that M̄ |=

¬(on current(t1, s2) ∧ on current(t2, s2) ∧ t1 �= t2 ⇒ ¬Overlaps(s1, s2)), so M̄ is a
counter model of safe current.

From the above example we can learn that if M is a counter-model for a k-refutable
formula, then M contains k elements in the domain that cause a contradiction. If we
take the partial model obtained by the restriction of M to these elements, then any
extension of it still contains these elements and therefore still is a counter-model.

In the rest of this section we will prove the decidability of formulas of the form
θ ⇒ ϑ where θ is satisfiable with finite extension and ϑ is k-refutable for some k. In
addition we will prove that:

– Every formula in St2 is satisfiable with finite extension.
– A formula is equivalent to a formula from UN iff the formula is k-refutable for

some k.

This will complete the proof of decidability of formulas of the form St2 → UN .

26 A. Abadi, A. Rabinovich, and M. Sagiv

3.2 Sufficient Semantical Conditions for Decidability

The next lemma is a consequence of the definitions 4 and 5.

Lemma 7 (Finite Counter-Model Property). Let ψ be a formula of the form θ ⇒ ϕ,
where θ is satisfiable with finite extension and ϕ is finitely refutable. Then ¬ψ has the
finite model property.

Notice that the lemma does not give a bound to the size of the model.

Theorem 8 (Sufficient Conditions for Decidability). Let Ffin−ref be a set of sen-
tences in many-sorted first-order logic which are finitely refutable and let Fsat−fin−ext

be a set of sentences in many-sorted first-order logic which are satisfiable with finite
extension. Then the validity problem for Fsat−fin−ext ⇒ Ffin−ref is decidable. More-
over, if ψ ∈ Fsat−fin−ext ⇒ Ffin−ref , then ψ is valid iff it is valid over the finite
models.

Proof: The validity problem for many-sorted first-order logic is recursively enumerable.
By lemma 7 if a sentence in this class is not valid then it has a finite counter-model.
Hence, in order to check whether a sentence ϕ in this class is valid we can start (1) to
enumerate proofs looking for a proof of ϕ and (2) to enumerate all finite models looking
for a counter-model for ϕ. Either (1) or (2) will succeed. If (1) succeeds then ϕ is valid,
if (2) succeeds ϕ it is not valid. �
Since lemma 7 does not provide a bound of the size of the model, we cannot provide a
concrete complexity bound on the algorithm in theorem 8.

Theorem 8 provides semantical conditions on a class of formulas which ensure de-
cidability of validity problem for this class. Unfortunately, these semantical conditions
are undecidable.

Theorem 9. The following semantical properties of sentences are undecidable:

1. Input: A formula ψ.
Question : Is ψ finitely refutable ?

2. For every k ∈ Nat:
Input: A formula ψ.
Question: is ψ k-refutable?

3. Input: A formula ψ.
Question: Is ψ satisfiable with finite extension?

In the next two subsections we describe syntactical conditions which ensure

(1) finitely refutable property.
(2) satisfiability with finite extension.

3.3 Syntactical Conditions for Decidability

The proof of the following lemma uses the preservation theorem from first-order logic,
which says that a sentence ψ is equivalent to universal formula iff any submodel of a
model of ψ is a model of ψ. The preservation theorem is valid also for the many-sorted
first-order logics.

Decidable Fragments of Many-Sorted Logic 27

Lemma 10 (Syntactical Conditions for Finite Refutability). A formula ψ is k-
refutable for some k iff ψ is equivalent to a universal formula.

Usually safety properties are easily formalized by universal formulas. Hence, the class
Fsat−fin−ext ⇒ UN is appropriate for verification of safety properties and has decid-
able validity problem.

The next theorem is our main technical theorem.

Theorem 11. Let ψ be a formula in St2 then ψ is satisfiable with finite extension.

Proof (Sketch)
Assume that a formula ψ ∈ St2 is satisfiable in M and that M ′ is a finite partial sub-
model of M .

First, we extend M ′ to a finite partial sub-model M ′′ of M such that Im[f] has a
“correct” interpretation. Assume that the level of types in Σ are in the set {0, . . . , m}.

Let M0 = M ′ and for i = 0, . . . , m we define Di Ni and Mi+1 as follows. Let Di

be the set of elements in Mi of the types at level i such that b ∈ Di iff M |= b ∈ Im[f],
however, there is no tuple ā ∈ Mi with M |= f(ā) = b.

Now for every b ∈ Di choose ā ∈ M such that M |= f(ā) = b. Observe that each
element in ā has type at level > i. Let Ni be the set of all chosen elements (for all
elements in Di and all function symbols in Σ). Let Mi+1 be the partial sub-model of
M over Dom(Mi) ∪ Ni.

It is not difficult to show that Mi+1 is a finite partial submodel of M and for every
b ∈ Dom(Mi) if B is the type of b and the level of B is at most i, then there is ā ∈ Mi+1

such that M |= f(ā) = b iff there is ā′ ∈ M such that M |= f(ā′) = b.
In particular, for every b ∈ Dom(Mm+1) if M |= b ∈ Im[f], then there is a tuple

ā ∈ Dom(Mm+1) such that M |= f(ā) = b.
Next, let M ′′ be defined as Mm+1 and let Ass be the set of assignments to the

variables with values in Dom(M ′′) and let D̄ be the set of values (in M) of all terms
over Σ under these assignments. The set D̄ is finite, because our vocabulary is stratified
and M ′′ is finite. Let M̄ be the partial submodel of M over the domain D̄. From the
definition of M̄ follows that M̄ is a submodel of M . Moreover, it is not difficult to show
using the semantic requirement (*) , that the interpretations of Im[f] in M and in M̄
agree, i.e. for every b ∈ Dom(M̄), M |= b ∈ Im[f] iff M̄ |= b ∈ Im[f]. �

Finally, Theorem 2 is an immediate consequence of Theorem 8, Lemma 10 and Theo-
rem 11.

4 Some Fragments of Many-Sorted Logic

In the previous section we introduced decidable fragments of many-sorted logic. In this
section, we consider classes from first-order logic which have the finite-model property.
We try to find a way to extend these classes to many-sorted logic.

We use the notation from [7]. According to [7] the following classes have the finite
model property:

– [∃∗∀∗, all]= (Ramsey 1930) the class of all sentences with quantifier prefix ∃∗∀∗
over arbitrary relational vocabulary with equality.

28 A. Abadi, A. Rabinovich, and M. Sagiv

– [∃∗∀∃∗, all]= (Ackermann 1928) the class of all sentences with quantifier prefix
∃∗∀∃∗ over arbitrary relational vocabulary with equality.

– [∃∗, all, all]= (Gurevich 1976) the class of all sentences with quantifier prefix ∃∗
over arbitrary vocabulary with equality.

– [∃∗∀, all, (1)]= (Grädel 1996) the class of all sentences with quantifier prefix ∃∗∀
over vocabulary that contain unary function and arbitrary predicate symbols with
equality.

– FO2 (Mortimer 1975) [13] the class of all sentences of relational vocabulary that
contain two variables and equality.

Below we describe a generic natural way to generalize a class of first-order formu-
las to many-sorted logic. Unfortunately, finite model property and decidability are not
preserved under this generalization.

Let Q1 . . . Qm be a quantifier prefix in many-sorted logic. Its projection on a type A
is obtained by erasing all quantifiers over the variables of types distinct from A. One can
hope that if for every type A the projection of the quantifier prefix on A is in a decidable
class of one sorted logic, then this prefix is in a decidable class of many-sorted logic.
However, we show that neither decidability nor finite model property for a prefix of
many-sorted logic is inherited from the corresponding properties of projections.

When we take a projection of a formula to a type, in addition to removing the quan-
tifiers over other types we should also modify the quantifier free part of the formula.
Here is a definition:

Definition 12 (Projection of a Formula Onto Type A). Let ψ be a formula of many-
sorted logic in the prenex normal form. Its projection on type A is denoted by ψ̄A and
is obtained as follows:

1. For each type T different from A:

(a) Eliminate all quantifiers of type T .

(b) Replace every term of type T by constant CT .

2. Let R(t1, . . . tk) be an atomic sub-formula which contains new constants CTj (1 �
j � m) at positions i1, i2, . . . im.
Introduce a new predicate name Pi1,i2,...,im with an arity k − m
and replace R(t1, . . . tk)
by Pi1,i2,...,im(t1, . . . ti1−1, ti1+1, . . . ti2−1, ti2+1 . . . tim−1, tim+1 . . . tk).

3. Let f(t1, . . . tk) be a term which contains new constants CTj (1 � j � m) at
positions i1, i2, . . . im.
Introduce a new function name fi1,i2,...,im with an arity k − m
and replace f(t1, . . . tk)
by fi1,i2,...,im(t1, . . . ti1−1, ti1+1, . . . ti2−1, ti2+1 . . . tim−1, tim+1 . . . tk).

For a formula ψ its projection on A is the formula ψ̄A with one type; hence it can be
considered as the first-order logic formula.

Decidable Fragments of Many-Sorted Logic 29

Definition 13 (Naive Extension)
A set of many-sorted first-order formulas Dext is a naive extension of a set of first-order
formulas D if for every ψ ∈ Dext and for every type A holds that ψ̄A ∈ D.

Examples

1. Let ψ be ∀x1 : A ∀x2 : B ∃y1 : A ∀y2 : B p(x1, y1, x2) ∨ q(y1, y2).
Let us look at its projections on A and B. After first two steps we obtain the formu-
las ∀x1 : A ∃y1 : A p(x1, y1, c

B)∨q(y1, c
B) and ∀x2 : B ∀y2 : B p(cA, cA, x2)∨

q(cA, y2). After replacing predicates we obtain : ∀x1 : A ∃y1 : A p3(x1, y1) ∨
q2(y1) and ∀x2 : B ∀y2 : B p1,2(x2) ∨ q1(y2). Both formulas are in FO2. Hence,
ψ is in FO2

ext.
2. Let ψ be ∀x1 : A ∀x2 : B ∃y1 : A ∃y2 : B p(x1, y1, x2)∨p(x1, x1, y2)∨q(y1, x1).

Its projections on A and B are ∀x1 : A ∃y1 : A p3(x1, y1)∨ p3(x1, x1)∨ q(y1, x1)
and ∀x2 : A ∃y2 : A p1,2(x2) ∨ p1,2(y2) ∨ q12. Since, the projections are in
Ackermann class, ψ is in the extension of Ackermann class.

Note that the extension of the Ramsey class to many-sorted logic is a fragment of St0

and has the finite model property and thus is decidable. It is easy to prove that the naive
extension of Gurevich class is decidable. The next two theorems state that the naive
extensions of Ackermann, Grädel and Mortimer classes do not have the finite model
property and, even more disappointing, are undecidable.

Theorem 14 (Finite Model Property Fails). Each of the following fragments has a
formula which is satisfiable only in infinite structures: [∃∗∀, all, (1)]ext

= , [FO2]ext and
[∃∗∀∃∗, all]ext

= .

Proof: see [3].

Theorem 15 (Undecidability). The satisfiability problem is undecidable for each of
the following fragments: [∃∗∀, all, (1)]ext

= , [FO2]ext and [∃∗∀∃∗, all]ext
= .

Our proof of the above theorem (see [3]) provides formalization of two register machine
and is similar to the proofs in [7].

It is well known that [∀ ∀ ∃]= and [∀ ∃∀]= are undecidable classes for one-sorted
first-order logic (see [9]). The following theorem says that for many-sorted first-order
logic the only undecidable three quantifier prefix classes are these two one-sorted.

Although we did not found any practical use for this result we think that it has some
theoretical interest.

Theorem 16. The satisfiability problem is decidable for sentences of the form Q1Q2

Q3ψ, where ψ is a quantifier free many-sorted formula with equality without functions
symbols and Q1Q2Q3 is a quantifier prefix not of the form [∀x1 : A∀x2 : A∃x3 : A] or
[∀x1 : A∃x2 : A∀x3 : A] for some sort A.

Proof: see [3] .

30 A. Abadi, A. Rabinovich, and M. Sagiv

5 Conclusion

In this paper we initiated a systematic study of fragments of many-sorted logic, which
are decidable/have the finite model property and have a potential for practical use. To
our knowledge, the idea of looking at this problem in a systematic way has not been
explored previously (despite the well-known complete classification in the one-sorted
case, presented in the book by Boerger, Graedel and Gurevich [7]).

We presented a number of decidable fragments of many-sorted first-order logic. The
first one, St0, is based on a stratified vocabulary. The stratification property guarantees
that only a finite number of terms can be built with a given finite set of variables. As a
result, the Herbrand universe is finite and the small model property holds. Moreover, a
stronger property of satisfiability with finite extension holds.

Subsequently, we extended the class St0 to class St1 and then to St2, and proved that
these classes also have the satisfiability with finite extension property (and therefore, the
finite model property). The added expressive power in St2 is the ability to test whether
an element is in the image of a function. Even though this particular extension may
seem less natural from a syntactic viewpoint, it is very useful in many formalizations.

We provided semantical sufficient conditions for decidability. As a consequence, we
obtained that for the sentences of the form ψ ⇒ ϕ, where ψ ∈ St2 and ϕ is universal,
the validity problem is decidable. In order to illustrate the usefulness of the fragment,
we formalized in it many examples from [1] - the Alloy finite model finder.

Finally, we looked at classes corresponding to decidable classes (or classes with the
finite-model property) of first-order logic. We observed that just requiring the decidabil-
ity of projections of the quantifier prefix onto each type individually is not a sufficient
condition for the decidability (respectively, the finite-model property) in general. Future
work is needed in order to carry out a complete classification for the many-sorted logic.

In [3] we extended our results to a logic which allows a restricted use of the transitive
closure. We succeeded in formalizing some of Alloy specifications by formulas of this
logic; however, the vast majority of Alloy examples that contain the transitive closure
are not covered by this fragment. Future work is needed to evaluate its usefulness and
to find its decidable extensions.

Acknowledgments

We are grateful to the anonymous referees for their suggestions and remarks. We also
thank Tal Lev-Ami and Greta Yorsh for their comments.

References

1. The alloy analyzer home page: http://alloy.mit.edu
2. http://alloy.mit.edu/case-studies.php
3. Abadi, A.: Decidable fragments of many-sorted logic. Master’s thesis, Tel-Aviv University

(2007)
4. Beauquier, D., Slissenko, A.: Verification of timed algorithms: Gurevich abstract state ma-

chines versus first order timed logic. In: Proc. of ASM 2000 International Workshop (March
2000)

http://alloy.mit.edu
http://alloy.mit.edu/case-studies.php

Decidable Fragments of Many-Sorted Logic 31

5. Beauquier, D., Slissenko, A.: Decidable verification for reducible timed automata specified
in a first order logic with time. Theoretical Computer Science 275, 347–388 (2002)

6. Beauquier, D., Slissenko, A.: A first order logic for specification of timed algorithms: Basic
properties and a decidable class. Annals of Pure and Applied Logic 113, 13–52 (2002)

7. Borger, E., Gradel, E., Gurevich, Y.: The Classical Decision Problem. Springer, Heidelberg
(1997)

8. Clarke, E.M., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satisfiability
solving. Formal Methods in System Design 19(1), 7–34 (2001)

9. Goldfarb, W.D.: The unsolvability of the godel class with identity. The Journal of Symbolic
Logic 49(4), 1237–1252 (1984)

10. Jackson, D.: Alloy: a lightweight object modelling notation. ACM Trans. Softw. Eng.
Methodol. 11(2), 256–290 (2002)

11. Jackson, D.: Micromodels of software:lightweight modelling and analysis with alloy. Tech-
nical report, MIT Lab for Computer Science (2002)

12. Lev-Ami, T., Immerman, N., Reps, T.W., Sagiv, M., Srivastava, S., Yorsh, G.: Simulating
reachability using first-order logic with applications to verification of linked data structures.
In: CADE, pp. 99–115 (2005)

13. Mortimer, M.: On languages with two variables. Zeitschr. f. math. Logik u. Grundlagen d.
Math., 135–140 (1975)

14. Riazanov, A., Voronkov, A.: The design and implementation of vampire. AI Communica-
tions 15(2-3), 91–110 (2002)

15. Spivey, J.M.: The Z notation: a reference manual. Prentice-Hall, Englewood Cliffs (1992)
16. Weidenbach, C., Gaede, B., Rock, G.: Spass & flotter version 0.42. In: CADE-13. Proceed-

ings of the 13th International Conference on Automated Deduction, pp. 141–145. Springer,
Heidelberg (1996)

One-Pass Tableaux for Computation Tree Logic

Pietro Abate1, Rajeev Goré1, and Florian Widmann1,2

1 The Australian National University
Canberra ACT 0200, Australia

2 Logic and Computation Programme
Canberra Research Laboratory

NICTA Australia
{Pietro.Abate,Rajeev.Gore,Florian.Widmann}@anu.edu.au

Abstract. We give the first single-pass (“on the fly”) tableau deci-
sion procedure for computational tree logic (CTL). Our method extends
Schwendimann’s single-pass decision procedure for propositional linear
temporal logic (PLTL) but the extension is non-trivial because of the
interactions between the branching inherent in CTL-models, which is
missing in PLTL-models, and the “or” branching inherent in tableau
search. Our method extends to many other fix-point logics like proposi-
tional dynamic logic (PDL) and the logic of common knowledge (LCK).

The decision problem for CTL is known to be EXPTIME-complete,
but our procedure requires 2EXPTIME in the worst case. A similar phe-
nomenon occurs in extremely efficient practical single-pass tableau algo-
rithms for very expressive description logics with EXPTIME-complete
decision problems because the 2EXPTIME worst-case behaviour rarely
arises. Our method is amenable to the numerous optimisation methods
invented for these description logics and has been implemented in the
Tableau Work Bench (twb.rsise.anu.edu.au) without these extensive
optimisations. Its one-pass nature also makes it amenable to parallel
proof-search on multiple processors.

1 Introduction and Motivation

Propositional fix-point logics like propositional linear temporal logic (PLTL),
computation tree logic (CTL) and full computation tree logic (CTL*) are use-
ful for digital circuit verification [10] and reasoning about programs [18]. The
usual route is to use model-checking to ensure that a given model satisfies cer-
tain desirable properties since this can be done in time linear in the size of
the model. Model-checking cannot answer the general question of whether ev-
ery model for a given set of formulae Γ satisfies a certain property ϕ: that is
model-checking cannot be used to perform automated deduction in the chosen
fix-point logic. The decision problems for fix-point logics are typically at least
PSPACE-complete (PLTL), and are often EXPTIME-complete (CTL) or even
2EXPTIME-complete (CTL*). These logics are all fragments of monadic sec-
ond order logic whose decision problem has non-elementary complexity when
restricted to (infinite) tree-models, meaning that its complexity is a tower of

N. Dershowitz and A. Voronkov (Eds.): LPAR 2007, LNAI 4790, pp. 32–46, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

twb.rsise.anu.edu.au

One-Pass Tableaux for Computation Tree Logic 33

exponentials of a height determined by the size of the initial formula. Conse-
quently, automated theorem provers tailored for specific fix-point logics are of
importance in computer science.

The main methods for automating deduction in logics like PLTL and CTL
are optimal tableau-based methods [24,6], optimal automata-based methods [22]
and optimal resolution-based methods [7,4]. The inverse method has also been
applied to simpler modal logics like K [23], but it is possible to view this approach
as an automata-based method [2]. We are trying to obtain further details of a
new method for PLTL which appears to avoid an explicit loop-check [8].

Most existing automated theorem provers for the PSPACE-complete fix-point
logic PLTL are tableau-based [16,9,17,20], but resolution provers for PLTL have
also been developed recently [13]. It is easy to construct examples where the
(goal-directed) tableau-based provers out-perform the resolution provers, and
vice versa [13], so both methods remain of interest. Theorem provers based
on the always optimal automata-based methods which do not actually build
the required automata [21] are still in their infancy because good optimisation
techniques have not been developed to date.

For CTL, however, we know of no efficient implemented automated theorem
provers, even though tableau-based [6,19], resolution-based [4] and automata-
based [22] deduction methods for CTL are also known.

The simplest non-technical explanation is that proof-search in many modal
logics requires some form of “loop check” to guarantee termination, but fix-point
logics require a further test to distinguish a “good loop” that represents a path
in a model from a “bad loop” that represents an infinite branch with no hope of
ever giving a model. The harder the decision problem, the greater the difficulty
of separating good loops from bad loops.

Most tableau-based methods for fix-point logics solve this problem using a
two-pass procedure [24,5,6]. The first pass applies the tableau rules to construct
a finite rooted cyclic graph. The second pass prunes nodes that are unsatis-
fiable because they contain contradictions like {p,¬p}, and also remove nodes
which give rise to “bad loops”. The main practical disadvantage of such two-pass
methods is that the cyclic graph built in the first pass has a size which is always
exponential in the size of the initial formula. So the very act of building this
graph immediately causes EXPTIME behaviour even in the average case.

One-pass tableau methods avoid this bottle-neck by building a rooted cyclic
tree (where all cyclic edges loop back to ancestors) one branch at a time, using
backtracking. The experience from one-pass tableaux for very expressive descrip-
tion logics [12] of similar worst-case complexity shows that their average case
behaviour is often much better since the given formulae may not contain the full
complexity inherent in the decision problem, particularly if the formula arises
from real-world applications. Of course, there is no free lunch, since in the worst
case, these one-pass methods may have significantly worse behaviour than the
known optimal behaviour: 2EXPTIME than EXPTIME in the case of CTL for
example. Moreover, the method for separating “good loops” from “bad loops”
becomes significantly more complicated since it cannot utilise the global view

34 P. Abate, R. Goré, and F. Widmann

offered by a graph built during a previous pass. Ideally, we want to evaluate
each branch on its own during construction, or during backtracking, using only
information which is “local” to this branch since this allows us to explore these
branches in parallel using multiple processors.

Implemented one-pass [17,20] and two-pass [16] tableau provers already exist
for PLTL. A comparison between them [13] shows that the median running time
for Janssen’s highly optimised two-pass prover for PLTL is greater than the
median running time for Schwendimann’s not-so-optimised one-pass prover for
PLTL [20] for problems which are deliberately constructed to be easy for tableau
provers, indicating that the two-pass prover spends most of its time in the first
pass building the cyclic graph. There is also a one-pass “tableau” method for
propositional dynamic logic (PDL) [3] which constructs a rooted cyclic tree and
uses a finite collection of automata, pre-computed from the initial formula, to
distinguish “good loops” from “bad loops”, but the expressive powers of PDL and
CTL are orthogonal: each can express properties which cannot be expressed in
the other. But we know of no one-pass tableau method for CTL or its extensions.

For many applications, the ability to exhibit a (counter) model for a formula
ϕ is just as important as the ability to decide whether ϕ is a theorem. In digital
circuit verification, for example, if the circuit does not obey a desired property
expressed by a formula ϕ, then it is vital to exhibit a (CTL) counter-model
which falsifies ϕ so that the circuit can be modified.

Finally, the current Gentzen-style proof-theory of fix-point logics [14,15] re-
quires either infinitary rules, or worst-case finitary branching rules, or “cyclic
proofs” with sequents built from formula occurrences or “focussed formulae”.

We present a one-pass tableau method for automating deduction in CTL
which has the following properties:

Ease of implementation: although our tableau rules are cumbersome to describe
and difficult to prove sound and complete, they are extremely easy to im-
plement since they build a rooted cyclic tree as usual, and the only new
operations they require are set intersection, set membership, and the oper-
ations of min/max on integers;

Ease of optimisation: our method can be optimised using techniques which have
proved successful for (one-pass) tableaux for description logics [11];

Ease of generating counter-models and proofs: the soundness proof of our sys-
tematic tableau procedure for testing CTL-satisfiability immediately gives
an effective procedure for turning an “open” tableau into a CTL-model;

Ease of generating proofs: our tableau calculus can be trivially turned into a
cut-free Gentzen-style calculus with “cyclic proofs” where sequents are built
from sets of formulae rather than multisets of formula occurrences or oc-
currences of “focused formulae”. Moreover, unlike existing cut-free Gentzen-
style calculi for fix-point logics [14,15] we can give an optimal, rather than
worst-case, bound for the finitary version of the omega rule for CTL;

Potential for parallelisation: our current rules build the branches independently,
but combine their results during backtracking, so it is possible to implement
our procedure on a bank of parallel processors.

One-Pass Tableaux for Computation Tree Logic 35

Working Prototype: we have implemented a (non-parallelised) prototype of our
basic tableaumethodusing theTableauWorkBench(twb.rsise.anu.edu.au)
which allows users to test arbitrary CTL formulae over the web.

Our work is one step toward the holy grail of an efficient tableau-based auto-
mated theorem prover for the full computational tree logic CTL* [19].

2 Syntax, Semantics and Hintikka Structures

Definition 1. Let AP denote the set {p0, p1, p2, . . . } of propositional variables.
The set Fml of all formulae of the logic CTL is inductively defined as follows:

1. AP ⊂ Fml;
2. if ϕ is in Fml, then so are ¬ϕ, EXϕ, and AXϕ;
3. if ϕ and ψ are in Fml, then so are ϕ ∧ ψ, ϕ ∨ ψ, E(ϕU ψ), A(ϕU ψ),

A(ϕB ψ), and E(ϕB ψ).

A formula of the form EXϕ, AXϕ, E(ϕU ψ), or A(ϕU ψ) is called an EX-,
AX-, EU -, or AU -formula, respectively. Let FmlEU and FmlAU denote the set
of all EU - and AU -formulae, respectively.

Implication, equivalence, and � are not part of the core language but can be
defined as ϕ → ψ := ¬ϕ ∨ ψ, ϕ ↔ ψ := (ϕ → ψ) ∧ (ψ → ϕ), and � := p0 ∨ ¬p0.

Definition 2. A transition frame is a pair (W, R) where W is a non-empty set
of worlds and R is a total binary relation over W (i.e. ∀w ∈ W. ∃v ∈ W. w R v).

Definition 3. Let (W, R) be a transition frame. A transition sequence σ in
(W, R) is an infinite sequence σ0, σ1, σ2, . . . of worlds in W such that σi R σi+1

for all i ∈ IN. For w ∈ W , a w-sequence σ in (W, R) is a transition sequence
in (W, R) with σ0 = w. For w ∈ W , let B(w) be the set of all w-sequences
in (W, R) (we assume that (W, R) is clear from the context).

Definition 4. A model M = (W, R, L) is a transition frame (W, R) and a la-
belling function L : W → 2AP which associates with each world w ∈ W a
set L(w) of propositional variables true at world w.

Definition 5. Let M = (W, R, L) be a model. The satisfaction relation � is
defined inductively as follows:

M, w � p iff p ∈ L(w), for p ∈ AP
M, w � ¬ψ iff M, w � ψ
M, w � ϕ ∧ ψ iff M, w � ϕ & M, w � ψ
M, w � ϕ ∨ ψ iff M, w � ϕ or M, w � ψ
M, w � EXϕ iff ∃v ∈ W. w R v & M, v � ϕ
M, w � AXϕ iff ∀v ∈ W. w R v ⇒ M, v � ϕ
M, w � E(ϕU ψ) iff ∃σ ∈ B(w). ∃i ∈ IN. [M, σi � ψ & ∀j < i. M, σj � ϕ]
M, w � A(ϕU ψ) iff ∀σ ∈ B(w). ∃i ∈ IN. [M, σi � ψ & ∀j < i. M, σj � ϕ]
M, w � E(ϕB ψ) iff ∃σ ∈ B(w). ∀i ∈ IN. [M, σi � ψ ⇒ ∃j < i. M, σj � ϕ]
M, w � A(ϕB ψ) iff ∀σ ∈ B(w). ∀i ∈ IN. [M, σi � ψ ⇒ ∃j < i. M, σj � ϕ] .

twb.rsise.anu.edu.au

36 P. Abate, R. Goré, and F. Widmann

Definition 6. A formula ϕ ∈ Fml is satisfiable iff there is a model M =
(W, R, L) and some w ∈ W such that M, w � ϕ. A formula ϕ ∈ Fml is valid
iff ¬ϕ is not satisfiable.

Definition 7. A formula ϕ ∈ Fml is in negation normal form if the sym-
bol ¬ appears only immediately before propositional variables. For every for-
mula ϕ ∈ Fml, we can obtain a formula nnf(ϕ) in negation normal form by
pushing negations inward as far as possible (e.g. by using de Morgan’s laws)
such that ϕ ↔ nnf(ϕ) is valid. We define ∼ϕ := nnf(¬ϕ).

Note that E(ϕB ψ) ↔ ¬A(¬ϕU ψ) and A(ϕB ψ) ↔ ¬E(¬ϕU ψ) are valid.

Table 1. Smullyan’s α− and β−notation to classify formulae

α α1 α2

ϕ ∧ ψ ϕ ψ

E(ϕB ψ) ∼ψ ϕ ∨EXE(ϕB ψ)

A(ϕB ψ) ∼ψ ϕ ∨AXA(ϕB ψ)

β β1 β2

ϕ ∨ ψ ϕ ψ

E(ϕU ψ) ψ ϕ ∧EXE(ϕU ψ)

A(ϕU ψ) ψ ϕ ∧AXA(ϕU ψ)

Proposition 8. In the notation of Table 1, the formulae of the form α ↔ α1∧α2

and β ↔ β1 ∨ β2 are valid.

Note that some of these equivalences require the fact that the binary relation of
every model is total.

Definition 9. Let φ ∈ Fml be a formula in negation normal form. The clo-
sure cl(φ) of φ is the least set of formulae such that:

1. Each subformula of φ, including φ itself, is in cl(φ);
2. If E(ϕB ψ) is in cl(φ), then so are EXE(ϕB ψ) and ϕ ∨ EXE(ϕB ψ);
3. If A(ϕB ψ) is in cl(φ), then so are AXA(ϕB ψ) and ϕ ∨ AXA(ϕB ψ);
4. If E(ϕU ψ) is in cl(φ), then so are EXE(ϕU ψ) and ϕ ∧ EXE(ϕU ψ);
5. If A(ϕU ψ) is in cl(φ), then so are AXA(ϕU ψ) and ϕ ∧ AXA(ϕU ψ).

The extended closure ecl(φ) of φ is defined as ecl(φ) := cl(φ)∪{∼ϕ : ϕ ∈ cl(φ)}.

Definition 10. A structure (W, R, L) [for ϕ ∈ Fml] is a transition frame (W, R)
and a labelling function L : W → 2Fml which associates with each world w ∈ W
a set L(w) of formulae [and has ϕ ∈ L(v) for some world v ∈ W].

Definition 11. A pre-Hintikka structure H = (W, R, L) [for ϕ ∈ Fml] is a
structure [for ϕ] that satisfies the following conditions for every w ∈ W where α
and β are formulae as defined in Table 1:

H1 : ¬p ∈ L(w) (p ∈ AP) ⇒ p �∈ L(w);
H2 : α ∈ L(w) ⇒ α1 ∈ L(w) & α2 ∈ L(w);
H3 : β ∈ L(w) ⇒ β1 ∈ L(w) or β2 ∈ L(w);
H4 : EXϕ ∈ L(w) ⇒ ∃v ∈ W. w R v & ϕ ∈ L(v);
H5 : AXϕ ∈ L(w) ⇒ ∀v ∈ W. w R v ⇒ ϕ ∈ L(v).

One-Pass Tableaux for Computation Tree Logic 37

A Hintikka structure H = (W, R, L) [for ϕ ∈ Fml] is a pre-Hintikka structure
[for ϕ] that additionally satisfies the following conditions:

H6 : E(ϕU ψ) ∈ L(w) ⇒ ∃σ ∈ B(w). ∃i ∈ IN. [ψ ∈ L(σi) & ∀j < i. ϕ ∈ L(σj)];
H7 : A(ϕU ψ) ∈ L(w) ⇒ ∀σ ∈ B(w). ∃i ∈ IN. ψ ∈ L(σi).

Although H3 captures the fix-point semantics of E(ϕU ψ) and A(ϕU ψ) by
“locally unwinding” the fix-point, it does not guarantee a least fix-point which
requires that ψ has to be true eventually. We therefore additionally need H6
and H7 which act “globally”. Note that H2 is enough to capture the correct
behaviour of E(ϕB ψ) and A(ϕB ψ) as they have a greatest fix-point semantics.

Proposition 12. A formula ϕ ∈ Fml in negation normal form is satisfiable iff
there exists a Hintikka structure for ϕ.

3 A One-Pass Tableau Algorithm for CTL

A tableau algorithm is a systematic search for a model of a formulae φ. Its data
structures are (upside-down) single-rooted finite trees – called tableaux – where
each node is labelled with a set of formulae that is derived from the formula set
of its parent according to some given rules (unless it is the root, of course). The
algorithm starts with a single node that is labelled with the singleton set {φ}
and incrementally expands the tableau by applying the rules mentioned before
to its leaves. The result of the tableau algorithm is a tableau where no more
rules can be applied. Such tableaux are called expanded. On any branch of the
tableau, a node t is an ancestor of a node s iff t lies above s on the unique path
from the root down to s.

An expanded tableau can be associated with a pre-Hintikka structure H for φ,
and φ is satisfiable if and only if H is a Hintikka structure for φ. To be able to
determine whether H is a Hintikka structure, the algorithm stores additional
information with each node of the tableau using histories and variables [20].
A history is a mechanism for collecting extra information during proof search
and passing it from parents to children. A variable is a mechanism to propagate
information from children to parents.

In the following, we restrict ourselves to the tableau algorithm for CTL.

Definition 13. A tableau node x is of the form (Γ :: HCr :: mrk, uev) where:

Γ is a set of formulae;
HCr is a list of the formula sets of some designated ancestors of x;
mrk is a boolean valued variable indicating whether the node is marked; and
uev is a partial function from formulae to IN>0.

The list HCr is the only history since its value in a node is determined by the
parent node, whereas mrk and uev are variables since their values in a node are
determined by the children. In the following we call tableau nodes just nodes
when the meaning is clear.

38 P. Abate, R. Goré, and F. Widmann

Informally, the value of mrk at node x is true if x is “closed”. Since repeated
nodes cause “cycles” or “loops”, a node that is not “closed” is not necessarily
“open” as in traditional tableaux. That is, although we have enough information
to detect that further expansion of the node will cause an infinite branch, we may
not yet have enough information to determine the status of the node. Informally,
if a node x lies on such a “loop” in the tableau, and an “eventuality” EU - or AU -
formula ϕ appears on this loop but remains unfulfilled, then uev of x is defined
for ϕ by setting uev(ϕ) = n, where n is the height of the highest ancestor of x
which is part of the loop.

We postpone the definition of a rule for a moment and proceed with the
definition of a tableau.

Definition 14. A tableau for a formula set Γ ⊆ Fml and a list of formula
sets HCr is a tree of tableau nodes with root (Γ :: HCr :: mrk, uev) where the
children of a node x are obtained by a single application of a rule to x (i.e. only
one rule can be applied to a node). A tableau is expanded if no rules can be
applied to any of its leaves.

Note that mrk and uev in the definition are not given but are part of the result
as they are determined by the children of the root.

Definition 15. The partial function uev⊥ : Fml ⇀ IN>0 is the constant func-
tion that is undefined for all formulae (i.e. uev⊥(ψ) = ⊥ for all ψ ∈ Fml).

Note 16. In the following, we use Λ to denote a set containing only propositional
variables or their negations (i.e. ϕ ∈ Λ ⇒ ∃p ∈ AP.ϕ = p or ϕ = ¬p). To focus
on the “important” parts of the rule, we use “· · · ” for the “unimportant” parts
which are passed from node to node unchanged (e.g. (Γ :: · · · :: · · ·)).

3.1 The Rules

Terminal Rule.

(id)
(Γ :: · · · :: mrk, uev) {p,¬p} ⊆ Γ for some p ∈ AP

with mrk := true and uev := uev⊥. The intuition is that the node is “closed”
so we pass this information up to the parent by putting mrk to true, and
putting uev as undefined for all formulae.

Linear (α) Rules.

(∧)
(ϕ ∧ ψ ; Γ :: · · · :: · · ·)
(ϕ ; ψ ; Γ :: · · · :: · · ·) (D)

(AXΔ ; Λ :: · · · :: · · ·)
(EX(p0 ∨ ¬p0) ; AXΔ ; Λ :: · · · :: · · ·)

(EB)
(E(ϕB ψ) ; Γ :: · · · :: · · ·)

(∼ψ ; ϕ ∨ EXE(ϕB ψ) ; Γ :: · · · :: · · ·)

(AB)
(A(ϕB ψ) ; Γ :: · · · :: · · ·)

(∼ψ ; ϕ ∨ AXA(ϕB ψ) ; Γ :: · · · :: · · ·)

One-Pass Tableaux for Computation Tree Logic 39

The ∧-rule is standard and the D-rule captures the fact that the binary relation
of a model is total by ensuring that every potential dead-end contains at least
one EX-formula. The EB- and AB-rules capture the fix-point nature of the
corresponding formulae according to Prop. 8. These rules do not modify the
histories or variables at all.

Universal Branching (β) Rules.

(∨)
(ϕ ∨ ψ ; Γ :: · · · :: mrk, uev)

(ϕ ; Γ :: · · · :: mrk1, uev1) | (ψ ; Γ :: · · · :: mrk2, uev2)

(EU)
(E(ϕU ψ) ; Γ :: · · · :: mrk, uev)

(ψ ; Γ :: · · · :: mrk1, uev1) | (ϕ ; EXE(ϕU ψ) ; Γ :: · · · :: mrk2, uev2)

(AU)
(A(ϕU ψ)) ; Γ :: · · · :: mrk, uev)

(ψ ; Γ :: · · · :: mrk1, uev1) | (ϕ ; AXA(ϕU ψ) ; Γ :: · · · :: mrk2, uev2)

with:

mrk := mrk1 & mrk2

exclφ(f)(χ) :=
{⊥ if χ = φ

f(χ) otherwise

uev′1 :=

⎧
⎨

⎩

uev1 for the ∨-rule
exclE(ϕU ψ)(uev1) for the EU -rule
exclA(ϕU ψ)(uev1) for the AU -rule

min⊥(f, g)(χ) :=
{⊥ if f(χ) = ⊥ or g(χ) = ⊥

min(f(χ), g(χ)) otherwise

uev :=

⎧
⎪⎪⎨

⎪⎪⎩

uev⊥ if mrk1 & mrk2

uev′1 if mrk2 & not mrk1

uev2 if mrk1 & not mrk2

min⊥(uev′1, uev2) otherwise

The ∨-rule is standard except for the computation of uev. The EU - and AU -rules
capture the fix-point nature of the EU - and AU -formulae, respectively, according
to Prop. 8. The intuitions of the definitions of the histories and variables are:

mrk: the value of the variable mrk is true if the node is “closed”, so the definition
of mrk just captures the “universal” nature of these rules whereby the parent
node is closed if both children are closed.

excl: the definition of exclφ(f)(ψ) just ensures that exclφ(f)(φ) is undefined.
uev′1: the definition of uev′1 ensures that its value is undefined for the principal

formulae of the EU - and AU -rules.
min⊥: the definition of min⊥ ensures that we take the minimum of f(χ) and g(χ)

only when both functions are defined for χ.
uev: if both children are “closed” then the parent is also closed via mrk so we

ensure that uev is undefined in this case. If only the right child is closed,

40 P. Abate, R. Goré, and F. Widmann

we take uev′1, which is just uev1 modified to ensure that it is undefined for
the principal EU - or AU -formula. Similarly if only the left child is closed.
Finally, if both children are unmarked, we define uev for all formulae that
are defined in the uev of both children but map them to the minimum of
their values in the children, and undefine the value for the principal formula.

Existential Branching Rule.

(EX)

EXϕ1 ; . . . ; EXϕn ; EXϕn+1 ; . . . ; EXϕn+m ; AXΔ ; Λ
:: HCr :: mrk, uev

ϕ1 ; Δ
:: HCr1 :: mrk1, uev1

| · · · | ϕn ; Δ
:: HCrn :: mrkn, uevn

where:

(1) {p,¬p} �⊆ Λ
(2) n + m ≥ 1
(3) ∀i ∈ {1, . . . , n}. ∀j ∈ {1, . . . , len(HCr)}. {ϕi} ∪ Δ �= HCr[j]
(4) ∀k ∈ {n + 1, . . . , n + m}. ∃j ∈ {1, . . . , len(HCr)}. {ϕk} ∪ Δ = HCr[j]

with:

HCri := HCr @ [{ϕi} ∪ Δ] for i = 1, . . . , n

mrk :=
∨n
i=1 mrki or

∃i ∈ {1, . . . , n}. ∃ψ ∈ {ϕi} ∪ Δ. ⊥ �= uevi(ψ) > len(HCr)

uevk(·) := j ∈ {1, . . . , len(HCr)} such that {ϕk} ∪ Δ = HCr[j]
for k = n + 1, . . . , n + m

uev(ψ) :=

⎧
⎪⎪⎨

⎪⎪⎩

uevj(ψ) if ψ ∈ FmlEU & ψ = ϕj (j ∈ {1, . . . , n + m})
l if ψ ∈ FmlAU ∩ Δ &

l = max{uevj(ψ) �= ⊥ | j ∈ {1, . . . , n + m}}
⊥ otherwise

(where max(∅) := ⊥)

Some intuitions are in order:

(1) The EX-rule is applicable if the parent node contains no α- or β-formulae
and Λ, which contains propositional variables and their negations only, con-
tains no contradictions.

(2) Both n and m can be zero, but not together.
(3) If n > 0, then each EXϕi for 1 ≤ i ≤ n is not “blocked” by an ancestor, and

has a child containing ϕi; Δ, thereby generating the required EX-successor;
(4) If m > 0, then each EXϕk for n+ 1 ≤ k ≤ n+m is “blocked” from creating

its child ϕk; Δ because some ancestor does the job;
HCri: is just the HCr of the parent but with an extra entry to extend the

“history” of nodes on the path from the root down to the ith child.

One-Pass Tableaux for Computation Tree Logic 41

mrk: captures the “existential” nature of this rule whereby the parent is marked
if some child is closed or if some child contains a formula whose uev is defined
and “loops” lower than the parent. Moreover, if n is zero, then mrk is set
to false to indicate that this branch is not “closed”.

uevk: for n + 1 ≤ k ≤ n + m the kth child is blocked by a proxy child higher in
the branch. For every such k we set uevk to be the constant function which
maps every formula to the level of this proxy child. Note that this is just a
temporary function used to define uev as explained next.

uev(ψ): for an EU -formula ψ = E(ψ1 U ψ2) such that there is a principal for-
mula EXϕi with ϕi = ψ, we take uev of ψ from the child if EXψ is “un-
blocked”, or set it to be the level of the proxy child higher in the branch if
it is “blocked”. For an AU -formula ψ = A(ψ1 U ψ2) ∈ Δ, we put uev to be
the maximum of the defined values from the real children and the levels of
the proxy children. For all other formulae, we put uev to be undefined. The
intuition is that a defined uev(ψ) tells us that there is a “loop” which starts
at the parent and eventually “loops” up to some blocking node higher up on
the current branch. The actual value of uev(ψ) tells us the level of the proxy
because we cannot distinguish whether this “loop” is “good” or “bad” until
we backtrack up to that level.

Note that the EX-rule and the id-rule are mutually exclusive since their side-
conditions cannot be simultaneously true.

3.2 Fullpaths, Virtual Successors and Termination of Proof Search

Definition 17. Let G = (W, R) be a directed graph (e.g. a tableau where R is
just the child-of relation between nodes). A [full]path π in G is a finite [infinite]
sequence x0, x1, x2, . . . of nodes in W such that xi R xi+1 for all xi except the
last node if π is finite. For x ∈ W , an x-[full]path π in G is a [full]path in G
that has x0 = x.

Definition 18. Let x = (Γ :: HCr :: mrk, uev) be a tableau node, ϕ a formula,
and Δ a set of formulae. We write ϕ ∈ x [Δ ⊆ x] to denote ϕ ∈ Γ [Δ ⊆ Γ].
The elements HCr, mrk, and uev of x are denoted by HCrx, mrkx, and uevx,
respectively. The node x is marked iff mrkx is set to true.

Definition 19. Let x be an EX-node in a tableau T (i.e. an EX-rule was
applied to x). Then x is also called a state and the children of x are called
pre-states. Using the notation of the EX-rule, an EX-formula EXϕi ∈ x is
blocked iff n + 1 ≤ i ≤ n + m. For every blocked EXϕi ∈ x there exists a unique
pre-state y on the path from the root of T to x such that {ϕi} ∪ Δ equals the
set of formulae of y. We call y the virtual successor of EXϕi. For every not
blocked EXϕi of x, the successor of EXϕi is the ith child of the EX-rule.

Note that a state is just another term for an EX-node, whereas a pre-state can
be any type of node (it may even be a state).

42 P. Abate, R. Goré, and F. Widmann

Proposition 20 (Termination). Let φ ∈ Fml be a formula in negation normal
form. Any tableau T for a node ({φ} :: · · · :: · · ·) is a finite tree, hence the
procedure that builds a tableau always terminates.

Proof. It is obvious that T is a tree. Although it is not as trivial as it might
seem to be at first sight, it is not too hard to show that every node in T can
contain only formulae of the extended closure ecl(φ∧EX(p0∨¬p0)). It is obvious
that ecl(φ ∧ EX(p0 ∨ ¬p0)) is finite. Hence, there are only a finite number of
different sets that can be assigned to the nodes, in particular the pre-states.
As the EX-rule guarantees that all pre-states on a path possess different sets of
formulae, there can only be a finite number of pre-states on a path. Furthermore,
from any pre-state, there are only a finite number of consecutive nodes on a path
until we reach a state. As every state in a path is followed by a pre-state and
there are only a finite number of pre-states, all paths in T must be finite. This,
the obvious fact that every node in T has finite degree, and König’s lemma
complete the proof. ��

3.3 Soundness and Completeness

Let φ ∈ Fml be a formula in negation normal form and T an expanded tableau
with root r = ({φ} :: [] :: mrk, uev): that is, the initial formula set is {φ} and
the initial HCr is the empty list.

Theorem 21. If r is not marked, then there exists a Hintikka structure for φ.

Theorem 22. For every marked node x = (Γ :: · · · :: · · ·) in T , the formula∧
ϕ∈Γ ϕ is not satisfiable. In particular, if r is marked, then φ is not satisfiable.

Detailed proofs can be found in the extended version of this paper
(users.rsise.anu.edu.au/∼florian).

3.4 A Fully Worked Example

As an example, consider the formula E(p1 U p2) ∧ ¬E(�U p2) which is obvi-
ously not satisfiable. Converting the formula into negation normal form gives
us E(p1 U p2)∧A(⊥B p2). Hence, any expanded tableau with root E(p1 U p2)∧
A(⊥B p2) should be marked.

Figure 1 and Fig. 2 show such a tableau where the root node is node (1)
in Fig. 1 and where Fig. 2 shows the sub-tableau rooted at node (5). Each
node is classified as a ρ-node if rule ρ is applied to that node in the tableau.
The unlabelled edges go from states to pre-states. Dotted frames indicate that
the sub-tableaux at these nodes are not shown because they are very simi-
lar to sub-tableaux of other nodes: that is node (6a) behaves the same way
as node (3a). Dots “· · · ” indicate that the corresponding values are not im-
portant because they are not needed to calculate the value of any other his-
tory or variable. The partial function UEV maps the formula E(p1 U p2) to 1
and is undefined otherwise as explained below. The history HCR is defined as
HCR := [{E(p1 U p2), A(⊥B p2)}].

users.rsise.anu.edu.au/~florian

One-Pass Tableaux for Computation Tree Logic 43

(1) ∧-node
E(p1U p2) ∧ A(⊥B p2)

[] :: true,uev⊥

α ��
(2) AB-node
E(p1 U p2) ; A(⊥B p2)

[] :: true,uev⊥

α

��
(3a) ∧-node
E(p1 U p2) ; ¬p2 ; ¬p0 ∧ p0

[] :: true,uev⊥

α

��

(3) ∨-node
E(p1U p2) ; ¬p2 ; ⊥ ∨AXA(⊥B p2)

[] :: true,uev⊥

β1��

β2

��
(3a’) id-node
E(p1 U p2) ; ¬p2 ; ¬p0 ; p0

[] :: true,uev⊥

(3b) EU -node
E(p1 U p2) ; ¬p2 ; AXA(⊥B p2)

[] :: true,uev⊥

β1

�����������������
β2

��
(4a) id-node
p2 ; ¬p2 ; AXA(⊥B p2)

[] :: true,uev⊥

(4b) EX-node
p1 ; EXE(p1 U p2) ; ¬p2 ; AXA(⊥B p2)

[] :: true, · · ·

��
(5) AB-node
E(p1 U p2) ; A(⊥B p2)
HCR :: false, UEV

Fig. 1. An example: a tableau for E(p1 U p2) ∧A(⊥B p2)

The marking of the nodes (1) to (4a) in Fig. 1 with true is straightfor-
ward. Note that ⊥ is just an abbreviation for ¬p0 ∧ p0 to save some space
and make things easier for the reader; the tableau procedure as described in
this paper does not know about the symbol ⊥. It is, however, not a problem to
adapt the rules so that the tableau procedure can handle � and ⊥ directly. For
node (5), our procedure constructs the tableau shown in Fig. 2. The leaf (7b)
is an EX-node, but it is “blocked” from creating the desired successor contain-
ing {E(p1 U p2), A(⊥B p2)} because there is a j ∈ IN such that HCr7b[j] =
HCR[j] = {E(p1 U p2), A(⊥B p2)}: namely j = 1. Thus the EX-rule com-
putes UEV (E(p1 U p2)) = 1 as stated above and also puts mrk7b := false. As
the nodes (7a) and (6a) are marked, the function UEV is passed on to the
nodes (6b), (6), and (5) according to the corresponding β- and α-rules.

The crux of our procedure happens at node (4b) which is an EX-node with
HCr4b = [] and hence len(HCr4b) = 0. The EX-rule therefore finds a child
node (5) and a formula E(p1 U p2) in it such that 1 = UEV (E(p1 U p2)) =
uev5(E(p1 U p2)) > len(HCr4b) = 0. That is, node (4b) “sees” a child (5) that
“loops lower”, meaning that node (5) is the root of an “isolated” subtree which

44 P. Abate, R. Goré, and F. Widmann

(5) AB-node
E(p1U p2) ; A(⊥B p2)
HCR :: false, UEV

α ��
(6) ∨-node
E(p1U p2) ; ¬p2 ; ⊥ ∨AXA(⊥B p2)

HCR :: false, UEV

β1

�����������������
β2

��
(6a) ∧-node
E(p1 U p2) ; ¬p2 ; ¬p0 ∧ p0

HCR :: true,uev⊥

(6b) EU -node
E(p1 U p2) ; ¬p2 ; AXA(⊥B p2)

HCR :: false, UEV

β1

�����������������
β2

��
(7a) id-node
p2 ; ¬p2 ; AXA(⊥B p2)
HCR :: true,uev⊥

(7b) EX-node
p1 ; EXE(p1 U p2) ; ¬p2 ; AXA(⊥B p2)

HCR :: false, UEV

��
blocked by node (5)

Fig. 2. An example: a tableau for E(p1 U p2) ∧ A(⊥B p2) (continued)

does not fulfil its eventuality E(p1 U p2). Thus the EX-rule sets mrk4b = true,
marking (4b) as “closed”. The propagation of true to the root is then just via
simple β- and α-rule applications.

3.5 The One-Pass Algorithm and Its Complexity

Most tableau-based algorithms apply the rules in a particular order: namely, ap-
ply all the α- and β-rules until none are applicable, and then apply the EX-rule
once. Of course, no more rules are applied if the id-rule is applicable to close
the branch. We have designed the rules so that they naturally capture this strat-
egy, thereby giving a non-deterministic algorithm for constructing/traversing the
tableau by just applying any one of the rules that are applicable. By fixing an
arbitrary rule order and an arbitrary formula order, we can safely determinise
this algorithm.

The use of histories and variables gives rise to an algorithm that constructs
and traverses a tableau (deterministically) at the same time. On its way down
the tableau, it constructs the set of formulae and the histories of a node by using
information from the parent node; and on its way up, it synthesises the variables
of a node according to the values of the variables of its children. Both steps are
described by the rule that is applied to the node.

As soon as the algorithm has left a node on its way up, there is no need to
keep the node in memory, it can safely be reclaimed as all important information
has been passed up by the variables. Hence, the algorithm requires just one pass.
Moreover, at any time, it only has to keep the current branch of the tableau in

One-Pass Tableaux for Computation Tree Logic 45

memory. The final result of the decision procedure can be obtained by looking
at the variable mrk of the root which is the last node that has its variables set.

Of course, it is not always necessary to build the entire tableau. If, for ex-
ample, the first child of an EX-rule is marked, the algorithm can mark the
parent without having to look at the other children. (It is easy to see that if
a node x is marked then the value of uevx is irrelevant and does not need to
be calculated.) Dually, if the left child of a β-node is unmarked and has uev⊥
then there is no need to explore the right child since we can safely say that the
parent is unmarked and has uev⊥. Other optimisations are possible and some
of them are incorporated in our implementation in the Tableau Work Bench
(twb.rsise.anu.edu.au/twbdemo), a generic tableau engine designed for rapid
prototyping of (propositional) tableau calculi [1]. The high-level code of the
prover for CTL is also visible there using the special input language designed
for the TWB.

Theorem 23. The tableau algorithm for CTL outlined in this paper runs in
double exponential deterministic time and needs exponential space.

A detailed proof can be found in the extended version of this paper
(users.rsise.anu.edu.au/∼florian).

References

1. Abate, P.: The Tableau Workbench: a framework for building automated tableau-
based theorem provers. PhD thesis, The Australian National University (2006)

2. Baader, F., Tobies, S.: The inverse method implements the automata approach for
modal satisfiability. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001.
LNCS (LNAI), vol. 2083, pp. 92–106. Springer, Heidelberg (2001)

3. Baader, F.: Augmenting concept languages by transitive closure of roles: an alter-
native to terminological cycles. Technical Report, DFKI (1990)

4. Basukoski, A., Bolotov, A.: A clausal resolution method for branching time logic
ECTL+. Annals of Mathematics and Artificial Intelligence 46(3), 235–263 (2006)

5. Ben-Ari, M., Manna, Z., Pnueli, A.: The temporal logic of branching time. In:
Proceedings of Principles of Programming Languages (1981)

6. Emerson, E.A., Halpern, J.Y.: Decision procedures and expressiveness in the tem-
poral logic of branching time. J. of Computer and System Sci. 30, 1–24 (1985)

7. Fisher, M., Dixon, C., Peim, M.: Clausal temporal resolution. ACM Transactions
on Computational Logic (2001)

8. Gaintzarain, J., Hermo, M., Lucio, P., Navarro, M., Orejas, F.: A Cut-Free and
Invariant-Free Sequent Calculus for PLTL. In: 6th EACSL Annual Conference on
Computer Science and Logic (to appear, 2007)

9. Gough, G.: Decision procedures for temporal logics. Master’s thesis, Dept. of Com-
puter Science, University of Manchester, England (1984)

10. Grumberg, O., Clarke, E.M., Peled, D.A.: Model checking. MIT Press, Cambridge
(1999)

11. Horrocks, I., Patel-Schneider, P.F.: Optimising description logic subsumption.
Journal of Logic and Computation 9(3), 267–293 (1999)

twb.rsise.anu.edu.au/twbdemo
users.rsise.anu.edu.au/~florian

46 P. Abate, R. Goré, and F. Widmann

12. Horrocks, I., Sattler, U.: A tableaux decision procedure for SHOIQ. In: Proc. of
the 19th Int. Joint Conf. on Artificial Intelligence, pp. 448–453 (2005)

13. Hustadt, U., Konev, B.: TRP++: A temporal resolution prover. In: Collegium
Logicum, Kurt Gödel Society, pp. 65–79 (2004)

14. Jäger, G., Alberucci, L.: About cut elimination for logics of common knowledge.
Ann. Pure Appl. Logic 133(1-3), 73–99 (2005)

15. Jäger, G., Kretz, M., Studer, T.: Cut-free common knowledge. Journal of Applied
Logic (to appear)

16. Janssen, G.: Logics for Digital Circuit Verification: Theory, Algorithms, and Appli-
cations. PhD thesis, Eindhoven University of Technology, The Netherlands (1999)

17. Kesten, Y., Manna, Z., McGuire, H., Pnueli, A.: A decision algorithm for full
propositional temporal logic. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697,
pp. 97–109. Springer, Heidelberg (1993)

18. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer, Heidelberg (1992)

19. Reynolds, M.: Towards a CTL* tableau. In: Ramanujam, R., Sen, S. (eds.) FSTTCS
2005. LNCS, vol. 3821, pp. 384–395. Springer, Heidelberg (2005)

20. Schwendimann, S.: A new one-pass tableau calculus for PLTL. In: de Swart, H. (ed.)
TABLEAUX 1998. LNCS (LNAI), vol. 1397, pp. 277–291. Springer, Heidelberg
(1998)

21. Vardi, M.Y., Pan, G., Sattler, U.: BDD-based decision procedures for K. Journal
of Applied Non-Classical Logics 16(1-2), 169–208 (2006)

22. Vardi, M.Y., Wolper, P.: Automata-theoretic techniques for modal logics of pro-
grams. Journal of Computer Systems and Science (1986)

23. Voronkov, A.: How to optimize proof-search in modal logics: new methods of prov-
ing redundancy criteria for sequent calculi. ACM Trans. on Comp. Logic 2(2)
(2001)

24. Wolper, P.: Temporal logic can be more expressive. Inf. and Cont. 56, 72–99 (1983)

Extending a Resolution Prover for Inequalities

on Elementary Functions

Behzad Akbarpour and Lawrence C. Paulson

Computer Laboratory, University of Cambridge, England
{ba265,lcp}@cl.cam.ac.uk

Abstract. Experiments show that many inequalities involving exponen-
tials and logarithms can be proved automatically by combining a reso-
lution theorem prover with a decision procedure for the theory of real
closed fields (RCF). The method should be applicable to any functions
for which polynomial upper and lower bounds are known. Most bounds
only hold for specific argument ranges, but resolution can automatically
perform the necessary case analyses. The system consists of a superpo-
sition prover (Metis) combined with John Harrison’s RCF solver and a
small amount of code to simplify literals with respect to the RCF theory.

1 Introduction

Despite the enormous progress that has been made in the development of decision
procedures, many important problems are not decidable. In previous work [1],
we have sketched ideas for solving inequalities over the elementary functions,
such as exponentials, logarithms, sines and cosines. Our approach involves re-
ducing them to inequalities in the theory of real closed fields (RCF), which is
decidable. We argued that merely replacing occurrences of elementary functions
by polynomial upper or lower bounds sufficed in many cases. However, we of-
fered no implementation. In the present paper, we demonstrate that the method
can be implemented by combining an RCF decision procedure with a resolution
theorem prover.

The alternative approach would be to build a bespoke theorem prover that
called theory-specific code. Examples include Analytica [8] and Weierstrass [6],
both of which have achieved impressive results. However, building a new system
from scratch will require more effort than building on existing technology. More-
over, the outcome might well be worse. For example, despite the well-known
limitations of the sequent calculus, both Analytica and Weierstrass rely on it for
logical reasoning. Also, it is difficult for other researchers to learn from and build
upon a bespoke system. In contrast, Verifun [10] introduced the idea of combin-
ing existing SAT solvers with existing decision procedures; other researchers
grasped the general concept and now SMT (SAT Modulo Theories) has become
a well-known system architecture.

Our work is related to SPASS+T [17], which combines the resolution theorem
prover SPASS with a number of SMT tools. However, there are some differences

N. Dershowitz and A. Voronkov (Eds.): LPAR 2007, LNAI 4790, pp. 47–61, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

48 B. Akbarpour and L.C. Paulson

between the two approaches. SPASS+T extends the resolution’s test for unsat-
isfiability by allowing the SMT solver to declare the clauses inconsistent, and
its objective is to improve the handling of quantification in SMT problems. We
augment the resolution calculus to simplify clauses with respect to a theory, and
our objective is to solve problems in this theory.

Our work can therefore be seen to address two separate questions.

– Can inequalities over the elementary functions be solved effectively?
– Can a modified resolution calculus serve as the basis for reasoning in a highly

specialized theory?

At present we only have a small body of evidence, but the answer to both ques-
tions appears to be yes. The combination of resolution with a decision procedure
for RCF can prove many theorems where the necessary case analyses and other
reasoning steps are found automatically. An advantage of this approach is that
further knowledge about the problem domain can be added declaratively (as
axioms) rather than procedurally (as code). We achieve a principled integration
of two technologies by using one (RCF) in the simplification phase of the other
(resolution).

We eventually intend to output proofs where at least the main steps are
justified. Claims would then not have to be taken on trust, and such a system
could be integrated with an interactive prover such as Isabelle [16]. The tools
we have combined are both designed for precisely such an integration [13,15].

Paper outline. We begin (§2) by presenting the background for this work,
including specific upper and lower bounds for the logarithm and exponential
functions. We then describe our methods (§3): which axioms we used and how
we modified the automatic prover. We work through a particular example (§4),
indicating how our combined resolution/RCF solver proves it. We present a table
of results (§5) and finally give brief conclusions (§6).

2 Background

The initial stimulus for our project was Avigad’s formalization, using Isabelle,
of the Prime Number Theorem [2]. This theorem concerns the logarithm func-
tion, and Avigad found that many obvious properties of logarithms were tedious
and time-consuming to prove. We expect that proofs involving other so-called
elementary functions, such as exponentials, sines and cosines, would be equally
difficult. Avigad, along with Friedman, made an extensive investigation [3] into
new ideas for combining decision procedures over the reals. Their approach pro-
vides insights into how mathematicians think. They outline the leading decision
procedures and point out how easily they perform needless work. They present
the example of proving

1 + x2

(2 + y)17
<

1 + y2

(2 + x)10

from the assumption 0 < x < y: the argument is obvious by monotonicity, while
mechanical procedures are likely to expand out the exponents. To preclude this

Extending a Resolution Prover for Inequalities on Elementary Functions 49

x− 1

x
≤ ln x ≤ 3x2 − 4x + 1

2x2

(1

2
≤ x ≤ 1

)

−x2 + 4x− 3

2
≤ ln x ≤ x− 1 (1 ≤ x ≤ 2)

−x2 + 8x− 8

8
≤ ln x ≤ x

2
(2 ≤ x ≤ 4)

Fig. 1. Upper and Lower Bounds for Logarithms

x3 + 3x2 + 6x + 6

6
≤ expx ≤ x2 + 2x + 2

2
(−1 ≤ x ≤ 0)

2

x2 − 2x + 2
≤ expx ≤ 6

−x3 + 3x2 − 6x + 6
(0 ≤ x ≤ 1)

Fig. 2. Upper and Lower Bounds for Exponentials

possibility, Avigad and Friedman have formalized theories of the real numbers
in which the distributivity axioms are restricted to multiplication by constants.
As computer scientists, we do not see how this sort of theory could lead to
practical tools or be applied to the particular problem of logarithms. We prefer
to use existing technology, augmented with search and proof heuristics to this
problem domain. We have no interest in completeness—these problems tend to
be undecidable anyway—and do not require the generated proofs to be elegant.

Our previous paper [1] presented families of upper and lower bounds for the
exponential and logarithm functions. These families, indexed by natural num-
bers, converge to their target functions. The examples described below use some
members of these families which are fairly loose bounds, but adequate for many
problems.

Figure 1 presents the upper and lower bounds for logarithms used in this pa-
per. Note that each of these bounds constrains the argument to a closed interval.
This particular family of bounds is only useful for finite intervals, and proofs in-
volving unbounded intervals must refer to other properties of logarithms, such as
monotonicity. Figure 2 presents upper and lower bounds for exponentials, which
are again constrained to narrow intervals. Such constraints are necessary: obvi-
ously there exists no polynomial upper bound for exp x for unbounded x, and a
bound like ln x ≤ x − 1 is probably too loose to be useful for large x. Tighter
constraints on the argument allow tighter bounds, but at the cost of requiring
case analysis on x, which complicates proofs.

Our approach to proving inequalities is to replace occurrences of functions
such as ln by suitable bounds, and then to prove the resulting algebraic inequal-
ity. Our previous paper walked through a proof of

−1
2
≤ x ≤ 3 =⇒ ln(1 + x) ≤ x. (1)

50 B. Akbarpour and L.C. Paulson

One of the cases reduced to the following problem:

x

1 + x
+

1
2

(−x

1 + x

)2

≤ x

As our paper shows, this problem is still non-trivial, but fortunately it belongs to
a decidable theory. We have relied on two readable histories of this subject [9,15].
Tarski proved the decidability of the theory of Real Closed Fields (RCF) in the
1930s: quantifiers can be eliminated from any inequality over the reals involving
only the operations of addition, subtraction and multiplication. It is inefficient:
the most sophisticated decision procedure, cylindrical algebraic decomposition
(CAD), can be doubly exponential. We use a simpler procedure, implemented
by McLaughlin and Harrison [15], who in their turn credit Hörmander [12] and
others. For the RCF problems that we generate, the decision procedure usually
returns quickly: as Table 1 shows, most inequalities are proved in less than one
second, and each proof involves a dozen or more RCF calls.

Although quantifier elimination is hyper-exponential, the critical parameters
are the degrees of the polynomials and the number of variables in the formula.
The length of the formula appears to be unimportant. At present, all of our
problems involve one variable, but the simplest way to eliminate quotients and
roots involves introducing new variables. We do encounter situations where RCF
does not return.

Our idea of replacing function occurrences by upper or lower bounds involves
numerous complications. In particular, most bounds are only valid for limited
argument ranges, so proofs typically require case splits to cover the full range of
possible inputs. For example, three separate upper bounds are required to prove
equation (1). Another criticism is that bounds alone cannot prove the trivial
theorem

0 < x ≤ y =⇒ ln x ≤ ln y,

which follows by the monotonicity of the function ln. Special properties such as
monotonicity must somehow be built into the algorithm. Search will be necessary,
since some proof attempts will fail. If functions are nested, the approach has to
be applied recursively. We could have written code to perform all of these tasks,
but it seems natural to see whether we can add an RCF solver to an existing
theorem prover instead.

For the automatic theorem prover, we chose Metis [13], developed by Joe
Hurd. It is a clean, straightforward implementation of the superposition calcu-
lus [4]. Metis, though not well known, is ideal at this stage in our research. It
is natural to start with a simple prover, especially considering that the RCF
decision procedure is more likely to cause difficulties.

3 Method

Most resolution theorem provers implement some variant of the inference loop
described by McCune and Wos [14]. There are two sets of clauses, Active and

Extending a Resolution Prover for Inequalities on Elementary Functions 51

Passive. The Active set enjoys the invariant that every one of its elements has
been resolved with every other, while the Passive set consists of clauses waiting
to be processed. At each iteration, these steps take place:

– An element of the Passive set (called the given clause) is selected and moved
to the Active set.

– The given clause is resolved with every member of the Active set.
– Newly inferred clauses are first simplified, for example by rewriting, then

added to the Passive set. (They can also simplify the Active and Passive
sets by subsumption, an important point but not relevant to this paper.)

Resolution uses purely syntactical unification: no theory unification is in-
volved. Our integration involves modifying the simplification phase to take ac-
count of the RCF theory. Algebraic terms are simplified and put into a canonical
form. Literals are deleted if the RCF solver finds them to be inconsistent with
algebraic facts present in the clauses. Both simplifications are essential. The
canonical form eliminates a huge amount of redundant representations, for ex-
ample the n! permutations of the terms of x1+· · ·+xn. Literal deletion generates
the empty clause if a new clause is inconsistent with existing algebraic facts, and
more generally it eliminates much redundancy from clauses.

To summarize, we propose the following combination method:

1. Negate the problem and Skolemize it, finally converting the result into con-
junctive normal form (CNF) represented by a list of conjecture clauses.

2. Combine the conjecture clauses with a set of axioms and make a problem
file in TPTP format, for input to the resolution prover.

3. Apply the resolution procedure to the clauses. Simplify new clauses as de-
scribed below before adding them to the Passive set.

4. If a contradiction is reached, we have refuted the negated formula.

3.1 Polynomial Simplification

All terms built up using constants, negation, addition, subtraction, and multi-
plication can be considered as multivariate polynomials. Following Grégoire and
Mahboubi [11], we have chosen a canonical form for them: Horner normal form,
also called the recursive representation.1 An alternative is the distributed repre-
sentation, a flat sum with an ordering of the monomials; however, our approach
is often adopted and is easy to implement.

Any univariate polynomial can be rewritten in recursive form as

p(x) = anxn + · · · + a1x + a0 = a0 + x(a1 + x(a2 + · · ·x(an−1 + xan))

We can consider a multivariate polynomial as a polynomial in one variable whose
coefficients are themselves a canonical polynomial in the remaining variables. We
maintain a list with the innermost variable at the head, and this will determine
1 A representation is called canonical if two different representations always corre-

spond to two different objects.

52 B. Akbarpour and L.C. Paulson

the arrangement of variables in the canonical form. We adopt a sparse represen-
tation: zero terms are omitted.

For example, if variables from the inside out are x, y and z, then we represent
the polynomial 3xy2 + 2x2yz + zx + 3yz as

[y(z3)] + x([z1 + y(y3)] + x[y(z2)]),

where the terms in square brackets are considered as coefficients. Note that we
have added numeric literals to Metis: the constant named 3, for example, denotes
that number, and 3 + 2 simplifies to 5.

We define arithmetic operations on canonical polynomials, subject to a fixed
variable ordering. For addition, our task is to add c + xp and d + yq. If x and
y are different, one or other is recursively added to the constant coefficient of
the other. Otherwise, we just compute (c + xp) + (d + xq) = (c + d) + x(p + q),
returning simply c + d if p + q = 0. For negation, we recursively negate the
coefficients, while subtraction is an easy combination of addition and negation.

We can base a recursive definition of polynomial multiplication on the follow-
ing equation, solving the simpler sub-problems p × d and p × q recursively:

p × (d + yq) = (p × d) + (0 + y(p × q))

However, for 0 + y(p × q) to be in canonical form we need y to be the topmost
variable overall, with p having no variables strictly earlier in the list. Hence, we
first check which polynomial has the earlier topmost variable and exchange the
operands if necessary. Powers pn (for fixed n) are just repeated multiplication.

Any algebraic term can now be translated into canonical form by transforming
constants and variables, then recursively applying the appropriate canonical form
operations. We simplify a formula of the form X ≤ Y by converting X − Y to
canonical form, finally generating an equivalent form X ′ ≤ Y ′ with X ′ and
Y ′ both canonical polynomials with their coefficients all positive. We simplify
1 + x ≤ 4 to x ≤ 3, for example. Any fixed format can harm completeness,
but note that the literal deletion strategy described below is indifferent to the
particular representation of a formula.

3.2 Literal Deletion

We can distinguish a literal L in a clause by writing the clause as A ∨ L ∨ B,
where A and B are disjunctions of zero or more literals. Now if ¬A ∧ ¬B ∧ L is
inconsistent, then the clause is equivalent to A∨B; therefore, L can be deleted.
We take the formula ¬A ∧ ¬B ∧ L to be inconsistent if the RCF solver reduces
it to false.

For example, consider the clause x ≤ 3 ∨ x = 3. (Such redundancies arise
frequently.) We focus on the first literal and note that x �= 3 ∧ x ≤ 3 is consis-
tent, so that literal is preserved. We focus on the second literal and note that
¬(x ≤ 3) ∧ x = 3 is inconsistent, so that literal is deleted: we simplify the clause
to x ≤ 3.

This example illustrates a subtle point concerning variables and quantifiers. In
the clause x ≤ 3∨x = 3, the symbol x is a constant, typically a Skolem constant

Extending a Resolution Prover for Inequalities on Elementary Functions 53

originating in a existentially quantified variable in the negated conjecture. Before
calling RCF, we again convert x to an existentially quantified variable. Here is
a precise justification of this practice. In the semantics of first-order logic [5],
a structure for a first-order language L comprises a non-empty domain D and
interprets the constant, function and relation symbols of L as corresponding
elements, functions and relations over D. The clause x ≤ 3∨x = 3 is satisfied by
any structure that gives its symbols their usual meanings over the real numbers
and also maps x to 3; it is, however, falsified if the structure instead maps x to 4.
To prove the inconsistency of say ¬(x ≤ 3) ∧ x = 3, we give the RCF solver a
closed formula, ∃x [¬(x ≤ 3) ∧ x = 3]; if this formula is equivalent to false, then
there exists no interpretation of x satisfying the original formula. More generally,
we can prove the inconsistency of a ground formula by existentially quantifying
over its uninterpreted constants before calling RCF.

We strengthen this test by taking account of all algebraic facts known to the
prover. (At present, we consider only algebraic facts that are ground.) Whenever
the automatic prover asserts new clauses, we extract those that concern only
addition, subtraction and multiplication. We thus accumulate a list of algebraic
clauses that we include in the formula that is delivered to the RCF solver. For
example, consider proving − 1

2 ≤ u ≤ 3 =⇒ ln(u + 1) ≤ u. Upon termination, it
has produced the following list of algebraic clauses:

F, ~(1 <= u), ~(0 <= u) \/ ~(u <= 1), 0 <= 1 + u * 2, u <= 3

This list is built from right to left. It begins with u ≤ 3 from the problem
statement, while 0 ≤ 1 + u × 2 is soon derived from − 1

2 ≤ u. The other clauses
arise during the proof, which terminates with false.

To summarize, literal deletion works as follows, where C denotes the conjunc-
tion of all ground algebraic clauses known to the prover.

1. Identify a candidate literal L in a clause by writing the clause as A∨L∨B.
Note that L must be algebraic.

2. Form the existential closure of the formula ¬A∧¬B ∧C ∧L, retaining only
the algebraic literals of A and B.

3. If RCF quantifier elimination reduces this formula to false, then delete L
from the clause.

The formulas given to RCF contain no universal quantifiers, because at present
they are constructed from ground clauses. As mentioned above, every uninter-
preted constant contained in the formula becomes an existentially quantified
variable.

3.3 Axioms

We have sought to find a general set of axioms describing the real numbers,
and in particular their ordering. We combine these general axioms with upper
and lower bounds for the functions of interest. The resulting axiom set replaces
inequalities concerning those functions by algebraic inequalities. These, in turn,
will be simplified by the RCF solver.

54 B. Akbarpour and L.C. Paulson

We include axioms that relate division to multiplication, since RCF solvers
do not accept division.

X ≤ Y × Z =⇒ X/Z ≤ Y ∨ Z ≤ 0
X ≤ Y/Z =⇒ X × Z ≤ Y ∨ Z ≤ 0
X × Z ≤ Y =⇒ X ≤ Y/Z ∨ Z ≤ 0
X/Z ≤ Y =⇒ X ≤ Y × Z ∨ Z ≤ 0

We include similar axioms for equality.

Y/Z = X =⇒ Z = 0 ∨ Y = X × Z

X = Y/Z =⇒ Z = 0 ∨ X × Z = Y

These axioms simplify inequalities between quotients.

X/Y ≤ W/Z =⇒ Y ≤ 0 ∨ Z ≤ 0 ∨ X × Z ≤ Y × W

Y × W ≤ X × Z =⇒ W/Z ≤ X/Y ∨ Y ≤ 0 ∨ Z ≤ 0

Our use of a canonical polynomial representation eliminates the need for the
usual axioms for addition and multiplication, such as commutative laws.

We have experimented with axioms defining the standard properties of a linear
ordering:

X ≤ X (2)
X ≤ Y ∨ Y ≤ X (3)

X ≤ Y ∧ Y ≤ X =⇒ X = Y (4)
X ≤ Y ∧ Y ≤ Z =⇒ X ≤ Z (5)

Note that inequalities are formalized using ≤. We formalize < by the equivalence
X < Y ⇐⇒ ¬(Y ≤ X). This eliminates the need to have, for example, four
versions of transitivity.

¬(X < Y) ∨ ¬(Y ≤ X)
(X < Y) ∨ (Y ≤ X)

However, the experiments reported below do not use axioms (2)–(5). Transitivity,
in particular, blows up the search space. When transitivity is omitted, the lower
and upper bound axioms must be modified in the obvious way; for example, the
axiom φ =⇒ ln X ≤ e must become φ ∧ e ≤ Y =⇒ ln X ≤ Y . We intend to
do more work to find the best treatment of ordering properties.

These axioms are rather general. We can influence the way they are applied by
means of weights, which influence the selection of literals in ordered resolution.
Giving high weights (500 000) to the functions ln and exp encourages the prover
to eliminate them. We also give division a high weight (50), encouraging its
replacement by multiplication. It is obvious that occurrences of certain functions
must be discouraged, but the effect of adding weights was more powerful than
we expected.

Extending a Resolution Prover for Inequalities on Elementary Functions 55

4 Worked Example

In order to see how this approach works, let us follow its proof of the formula

∀X
[−1/2 ≤ X ∧ X ≤ 3 =⇒ ln(1 + X) ≤ X

]
.

Below, for the sake of readability, we write

L1 ∧ . . . ∧ Ln =⇒ false

rather than
¬L1 ∨ . . . ∨ ¬Ln.

We also use standard mathematical notation rather than Horner canonical form.
The input file appears as Appendix A.

After negation and Skolemization, our problem consists of three conjecture
clauses:

−1/2 ≤ u

u ≤ 3
¬(ln(1 + u) ≤ u)

The first conjecture clause resolves with one of the divisibility axioms and yields

−1 ≤ u × 2 ∨ 2 ≤ 0,

which simplifies to 0 ≤ 1 + u × 2.
The high weight of ln will ensure that literals containing it are selected. There-

fore, the negative literal above will combine with complementary literals in the
axiom clauses specifying upper bounds of ln x: that is, those shown in Fig. 1.
One of these (combined with transitivity as described in §3.3) is

1 ≤ X ∧ X ≤ 2 ∧ X − 1 ≤ Y =⇒ ln X ≤ Y.

Resolution of the third conjecture clause with this axiom yields

1 ≤ 1 + u ∧ 1 + u ≤ 2 ∧ 1 + u − 1 ≤ u =⇒ false (6)

Performing the obvious simplifications, we get

0 ≤ u ∧ u ≤ 1 =⇒ false.

We have now deduced u < 0 ∨ u > 1.
Another upper bound axiom (combined with transitivity) is

2 ≤ X ∧ X ≤ 4 ∧ X

2
≤ Y =⇒ ln X ≤ Y

when resolution with the third conjecture clause yields

2 ≤ 1 + u ∧ 1 + u ≤ 4 ∧ 1 + u

2
≤ u =⇒ false.

56 B. Akbarpour and L.C. Paulson

The simplified clause (RCF deletes u ≤ 3) is

1 ≤ u ∧ 1 + u

2
≤ u =⇒ false. (7)

Resolution of this with the appropriate division axiom produces

1 ≤ u ∧ 1 + u ≤ u × 2 =⇒ 2 ≤ 0,

which simplifies to
1 ≤ u =⇒ false,

so we have deduced u < 1. Indeed (since u < 0 ∨ u > 1) we have u < 0, and
RCF will notice this.

Resolution of the third conjecture clause with the third upper bound axiom
and the division axiom yields

1/2 ≤ 1 + u ∧ 1 + u ≤ 1 ∧ 3(1 + u)2 − 4(1 + u) + 1 ≤ 2u(1 + u)2

=⇒ 2u2 ≤ 0.

The obvious simplifications yield

−1/2 ≤ u ∧ u ≤ 0 ∧ 0 ≤ u2 + u3 =⇒ 2u2 ≤ 0,

but given the facts u < 0 and 0 ≤ 1 + u × 2, RCF further simplifies it to

false.

As mentioned earlier, this proof generates the following series of algebraic
clauses, from right to left.

F, ~(1 <= u), ~(0 <= u) \/ ~(u <= 1), 0 <= 1 + u * 2, u <= 3

5 Results and Discussion

We have run only a few dozen examples, but the results are promising (Table 1).
We are aware of no other system that can solve such problems, so we present
the table merely to give an impression of what can be solved, rather than as a
basis for comparison. Most of these problems are proved in under three seconds
on a 3GHz Pentium D.

We clearly need to broaden our range of problems. Our examples all take the
same form: that a basic inequality holds over a specific interval. The potential
strength of a combination of resolution and RCF is that we might be able to
solve such problems when they occur indirectly buried in some more complicated
goals, perhaps resulting from the unification of other variables.

Limitations of our approach cause it to fail on some problems. Our bounds
shown in Figs. 1 and 2 are sometimes too loose. For example, to prove 0 ≤ x ≤
1/2 =⇒ −3x/2 ≤ ln(1 − x), we have to use a tighter logarithmic lower bound:

11x3 − 18x2 + 9x − 2
6x3

≤ ln x
(1

2
≤ x ≤ 1

)

Extending a Resolution Prover for Inequalities on Elementary Functions 57

Table 1. Problems and Runtimes

problem seconds

1/2 ≤ x ≤ 4 =⇒ ln x ≤ x− 1 0.608
1 ≤ x ≤ 4 =⇒ ln x ≤ x2 − x 0.060

1/2 ≤ x ≤ 3/2 =⇒ ln x ≤ 2x2 − 3x + 1 0.643
1/2 ≤ x ≤ 1 =⇒ ln x ≤ (3− 3x)/2 0.779
−1/2 ≤ x ≤ 3 =⇒ ln(1 + x) ≤ x 0.527

0 ≤ x ≤ 3 =⇒ ln(1 + x) ≤ x + x2 0.060
−1/2 ≤ x ≤ 1/2 =⇒ ln(1 + x) ≤ x + 2x2 2.500
−1/2 ≤ x ≤ 0 =⇒ ln(1 + x) ≤ (−3x)/2 2.457
−3 ≤ x ≤ 1/2 =⇒ ln(1− x) ≤ −x 1.929
−3 ≤ x ≤ 0 =⇒ ln(1− x) ≤ x2 − x 0.219

−1/2 ≤ x ≤ 1/2 =⇒ ln(1− x) ≤ 2x2 − x 4.256
0 ≤ x ≤ 1/2 =⇒ ln(1− x) ≤ (3x)/2 3.303

1/2 ≤ x ≤ 4 =⇒ (x− 1)/x ≤ lnx 0.272
1 ≤ x ≤ 4 =⇒ −x2 + 3x− 2 ≤ ln x 0.305

1/2 ≤ x ≤ 3/2 =⇒ −2x2 + 5x− 3 ≤ ln x 0.258
−1/2 ≤ x ≤ 3 =⇒ x/(1 + x) ≤ ln(1 + x) 2.592

0 ≤ x ≤ 3 =⇒ x− x2 ≤ ln(1 + x) 0.723
−1/2 ≤ x ≤ 1/2 =⇒ x− 2x2 ≤ ln(1 + x) 1.643
−3 ≤ x ≤ 1/2 =⇒ −x/(1− x) ≤ ln(1− x) 0.836
−3 ≤ x ≤ 0 =⇒ −x− x2 ≤ ln(1− x) 0.779

−1/2 ≤ x ≤ 1/2 =⇒ −x− 2x2 ≤ ln(1− x) 1.133

−1 ≤ x ≤ 0 =⇒ expx ≤ (2 + x)/2 0.307
−1 ≤ x ≤ 0 =⇒ expx ≤ (4 + x)/4 0.363

0 ≤ x ≤ 1 =⇒ expx ≤ 1 + x + x2 0.781
−1 ≤ x < 1 =⇒ expx ≤ 1/(1− x) 0.800

0 ≤ x ≤ 1 =⇒ exp(−x) ≤ (2− x)/2 0.319
−1 < x ≤ 1 =⇒ exp(−x) ≤ 1/(1 + x) 0.614

−1 ≤ x ≤ 1 =⇒ 1 + x ≤ expx 0.611
0 ≤ x ≤ 1 =⇒ (4 + x)/4 ≤ exp x 0.926
−1 ≤ x ≤ 0 =⇒ (4 + 7x)/4 ≤ expx 0.613
−1 ≤ x ≤ 1 =⇒ 1− x ≤ exp(−x) 0.993

Similarly, proving 0 ≤ x ≤ 1 =⇒ exp x ≤ (4 + 7x)/4 requires using a tighter
exponential upper bound:

exp x ≤ 120/(−x5 + 5x4 − 20x3 + 60x2 − 120x + 120)
(

0 ≤ x ≤ 1
)

Some problems cannot be solved because the RCF decision procedure runs
forever. One example is 0 ≤ x ≤ 1 =⇒ exp(x − x2) ≤ 1 + x, which calls RCF
on the following existentially quantified formula:

exists u. 0 <= u /\ u <= 1 /\

~ (u * u * u * u * (1 + u * u * 2) <=

u * u * (3 + u * (2 + u * u * (3 + u * u))))

58 B. Akbarpour and L.C. Paulson

Introducing new variables allows some problems to be solved, but increases
the danger that the decision procedure will loop. The problem −1 < x =⇒
exp(x/(1 +x)) ≤ 1 +x is easily proved if we modify it, replacing the quotient by
an extra variable y such that (1 + x)y = x. As a second example, the univariate
problem −1/2 ≤ x ≤ 0 =⇒ x/

√
1 + x ≤ ln(1 + x) is first converted to a

problem with two variables to avoid the square root: −1/2 ≤ x ≤ 0 ∧ 0 ≤ y ∧
y2 = 1 + x =⇒ x/y ≤ ln(1 + x). Attempting the new problem will generate the
following formula, which RCF cannot handle:

exists u v. 0 <= 1 + u * 2 /\ u <= 0 /\ 0 <= v /\ 1 + u = v * v /\

~ (u * ((2 + v * 2) + (u * ((4 + v * 3)+ u * 2))) <= 0)

These examples are too hard for a simple algorithm like Cohen-Hörmander.
Eliminating two quantifiers from formulas involving nonlinear polynomials is
not trivial. The first example is more marginal, but the doubly exponential com-
plexity of Hörmander’s algorithm seems to become noticeable when the degree of
the polynomial exceeds 5. These examples suggest that we use a more powerful
procedure, such as QEPCAD-B [7].

6 Conclusions

Inequalities concerning the elementary functions, such as exp and ln, can be
proved by a simple combination of a resolution theorem prover and an RCF
decision procedure. The architecture is simple and principled: it merely in-
volves modifying resolution’s simplification phase to take account of the RCF
theory.

The axiom system requires further development and testing. It could contain
a greater variety of upper and lower bounds. For example, the very loose bound
ln x ≤ x−1 might be useful when x can be arbitrarily large. Use of bounds such
as ln x ≤ 2(

√
x − 1) requires a means of eliminating the square root operator,

through a translation such as ∃y [y2 = x → · · ·]. Most of the bounds are infinite
families of axioms, so we must develop a preprocessing phase that inserts required
instances of these axioms into the problem automatically. The general ordering
axioms, such as transitivity, greatly expand the search space; we need to explore
other methods of handling ordering properties.

Also, we need to consider a wider range of problems, including difficult features
such as nested applications of elementary functions or sums and products of
them. We need to consider equalities as well as inequalities. Introducing new
variables to eliminate roots and quotients can cause the RCF procedure to run
forever, so we intend to try using QEPCAD-B [7] instead.

Acknowledgements. The research was funded by the epsrc grant EP/C013409/1,
Beyond Linear Arithmetic: Automatic Proof Procedures for the Reals. John Har-
rison contributed his code for the RCF decision procedure, which Amine Chaieb
helped to port from Ocaml to Standard ML. Joe Hurd offered much help with his
Metis prover. Christoph Benzmüller and the referees commented on this paper.

Extending a Resolution Prover for Inequalities on Elementary Functions 59

References

1. Akbarpour, B., Paulson, L.C.: Towards automatic proofs of inequalities involving
elementary functions. In: Cook, B., Sebastiani, R. (eds.) PDPAR: Pragmatics of
Decision Procedures in Automated Reasoning, pp. 27–37 (2006)

2. Avigad, J., Donnelly, K., Gray, D., Raff, P.: A formally verified proof of the prime
number theorem. ACM Transactions on Computational Logic (in press)

3. Avigad, J., Friedman, H.: Combining decision procedures for the reals. Logical
Methods in Computer Science 2(4) (2006)

4. Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Robinson, A.,
Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. I, ch. 2, pp. 19–99.
Elsevier Science, Amsterdam (2001)

5. Barwise, J.: An introduction to first-order logic. In: Barwise, J. (ed.) Handbook of
Mathematical Logic, North-Holland, pp. 5–46 (1977)

6. Beeson, M.: Automatic generation of a proof of the irrationality of e. JSC 32(4),
333–349 (2001)

7. Brown, C.W.: QEPCAD B: a program for computing with semi-algebraic sets using
CADs. SIGSAM Bulletin 37(4), 97–108 (2003)

8. Clarke, E., Zhao, X.: Analytica: A theorem prover for Mathematica. Mathematica
Journal 3(1), 56–71 (1993)

9. Dolzmann, A., Sturm, T., Weispfenning, V.: Real quantifier elimination in practice.
Technical Report MIP-9720, Universität Passau, D-94030, Germany (1997)

10. Flanagan, C., Joshi, R., Ou, X., Saxe, J.B.: Theorem proving using lazy proof
explication. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725,
pp. 355–367. Springer, Heidelberg (2003)

11. Grégoire, B., Mahboubi, A.: Proving equalities in a commutative ring done right in
coq. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 98–113.
Springer, Heidelberg (2005)

12. Hörmander, L.: The Analysis of Linear Partial Differential Operators II: Differential
Operators with Constant Coefficient. Springer, Heidelberg (2006) First published
in 1983; cited by Mclaughlin and Harrison [15]

13. Hurd, J.: Metis first order prover (2007), http://gilith.com/software/metis/
14. McCune, W., Wos, L.: Otter: The CADE-13 competition incarnations. Journal of

Automated Reasoning 18(2), 211–220 (1997)
15. McLaughlin, S., Harrison, J.: A proof-producing decision procedure for real arith-

metic. In: Nieuwenhuis, R. (ed.) CADE-20. LNCS (LNAI), vol. 3632, pp. 295–314.
Springer, Heidelberg (2005)

16. Nipkow, T., Paulson, L.C., Wenzel, M. (eds.): Isabelle/HOL. LNCS, vol. 2283.
Springer, Heidelberg (2002)

17. Prevosto, V., Waldmann, U.: SPASS+T. In: Sutcliffe, G., Schmidt, R., Schulz, S.:
(eds.) FLoC 2006 Workshop on Empirically Successful Computerized Reasoning,
vol. 192 of CEUR Workshop Proceedings, pp. 18–33 (2006)

http://gilith.com/software/metis/

60 B. Akbarpour and L.C. Paulson

A Input File for the Sample Problem

cnf(leq_left_divide_mul,axiom,

(~ less_equal(X,multiply(Y,Z))

| less_equal(divide(X,Z),Y)

| less_equal(Z,0))).

cnf(leq_left_mul_divide,axiom,

(~ less_equal(X,divide(Y,Z))

| less_equal(multiply(X,Z),Y)

| less_equal(Z,0))).

cnf(leq_right_divide_mul,axiom,

(~ less_equal(multiply(X,Z),Y)

| less_equal(X,divide(Y,Z))

| less_equal(Z,0))).

cnf(leq_right_mul_divide,axiom,

(~ less_equal(divide(X,Z),Y)

| less_equal(X,multiply(Y,Z))

| less_equal(Z,0))).

cnf(eq_left_divide_mul,axiom,

(~ equal(divide(Y,Z),X)

| equal(Z,0)

| equal(Y,multiply(X,Z)))).

cnf(eq_right_divide_mul,axiom,

(~ equal(X,divide(Y,Z))

| equal(Z,0)

| equal(multiply(X,Z),Y))).

cnf(leq_double_divide_mul,axiom,

(~ less_equal(divide(X,Y),divide(W,Z))

| less_equal(Y,0)

| less_equal(Z,0)

| less_equal(multiply(X,Z),multiply(Y,W)))).

cnf(leq_double_mul_divide,axiom,

(~ less_equal(multiply(Y,W),multiply(X,Z))

| less_equal(divide(W,Z),divide(X,Y))

| less_equal(Y,0)

| less_equal(Z,0))).

cnf(log_upper_bound_case_1,axiom,

(~ less_equal(divide(1,2),X)

| ~ less_equal(X,1)

| ~ less_equal(divide(add(multiply(3,power(X,2)),

add(neg(multiply(4,X)),1)),multiply(2,power(X,2))),Y)

| less_equal(ln(X),Y))).

Extending a Resolution Prover for Inequalities on Elementary Functions 61

cnf(log_upper_bound_case_2,axiom,

(~ less_equal(1,X)

| ~ less_equal(X,2)

| ~ less_equal(subtract(X,1),Y)

| less_equal(ln(X),Y))).

cnf(log_upper_bound_case_3,axiom,

(~ less_equal(2,X)

| ~ less_equal(X,4)

| ~ less_equal(divide(X,2),Y)

| less_equal(ln(X),Y))).

cnf(log_upper_bound_problem_5_1,negated_conjecture,

(less_equal(divide(neg(1),2),u))).

cnf(log_upper_bound_problem_5_2,negated_conjecture,

(less_equal(u,3))).

cnf(log_upper_bound_problem_5_3,negated_conjecture,

(~ less_equal(ln(add(1,u)),u))).

Model Checking the First-Order Fragment of

Higher-Order Fixpoint Logic

Roland Axelsson1 and Martin Lange2

1 Institut für Informatik, Ludwig-Maximilians-Universität München, Germany
2 Department of Computer Science, University of Aarhus, Denmark

Abstract. We present a model checking algorithm for HFL1, the first-
order fragment of Higher-Order Fixpoint Logic. This logic is capable of
expressing many interesting properties which are not regular and, hence,
not expressible in the modal μ-calculus. The algorithm avoids best-case
exponential behaviour by localising the computation of functions and
can be implemented symbolically using BDDs.

We show how insight into the behaviour of this procedure, when run
on a fixed formula, can be used to obtain specialised algorithms for par-
ticular problems. This yields, for example, the competitive antichain
algorithm for NFA universality but also a new algorithm for a string
matching problem.

1 Introduction

Properties (of words or trees) that can be expressed in the modal μ-calculus
are at most regular, i.e. they can also be defined by a finite automaton [4]. The
expressive power of temporal logics like LTL, CTL etc. is even strictly below that
of full ω-regularity. Nevertheless, there are many natural examples of interesting
properties that are not regular in the language theoretic sense, for example:
detection of buffer underflows, unlimited counting, repetition of sequences of
actions, etc.

Non-regular properties have recently attracted more and more attention, and
the need for algorithmic handling of such properties is about to become ac-
cepted. This is for example manifested in CaRet, a specification formalism
for linear time properties [1]. It can express some, but not all context-free
languages.

Here we use the (branching temporal) fixpoint logic HFL1, the first-order
fragment of Higher-Order Fixpoint Logic (HFL) [9]. HFL achieves high expres-
sive power by combining the modal μ-calculus with a simply typed λ-calculus.
We show that the first-order fragment which is obtained by restricting the λ-
calculus part to first-order functions, is already capable of expressing interesting
program properties like the ones mentioned above. Moreover, it turns out that
many other problems – not necessarily from program verification only – can be
reduced to the model checking problem for HFL1, e.g. the universality problem
for non-deterministic finite automata (NFA-UNIV), the evaluation problem for
quantified Boolean formulas (QBF), the satisfiability problem for modal logic

N. Dershowitz and A. Voronkov (Eds.): LPAR 2007, LNAI 4790, pp. 62–76, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Model Checking the First-Order Fragment of Higher-Order Fixpoint Logic 63

(K-SAT), etc. Commonly, these problems can be expressed in HFL1 in the sense
that there is a fixed formula whose models are exactly the (encodings of) pos-
itive instances to such problems. Note that HFL1’s model checking problem
is EXPTIME-complete [2]. This comparably high computational complexity is
necessarily the price to pay for the increased expressive power.

It is straight-forward to extend a symbolic model checking algorithm for Lμ
to HFL1 by doing fixpoint iterations in function space lattices. This, however,
yields a best-case running time that is exponential in the size of the underlying
model. Sect. 3 presents a model checking algorithm for HFL1 that localises
the computation of fixpoints in function spaces and, hence, shows exponential
behaviour in the worst case only.

Our algorithm exploits the fact that in order to model check an HFL1 prop-
erty, one usually does not need to know the value of a function on all elements
of its domain. Instead it computes these functions in a demand-driven fashion.
Due to fixpoint operators the value of a function may be defined recursively, i.e.
it may depend on the value of the same function on a different argument. By
incorporating into fixpoint iteration the collecting of such function arguments
we approximate the total functions in the HFL1 semantics by partial ones that
agree with them on those arguments that cause the demand.

In static program analysis this technique is known as neededness analysis [5].1

It resembles local model checking – avoiding computations that are unnecessary
for the verification task. On the other hand, the algorithm is global in the sense
that it computes in one go all states of a transition system that satisfy the given
formula.

The algorithm works on sets of states using only standard operations. Thus,
it can be implemented fully symbolically, i.e. using BDDs to represent state sets
and transitions.

Below we first present HFL1 and give a few examples of expressible properties
that are of interest in program verification. This is followed by the model checking
algorithm and the proof of its soundness and completeness. The rest of the
paper focuses on the “model checking is more than program verification” aspect
mentioned above. We exemplarily pick out NFA-UNIV and show how it can be
expressed in HFL1. We then use the Tabakov/Vardi model of random NFAs
[8] to measure the gain of local fixpoint computations in comparison to the
näıve extension of the modal μ-calculus model checker which would do fixpoint
iterations in the function space lattice. We then show how to take advantage
of the fact that NFA-UNIV can be reduced to the model checking problem for
HFL1 on a fixed formula. This induces a special instance of our model checking
algorithm which can be optimised w.r.t. that fixed formula. It turns out that this
instance coincides with the competitive algorithm for NFA-UNIV by Henzinger
et al., based on antichains [10]. We conclude by discussing further extensions of
the model checking algorithm and further special instances for other problems
like the ones mentioned above.

1 Note that this has nothing to do with lazy evaluation in functional programming,
let alone non-strict evaluation of higher-order functions!

64 R. Axelsson and M. Lange

2 The First-Order Fragment of HFL

Let Σ be a finite set of action names, P be an at most countably infinite set of
propositions and V a countably infinite set of variable names. Formulas of HFL1
in positive normal form2 are given by the following grammar.

ϕ := q | ¬q | X | ¬X | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈a〉ϕ | [a]ϕ | ϕ ϕ | λX.ϕ | μXτ .ϕ | νXτ .ϕ

τ := Pr | Pr → τ

where a ∈ Σ, q ∈ P , and X ∈ V . We require each fixpoint variable X to only
occur positively in its binding formula σX.ϕ, for some σ ∈ {μ, ν}, and never to
be bound more than once. Hence, each variable comes with a unique fixpoint
type μ or ν.

The τ are called HFL1-types. Note that each one is of the form τk = Pr →
. . . → Pr → Pr with k function arrows in it. The type τ0 is used to model
predicates, and τk for k ≥ 1 models k-ary predicate transformers. A predicate is
the same as a 0-ary predicate transformer.

Type annotations are used in order to avoid polymorphic effects. With these
annotations, each formula obtains a unique type. We assume formulas to be
well-typed using standard typing rules from the simply typed λ-calculus. For
example, q, 〈a〉ϕ, ϕ1∨ϕ2 all have type Pr. In ϕ ψ, formula ψ must have type Pr,
and ϕ must have type τk for some k ≥ 1. The type of ϕ = λX.ψ can be inferred
assuming that X has type Pr: if ψ has type τk then ϕ has type τk+1, etc.

Let T = (S, { a−→ | a ∈ Σ}, L) be a transition system with state set S, binary
transition relations a−→ for every a ∈ Σ, and a labeling function L : P → 2S

that assigns to every atomic proposition the set of states in which it is true.
We write D(S) for the domain of k-ary predicate transformers, k ≥ 0. For-

mally, D(S) is the least fixpoint of the domain equation X = 2S + (2S → X).
Note that D(S) 	 ⋃

k∈N
Dk(S) where Dk(S) = 2S → . . . → 2S → 2S with k

arrows in it. Each Dk(S) forms a complete lattice with pointwise inclusion or-
dering
 and meets � and joins �. In the case of k = 0, these operations simply
boil down to ⊆, ∩ and ∪.

Let ρ : V → D(S) be an environment mapping variables to predicate trans-
formers. The semantics of HFL1 is explained as follows. Note that a subformula
of the form ¬X can only be of type Pr, and X must be λ-bound in this case.

[[q]]Tρ := L(q)

[[¬q]]Tρ := S \ L(q)

[[X]]Tρ := ρ(X)

[[¬X]]Tρ := S \ ρ(X)

[[ϕ ∨ ψ]]Tρ := [[ϕ]]Tρ ∪ [[ψ]]Tρ
[[ϕ ∧ ψ]]Tρ := [[ϕ]]Tρ ∩ [[ψ]]Tρ

2 Positive normal form does not impede the expressive power but simplifies the pre-
sentation of the semantics.

Model Checking the First-Order Fragment of Higher-Order Fixpoint Logic 65

[[〈a〉ϕ]]Tρ := {s ∈ S | ∃t ∈ [[ϕ]]Tρ s.t. s a−→ t}
[[[a]ϕ]]Tρ := {s ∈ S | ∀t ∈ S : s

a−→ t implies t ∈ [[ϕ]]Tρ }
[[ϕ ψ]]Tρ := [[ϕ]]Tρ

(
[[ψ]]Tρ

)

[[λX.ϕ]]Tρ := λT.[[ϕ]]Tρ[X �→T] for T ∈ 2S

[[μXτk .ϕ]]Tρ :=
�

{f ∈ Dk | [[ϕ]]Tρ[X �→f]
 f}
[[νXτk .ϕ]]Tρ :=

⊔
{f ∈ Dk | f
 [[ϕ]]Tρ[X �→f]}

The modal μ-calculus is easily seen to be a fragment of HFL1 and is in fact
obtained by disallowing λ-abstraction and function application which implies
that all subformulas are predicates only. HFL1 also subsumes FLC [9] which is
basically obtained by restricting all types to τ0 and τ1 only.

Example 1. The following formula is true in a model iff it is bisimilar to a bal-
anced tree. Note that bisimulation-invariance is an inherent property of HFL1,
because it can be embedded into infinitary modal logic which in turn is incapable
of distinguishing bisimilar models. It is therefore not possible to state that the
model indeed is a balanced tree.

ϕbal :=
(
νXτ2 .λZ.λY.(¬Z ∨ ¬Y) ∧ (X 〈−〉Z 〈−〉Y)

) 〈−〉tt [−]ff

This is best understood by unfolding the fixpoint formula to an infinite conjunc-
tion. It then simply says: for all k ∈ N it is not the case that both 〈−〉k+1tt and
〈−〉k[−]ff hold, i.e. if there is a path of length at least k + 1 then there is no
maximal path of length k only.

This property can be used to show for example that all runs of a non-deterministic
program terminate after the same number of steps. It is also closely related to
Emerson’s uniform inevitability [3].

Example 2. HFL1 can easily express the absence of underflows in unbounded
buffers – due to unboundedness clearly not a regular property.

ϕbuf := μXτ1 .(λZ.〈out〉Z ∨ 〈in〉(X (X Z))) tt

This formula is best understood by comparing it to the CFG X → out | inX X .
It generates the language of all words w = uout s.t. |u|in = |u|out and for all
prefixes v of w we have: |v|in ≥ |v|out. These are exactly the prefixes of buffer
runs which are violating due to an underflow.

Of course, for buffers of fixed capacity n this property can easily be expressed
in the modal μ-calculus. Being fixed is not only sufficient but also necessary
for definability in the μ-calculus. Hence, there are two distinct advantages that
logics like HFL1 have over the μ-calculus.

– HFL1 enables black-box verification when the exact size of the underlying
finite model is unknown.

– Properties like the ones above can be formalised in HFL1 using a fixed for-
mula, whereas expressing them in the μ-calculus requires a family of formulas
that grow at least linearly in the size of the models.

66 R. Axelsson and M. Lange

3 Model Checking HFL1

A näıve extension of the standard global model checker for the modal μ-calculus
would represent the semantics of a subformula of type τk as a table of the follow-
ing form. Let S = {s0, s1, . . . , sn−1} be the finite state space of the underlying
transition system.

arg1 ∅ {s0} {s1} . . . {s0, s1} . . . S ∅ {s0} . . .
arg2 ∅ ∅ ∅ . . . ∅ . . . ∅ {s0} {s0} . . .

...
...

...
...

...
...

...
...

...
...

...
argk ∅ ∅ ∅ ∅ ∅ ∅ ∅ . . .
value T0 T1 .

It simply lists the value of that function for every possible argument from its fi-
nite domain. Note that this has uncurried the function silently. Fixpoint iteration
can be done on these objects in the same way. For a least fixpoint such a table is
initialised with Ti = ∅ for all i. Successive values of this function approximating
the least fixpoint can be found by iterating the corresponding functional on these
values and updating the table. Note that the width of the table is 2kn. Hence, a fix-
point iteration might take O(n · 2kn) many steps due to monotonicity. This leads,
for any ϕ ∈ HFL1, to an exponential model checking algorithm for this fixed ϕ.

However, this procedure can be localised. It is never necessary to know the
entire value of a function. Functions only occur as applicators, i.e. only their
value on certain arguments are needed for the model checking problem. Only in
the worst case and when embedded in a fixpoint iteration, the value of a function
on all possible arguments might be required. This leads to the following idea of
a localised model checker for HFL1, depicted in Fig. 1.

Each variable X of type τk in the input formula ϕ0 is associated with a partial
function of type Dk(S) → 2S represented for example by a table as shown above.
Since they are allowed to be partial, not necessarily all columns are present.
An argument to such a function is written as a list [T1, . . . , Tk] ∈ (2S)k, or
abbreviated as T for instance. Note that the empty list [] for k = 0 is possible.
We write Dom(f) for the set of arguments on which f is defined; f = g if f
and g have the same domain and agree on that; f{T �→ U} for the update of f
either overwriting a value or extending the domain; and {T �→ U} for the partial
function that contains only this single binding.

Algorithm MC takes an HFL1 formula of type τk and a list of length k of
subsets of the underlying state space S. It returns the semantics of ϕ applied to
these arguments w.r.t. an environment ρ that is given by the global variable env
which maps each HFL1-variable to a partial function. Note that the semantics
of HFL1 is defined using total functions though.

Algorithm MC simply computes the semantics of a formula recursively accord-
ing to the definition of HFL1. If the semantics of a fixpoint formula is needed – i.e.
the value of the corresponding function on a particular element of its domain – then
it performs a fixpoint iteration in the corresponding function space. However, it
only computes needed values, hence, localises this fixpoint iteration. It starts with

Model Checking the First-Order Fragment of Higher-Order Fixpoint Logic 67

global env : V → D(S)

MC (ϕ, [T1, ..., Tk]) =
case ϕ of q : L(q)

¬q : S \ L(q)
ψ1 ∨ ψ2 : MC (ψ1, []) ∪MC (ψ2, [])
ψ1 ∧ ψ2 : MC (ψ1, []) ∩MC (ψ2, [])

〈a〉ψ : {s ∈ S | ∃t ∈ MC (ψ, []) s.t. s
a−→ t}

[a]ψ : {s ∈ S | ∀t ∈ S : s
a−→ t⇒ t ∈ MC (ψ, [])}

X : if env(X)([T1, ..., Tk]) = undef

then let T := if fp(X) = μ then ∅ else S
env(X) := env(X){[T1, . . . , Tk] �→ T}

return env(X)([T1, . . . , Tk])
¬X : S \ env(X)([])
λX.ψ : env(X) := {[] �→ T1}

return MC (ψ, [T2, ..., Tk])
ψ1 ψ2 : MC (ψ1, [MC (ψ2 , []), T1, ..., Tk])
σX.ψ : if σ = μ then T := ∅ else T := S

env(X) := {[T1, . . . , Tk] �→ T}
repeat

f := env(X)
for all [T ′

1, ..., T
′
k] ∈ Dom(env(X))

env(X) := env(X){[T ′
1, ..., T

′
k] �→ MC (ψ, [T ′

1, ..., T
′
k])}

until f = env(X)
return env(X)([T1, . . . , Tk])

Fig. 1. A symbolic model checking algorithm for HFL1

the function that maps the given argument to the initial iteration value – ∅ or S. If
a fixpoint variable is reached during this iteration then the value of the semantics
may be required on a different argument. In this case, the algorithm adds the new
argument to the domain of this function and includes this in further iterations.
This is why a global variable representing the environment is necessary.

We write MC ρ(ϕ, [T1, . . . , Tk]) for the result of the call to MC with arguments
ϕ and [T1, . . . , Tk] when, at the beginning, the global variable env resembles the
environment ρ in the following way: for all X ∈ V of type τk and all T ∈ (2S)k

we have

– if X is λ-bound then env(X) = {[] �→ ρ(X)},
– if X is μ-bound then ρ(X)(T) �= ∅ implies env(X)(T) = ρ(X)(T),
– if X is ν-bound then ρ(X)(T) �= S implies env(X)(T) = ρ(X)(T).

Example 3. To illustrate how the algorithm works, consider the formula

ϕ0 :=
(
μXτ1.λZ.Z ∨

∨
a∈Σ

X [a]Z
) ¬q

and the transition system shown on the right side in Fig. 2. Intuitively, ϕ asserts
that there is a sequence of actions s.t. all paths under that sequence lead to

68 R. Axelsson and M. Lange

X {3} {2, 3} {1, 2, 3}

0 ∅

1 {3} ∅

2 {3} {2, 3} ∅

3 {2, 3} {2, 3} {1, 2, 3}

4 {2, 3} {1, 2, 3} {1, 2, 3}

5 {1, 2, 3} {1, 2, 3} {1, 2, 3}

6 {1, 2, 3} {1, 2, 3} {1, 2, 3}

0 1 2 3
b

b

a a

aa

b

q q

b

b

q

Fig. 2. Algorithm MC running on a simple example

a state not satisfying q. States 1, 2, 3 satisfy this property, state 0 does not.
However, the meaning of this formula is irrelevant for the understanding of how
it is evaluated by algorithm MC.

The table on the left of Fig. 2 shows the successive calculation of the seman-
tics of the fixpoint formula. Although only two rows need to be stored in each
iteration step – the current one and the last one for comparison – we depict all
stages in this example for the reader to be be able to follow this step-by-step.

At the beginning, the formula ¬q is evaluated to {3}. This forms the initial
argument in the table. It is to be read as follows: time proceeds line by line
from left to right. Each row below the arguments contains a snapshot of the
current state at the end of an iteration over the current domain. Note that in
general fixpoint approximants cannot easily be read off the table since different
columns may be at different stages of approximation. As computation proceeds,
arguments are added to the list.

Row 6 then represents a partial function that agrees with the total function
that is the semantics of the corresponding fixpoint formula. The return value is
the one in the first column – the value of the fixpoint function applied to the
original argument.

Theorem 1. For all transition systems T , all environments ρ and all ϕ ∈ HFL1
of type Pr we have: MC ρ(ϕ, []) = [[ϕ]]Tρ .

Proof. By induction on the structure of the formula ϕ. However, it should be
clear that the statement is too weak as an inductive invariant because of sub-
formulas of types other than Pr. Instead, we prove the stronger statement

∀ϕ, ∀ρ, ∀[T1, . . . , Tk] : MC ρ(ϕ, [T1, . . . , Tk]) = [[ϕ]]Tρ ([T1, . . . , Tk]) (1)

where ϕ is a (not necessarily closed) formula of type τk, ρ is an environment
that maps any free variable in ϕ to a function which in turn is defined on all
arguments, and Ti ⊆ S are subsets of states of the underlying transition system
T . We also identify elements of type τ0, i.e. such subsets, with functions from
the singleton domain. Writing [[ϕ]]Tρ ([]) rather than [[ϕ]]Tρ simply spares us some
case distinctions in the notations.

Model Checking the First-Order Fragment of Higher-Order Fixpoint Logic 69

The propositional and modal part. Claim (1) is immediately seen to be true for
the cases of ϕ = q or ϕ = ¬q for some q ∈ P . It also follows directly from the
hypothesis in the cases ϕ = ψ1 ∨ ψ2, ϕ = ψ1 ∧ ψ2, ϕ = 〈a〉ψ and ϕ = [a]ψ. Note
that in all these cases, ϕ must have type τ0, and so have ψ, ψ1, ψ2. Hence, we
must have k = 0 and the argument list [T1, . . . , Tk] must in fact be empty.

The statement is also easily seen to be true for the cases of ϕ = X or ϕ = ¬X .
Note that by assumption, the call of MC ρ(X, [T1, . . . , Tk]) returns ρ(X). Also
remember that negated variables must be λ-bound and therefore of type τ0.

The functional part. Now consider the case ϕ = λX.ψ. Note that ϕ cannot be of
type τ0, i.e. we have k ≥ 1. Then MC ρ(ϕ, [T1, . . . , Tk]) = MC ρ′(ψ, [T2, . . . , Tk])
with ρ′ := ρ{X �→ T1}. By hypothesis, this is equal to [[ψ]]Tρ′([T2, . . . , Tk]) which,
by β-reduction, is also the same as [[λX.ψ]]Tρ ([T1, . . . , Tk]).

The case of ϕ = ψ1 ψ2 is proved analogously. Again, note that here ψ2 must
be of type τ0.

The only cases posing some difficulties are those of ϕ = σX.ψ for σ ∈ {μ, ν}.
Here it is helpful to prove soundness (direction “⊆” in (1)) and completeness
(direction “⊇”) separately. However, the soundness proof for the μ-case is entirely
analogous to the completeness proof of the ν-case and vice-versa. Thus, we only
present soundness and completeness of the μ-case here.

Soundness of the μ-part. Consider the call MC ρ(μX.ψ, [T1, . . . , Tk]) and the
following statement.

∀[T ′1, . . . , T
′
k] ∈ Dom(env(X)) : env(X)([T ′1, . . . , T

′
k]) ⊆ [[μX.ψ]]Tρ ([T ′1, . . . , T

′
k])
(2)

where env is assumed to resemble the environment ρ in the way described above.
This is in fact an invariant of the repeat-loop in Algorithm MC . It trivially holds
before the loop because Dom(ρ(X)) = {[T1, . . . , Tk]} only, and env(X) maps this
tuple to the empty set.

Furthermore, if statement (2) holds at the beginning of one iteration of the
repeat-loop then it also holds after this iteration. This is simply a consequence of
monotonicity, the hypothesis, and the fact that [[μX.ψ]]Tρ is a fixpoint of ψ w.r.t.

: if we have env(X)([T ′1, . . . , T

′
k]) ⊆ [[μX.ψ]]Tρ ([T ′1, . . . , T

′
k]) for all such tuples

then, by monotonicity and the definition of the pointwise inclusion ordering,
we also have [[ψ]]Tρ{X �→env(X)}
 [[ψ]]Tρ{X �→[[μX.ψ]]Tρ }. But the latter is equal to

[[μX.ψ]]Tρ , and the former is, by hypothesis, the content of env(X) on all members
of Dom(env(X)) at the end of this repeat-loop iteration.

This implicitly shows that – on finite transition systems – the loop eventually
terminates. Since the domain of env(X) at most grows in each iteration, we have
[T1, . . . , Tk] ∈ Dom(env (X)) at termination point, and the soundness part of (1)
immediately follows from the fact that (2) holds at this point.

Completeness of the μ-part. We will prove this part using fixpoint induction.
For any set D ⊆ (2S)k of k-tuples of subsets of the underlying state set S,

70 R. Axelsson and M. Lange

and two functions f, g ∈ Dk(S) we write f
D g iff for all [T ′1, . . . , T
′
k] ∈ D:

f([T ′1, . . . , T
′
k]) ⊆ g([T ′1, . . . , T

′
k]).

Now consider again the call MC ρ(μX.ψ, [T1, . . . , Tk]). Let D := Dom(env (X))
upon termination of the repeat-loop. An immediate consequence of the induc-
tion hypothesis for ψ is the following:

[[ψ]]Tρ{X �→f}
D env(X) (3)

for any function f that agrees with env(X) on all arguments in D. This is
because the repeat-loop is iterated on the whole of D until stability is reached,
i.e. until MC ρ{X �→env(X)}(ψ, [T ′1, . . . , T

′
k]) = env(X)([T ′1, . . . , T

′
k]) holds for all

[T ′1, . . . , T ′k] ∈ D.
We now extend the function env(X) to a function env�(X) in the following

way.

env�(X)([T ′1, . . . , T
′
k]) :=

{
env(X)([T ′1, . . . , T ′k]) , if [T ′1, . . . , T ′k] ∈ D

S , o.w.

Now note that we have

[[ψ]]Tρ{X �→env�(X)}
 env�(X)

i.e. the function on the right subsumes the one on the left on all arguments from
Dk(S). For arguments in D this is stated in (3) above. For all other arguments
this is trivially true by the construction of env�(X). But then env�(X) is a pre-
fixpoint of ψ and, hence, we have [[μX.ψ]]Tρ
 env�(X). In particular, inclusion
holds for all argument tuples in D. Since the domain of env(X) at most grows
in each iteration of the repeat-loop, we have [T1, . . . , Tk] ∈ D and therefore
[[μX.ψ]]Tρ ([T1, . . . , Tk]) ⊆ MC ρ(μX.ψ, [T1, . . . , Tk]) which finishes the proof. ��

4 NFA-UNIV as a Model Checking Problem

As stated in the introduction, HFL1 is powerful enough to enable the encoding
of various interesting problems as model checking instances. We exemplarily
pick the universality problem for non-deterministic finite automata (NFA) to
demonstrate how encoding a problem as a model checking instance can lead to
an efficient solution.

In the following, an NFA is always of the form A = (Q, Σ, δ, q0, F), where Q
is the state set, Σ the alphabet, δ the transition relation, q0 the starting state
and F the set of final states. Recall the model in Ex. 3. If the proposition q is
interpreted as a flag for being a final state then the whole model can easily be
viewed as an NFA. In this context the formula

ϕ0 :=
(
μXτ1.λZ.Z ∨

∨
a∈Σ

X [a]Z
) ¬q

translates to “there is a word w, s.t. all states reachable under w are non-final”.
NFA-UNIV is solved by checking whether or not the starting state satisfies this
formula.

Model Checking the First-Order Fragment of Higher-Order Fixpoint Logic 71

 0
 5
 10
 15
 20
 25
 30
 35
 40
 45

 0
 0.5

 1
 1.5

 2
 2.5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 10

 20

 30

 40

 50

Avg. number of arguments

Transition density (r)

Density of final states (f)

Avg. number of arguments

Fig. 3. Number of arguments in function table (n = 10)

4.1 Local Fixpoint Computation in Practice

We now give empirical evidence of the benefits of local fixpoint computations
and demonstrate that the necessity to compute larger fragments of the complete
domain rarely occurs. Algorithm MC has been implemented as a prototype in
OCaml and run on the Tabakov/Vardi random model for NFAs in order to
guarantee a wide spectrum of test cases. Two parameters s and t determine the
number of randomly chosen final states and transitions in an NFA for a given
number of states n. The ratios f := s

n and r := t
n are called final state density

and transition density respectively. For further details see [8]. To perform the
universality tests, we fix n = 10 and generate 20 random NFAs for each of 250
pairs (r, f) with 0 ≤ r ≤ 2.5 and 0 ≤ f ≤ 1.

The average number of arguments needed in the fixpoint computation by
algorithm MC in dependence of (r, f) is depicted in Fig. 3. Note that the number
of possible arguments |2S | is 1024 in this case. Fig. 3 shows that in all cases the
algorithm is far away from exhaustive fixpoint calculation on the full argument
set 2S . Even for the most difficult instances which in our tests are f = 0.1 and
r between 1.4 and 1.6, the number of needed arguments never gets anywhere
near that. The average number of arguments distributed over all 5000 tests is
just 13.2 and the highest number of arguments ever measured during the tests
is 109.

It is reasonable to assume that the approach of guiding the fixpoint itera-
tions locally through neededness analysis also proves to be successful in other
cases (on different formulas) unless the underlying models have been constructed
pathologically to enforce an exponential behaviour.

4.2 Optimising Algorithm MC w.r.t. a Fixed Formula

There are still several standard performance enhancements available, e.g. ac-
celeration of the fixpoint computation by exploiting monotonicity, in order to
optimise this algorithm.

However, we need to observe that algorithm MC will be used on fixed formulas
in most cases. In many verification tasks the property to be checked is fixed
while the models change. This holds especially for non-regular properties since
non-regularity often eliminates dependence on model sizes, etc. It is therefore

72 R. Axelsson and M. Lange

much more beneficial to regard MC as a template for specialised cases rather
than a general algorithm for all kinds of verification purposes. Model checking a
fixed formula bears a higher potential for algorithm optimisations which possibly
cannot be achieved for varying formulas.

Consider the algorithm’s behaviour on the formula of Ex. 3 as depicted in
the table there. If we follow the succession of the fixpoint iteration closely, a
simple pattern can be observed: the iterated function λY.Y ∨∨

a∈Σ X [a]Y takes
an argument (initially the set [[¬q]]A) and returns its union with the set of its
recursive [a]-predecessors for all a ∈ Σ. But this set is exactly the union of
the elements of Dom(X), each of them the result of a single [a]Y computation
step. So the return value does not provide any additional information if the set
of needed arguments is known. Furthermore, since only a union operation is
performed, it suffices to keep track of ⊆-maximal sets of arguments. This insight
immediately leads to an optimisation by discarding all redundant information. It
is obviously not necessary to protocol all these values in the fixpoint iterations –
when in the end all we want to know is whether or not the initial automaton state
is included in the union over all arguments. It suffices to iterate this schema until
no more arguments enter the table, and then to form their unions. This, however,
means that, by monotonicity of the [a]-operators, one can always discard the
larger of two arguments that are comparable w.r.t. ⊆ which leads to the idea of
storing Dom(X) as an antichain.

An antichain over an NFA A is a set C of pairwise incomparable (w.r.t. set
inclusion) sets of states of A. These antichains form a complete lattice when
equipped with the following order.

C
 C′ iff ∀C ∈ C ∃C′ ∈ C′ s.t. C ⊆ C′

This naturally induces a notion of supremum C � C′ as the smallest antichain
(w.r.t.
) which contains both C and C′.

The basic principle of the optimization is to populate an antichain with sets
of states which uphold the possibility of generating a word that is not included
in the language of the automaton. This can be achieved by loosely speaking
applying the modal [a]-operator (for all a ∈ Σ) to its elements and minimizing
the resulting set to an antichain. More formally, define the following monotone
operation on antichains:

CPre(C) := �{S ⊆ Q | ∃T ∈ C ∃a ∈ Σ s.t. S = [[[a]X]]A{X �→T}}�

where the �·� operator discards all sets which are subsumed by another set in
this set of sets – i.e. it makes an antichain of the expression on the right-hand
side.

Henzinger et al. show how to characterise NFA-UNIV using least fixpoints in
antichain lattices.

Proposition 1. [10, Thm. 2] Let A be an NFA over the alphabet Σ with state
set Q, initial state q0 and final states F . Then L(A) �= Σ∗ iff {{q0}}
 �{C |
CPre(C) � {Q \ F}
 C}.

Model Checking the First-Order Fragment of Higher-Order Fixpoint Logic 73

Of course, the least fixpoint can be computed by a straight-forward fixpoint
iteration: Define C0 := {∅} and Ci := CPre(Ci−1)�{Q \F}. The following table
compares in parallel two runs of MC and the antichain method on Ex. 3:

X {3} {2, 3} {1, 2, 3}
0 ∅
1 {3} ∅
2 {3} {2, 3} ∅
3 {2, 3} {2, 3} {1, 2, 3}
4 {2, 3} {1, 2, 3} {1, 2, 3}
5 {1, 2, 3} {1, 2, 3} {1, 2, 3}
6 {1, 2, 3} {1, 2, 3} {1, 2, 3}

C0 := {∅}
C1 := CPre(C0) � {Q \ F} = {{3}}
C2 := CPre(C1) � {Q \ F} = {{2, 3}}
C3 := CPre(C2) � {Q \ F} = {{1, 2, 3}}
C4 := CPre(C3) � {Q \ F} = {{1, 2, 3}}

The cost reduction of the antichain method is established by the fact that
it simply computes �Dom(X)�, i.e. the antichain of the currently present argu-
ments. One can show that �Dom(X i)� = Ci+1, where Dom(X i) is the currently
needed domain of the ith fixpoint approximation w.r.t. a given argument and a
partial evaluation according to MC .

It turns out that the result of this optimisation is exactly the method devised
by Henzinger et al. in [10]. Their tool shows a very good performance on the
universality test for NFAs and does apparently outperform the classical powerset
construction by several orders of magnitude.

5 Conclusion and Outlook

We have presented a model checking algorithm for HFL1. This extends the
scope of properties which can automatically be checked on finite state systems
way beyond that of regular ones whilst keeping the complexity at most singly
exponential in the size of the system. In order to avoid exponential best-case
behaviour we suggest to localise computations of fixpoints in function spaces.

This algorithm fully supports symbolic model checking using a BDD library.
A prototypical implementation has been created which shows the gain of lo-
cal fixpoint computations in this setting. This approach is most successful on
instances with fixed formulas. This allows to optimise algorithm MC further
w.r.t. that particular formula as seen with the NFA-UNIV example where a rig-
orous optimisation of algorithm MC yields the competitive antichain algorithm
of Henzinger et al.

5.1 Other Hard Decision Problems as Model Checking Instances

By not just restricting the term “model checking” to a method used in automatic
program verification but understanding it as a general logic problem we can
obtain BDD-based algorithms for various other problems as well. Note that NFA-
UNIV is PSPACE-complete, and it is therefore reasonable to try to encode the
standard PSPACE-complete problem QBF as an HFL1 model checking problem.

It is well-known that every quantified Boolean formula can be put into prenex
CNF normal form Q1x1. . . .Qnxn.

∧
i

∨
ji

li,ji with the Qk ∈ {∃, ∀}, and the li,ji

74 R. Axelsson and M. Lange

0

1

0

1

1

11

0

0

1

1

0

0, 1 0, 1 0, 1

0, 10, 1

0, 1 0, 1 0, 1

0, 1

∀∃

1

1

1

0

0

0, 1 0, 1

1

0

”x2 ∨ ¬x4”
”∃x1.∀x2.∃x3.∀x4”

∃ ∀

0, 1

”x1 ∨ ¬x2 ∨ ¬x3” ”x1 ∨ ¬x3 ∨ x4”

c

Fig. 4. A transition system representation of a QBF formula

literals over the variables x1, . . . , xn. The problem QBF is to decide whether or
not such a formula evaluates to 1 under the usual interpretation of the Boolean
operators and the quantifiers over the domain {0, 1}.

With each QBF formula Φ we associate a loop-free transition system TΦ which
is exemplarily shown in Fig. 4 for Φ = ∃x1.∀x2.∃x3.∀x4.(x2 ∨¬x4)∧ (x1 ∨¬x3 ∨
x4)∧(¬x1∨¬x2∨x3). It uses atomic propositions ∃, ∀ to mark the type of quan-
tification over a variable, c to indicate the branching into the different clauses,
and 1 to mark the value of a clause under an assignment valuation given by a
path through each clause’s component. Its actions are 0 and 1 for representing
variable values, and an anonymous one for branching into different clauses and
for separating the quantifiers in the prefix.

Evaluation to 1 of Φ can now be expressed in HFL1 as follows.

ϕQBF :=
(
μXτ1.λZ.

(
c → [−]Z

) ∧ (∃ → 〈−〉(X 〈0〉Z) ∨ 〈−〉(X 〈1〉Z)
) ∧

(∀ → 〈−〉(X 〈0〉Z) ∧ 〈−〉(X 〈1〉Z)
))

1

Again, ϕQBF does not depend on the underlying QBF formula Φ. It is therefore
possible to obtain a (BDD-based – if desired) QBF solver by analysing the
behaviour of algorithm MC on ϕQBF and specialised transition systems TΦ. For
example, it is not hard to see that the fixpoint iteration always terminates after
a number of steps given by the length of the quantifier prefix. It can therefore be
made explicit through a for-loop. Furthermore, antichains can also be used to
replace the arguments of the function table. Preliminary results show that this
is far from yielding a competitive QBF solver. However, it may be interesting to
investigate combinations of this bottom-up approach with existing solvers that
mostly work top-down.

Algorithms for other problems can also be obtained by instantiating the tem-
plate MC with a particular formula: satisfiability of modal logic where it remains
to compare the result to the BDD-based algorithm by Pan et al. [7]; various

Model Checking the First-Order Fragment of Higher-Order Fixpoint Logic 75

problems from automata-theory like emptiness of alternating finite automata;
etc. Due to space restrictions we will elaborate on details of those elsewhere.

5.2 Encoding Optimisation Problems

Some optimisation problems that require more than a yes/no answer can also
be dealt with using an extension of algorithm MC that keeps track of parts
of the solution to be computed. We sketch a new algorithm for the Shortest
Common Supersequence problem (SCS): given a set {w1, . . . , wn} of finite words
of some alphabet Σ, find a shortest v ∈ Σ∗ that contains all wi as subwords. The
algorithm is obtained from the template MC using an antichain optimisation as
in the case of NFA-UNIV.

The first step consists of building a transition system T , here depicted for the
words {aaba, abab, aaa}.

a a b a

a, b a, b

q a a a

a, ba, b

a a, b

q

q

s

a, b b a b

00 10 20 30 40

01 11 21 31 41

02122232

Next, consider the HFL1 formula ϕSCS :=
(
μXτ1 .λZ.[−]Z ∨ ∨

a∈Σ X 〈a〉Z)
q.

Each state in T satisfies ϕSCS which only reflects the fact that for every finite
set of words there is a word containing all of them. However, suppose the argu-
ments in the table for the fixpoint iteration in this formula are annotated in the
following way: the initial argument receives the annotation ε, and if an argument
Z with annotation w causes another argument to be created in the table through
the recursive call of X 〈a〉Z then the new argument receives the annotation aw.

Now note the apparent similarity of this formula with the one from Ex. 3
expressing NFA-UNIV. In both cases the subformulas X ψ(Z) only occur under
a disjunction. Hence, the argument row of the function table can again be opti-
mised into an antichain, and the evaluation of the formula can be regarded as a
fixpoint iteration in an antichain lattice. It terminates when the topmost state of
T occurs in an element of the current antichain, and that element’s annotation
is the solution to the SCS problem.

The computation of the solution aaabab using annotated antichains is found
as follows. Let I := {40, 41, 32}. For a set S we write SwI to abbreviate (S ∪ I)w

where the superscript simply denotes the word annotation of this set.

C0 := {Iε}
C1 := {{22, 30}aI , {31}bI}
C2 := {{22, 21, 30}abI , {22, 12, 30}aaI , {31, 20}baI }
C3 := {{22, 21, 30, 10}abaI , {22, 12, 02, 30}aaaI , {31, 11, 20}babI }
C4 := {{22, 21, 01, 30, 10}ababI , {22, 12, 02, 30}aaaaI , {22, 12, 30, 00}aabaI ,

{02, 31, 20}baaaI , {31, 11, 20}babaI }

76 R. Axelsson and M. Lange

C5 := {{. . .}ababaI , {. . .}abaaaI , {. . .}aaaaaI , {22, 12, 01, 30, 00}aababI ,

{. . .}baabaI , {. . .}baaaaI , {. . .}bababI }
C6 := { . . . , {22, 12, 02, 00, 01}aaababI , . . .}

Finally, since a set containing {00, 01, 02} has been found, s is included in the
next iteration, and the solution is the annotation of this witnessing set.

We will compare this new algorithm for SCS to existing ones and investigate
its use in bio-informatics for example elsewhere.

References

1. Alur, R., Etessami, K., Madhusudan, P.: A temporal logic of nested calls and
returns. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp.
467–481. Springer, Heidelberg (2004)

2. Axelsson, R., Lange, M., Somla, R.: The complexity of model checking higher-order
fixpoint logic. In: Logical Methods in Computer Science (accepted for publication,
2007)

3. Emerson, E.A.: Uniform inevitability is tree automaton ineffable. Information Pro-
cessing Letters 24(2), 77–79 (1987)

4. Emerson, E.A., Jutla, C.S.: Tree automata, μ-calculus and determinacy. In: Proc.
32nd Symp. on Foundations of Computer Science, San Juan, Puerto Rico, pp.
368–377. IEEE Computer Society Press, Los Alamitos (1991)

5. Jørgensen, N.: Finding fixpoints in finite function spaces using neededness analysis
and chaotic iteration. In: LeCharlier, B. (ed.) SAS 1994. LNCS, vol. 864, pp. 329–
345. Springer, Heidelberg (1994)

6. Müller-Olm, M.: A modal fixpoint logic with chop. In: Meinel, C., Tison, S. (eds.)
STACS 99. LNCS, vol. 1563, pp. 510–520. Springer, Heidelberg (1999)

7. Pan, G., Sattler, U., Vardi, M.Y.: BDD-based decision procedures for the modal
logic K. Journal of Applied Non-Classical Logics 16(1-2), 169–208 (2006)

8. Tabakov, D., Vardi, M.Y.: Experimental evaluation of classical automata construc-
tions. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835,
pp. 396–411. Springer, Heidelberg (2005)

9. Viswanathan, M., Viswanathan, R.: A higher order modal fixed point logic. In:
Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 512–528.
Springer, Heidelberg (2004)

10. De Wulf, M., Doyen, L., Henzinger, T.A., Raskin, J.-F.: Antichains: A new algo-
rithm for checking universality of finite automata. In: Ball, T., Jones, R.B. (eds.)
CAV 2006. LNCS, vol. 4144, pp. 17–30. Springer, Heidelberg (2006)

Monadic Fragments of Gödel Logics:

Decidability and Undecidability Results

Matthias Baaz, Agata Ciabattoni�, and Christian G. Fermüller��

Technische Universität Wien, Vienna, Austria

Abstract. The monadic fragments of first-order Gödel logics are in-
vestigated. It is shown that all finite-valued monadic Gödel logics are
decidable; whereas, with the possible exception of one (G↑), all infinite-
valued monadic Gödel logics are undecidable. For the missing case G↑
the decidability of an important sub-case, that is well motivated also
from an application oriented point of view, is proven. A tight bound for
the cardinality of finite models that have to be checked to guarantee va-
lidity is extracted from the proof. Moreover, monadic G↑, like all other
infinite-valued logics, is shown to be undecidable if the projection op-
erator � is added, while all finite-valued monadic Gödel logics remain
decidable with �.

1 Introduction

Many-valued logics have various applications in computer science (see, e.g., [10]).
They are particularly useful for modeling reasoning with graded notions and
vague information. In the latter context, the family of (finite- and infinite-valued)
Gödel logics appears as a prominent example. These are the only many-valued
logics that are completely specified by the order structure of the underlying set of
truth values. This fact characterizes Gödel logics as logics of comparative truth
and renders them an important case of so-called fuzzy logics (see [11]).

Propositional finite-valued Gödel logics were introduced by Gödel [9] to show
that intuitionistic logic does not have a characteristic finite matrix. They were
generalized by Dummett [7] to an infinite set of truth values. First-order Gödel
logic based on the closed unit interval [0, 1] as set of truth values was introduced
and axiomatized by Takeuti and Titani in [15] and called “intuitionistic fuzzy
logic”, there. In a more general view, the truth values for Gödel logics can be
taken from any V ⊆ [0, 1], that contains 0 and 1, and is closed under infima and
suprema. (Gödel logic coincides with classical logic for V = {0, 1}.) In contrast
to the propositional case, where there is only one infinite-valued Gödel logic with
respect to validity, different sets V of truth values determine different first-order
Gödel logics GV , in general. As shown in [4], GV is recursively axiomatizable
only when V is either finite or is order isomorphic to [0, 1] or to {0} ∪ [12 , 1].

� Supported by Austrian science foundation (FWF), project MAT P18731.
�� Supported by Austrian science foundation (FWF), project MAT P18563-N12.

N. Dershowitz and A. Voronkov (Eds.): LPAR 2007, LNAI 4790, pp. 77–91, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

78 M. Baaz, A. Ciabattoni, and C.G. Fermüller

We investigate monadic Gödel logics, i.e. first-order GV in which all predicate
letters are unary (monadic). Many-valued monadic predicates can be interpreted
as fuzzy sets and therefore many-valued monadic logics suffice to formalize the
central concept of a fuzzy IF-THEN rule, like: ”IF A(x) and B(x) THEN C(x)”,
where the predicates A, B, and C are fuzzy, i.e., they apply to x possibly only
to some degree.

We show that all finite-valued monadic Gödel logics are decidable, while for
infinite sets V of truth values all monadic Gödel logics are undecidable, with
the possible exception of monadic G↑, where V = {1 − 1/n : n ≥ 1} ∪ {1}.
The missing case, G↑, is interesting, since it coincides with the intersection
of all monadic finite-valued Gödel logics. Its decidability status remains open.
However, we prove the decidability of an important sub-case, that we call the
untangled fragment of G↑.

The untangled fragment of a logic consists of those (monadic) formulas in
which each subformula contains at most one free variable. To appreciate the
usefulness of this fragment, notice that its classical counterpart was used in
[12] to formalize the knowledge base of the medical expert system CADIAG-1,
represented as (classical) IF-THEN rules. This formalization made it possible to
prove the decidability of the consistency checking problem in CADIAG-1 and
led to a simple algorithm to actually carry out such checks.

Our decision procedure for the untangled fragment of G↑ also provides a tight
bound for the cardinality of finite models that have to be checked to guarantee
validity. This bound implies a considerable gain in efficiency for the correspond-
ing fragments of finite-valued Gödel logics (including classical logic). An elegant
axiomatization for the untangled fragment of G↑ can also be extracted from the
decision procedure, contrasting the fact that G↑ is not recursively axiomatiz-
able [3,4].

We also investigate monadic Gödel logics extended with the projection op-
erator �, see [1]. This operator maps �P to the distinguished truth value 1 if
the value of P equals 1, and to 0 otherwise, and thus allows to recover classical
reasoning inside Gödel logics. The addition of � does not affect the decidability
of the finite-valued logics, however all infinite-valued monadic Gödel logics, in-
cluding G↑, turn out to be undecidable in presence of �, even when restricted
to their prenex fragments.

2 Basic Facts About Gödel Logics

Kurt Gödel [9] has introduced the following truth functions for conjunction,
disjunction, and implication:

‖A ∧ B‖I = min(‖A‖I , ‖B‖I), ‖A ∨ B‖I = max(‖A‖I , ‖B‖I),

‖A → B‖I =

{
1 if ‖A‖I ≤ ‖B‖I
‖B‖I otherwise.

Monadic Fragments of Gödel Logics: Decidability and Undecidability Results 79

Formulas are evaluated over some set V of truth values, where {0, 1} ⊆ V ⊆ [0, 1].
The propositional constant ⊥ is semantically fixed by ‖⊥‖I = 0. ¬A abbreviates
A → ⊥ and A ↔ B abbreviates (A → B) ∧ (B → A); therefore

‖¬A‖I =

{
1 if ‖A‖I = 0
0 otherwise

‖A ↔ B‖I =

{
1 if ‖A‖I = ‖B‖I
min(‖A‖I , ‖B‖I) otherwise.

Obviously, ‖.‖I extends every interpretation I, that maps propositional variables
into V , uniquely to arbitrary propositional formulas. I satisfies a formula F and
is called a model of F if ‖F‖I = 1; F is valid if all interpretations are models.
We identify a logic with its set of valid formulas.

Different choices of V in general induce different logics. The truth functions,
above, imply that only the respective order structure, but not the particular
arithmetic values of the truth values are relevant for validity or satisfiability. If
|V | = n (n ≥ 2) the set of valid formulas is called the n-valued Gödel logic. Ob-
viously, two-valued Gödel logic is classical logic. At the propositional level there
is only one infinite-valued Gödel logic G∞, which is also the intersection of all
finite-valued Gödel logics. Dummett [7] has shown that G∞ can be axiomatized
by adding the linearity axiom

(A → B) ∨ (B → A) (1)

to any Hilbert-style system for intuitionistic logic. Therefore G∞ is sometimes
also called Gödel-Dummett logic or Dummett’s LC. More recently G∞ emerged
as one of the main formalizations of fuzzy logics (see, e.g., [11]). In this context
it is very useful to enrich the logics by adding the unary operator � with the
following meaning [1]:

‖�A‖I =

{
1 if ‖A‖I = 1
0 otherwise.

The situation for infinite sets of truth values gets more interesting at the
first-order level. We introduce predicates and quantifiers as follows. Instead of
being propositional variables, atomic formulas are now of the form P (t1, . . . , tn),
where P is a predicate symbol and t1, . . . , tn are terms, where a term, here, is
either an (object) variable or a constant symbol. An interpretation I consists
of a non-empty domain D and a signature interpretation vI that maps constant
symbols and object variables to elements of D. Moreover, vI maps every n-ary
predicate symbol P to a function from Dn into V . The truth value of an atomic
formula P (t1, . . . , tn) is thus defined as

‖P (t1, . . . , tn)‖I = vI(P)(vI(t1), . . . , vI(tn)).

To fix the meaning of quantifiers we define the distribution of a formula A with
respect to a free variable x in an interpretation I as distrI(A(x)) = {‖A(x)‖I′ |
I ′ ∼x I}, where I ′ ∼x I means that I ′ is exactly as I with the possible exception

80 M. Baaz, A. Ciabattoni, and C.G. Fermüller

of the domain element assigned to x. The quantifiers correspond to the infimum
and supremum, respectively, in the following sense:

‖(∀x)A(x)‖I = inf distrI(A(x)) ‖(∃x)A(x)‖I = sup distrI(A(x)).

Note that the above definition of an interpretation as a pair (D, vI) covers also
classical logic. However, to enhance clarity, we will use (in Sect. 4, below) ⊥ and
� instead of 0 and 1, respectively, for the classical truth values.

In the following we investigate (fragments of) first-order Gödel logics, with
and without the operator �. Every truth value set V , {0, 1} ⊆ V ⊆ [0, 1], that is
closed under suprema and infima induces a first-order logic GV over the language
without � and a logic G�V if � is present. Standard Gödel logic is G[0,1]; i.e.,
the logic over the full real unit interval as truth value set, see, e.g., [11,15]. We
use Gn to denote the n-valued first-order Gödel logic for n ≥ 2. G↑ results from
taking V = {1} ∪ {1 − 1

k | k ≥ 1} (or any other order isomorphic truth value
set); G↓ arises from V = {0} ∪ { 1

k | k ≥ 1}.
Like in intuitionistic logic, also in Gödel logics (with or without �) quantifiers

cannot be shifted arbitrarily. In other words, arbitrary formulas are not equiv-
alent to prenex formulas, in general. However, we have the following (stated in
[4] without proof):

Proposition 1. The following quantifier shift laws, where x is not free in B,
and where Q denotes either ∃ or ∀ (uniformly over a formula) are valid in all
Gödel logics:

(Qx)(A ∧ B) ↔ ((Qx)A ∧ B) (2)
(Qx)(A ∨ B) ↔ ((Qx)A ∨ B) (3)
(∃x)(A → B) → ((∀x)A → B) (4)
(∃x)(B → A) → (B → (∃x)A) (5)
(∀x)(A → B) ↔ ((∃x)A → B) (6)
(∀x)(B → A) ↔ (B → (∀x)A) (7)

Proof. Given the truth functions for quantifiers, presented above, it suffices to
note that, for all sets of reals A and all reals b the following statements hold.

– Corresponding to (2): inf{min(a, b) | a ∈ A} = min(inf A, b) and
sup{min(a, b) | a ∈ A} = min(sup A, b).

– Corresponding to (3): inf{max(a, b) | a ∈ A} = max(inf A, b) and
sup{max(a, b) | a ∈ A} = max(sup A, b).

– Corresponding to (4): If a ≤ b for some a ∈ A, then inf A ≤ b.
– Corresponding to (5): If b ≤ a for some a ∈ A, then b ≤ sup A.
– Corresponding to (6): a ≤ b for all a ∈ A iff sup A ≤ b.
– Corresponding to (7): b ≤ a for all a ∈ A iff b ≤ inf A.

(In fact almost all of these schemes are already intuitionistically valid.) �

Monadic Fragments of Gödel Logics: Decidability and Undecidability Results 81

Note that the schemes that are dual to (4) and (5) are not valid in general (but
are valid in G↑ and Gn, n ≥ 2; see Proposition 3). Counterexamples are readily
obtained for standard Gödel logic G[0,1].

To emphasize that different sets of valid formulas result from different V , in
general, consider the following formula schemes:

(∃x)(A(x) → (∀x)A(x)) (8)
(∃x)((∃y)A(y) → A(x)) (9)

Any instance of (8) is satisfied in an interpretation I if and only if the infimum of
distrI(A(x)) is a minimum, i.e., an element of distrI(A(x)). Therefore (8) is valid
in G↑ and in any Gn, but not, e.g., in G[0,1] or in G↓. Similarly (9) expresses that
every supremum of a distribution is a maximum, with the possible exception of
the value 1. Therefore (9) is valid in G↓, in G↑, and in all Gn for n ≥ 2, but not,
e.g., in G[0,1]. In fact there are infinitely many different infinite-valued first-order
Gödel logics, according to [4]. The conjecture that there are just countable many
different Gödel logics has recently been settled in [5]. G[0,1] and G�[0,1] are well
known to be recursively axiomatizable, see, e.g., [11]. In contrast, G↑ and G↓
are not recursively axiomatizable, see [3,4].

The fact that G↑ =
⋂
n≥2 Gn also holds at the first-order level, see [4]. How-

ever, this is no longer the case if we add the projection operator �. In the en-
riched language, the intersection of all finite-valued Gödel logics is not a Gödel
logic:

Proposition 2. G�V �= ⋂
n≥2 G�n for every V .

Proof. Since G�n is a proper subset of G�m whenever n > m,
⋂
n≥2 G�n cannot

coincide with any finite-valued Gödel logic. To show that
⋂
n≥2 G�n also cannot

be an infinite-valued Gödel logic, consider the formula

�(∃x)A(x) → (∃x)�A(x). (10)

It is valid in all finite-valued Gödel logics and therefore also in
⋂
n≥2 G�n . But

not every interpretation I for G�↑ satisfies all instances of (10). Take, e.g., the
positive integers as domain of I and let vI(P)(n) = 1 − 1

n for some predicate
symbol P . We obtain ‖(∃x)P (x)‖I = ‖�(∃x)P (x)‖I = 1 and ‖�P (x)‖I =
‖(∃x)�P (x)‖I = 0. Consequently, G�↑ �= ⋂

n≥2 G�n . On the other hand, G↑ =⋂
n≥2 Gn ⊂ ⋂

n≥2 G�n and therefore all instances of schemes (8) and (9) are in⋂
n≥2 G�n . As noted above, this implies that in all interpretations of

⋂
n≥2 G�n

every infimum of a distribution is a minimum and every supremum of a distribu-
tion is either 1 or a maximum. In other words: if

⋂
n≥2 G�n were identical with

some GV , then its set V of truth values could not contain any accumulation
point except 1. But all infinite subsets of [0, 1] containing 0 and 1, that satisfy
this property are order isomorphic to {1} ∪ {1 − 1

k | k ≥ 1}, which is the case
that we have excluded above. �
Remark 1. Note that we only had to refer to a unary predicate symbol in the
above proof. I.e., Proposition 2 holds already for the monadic fragments.

82 M. Baaz, A. Ciabattoni, and C.G. Fermüller

3 Decidability of All Finite-Valued Monadic Gödel Logics

From now on, we will restrict our attention to monadic Gödel logics, i.e., all
predicate symbols are unary. G2 is classical logic and therefore, as is well known,
monadic G2 is decidable, whereas already a single binary predicate symbol leads
to undecidability. It is straightforward to generalize this classic result to all finite-
valued logics.

Theorem 1. Monadic G�n is decidable for all n ≥ 2.

Proof. Let A be any monadic formula that is not valid in G�n . Hence, there exists
an interpretation I based on the set of truth values V = { j

n−1 | 0 ≤ j ≤ n − 1}
such that ‖A‖I < 1. Let {P1, . . . , Pk} be the set of different predicate symbols
occurring in A. I induces the following equivalence relation ≡I on the domain
D of I:

c ≡I d ⇐⇒df vI(Pi)(c) = vI(Pi)(d) for all i ∈ {1, . . . , k}.
Note that c ≡I d expresses that the domain elements c and d are indistin-
guishable with respect to the interpretation I. Let [c]I denote the equivalence
class of the element c ∈ D, induced by ≡I . We define a new interpretation I ′
with domain D′ = {[c]I | c ∈ D}. D′ is finite, since according to the defini-
tion of ≡I there can be at most nk elements that are pairwise inequivalent. Let
vI′(Pi)([c]I) = vI(Pi)(c) for i ∈ {1, . . . , k}. It is straightforward to check that
I ′ is well-defined and that ‖A‖I′ = ‖A‖I. This means that A is valid in G�n iff
it is satisfied in all interpretations with domain {1, . . . , nk}. Since there are at
most nk·n

k

different such interpretations, and since evaluation of formulas over
finite domains is computable, we have proved the decidability of G�n . �

Remark 2. Clearly, the ‘filtration argument’ of the above proof applies to the
monadic fragments of arbitrary finite-valued logics, not just of Gödel logics. (In
fact, the proof is probably ‘folklore’. To render the paper self contained, and
since there seems to be no appropriate reference in the literature, we decided to
include it here.)

Remark 3. It is well known that the bound nk for the cardinality of relevant
model domains is optimal in the case n = 2, i.e., for classical logic. Better
bounds might be achievable in general; however all such bounds seem to depend
on the number of truth values n and are exponential in the number of different
predicate symbols k. We show in Sect. 5 that much better bounds can be achieved
for an interesting, non-trivial sub-case of the monadic fragments.

4 Undecidability of Infinite-Valued Gödel Logics

We prove the undecidability of each Gödel logic GV , where the set V of truth
values contains infinitely many values below some value that is distinct from 1.
Our proof adapts and generalizes the undecidability proof sketched in [8] for

Monadic Fragments of Gödel Logics: Decidability and Undecidability Results 83

monadic ‘LC with constant domains’, which coincides with monadic G[0,1]. With
the notable exception of G↑, all infinite-valued Gödel logics satisfy the above
condition on V , see Corollary 1.

We will also consider infinite-valued Gödel logics extended with the projection
operator �. Monadic prenex G�[0,1] was shown to be undecidable in [2]. This
result is generalized below, where we show that in fact for all infinite V , monadic
G�V is undecidable, even when restricted to prenex formulas.

Theorem 2. Let GV be a Gödel logic, where the set V of truth values satisfies
the condition: ∃p ∈ V, p < 1, such that Vp = {y ∈ V | y ≤ p} is infinite. Validity
in GV is undecidable for monadic formulas.

Proof. The classical theory CE of two equivalence relations ≡1 and ≡2 was
shown to be undecidable in [14]. Let GV be any Gödel logic, where V satisfies
the condition: ∃p ∈ V, p < 1, such that Vp = {y ∈ V | y ≤ p} is infinite. We
faithfully interpret CE in the monadic fragment of GV . The idea is to translate
formulas of the form x ≡i y into formulas Pi(x) ↔ Pi(y), i = 1, 2, of the monadic
fragment of GV , where P1 and P2 are different unary predicate symbols. Without
loss of generality, we can assume formulas in CE to be in prenex normal form.
Let S be the following formula of this kind:

Q∗
∧

(
∧
j

xj ≡ yj →
∨
k

uk ≡ vk),

where each occurrence of ≡ is either ≡1 or ≡2, and where Q∗ is a string (Q1z1) . . .
(Qnzn) of n quantifier occurrences. I.e., for all i = 1, . . . , n, Qi ∈ {∀, ∃}, and zi
denotes some variable. Let S� be the following monadic formula:

Q∗
∧(∧

j

(P (xj) ↔ P (yj)) → [(
∨
k

P (uk) ↔ P (vk)) ∨ (∃x)P1(x) ∨ (∃x)P2(x)]
)
,

where P is P1 or P2, according to whether ≡ is ≡1 or ≡2. We show that S is
valid in CE if and only if S� is valid in GV .

Let M = (D, vM) be an interpretation of CE. By the Löwenheim-Skolem
theorem we can assume D to be countable without loss of generality. We define
a corresponding interpretation I(M) = (D, vI(M)) of G↑ as follows. We set
vI(M)(z) = vM(z) for all variables z. (It suffices to work in a language without
constant symbols.) Let us use ≡Mi to denote the equivalence relation vM(≡i).
Note that ≡Mi induces a partition of the domain D into equivalence classes
Ec
i = {d | d ≡Mi c}, where c ∈ D (i ∈ {1, 2}). Since Vp = {y ∈ V | y ≤ p} is

infinite and D is countable, we can take some subset W = {w0, w1, . . .} of Vp as
the set of (unique) indices in an enumeration Ew0

i , Ew1
i , . . . without repetitions

of all such equivalence classes. (This enumeration is assumed to be the same for
all interpretations that only differ in their variable assignments.) Referring to
this enumeration of equivalence classes, we can define vI(M) by

vI(M)(Pi)(d) = wk if and only if d ∈ Ewk

i ,

where e, d ∈ D and i = 1, 2.

84 M. Baaz, A. Ciabattoni, and C.G. Fermüller

Moreover, for each interpretation I = (D, vI) of GV we define the interpre-
tation M(I) = (D, vM(I)) of CE by

vM(I)(≡i)(d, e) = � if and only if vI(Pi)(d) = vI(Pi)(e).

for all d, e ∈ D and i = 1, 2.
We prove the following claims about I(M) and M(I) by induction on the

number n of quantifier occurrences in S and S�.

(⇒) For every interpretation M = (D, vM) of CE, where ‖S‖M = ⊥, we have
‖S�‖I(M) ≤ p.

(⇐) For every interpretation I of GV , where ‖S�‖I < 1, we have ‖S‖M(I) = ⊥.

Base case: n = 0 (i.e., there are no quantifiers).
(⇒) Let ‖S‖M = ⊥ for some interpretation M = (D, vM) of CE. By definition
of I(M), we have ‖Pi(x) ↔ Pi(y)‖I(M) = 1 if and only if ‖x ≡i y‖M = �. The
exhibited conjunct of S is evaluated to ⊥ in M if and only if ‖∧

j xj ≡ yj‖M = �
and ‖∨

k uk ≡ vk‖M = ⊥. This, in turn, implies ‖∧
j P (xj) ↔ P (yj)‖I(M) = 1

and ‖∨
k P (uk) ↔ P (vk)‖I(M) = maxk min(‖P (uk)‖I(M), ‖P (vk)‖I(M)) ≤ p.

Since ‖(∃x)P1(x) ∨ (∃x)P2(x)‖I(M) ≤ sup(Vp) = p, we obtain ‖S�‖I(M) ≤ p.

(⇐) Let I be an interpretation of GV , such that ‖S�‖I < 1. Then, for some
conjunct of S� (which without loss of generality we identify with the exhibited
one) we have

‖(
∨
k

P (uk) ↔ P (vk)) ∨ (∃x)P1(x) ∨ (∃x)P2(x)‖I < ‖
∧
j

P (xj) ↔ P (yj)‖I .

This implies ‖∧j P (xj) ↔ P (yj)‖I = 1, since ‖∧j P (xj) ↔ P (yj)‖I is either 1 or
not greater than sup{vI(Pi)(d) | d ∈ D, i = 1, 2} = ‖(∃x)P1(x) ∨ (∃x)P2(x)‖I .
By the definition of M(I) we have for all variables z, z′: ‖z ≡i z′‖M(I) = � if
and only if ‖Pi(z) ↔ Pi(z′)‖I = 1 (i = 1, 2). Therefore ‖∧

j xj ≡ yj‖M(I) = �
and ‖∨

k uk ≡ vk‖M(I) = ⊥. Hence ‖S‖M(I) = ⊥.

Inductive case: Assuming that the claims hold for S and S�, we have to show
that they also hold for S1 = (Qx)S and S�1 = (Qx)S�, where Q ∈ {∃, ∀} and x
denotes any variable.

Let S1 be (∃x)S. (⇒) If ‖(∃x)S‖M = ⊥ then ‖S‖M[d/x] = ⊥ for all d ∈ D,
where M[d/x] denotes an interpretation that is like M, except for assigning
the domain element d to the variable x. By the induction hypothesis we have
‖S�‖I(M[d/x]) ≤ p, where I(M[d/x]) is the interpretation of GV corresponding
to M[d/x]. By definition, the interpretations I(M[d/x]) are identical for all
d ∈ D, except for the element assigned to x, since we required the underlying
enumeration of equivalence classes to be the same for all I(M[d/x]). We thus
obtain supd∈D(‖S�‖I(M[d/x])) = ‖(∃x)S�‖I(M) = ‖S�1‖I(M) ≤ p, as required.

Similarly for (⇐): If ‖S�1‖I = ‖(∃x)S�‖I < 1 then ‖S�‖I[d/x] < 1 for all
d ∈ D, where I[d/x] denotes an interpretation for GV that is like I, except for
assigning the domain element d to the variable x. By the induction hypothesis we

Monadic Fragments of Gödel Logics: Decidability and Undecidability Results 85

have ‖S‖M(I[d/x]) = ⊥, where the interpretations M(I[d/x]) are identical for all
d ∈ D, except for the element assigned to x. We thus obtain ‖(∃x)S‖M(I) = ⊥
as required.

The case S1 = (∀x)S is analogous. �

Corollary 1. All infinite-valued monadic Gödel logics, with the possible excep-
tion of G↑, are undecidable.

Proof. Let V be any infinite set of reals, such that {0, 1} ⊆ V ⊆ [0, 1]. Suppose
V does not satisfy the condition of Theorem 2. Then V contains only finitely
many different elements below any given p < 1 for p ∈ V . It is not difficult to
see that all such V are order isomorphic to {1} ∪ {1− 1

n | n ≥ 1}; i.e., to the set
of truth values of G↑. �
Theorem 2 can be strengthened as follows, if we augment the language of our
logics by the projection operator �.

Theorem 3. Validity of monadic formulas in G�V , where V is infinite, is un-
decidable. This already holds for prenex monadic formulas.

Proof. Similarly to the proof of Theorem 2, above, we translate classical formulas
of the form x ≡i y into formulas �(Pi(x) ↔ Pi(y)) (i = 1, 2). More exactly, let
S be a formula of CE, like in the proof of Theorem 2. Let the corresponding
formula S��, to be interpreted in G�V , be

Q∗
∧

(
∧
j

�(P (xj) ↔ Pi(yj)) →
∨
k

�(P (uk) ↔ Pi(vk)).

The proof that S is valid in CE if and only if S�� is valid in G�V is analogous
to that of the corresponding claim in Theorem 2. However, in defining I(M)
we may now take any subset of (the infinite set) V as the set of indices in the
underlying enumeration of equivalence classes Ewk

i . The reason for this is that, in
any interpretation I, ‖�(P (x) ↔ P (y))‖I = 0 if vI(P)(vI(x)) �= vI(P)(vI(y)),
and ‖�(P (x) ↔ P (y))‖I = 1 otherwise. Hence S�� itself behaves like a classical
formula, i.e., it always evaluates either to 0 or to 1 Consequently, it suffices that
V is infinite to be able to encode different equivalence classes by different truth
values in the required way.

Finally note that, in contrast to Theorem 2, S�� is a prenex formula. �

5 Efficient Decidability of Untangled G↑ and Gn

As mentioned in the introduction, application oriented investigations draw our
attention to monadic formulas that exhibit a restricted form of overlap between
scopes of different quantifier occurrences. We propose to view quantifier scopes
as being entangled in general, but untangled in the following case.

Definition 1. A closed monadic formula F is called untangled if every subfor-
mula of F contains at most one free variable.

86 M. Baaz, A. Ciabattoni, and C.G. Fermüller

Example 1. (∃y)((∀x)P (x) → Q(y)) and (∀y)((∃z)((∀x)P (x) ∨ Q(z)) → P (y))
are untangled, but (∃y)(∀x)(P (x) → Q(y)) and (∃x)(∃y)(P (x) ∧ P (y)) are not
untangled.

The monadic fragment of classical logic was used in [12] to formalize the knowl-
edge base of the medical expert system CADIAG-1, represented as (classical)
IF-THEN rules. This formalization made it possible to prove the decidability of
the consistency checking problem in CADIAG-1 and led to a simple algorithm
to actually carry out such checks. An inspection of this application reveals that
in fact only the untangled fragment of classical logic is needed for this purpose.
In a many-valued context unary predicates are interpreted as fuzzy sets. This
allows to formalize fuzzy IF-THEN rules in the untangled fragments of many-
valued logics (including Gödel logics). Therefore (efficient) decision procedures
for these fragments are of particular interest for fuzzy expert systems.

Remember from Proposition 1 that most quantifier shift laws are valid in all
Gödel logics. For the decidability proof, below, we have to apply also the two
remaining quantifier shift laws, that are not valid, e.g., in G[0,1], but are valid
in G↑ and in Gn.

Proposition 3. The following schemes, where x is not free in B, are valid in G↑
and in Gn, for n ≥ 2:

((∀x)A(x) → B) → (∃x)(A(x) → B) (11)
(B → (∃x)A(x)) → (∃x)(B → A(x)) (12)

Proof. The underlying truth value set of G↑ is V = {1} ∪ {1 − 1
k | k ≥ 1}.

Therefore, for every formula A(x) and every interpretation I of G↑ there exists
an element e in the domain of I such that ‖A(x)‖I[e/x] = inf distrI(A(x)), where
I[e/x] is like I except (possibly) for assigning e to the variable x. Similarly, for
every formula A(x) and every interpretation I either ‖(∃x)A(x)‖I = 1 or there
exists an element e in the domain of I such that ‖A(x)‖I[e/x] = sup distrI(A(x)).
The validity of (11) and (12) follows directly from these observations. �

Definition 2. We define contexts (‘formulas with a place holder’) inductively
as follows (remember that ¬ and ↔ are derived connectives):

– the empty context [·] is positive;
– if C is a positive context and F is a formula then (C ∨F), (F ∨C), (C ∧F),

(F ∧C), (F → C), (∀x)C, and (∃x)C are positive contexts, but (C → F) is
a negative context;

– if C is a negative context and F is a formula then (C∨F), (F ∨C), (C∧F),
(F ∧C), (F → C), (∀x)C, and (∃x)C are negative contexts, but (C → F) is
a positive context.

The formula resulting from substituting the place holder [·] in context C by for-
mula A is denoted by C[A]. We use C[A]+ to indicate that the exhibited occur-
rence of the subformula A in the formula C[A] is positive, meaning that C is a
positive context. Likewise, C[A]− indicates a negative occurrence of A in C[A].

Monadic Fragments of Gödel Logics: Decidability and Undecidability Results 87

In C[(∃x)A]+ and in C[(∀x)A]− the exhibited quantifier occurrence is called
weak, while in C[(∃x)A]− and in C[(∀x)A]+ it is called strong.

Proposition 4. In all Gödel logics without � the following principles hold:

– If A → B is valid, then also C[A]+ → C[B]+ is valid;
– if A → B is valid, then also C[B]− → C[A]− is valid.

Proof. By induction on the complexity of C.
The base case, where C is the empty context (and therefore positive) trivially

holds.
We spell out two of the twelve different propositional cases of the induc-

tion step. The validity of A → B implies ‖A‖I ≤ ‖B‖I for every interpre-
tation I. By the induction hypothesis we have ‖C[A]+‖I ≤ ‖C[B]+‖I . Thus,
‖F∧C[A]+‖I = min(‖F‖I ,‖C[A]+‖I) ≤ min(‖F‖I,‖C[B]+‖I) = ‖F∧C[B]+‖I .
I.e., (F ∧ C[A]+) → (F ∧ C[B]+) is valid.

For a context of the form C[·]+ → F we have to show that (C[B]+ → F) →
(C[A]+ → F) is valid if ‖A‖I ≤ ‖B‖I for all I. (Remember that the occurrence
of A is negative in C+[A] → F .) We distinguish two cases.

(a) ‖C[B]+‖I ≤ ‖F‖I: By the induction hypothesis ‖C[A]+‖I ≤ ‖C[B]+‖I .
Therefore also ‖C[A]+‖I ≤ ‖F‖I and consequently ‖C[A]+ → F‖I = 1,
which implies that ‖(C[B]+ → F) → (C[A]+ → F)‖I = 1.

(b) ‖C[B]+‖I > ‖F‖I : this implies ‖C[B]+ → F‖I = ‖F‖I. If ‖C[A]+‖I ≤
‖F‖I then ‖C[A]+ → F‖I = 1. Otherwise ‖C[A]+‖I > ‖F‖I and con-
sequently also ‖C[A]+ → F‖I = ‖F‖I. In both cases ‖C[B]+ → F‖I ≤
‖C[A]+ → F‖I and therefore, again, ‖(C[B]+ → F) → (C[A]+ → F)‖I = 1.

All other propositional cases are similar. The quantifier cases are straightfor-
ward, too. We just present the case for (∀x)C[·]−. (The other cases are similar.)
Assume that A → B is valid, i.e., ‖A‖I ≤ ‖B‖I for all interpretations I. By
the induction hypothesis ‖C[B]−‖I ≤ ‖C[A]−‖I for all I. But this implies that
inf distrI(C[B(x)]−) ≤ inf distrI(C[A(x)]−) and therefore also ‖(∀x)C[B]−‖I ≤
‖(∀x)C[A]−‖I for all I; i.e., (∀x)C[B]− → (∀x)C[A]− is valid, too. �
Theorem 4. Untangled G↑ is decidable.

Proof. We first prove that untangled formulas in G↑ remain valid if all strong
quantifier occurrences are replaced by new constant symbols. To this aim it
suffices to show that

– C[(∀x)A(x)]+ is valid if and only if C[A(d)]+ is valid, and
– C[(∃x)A(x)]− is valid if and only if C[A(d)]− is valid,

where d is a constant that does not occur in C[A].
The ‘only if’ part of these claims follows directly from Proposition 4 and the

validity of (∀x)A(x) → A(d) and of A(d) → (∃x)A(x), respectively.
For the ‘if’ part note that the validity of F (d) implies the validity of (∀x)F (x)

if d does not occur in F : any interpretation I, where ‖(∀x)F (x)‖I < 1, can be
extended to include the new d in such a way that ‖(∀x)F (x)‖I = ‖F (d)‖I .
Therefore the claims follow, if the following schemes are valid:

88 M. Baaz, A. Ciabattoni, and C.G. Fermüller

– (∀x)C[A(x)]+ → C[(∀x)A(x)]+ and
– (∀x)C[A(x)]− → C[(∃x)A(x)]− ,

where the only free occurrences of x in C are in A(x) and A(x) is not in the
scope of any quantifier occurrence in C[A(x)]. The validity of these schemes is
obtained by repeatedly applying the quantifier shift laws of Propositions 1 and 3
in combination with the context rules of Proposition 4. (This is possible only
because the formulas are untangled; see Remark 4, below.)

So far, we have shown that every untangled formula F can be transformed (in
linear time) into a formula F ′ that only contains weak quantifier occurrences,
but is equivalent to F with respect to validity in G↑ (and Gn, see Remark 5,
below). Let us call such a formula weak. To obtain a decision procedure, we
finally prove that every weak formula G is valid if and only if it is satisfied by
all interpretations, where the size of the domain is bounded by the number of
constant symbols occurring in G.

Let I be an arbitrary interpretation and let d1, . . . , dn be the different constant
symbols occurring in a weak formula G. Let I ′ be the interpretation that is
obtained from I by removing from the domain D of I all elements except those
e ∈ D, where vI(di) = e for some i ∈ {1, . . . , n}. It remains to check that
‖G‖I < 1 implies ‖G‖I′ < 1. In other words: if there is a counter model for
G, then there is already one with a restricted domain, as indicated. To this
aim, note that the quantifier shift laws of Propositions 3 and 1 entail that every
weak G is equivalent to a formula of the form (∃x)G′(x), where G′(x) is weak,
too. Obviously, distrI′(G′(x)) ⊆ distrI(G′(x)). Since Y ⊆ X implies sup X ≥
sup Y , we obtain ‖G‖I = sup distrI(G′(x)) ≥ sup distrI′(G′(x)) = ‖G′‖I′. By
repeating this argument for all (weak) quantifier occurrences, we obtain ‖G‖I′ ≤
‖G‖I , as required.

Finally, remember that, in Gödel logics, it only depends on the relative order,
but not on the absolute values of assigned truth values different from 0 and 1,
whether a given interpretation satisfies a formula. This implies that the number
of different interpretations with finite domain is bounded by the size of the
domain and the number of relevant (unary) predicates symbols. Hence we have
shown that validity for untangled G↑ is decidable. �
Remark 4. Note that, in proving the validity of (∀x)C[A(x)]+ → C[(∀x)A(x)]+

and of (∀x)C[A(x)]− → C[(∃x)A(x)]−, we had to shift quantifiers in and out
(depending on the type of context). But those shifts are only over closed sub-
formulas. This is where the defining condition for untangled formulas is used.
In contrast, quantifiers cannot be moved into the scope of other quantifiers, in
general. Indeed, e.g., (∃y)(∀x)(P (y) ∧ Q(x)) entails (∃y)(P (y) ∧ Q(d)), which
in turn entails (∀x)(∃y)(P (y) ∧ Q(x)). But the latter formula does not entail
(∃y)(∀x)(P (y)∧Q(x)). Moreover, note that Proposition 3 only holds for G↑ and
for Gn, n ≥ 2, but not for other Gödel logics.

The following statement can be directly extracted from the proof of Theorem 4.

Corollary 2. An untangled formula F is valid in G↑ if and only if it is satisfied
by all interpretations of domain size m + c, where m is the number of strong

Monadic Fragments of Gödel Logics: Decidability and Undecidability Results 89

quantifier occurrences in F and c is the number of different constant symbols
occurring in F .

To see that the mentioned bound is tight consider a formula of the form

Fm =
∧

1≤i≤m
(∃xi)(�1

iP1(xi) ∧ . . . ∧ �ki Pk(xi)),

where �ji is either ¬ or empty, and where the vectors (�1
i , . . . �ki) and (�1

j , . . . �kj)
are different if i �= j. Clearly, ¬Fm is not valid, since Fm can be satisfied in an
interpretation that assigns different elements to the m different variables. On
the other hand, in any domain with less than m elements at least two conjuncts
of the form P�(xi) and ¬P�(xj) cannot be satisfied simultaneously, which means
that ¬Fm is satisfied in all corresponding interpretations.

Note that our proof of Theorem 4 of implies that every untangled formula F
can be translated into a propositional formula Π(F), that is equivalent to F
with respect to validity in G↑. To this aim one replaces subformulas of F of
the form (∀x)A(x) by

∧
1≤i≤m+c A(di) and subformulas of the form (∃x)A(x) by∨

1≤i≤m+c A(di), where each d ∈ {d1, . . . , dm+c} is either one of the c constant
symbols that already occur in F or corresponds to one of the m strong quantifier
occurrence in F .

It is well known that every propositional formula A is valid in G↑ (which
coincides with G∞ in the propositional case) if and only if it is valid in Gn+2,
where n is the number of different propositional variables in A (see, e.g., [11]).
Therefore one can reduce testing validity of untangled formulas in G↑

Corollary 3. An untangled formula F is valid in G↑ if and only if its transla-
tion Π(F) is valid in propositional G(m+c)·k+2, where m is the number of strong
quantifier occurrences, c is the number of different constant symbols occurring
in F , and k the number of different predicate symbols in F .

Testing validity is well known to be in co-NP for all finite-valued logics. Clearly,
for every untangled F , the parameters m, c, and k are all linearly bounded by
the size of F . Therefore Corollary 3 implies that testing validity for untangled
formulas in G↑ is in co-NP, as well. This should be contrasted with the fact that
testing validity for arbitrary monadic formulas is NEXPTIME-hard already for
classical logic, see [6].

Remark 5. Although we have stated Theorem 4 only for G↑, it is clear from the
proof that the untangled fragments of finite-valued logics Gn can be decided in
the same manner. Of course, untangled Gn is only a subclass of monadic Gn.
However, the bounds mentioned in in Corollaries 2 and 3 do not depend on n
or on the number of different predicate symbols. Therefore they are drastically
better, in general, than the corresponding bounds for the unrestricted monadic
fragments (cf. Remark 3 in Sect. 3).

90 M. Baaz, A. Ciabattoni, and C.G. Fermüller

6 Axiomatization of Untangled G↑

The decidability proof of Sect. 5 for the untangled fragment of G↑ referred to the
semantics of G↑ at several places. However, a close inspection of the proof shows
that in fact all formula schemes and rules that have been used are valid in all
Gödel logics, except for the quantifier shift laws (11) and (12) of Proposition 3.

This observation is significant, because in [3] it has been proved that G↑
is not recursively enumerable. In other words: (full) G↑ cannot be recursively
axiomatized. In contrast to this fact, we obtain an elegant Hilbert style axiom
system that is sound and complete for untangled formulas in G↑ from the proof
of Theorem 4.

We rely on a well known axiom system for G[0,1] (see, e.g., [11]). Remem-
ber that G[0,1] is the intersection of all Gödel logics. The G↑-specific laws (11)
and (12) can already be derived in intuitionistic logic from the schemes (8)
and (9). This leads to the following system for G↑:

Intuitionistic axioms and rules: (any choice)
Linearity axiom:

(A → B) ∨ (B → A)
General quantifier axiom (valid in G[0,1], and thus in all GV):

(∀x)(A(x) ∨ B) → ((∀x)A ∨ B), where x is not free in B
Specific quantifier axioms (valid only in G↑):

(∃x)(A(x) → (∀x)A(x))
(∃x)((∃y)A(y) → A(x))

According to [3], this system (like any other recursively presented proof system)
cannot be complete for full G↑. Nevertheless it is complete for untangled G↑,
since all laws that have been used in the proof of Theorem 4 can be derived.

7 Conclusion

We have investigated the decision problem for monadic fragments of Gödel log-
ics. In presence of the projection operator Δ the emerging picture is clear and
simple: validity is decidable for all finite-valued monadic Gödel logics, but is
undecidable for all infinite-valued monadic Gödel logics. (The latter even holds
for prenex formulas.) Without Δ all, but possible one, infinite-valued monadic
Gödel logics remain undecidable. (Obviously, the decidability result for finite-
valued logics also carries over to the language without �.) The missing case,
G↑, is an important and interesting logic, since it coincides with the intersection
of all finite-valued logics. The (un)decidability of monadic G↑ remains open. It
is reminiscent of a long-standing open problem (see, e.g., [13]) that seems to be
related: the (un)decidability of validity for monadic �Lukasiewicz logic �L.

Motivated by a potentially important application of many-valued logics, we
have singled out a natural sub-case of monadic logic; namely, the set of un-
tangled formulas. Validity in G↑ for this fragment is shown to be decidable. In
fact, efficient and tight bounds are readily extracted from our decidability proof.

Monadic Fragments of Gödel Logics: Decidability and Undecidability Results 91

These bounds point to a considerable more efficient decision procedure for untan-
gled formulas also in the case of finite-valued logics (compared to the standard
decision method for the unrestricted monadic fragments). Moreover, since all
quantifier shifts are valid in �L, we conjecture that this decidability result can be
transferred to the untangled fragment of �L (and to similar logics as well).

References

1. Baaz, M.: Infinite-valued Gödel logics with 0-1-projections and relativizations. In:
Proceedings Gödel 1996. Kurt Gödel’s Legacy. LNL, vol. 6, pp. 23–33. Springer,
Heidelberg (1996)

2. Baaz, M., Ciabattoni, A., Fermüller, C.G.: Herbrand’s Theorem for Prenex Gödel
Logic and its Consequences for Theorem Proving. In: Nieuwenhuis, R., Voronkov,
A. (eds.) LPAR 2001. LNCS (LNAI), vol. 2250, pp. 201–216. Springer, Heidelberg
(2001)

3. Baaz, M., Leitsch, A., Zach, R.: Incompleteness of an infinite-valued first-order
Gödel Logic and of some temporal logic of programs. In: Kleine Büning, H. (ed.)
CSL 1995. LNCS, vol. 1092, pp. 1–15. Springer, Heidelberg (1996)

4. Baaz, M., Preining, N., Zach, R.: First-order Gödel logics. Annals of Pure and
Applied Logic 147/1-2, 23–47 (2007)

5. Beckmann, A., Goldstern, G., Preining, N.: Continuous Fräıssé Conjecture. Sumit-
ted, preprint at http://arxiv.org/abs/math/0411117

6. Börger, E., Grädel, E., Gurevich, Y.: The classical Decision Problem. Springer,
Heidelberg (1997)

7. Dummett, M.: A propositional calculus with denumerable matrix. J. of Symbolic
Logic 24, 97–106 (1959)

8. Gabbay, D.M.: Decidability of some intuitionistic predicate theories. J. of Symbolic
Logic 37, 579–587 (1972)

9. Gödel, K.: Zum intuitionistischen Aussagenkalkül. Anz. Akad. Wiss. Wien 69, 65–
66 (1932)

10. Gottwald, S.: A Treatise on Many-Valued Logics. Studies in Logic and Computa-
tion 9, Research Studies Press (2001)

11. Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer Academic Publishers, Dor-
drecht (1998)

12. Moser, W., Adlassnig, K.-P.: Consistency checking of binary categorical relation-
ships in a medical knowledge base. Artificial Inteligence in Medicine 7, 389–407
(1992)

13. Ragaz, M.: Die Unentscheidbarkeit der einstelligen unendlichwertigen Prädikaten-
logik. Arch. math. Logik 23, 129–139 (1983)

14. Rogers, H.: Certain logical reduction and decision problems. Annals of Mathemat-
ics 64, 264–284 (1956)

15. Takeuti, G., Titani, T.: Intuitionistic fuzzy logic and intuitionistic fuzzy set theory.
J. of Symbolic Logic 49, 851–866 (1984)

http://arxiv.org/abs/math/0411117

Least and Greatest Fixed Points in Linear Logic

David Baelde and Dale Miller

INRIA & LIX/École Polytechnique, Palaiseau, France
david.baelde@ens-lyon.org, dale.miller@inria.fr

Abstract. The first-order theory of MALL (multiplicative, additive linear logic)
over only equalities is an interesting but weak logic since it cannot capture un-
bounded (infinite) behavior. Instead of accounting for unbounded behavior via
the addition of the exponentials (! and ?), we add least and greatest fixed point
operators. The resulting logic, which we call �MALL�, satisfies two fundamental
proof theoretic properties. In particular, �MALL� satisfies cut-elimination, which
implies consistency, and has a complete focused proof system. This second result
about focused proofs provides a strong normal form for cut-free proof structures
that can be used, for example, to help automate proof search. We then consider
applying these two results about �MALL� to derive a focused proof system for
an intuitionistic logic extended with induction and co-induction. The traditional
approach to encoding intuitionistic logic into linear logic relies heavily on us-
ing the exponentials, which unfortunately weaken the focusing discipline. We get
a better focused proof system by observing that certain fixed points satisfy the
structural rules of weakening and contraction (without using exponentials). The
resulting focused proof system for intuitionistic logic is closely related to the one
implemented in Bedwyr, a recent model checker based on logic programming.
We discuss how our proof theory might be used to build a computational system
that can partially automate induction and co-induction.

1 Introduction

In order to justify the design and implementation architecture of a computational logic
system, foundational results concerning the normal forms of proofs are often used. One
starts with the cut-elimination theorem since it usually guarantees other properties of the
logic (e.g., consistency) and that there is no need to automate the creation of lemmas
during proof search. In many situations, the cut-elimination theorem implies that all
formulas considered during the search for a proof are subformulas of the original, pro-
posed theorem. This does not hold, in particular, when higher-order (relation) variables
are used, which is the case in this paper where the rules for induction and co-induction
use such higher-order variables. A second normal form theorem, usually related to fo-
cused proofs [And92] is also important to establish. Such “focusing” theorems provide
normal forms that organize invertible and non-invertible inference rules into collections:
such striping of the inference rules in a cut-free derivation can be used to understand
which choices in building proofs might need to be reconsidered (via backtracking) and
which do not. As we shall see, focusing yields useful structure in cut-free proofs, even
when the subformula property does not hold.

N. Dershowitz and A. Voronkov (Eds.): LPAR 2007, LNAI 4790, pp. 92–106, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Least and Greatest Fixed Points in Linear Logic 93

Various computational systems have employed different focusing theorems: much
of Prolog’s design and implementations can be justified by the completeness of SLD-
resolution [AvE82]; uniform proofs (goal-directed proofs) in intuitionistic and intuition-
istic linear logics have been used to justify �Prolog [MNPS91] and Lolli [HM94]; the
classical linear logic programming languages LO [AP91] and Forum [Mil96] have used
directly Andreoli’s general focusing result [And92] for linear logic.

In this paper, we establish these two foundational proof-theoretic properties for the
following logic. We first extend the multiplicative and additive fragment of linear logic
(MALL) with equality and quantification (via � and �) over simply typed �-terms.
Because of the bounded use of formulas during proof construction, provability in this
logic, call it MALL�, can be reduced to deciding unification problems (under a mixed
prefix) which is decidable for the first-order fragment of MALL�. An elegant and well
known way to make this logic more expressive is to add the exponentials ! and ? and
the rules of inference that allow for certain occurrences of formulas marked with these
systems to be contracted and weakened [Gir87]. Such modal-like operators are not,
however, without their problems. In particular, the exponentials are not canonical since
there are different ways to formulate the rules for the promotion and structural rules for
exponentials and some of these choices lead to different versions of logic (for example,
elementary and light linear logics [Gir98] and soft linear logic [Laf04]). Even if we
fix the inference rules for the exponentials, as in standard linear logic, the rules do
not describe unique exponentials. If one gives a red tensor and a blue tensor the same
inference rules, then one can prove that these two tensors are, in fact, equivalent. All of
linear logic connectives except the exponentials yield similar theorems. It is certainly
possible to consider a (partially ordered) collection of exponentials on top of MALL
(see, for example, [DJS93]).

An alternative to strengthen MALL with exponentials is to extend it with fixed
points. Early approaches to adding fixed points [Gir92, SH93] involved inference rules
that could only unfold fixed point descriptions: as a consequence, such logics could
not discriminate between a least and greatest fixed point. Stronger systems that allow
induction [MM00] as well as co-induction [Tiu04, MT03] include inference rules us-
ing a higher-order variable that ranges over prefixed or postfixed points (invariants).
Of course, approaches that use (co)induction are not without problems as well: various
restrictions on fixed point expressions and on invariants may need to be considered. In
any case, we shall explore this alternative to exponentials: in particular, we extend the
logic MALL� to �MALL� by adding the two fixed points � and �.

Besides considering fixed points as alternatives to the exponentials, there are other
reasons for examining �MALL�. First, least and greatest fixed points are de Morgan
duals of one another and, hence, the classical nature of linear logic should offer some
economy and elegance in developing their proof theory, in contrast to intuitionistic
logic. Second, since linear logic can be seen as the logic behind intuitionistic logic,
it will be rather easy to develop a focusing proof system for intuitionistic logic and
fixed points based on the structure of the one we develop for �MALL�.

It is important to stress that we are using linear logic here as “the logic behind
computational logic” and not, as it is more traditionally understood, as the logic of re-
source management (in the sense of multiset rewriting, database updates, Petri nets, etc).

94 D. Baelde and D. Miller

Instead, we find the proof theory of linear logic an appropriate and powerful setting for
exploring the structure of proofs in various intuitionistic logics (see [LM07] for another
such use of linear logic).

In the next section, we define �MALL� and prove some of the most basic aspects
of its proof theory, including the cut-elimination theorem. Section 3 presents a focused
proof system that is complete for �MALL�. In Section 4 we describe a few examples of
(focused) derivations in �MALL�. Section 5 shows how the proof theory of �MALL�

can be applied to an intuitionistic logic extended with induction and co-induction, and
to the intuitionistic logic of fixed point unfoldings that is the foundation of the recent
computational system Bedwyr [BGM�07].

2 Linear Logic Extended with Fixed Points

For clarity, we will use simply typed �-calculus as our language of formulas. We assume
that formulas are always in ��-long form. We make few restrictions on the language of
terms in this work and choose simply typed �-calculus for them as well: we assume
that the reader understands the basics involving substitution, equality, and complete
set of unifiers for such terms. In most of our examples variables will be of ground
type, and thus the possibly infinite complete set of unifiers can be replaced by the most
general unifier when there is one. Depending on one’s interests, it is possible to choose
weaker (e.g., first-order) or more powerful (e.g., dependently typed) terms.

In the following, terms are denoted by s� t; vectors of terms are denoted by s� t;
formulas (objects of type o) are denoted by P� Q; eigenvariables are denoted by x� c.
Finally, the syntactic variable B represents a formula abstracted over by a predicate and
n terms (�p�x1 � � � �xn�Ppx1 � � � xn). We have the following formula constructors:

P ::� P � P � P � P � P � P � P & P � 1 � 0 � � � �

� ��x�Px � ��x�Px � s
�

� t � s
�

� t � ��1 ����n Bt � ��1����n Bt

The syntactic variable � ranges over all simple types that do not contain o. The quan-
tifiers have type (� � o) � o and the equality and inequality have type � � � � o.
The connectives � and � have type (�) � 	 where 	 is �1 � 	 	 	 � �n � o
for some arity n
 0. We shall almost always elide the references to �, assuming that
they can be determined from context when it is important to know their value. Formulas
with top-level connective � or � are called fixed point expressions and can be arbitrarily
nested. The first argument of a fixed point expression, denoted by B, is called its body.

Quantifiers and (in)equality are not new and play a small role in the proof theory
results: they are, however, crucial for our example applications. The central feature
here is the fixed point constructs. Finally, note that there are no atoms in the �MALL�

grammar. We shall see in the following the advantages of using fixed points instead.

Definition 1. We define the negation B of a body B, and extend the usual definition of
the involutive negation as follows:

B
de f
� �p��x�(B(�x�(px)�)x)� (s � t)�

de f
� s � t (�Bt)�

de f
� �Bt

Least and Greatest Fixed Points in Linear Logic 95

MALL rules First-order structure

� 1
� �� P � �� Q
� �� �� P � Q

� �� P�Q
� �� P � Q

� �

� ���

� �� Pt
� ���x�Px

� �� Pc
� ���x�Px

c new

� ���

� �� P � �� Q
� �� P & Q

� �� Pi

� �� P0 � P1 � t � t
�� �� : � 	 csu(s

�

� t)

� �� s � t

Fixed points (where S is closed, x is new)

� �� B(�B)t
� �� �B t

�
� �� S t � BS x� (S x)�

� �� �B t
�

� �B t� �Bt
��

Fig. 1. Inference rules for �MALL�

A body B is said to be monotonic when for any variables p and t, the negation normal
and �-normal form of Bpt does not contain any negated instance of p.

We shall assume that all bodies are monotonic. In other words, negation (�� for formu-
las and � for bodies) is not part of the syntax since negation normal form of formulas
and bodies without atoms do not contain negations and since we forbid them explicitly
in fixed point expressions. When we write negation in some inference rules, we shall be
considering it as implicitly computing the negation normal form.

The monotonicity of a function is also a natural condition for the existence of fixed
points in lattices or other models. The condition of monotonicity is used only syntacti-
cally here since we are not studying the semantics of �MALL�.

We present the inference rules for �MALL� in Figure 1. The initial rule is restricted
to fixed points. In the � rule, which provides both induction and coinduction, S is called
the (co)invariant, and has the same type as �B, of the form �1 � 	 	 	 � �n � o. The
treatment of equality dates back to [Gir92, SH93]. In the inequality rule, csu stands for
complete set of unifiers. This set has at most one element in the first-order case, but can
be infinite in presence of higher-order term variables, which we do not exclude. In that
case, the proofs are infinitely branching but still have a finite depth. They are handled
easily in our proofs by means of transfinite inductions. Again, the use of higher-order
terms, and even the presence of the equality connectives are not essential to this work.
All the results presented below hold in the logic without equality, and they do not make
much assumptions on the language of terms.

Proposition 1. The following inference rules are derivable:

� P� P�
init

�
� B(�B)t
�
� �Bt �R

These results are standard, cf. [Tiu04]. The proof of the second one relies on mono-
tonicity and is obtained by applying the � rule with B(�B) as the co-invariant.

Definition 2. We classify as asynchronous (resp. synchronous) the connectives �, �,
&, �, �, �, � (resp. �, 1, �, 0, �, �, �). A formula is said to be asynchronous (resp. syn-
chronous) when its top-level connective is asynchronous (resp. synchronous). A formula

96 D. Baelde and D. Miller

is said to be fully asynchronous (resp. fully synchronous) when all of its connectives are
asynchronous (resp. synchronous). Finally, a body �p�x�Bpx is said to be fully asyn-
chronous (resp. fully synchronous) when the formula Bpx is fully asynchronous (resp.
fully synchronous).

Notice, for example, that �p�x�px is fully asynchronous and fully synchronous.

Proposition 2. The following structural rules are admissible provided that B is fully
asynchronous:

�
� �Bt� �Bt
�
� �Bt �C

�

�
� �Bt �W

Hence, the following structural rules hold for any fully asynchronous formula P:

�
� P� P
�
� P C

�

�
� P W

The proof of this proposition can be found in [BM07]. This property plays a central role
in the focusing proof system presented in Section 3 and is crucial in Section 5 for our
encoding of intuitionistic logic extended with least and greatest fixed points.

Example 1. Units can be represented by means of � and �. Assuming that 2 and 3 are
two distinct constants, then we have 2 � 2� 1 and 2 � 3� 0 (and hence 2 � 2� �

and 2 � 3 � �). Here, P � Q denotes � (P � Q) & (Q � P) and P � Q denotes
the formula P� � Q.

Example 2. The � (resp. �) connective is meant to represent least (resp. greatest) fixed
points. For example �(�p�p) is provable (take any provable formula as the co-invariant),
while its dual �(�p�p) is not provable. More precisely: �(�p�p)� 0 and �(�p�p)� �.

Example 3. The least fixed point, as expected, entails the greatest. The following is a
proof of �Bt � �Bt.

� B(�B)x� B(�B)x
init

� B(�B)x� �Bx
�R

� �Bt� �Bt
��

� �Bt� �Bt
� on �Bt with S :� �B

The greatest fixed point entails the least fixed point when the fixed points are noetherian,
i.e., all unfoldings of B and B terminate.

In this paper we are investigating how far one can go without the exponentials, getting
the infinite behavior from the meaning of fixed points instead of modalities. If we were
to add, however, the usual inference rules for exponentials, the resulting proof system
would yield �Bt � ! �Bt (and equivalently ? �Bt � �Bt) provided that B is fully
synchronous. In the language of the Logic of Unity (LU) [Gir93], fully asynchronous
(resp. fully synchronous) would be negative (resp. positive) or right-permeable (resp.
left-permeable) formulas. Mixing synchronous and asynchronous connectives would
yield a neutral formula.

Least and Greatest Fixed Points in Linear Logic 97

We now outline the proof of cut-elimination. Although it is indirect and relies on
cut-elimination for full second-order linear logic (LL2), this is still a syntactic proof
of cut-elimination. It yields consistency of �MALL� as well as relative soundness and
completeness with respect to LL2.

Theorem 1. The logic �MALL� enjoys cut-elimination.

Proof. Our proof consists in first translating �MALL� formulas and proofs into full
second-order linear logic derivations, which are then normalized and focused, and fi-
nally translated back to cut-free �MALL� derivations. Formally speaking, the previous
work on proof normalization for LL2 does not include equality, but all the previous
work on equality has shown that it has little role to play in normalization.

We first define the translation from first-order to second-order. The translation com-
mutes with the connectives of MALL� and the negation, and is defined as follows on
the least fixed points:

�Bx� � �S � !(�y � B�S y� S y)� S x

The corresponding transformation of proofs is straightforward, relying on the mono-
tonicity of bodies. We get a proof where all second-order instantiations are either of the
form I� (from � rules) or second-order eigenvariables (from �� rules). Cut-elimination
and focusing never change these instantiations.

It is possible to normalize the resulting LL2 derivations, and then apply Andreoli’s
result to yield even more structured normal forms. (We shall temporarily assume that
the reader is familiar with the focusing proof system in [And92]. A description of this
kind of system may otherwise be found in Section 3.) Doing so, we get exactly the
derivations we want for transforming them back to �MALL�. For example, focusing on
an unfolding hypothesis translates immediately to the � rule:

� � :
 � Bi�S iy � � : S ix � (S ix)�

� � :
� S ix � Bi�S ix � (S ix)�

� � :
� S ix � �y�Bi�S iy � (S iy)�

Similarly, focusing on the translation of a � gives us either an instance of the � rule:

� � :� BIy� Iy�
� � :� �y�BIy� Iy�
� � :�!�y�BIy� Iy� � � :
 � Ix��

� � :
 � (!�y�B�I�y� I�y) � Ix��

� � :
 � �S �!(�y�B�S y� S y) � (S x)�
S :� I�

or an instance of �� (the unfolding hypothesis for S is in �):

���

� � :�!�y�B�S y� S y � � : S x � (S x)�

� � : S x � (!�y�B�S y� S y) � (S x)�

� � : S x � �S �!(�y�B�S y� S y) � (S x)�

For a more detailed proof, see [BM07]. ��

98 D. Baelde and D. Miller

As shown in the above proof, fixed points can be encoded by means of second-order
quantification and exponentials. However, first-order MALL with exponentials and
first-order MALL with fixed points are incomparable.

It has been observed [Gir92, SH93] that exponentials and non-monotonic definitions
combine to yield inconsistency: for example, the definition p � p� (that is, the fixed
point ��p�p�) does not lead to an inconsistency, whereas the definition p � ?(p�) (that
is, ��p� ?(p�)) does. To reproduce the latter inconsistency in �MALL�, one needs to
be able to unfold the expression ��p� !(p�). But this is not implied by Proposition 1
since its body is not monotonic. Thus, even in presence of exponentials, we currently
do not have any example of non-monotonic definition that invalidates the consistency
of �MALL�.

3 Focused Proofs

As we have explained in the introduction, completeness of a focused proof system is
a valuable property for a logic to possess. Focused proofs have applications in proof-
search since it reduces the proof-search space by limiting the situations when backtrack-
ing is necessary. Focused proofs are also useful for justifying game theoretic semantics
[MS05] and have been central to the design of Ludics [Gir01].

A good focused proof system for �MALL� is not a simple consequence of the trans-
lation of fixed points into LL2 that is used in the proof of Theorem 1: applying linear
logic focusing to the result of that translation leads to a poorly structured system that is
not consistent with our classification of connectives as asynchronous and synchronous.
On the contrary, we present the proof system in Figure 2 as a good candidate for a
focused proof system for �MALL�. We use explicit annotations of the sequents in the
style of Andreoli. In the synchronous phase sequents have the form �
 � P. In the
asynchronous phase they have the form �
 � � where
 and � are both multisets of
formulas. In both sequents,
 is a multiset of synchronous formulas and �-expressions.
The convention on � is a slight departure from Andreoli’s original proof system where �
is a list (which can be used to provide a fixed but arbitrary ordering of the asynchronous
phase).

The rules for equality are not surprising. The main novelty here is the treatment of
fixed points. Depending on the body, both � and � rules can be applied any number of
times — but not with any co-invariant concerning �. Notice for example that an instance
of �� can be �-expanded into a larger derivation, unfolding both fixed points to apply
�� on the recursive occurrences. As a result, each of the fixed point connectives has two
rules in the focused system: one treats it as “an atom” and the other one as an expression
with “internal structure.”

In accord with Definition 2, � is treated during the synchronous phase and � during
the asynchronous phase. (Alternatives to this choice are discussed later.) Roughly, what
the focused system implies is that if a proof involving a �-expression proceeds by co-
induction on it, then this co-induction can be done at the beginning; otherwise that
formula can be ignored in the whole derivation, except for the �� rule. Focusing on a �-
expression yields two choices: unfolding or applying the initial rule for fixed points. If
the body is fully synchronous, the focusing will never be lost. For example, if nat is the

Least and Greatest Fixed Points in Linear Logic 99

Asynchronous phase

� � � P� Q� �

� � � P � Q� �

� � � P� � � � � Q� �

� � � P & Q� �

� � � �

� � � �� � � � � �� �

�� �� � �� : � 	 csu(s
�

� t)

� � � s � t� �

� � � Pc� �
� � � �x�Px� �

c new

� � � S t� � �� BS x� S x�

� � � �B t� �
x new

� �� �B t � �

� � � �B t� �

Synchronous phase

� � � P � �� � Q
� �� �� � P � Q

� � � Pi

� � � P0 � P1

�� 1 �� t � t

� � � Pt
� � � �x�Px

� � � B(�B)x
� � � �Bx � �Bx � �Bx

Switching (where P is synchronous, Q asynchronous)

� �� P � �

� � � P� �
� � � P
� �� P �

� � � Q
� � � Q

Fig. 2. A focused proof-system for �MALL�

�

� ��P� S t
�S

� BS x� S x�

� �� P� �B t

� �

� �� P�� S � t
�S �

� BS �x� S �x�

� �� P�� �B t
� �� P & P�� �B t

�

�

� �� P�S t
� �� P�S t � S � t

� �

� �� P�� S � t
� �� P�� S t � S � t

� �� P & P�� S t � S � t

	1(�S)

� B(S � S �)x� (S x)�
	2(�S �)

� B(S � S �)x� (S �x)�

� B(S � S �)x� ((S � S �)x)�
&

� �� P & P�� �B t

Fig. 3. The permutation of the & and the co-induction rules

(fully synchronous) expression �(�nat��x� x � 0 � �y�x � s y � nat y), then focusing
puts a lot of structure on a proof of
 � nat t: either t is a ground term representing a
natural number and
 is empty, or t � snx for some n
 0 and
 is �(nat x)��.

Theorem 2. The focused system is sound and complete with respect to �MALL�.

Proof. Soundness is trivial. We only give an outline of the completeness proof: see
[BM07] for more details. The proof is by (transfinite) induction on (h�()� � �) where
h�() is the height of in terms of fixed point rules, and � � is the size of the deriva-
tion’s conclusion. We first prove two permutation lemmas which preserve this measure:
one shows that if there is any asynchronous formula in the conclusion, the proof can
be transformed such that this formula is active in the conclusion; the other shows that
when there is no more asynchronous in the conclusion, it is possible to focus on a syn-
chronous if it is maximal. Finally we prove that there is always a maximal formula in
such a sequent. The notion of maximality is due to Alexis Saurin [MS07] and is crucial
to make the proof clear and simple.

100 D. Baelde and D. Miller

It is worth pointing out, however, that there is a non-trivial permutation of & and
� in the first of these lemmas. This permutation, which requires the ability to sum co-
invariants (a consequence of the monotonicity assumption on fixed point expressions)
is illustrated in Figure 3. ��

4 Examples

We shall now give a few theorems in �MALL�. Although we do not give their deriva-
tions here, we stress that all of these examples are proved naturally in the focused proof
system. The reader will also note that although �MALL� is linear, these derivations are
intuitive and their structure resemble that of proofs in intuitionistic logic.

We first define a few least fixed points expressing basic properties of natural num-
bers. We assume two constants z and s of respective types n and n � n. Note that all
these definitions are fully synchronous.

nat
de f
� �(�nat�x� x � z � �y� x � s y � nat y)

even
de f
� �(�even�x� x � z � �y� x � s (s y) � even y)

plus
de f
� �(�plus�a�b�c� a � z � b � c

� �a��c��a � s a� � c � s c� � plus a� b c�)

leq
de f
� �(�leq�x�y� x � y � �y�� y � s y� � leq x y�)

half
de f
� �(�half�x�h� (x � z � x � s z) � h � z

� �x��h�� x � s (s x�) � h � s h� � half x� h�)

The following statements are theorems, all of which can be proved by induction. The
main insights required for proving these theorems involve deciding which fixed point
expression should be introduced by induction: the proper invariant is not the difficult
choice here since the context itself is adequate in these cases.

� �x� nat x� even x � even (s x)
� �x� nat x� �y�z� plus x y z
� �x� nat x� plus x z x
� �x� nat x� �y� nat y� �z� plus x y z� nat z

In the last theorem, the assumption (nat x)� is not needed and can be weakened, thanks
to Proposition 2. In order to prove (�x� nat x� �h� half x h) one has to use a complete
induction, i.e., use the strengthened invariant (�x� nat x � �y� leq y x� �h� half y h).

A typical example of co-induction involves the simulation relation. Assume that
step : state � label � state � o is an inductively defined relation encoding a la-
beled transition system. Simulation can be defined using the definition

sim
de f
� �(�sim�p�q� �a�p�� step p a p� � �q�� step q a q� � sim p� q�)�

Least and Greatest Fixed Points in Linear Logic 101

Reflexivity of simulation (�p� sim p p) is proved easily by co-induction with the co-
invariant (�p�q� p � q). Instances of step are not subject to induction but are treated
“as atoms”. Proving transitivity, that is,

�p�q�r� sim p q� sim q r � sim p r

is done by co-induction on (sim p r) with the co-invariant (�p�r� �q� sim p q � sim q r).
The focus is first put on (sim p q)�, then on (sim q r)�. The fixed points (sim p� q�)
and (sim q� r�) appearing later in the proof are treated “as atoms”, as are all negative
instances of step.

Except for the totality of half, all these theorems seem simple to prove using a limited
number of heuristics. For example, one could first try to treat fixed points “as atoms”,
an approach that would likely fail quickly if inappropriate. Second, depending on the
“rigid” structure of the arguments to a fixed point expression, one might choose to either
unfold the fixed point or attempt to use the surrounding context to generate an invariant.

5 Translating Intuitionistic Logic

The examples in the previous section make it clear that despite its simplicity and linear-
ity, �MALL� can be related to a more conventional logic. In particular we are interested
in drawing some connections with an extension of intuitionistic logic with inductive
and coinductive definitions. We will show that the focusing of �MALL� derivations
yields a similar result in the intuitionistic setting. A general approach for making such
a connection is to first encode intuitionistic logic in �MALL�, focus the derivations
of encodings, and translate them back to intuitionistic derivations. When doing so, it
is interesting to minimize the use of exponentials in the encoding since these connec-
tives weaken the focusing discipline. This is precisely what the extension of the asyn-
chronous/synchronous classification allows. In the following, we show a simple first
step to this program, in which we actually capture a non-trivial fragment of intuitionis-
tic logic extended with fixed points even though �MALL� does not have exponentials
at all.

We shall consider an intuitionistic logic in which there are no atomic formulas but
were there are (positive) equalities and the two fixed point constructors � and �. Let
�LJ� be the proof system that extends Gentzen’s cut-free LJ [Gen69] with the following
rules for equality and (co)inductive expressions.

�(
 � G)� : � � csu(s
�

� t)�

� s � t � G � L

 � t � t � R

BS x � S x
� S t � G

� �Bt � G

�L

� �Bt � �Bt

�0

 � B(�B)t

 � �Bt

�R

� B(�B)t � G

� �Bt � G �L

� �Bt � �Bt
�0

S x � BS x
 � S t

 � �Bt �R

We have observed (Prop. 2) that structural rules are admissible for fully
asynchronous formulas of �MALL�. This property will allow us to get a faithful en-
coding of a fragment of �LJ� in �MALL� despite the absence of exponentials. The

102 D. Baelde and D. Miller

encoding must be organized so that formulas appearing in the left-hand side of �LJ�

sequents must be encoded as fully asynchronous �MALL� formulas. The only connec-
tives allowed to appear negatively will thus be �, �, �, � and �. Moreover, the encoding
must commute with negation, in order to translate the (co)induction rules correctly. This
leaves no choice in the following design.

Definition 3. We restrict formulas to two fragments described by the two syntactic vari-
ables � and �:

� ::� � � � � � � � � s � t � �(�px��px)t � �x��x

� �x��x � � � � � �(�px��px)t

� ::� � �� � � �� � s � t � �(�px�� px)t � �x�� x

Formulas in � and � are translated in �MALL� as follows:

[P � Q]
de f
� [P] � [Q]

[P � Q]
de f
� [P] � [Q]

[s � t]
de f
� s � t

[�Bt]
de f
� �[B]t

[�x�Px]
de f
� �x�[Px]

[�x�Px]
de f
� �x�[Px]

[�Bt]
de f
� �[B]t

[P � Q]
de f
� [P]� [Q]

[�p�x�Bpx]
de f
� �p�x�[Bpx]

Proposition 3. For any P � �, P is provable in �LJ� if and only if [P] is provable in
�MALL�, under the restrictions that (co)invariants �x�S x in �MALL� (resp. �LJ�) are
such that S x is in [�] (resp. �).

Proof. The proof transformations are simple and compositional. The induction rule
is mapped to � rule for (�Bt)�; the left unfolding for co-inductives to � for (�Bt)�. In
order to restore the additive behavior of some intuitionistic rules (e.g., �R) and translate
the structural rules, we can contract and weaken our fully asynchronous formulas on the
left of �LJ� sequents. ��

Linear logic provides an appealing proof theoretic setting because of its emphasis on
dualities and on its clear separation of concepts (additive/multiplicative, asynchronous/
synchronous). Our experience is that �MALL� is a good place to study focusing in
the presence of least and greatest fixed point operators. To get similar results for in-
tuitionistic logic, one can either work from scratch entirely within, say, �LJ�, or use
an encoding into linear logic. Given a mapping from intuitionistic to linear logic, and
a complete focused proof system for linear logic, one can often build a complete “fo-
calized” proof-system for intuitionistic logic. The usual encoding of intuitionistic logic
into linear logic involves exponentials, which can damage focusing structures (by caus-
ing both synchronous and asynchronous phases to end). Hence, a careful study of the
polarity of linear connectives must be done (cf. [DJS93, LM07]) in order to minimize
the role played by the exponentials in such encodings. Here, as a result of Proposition 3,
it is possible to get a complete focused system for �LJ� on � (under the assumptions
that (co)invariants are in �) that inherits the strong structure of the linear focusing
derivations.

Least and Greatest Fixed Points in Linear Logic 103

Although � is not as expressive as full �LJ�, it catches many interesting and use-
ful problems. For example, any Horn-clause specification can be expressed in � as a
least fixed point and theorems that state properties such as totality or functionality of
predicates defined in this manner are in �. Theorems that state more model-checking
properties, for example, �x�p(x) � q(x), where p and q are one-placed least fixed point
expressions over [H], are also in �. Finally, the theorems about natural numbers pre-
sented in Section 4 are within [�] although two of the derivations (for the totality of half
and that the sum of natural numbers is a natural number) do not satisfy the restriction
on co-invariants.

The logic �LJ� is closely related to LINC [Tiu04]. The main difference is the ab-
sence of the � quantifier in our system: we suspect that � can be added to �MALL� in
the same relatively orthogonal fashion that LINC added it to LJ. The resulting exten-
sion to �MALL� (and �LJ�) should allow natural ways to reason about specifications
involving variable bindings, in the manner illustrated in [BGM�07, Tiu04, Tiu05]. An-
other difference is that fixed points in LINC have to satisfy a stratification condition,
which is strictly stronger than monotonicity; co-invariants also have to satisfy a techni-
cal restriction related to stratification. While our system, derived from linear logic, does
not share such restrictions, neither difference is relevant when we restrict our attention
to formulas in �.

Interestingly, the fragment � has already been identified in LINC [TNM05], and
the Bedwyr system [BGM�07] implements a proof-search strategy for it that is com-
plete under the assumption that all fixed points are noetherian (and hence that least and
greatest fixed points coincide and that (co)induction can be restricted to unfolding).
This strategy coincides with the focused system for �LJ� restricted to noetherian fixed
points: there is no need for any explicit contraction and you can always eagerly elimi-
nate left-hand side (asynchronous) connectives before working on the goal (right-hand
side); moreover there is no need for the initial rule ��.

6 Discussion About the Focusing System

The design of the above focused proof system for �MALL� is rather satisfactory. For
example, its treatment of � as synchronous and � as asynchronous is consistent with
a similar treatment of these operators via game semantics given in [MS05, Sti96]. Fo-
cusing is also natural and helpful when trying to prove theorems in �MALL�, such as
the examples proposed in Section 4. Finally, as we have seen in Section 5, this focused
proof system yields another one for an intuitionistic logic similarly extended with fixed
points, and accounts for the proof search strategy underlying the implemented prover
Bedwyr [BGM�07]. It is worth noting, however, two unusual aspects of focused proofs
in �MALL�.

6.1 A Choice Inside Asynchronous Rules

As we noted, there are two rules for each of the fixed point connectives. Having a
choice of rules in the asynchronous phase is, at first, rather surprising since it is during
this phase of proof construction that we expect to see invertible rules and no choices.
One way to look at this is that, in fact, the �-connective should be annotated or divided

104 D. Baelde and D. Miller

into an infinite number of different connectives. In particular, consider replacing the �

constructor with both �� (with the same types and arity as �) and �S (where S is an
annotated formula abstraction of the appropriate type). Now consider the proof system
that results from replacing the three rules involving � in Figure 2 by the rules

�
 � S t� � �� BS x� S x�

�
 � �S Bt� �
x new

�
� ��Bx � �

�
 � ��Bx� � � ��Bx � �Bx

Notice that using such annotated formulas, there is no longer any choice in the asyn-
chronous phase. Furthermore, if in the expression �S B it is really the case that S is a
co-invariant, i.e., (BS x� S x�) is provable, then the first inference rule is invertible.

From a focused proof of F, it is possible to extract an annotation of F that is provable
in the disambiguated focused system. This extraction requires the non-trivial composi-
tion of co-invariants in a manner similar to that used for the permutation of � and &.
Such annotations might be useful for the partial automation of proof search involving
induction and co-induction. For example, � connectives could be labeled with partial
information about what to do with the connective in the asynchronous phase: unfold,
freeze (i.e., treat as atomic), use the sequent as the invariant, etc. Such hints might be
enough to mechanize a large amount of simple but tedious proofs by (co)induction.
Notice that since we have annotated � but not �, we should not think that �’s with an-
notations are logical connectives: instead, such annotations hint at the structure of a
particular proof involving that annotated expression.

6.2 Are the Polarities of � and � Forced?

While the classification of � as synchronous and � as asynchronous is rather satisfying
and is backed by several other observations, that choice does not seem to be forced from
the focusing point of view alone. Maybe � can be handled in the asynchronous phase,
instead? After all the � rule is invertible. Consider replacing the fixed point rules in the
focused proof system in Figure 2 with the following four inference rules:

�
 � B(�B)t� �
�
 � �Bt� �

�
� �Bt � �

�
 � �Bt� �
�
 � S t �� BS x� (S x)�

�
 � �Bt � �Bt � �Bt

We conjecture that the resulting proof system is complete for �MALL�. The non-trivial
step in such a proof would involve the permuting of the inference rules for � and &.
The invertibility of � allows it, but we have not proved the termination of the whole
transformation.

To go one step further, one wonders if arbitrary assignment of “bias” to expressions
such as (�Bt) and (�Bt) can be made in a fashion similar to the way literals are given
fixed but arbitrary “bias” in Andreoli’s original focused proof system [And92]. Thus,
maybe some � expressions can be synchronous while others are asynchronous.

7 Conclusion and Future Work

�MALL� is an elegant logic supporting reasoning on inductive and co-inductive spec-
ifications. We have shown that it has two important proof-theoretic properties: namely,

Least and Greatest Fixed Points in Linear Logic 105

cut-elimination and the completeness of focused proofs. The design and completeness
of a focused proof system is the major contribution of this paper. We have also shown
that �MALL� is expressive and formally connected it to a fragment of intuitionistic
logic extended with fixed points, a step that brings �MALL� closer to applications. Fi-
nally, we have identified an implemented system that attempts to find focused proofs
within the noetherian part of this logic.

There are a number of interesting open questions to consider next. At the proof the-
ory level, we would like to understand better whether or not dropping the monotonicity
requirement leads to inconsistency or not and to what extent we can provide alternative
assignment of polarities (synchronous/asynchronous) to fixed points. We can also con-
sider adding exponentials and atomic formulas to �MALL� so that all of �LJ� could be
encoded (in which case, a precise connection to the focused proof systems of [LM07]
should be explored). Such an extension to �MALL� could also be used to generalize
the uses of induction in the linear logic programming setting of [PM05]. At the system
designing and implementation level, our focused proof system should help in designing
a logic engine that attempts to prove formulas involving induction and co-induction.
Our hope is that the focused proof system would help in understanding the strengths
and limitations of various heuristics for generating invariants and co-invariants.

Acknowledgments. We thank Alexis Saurin for helpful discussions and the anonymous
reviewers of a previous draft of this paper for their comments, which helped us to reor-
ganize this paper. This work has been supported in part by INRIA through the “Equipes
Associées” Slimmer and by the Information Society Technologies programme of the
European Commission, Future and Emerging Technologies under the IST-2005-015905
MOBIUS project.

References

[And92] Andreoli, J.-M.: Logic programming with focusing proofs in linear logic. J. of
Logic and Computation 2(3), 297–347 (1992)

[AP91] Andreoli, J.M., Pareschi, R.: Linear objects: Logical processes with built-in inheri-
tance. New Generation Computing 9(3-4), 445–473 (1991)

[AvE82] Apt, K.R., van Emden, M.H.: Contributions to the theory of logic programming. J.
of the ACM 29(3), 841–862 (1982)

[BGM�07] Baelde, D., Gacek, A., Miller, D., Nadathur, G., Tiu, A.: The Bedwyr system for
model checking over syntactic expressions. In: Pfenning, F. (ed.) 21th Conference
on Automated Deduction. LNCS (LNAI), vol. 4603, pp. 391–397. Springer, Hei-
delberg (2007)

[BM07] Baelde, D., Miller, D.: Least and greatest fixed points in linear logic: extended
version. Technical report, available from the first author’s web page (April 2007)

[DJS93] Danos, V., Joinet, J.-B., Schellinx, H.: The structure of exponentials: Uncovering
the dynamics of linear logic proofs. In: Mundici, D., Gottlob, G., Leitsch, A. (eds.)
KGC 1993. LNCS, vol. 713, pp. 159–171. Springer, Heidelberg (1993)

[Gen69] Gentzen, G.: Investigations into logical deductions. In: Szabo, M.E. (ed.) The Col-
lected Papers of Gerhard Gentzen, North-Holland, Amsterdam, pp. 68–131 (1969)

[Gir87] Girard, J.-Y.: Linear logic. Theoretical Computer Science 50, 1–102 (1987)

106 D. Baelde and D. Miller

[Gir92] Girard, J.-Y.: A fixpoint theorem in linear logic. An email posting to the mailing
list linear@cs.stanford.edu. (February 1992)

[Gir93] Girard, J.-Y.: On the unity of logic. Annals of Pure and Applied Logic 59, 201–217
(1993)

[Gir98] Girard, J.-Y.: Light linear logic. Information and Computation 143 (1998)
[Gir01] Girard, J.-Y.: Locus solum. Mathematical Structures in Computer Science 11(3),

301–506 (2001)
[HM94] Hodas, J., Miller, D.: Logic programming in a fragment of intuitionistic linear logic.

Information and Computation 110(2), 327–365 (1994)
[Laf04] Lafont, Y.: Soft linear logic and polynomial time. Theoretical Computer Sci-

ence 318(1-2), 163–180 (2004)
[LM07] Liang, C., Miller, D.: Focusing and polarization in intuitionistic logic. In: Duparc,

J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 451–465. Springer, Hei-
delberg (2007)

[Mil96] Miller, D.: Forum: A multiple-conclusion specification logic. Theoretical Computer
Science 165(1), 201–232 (1996)

[MM00] McDowell, R., Miller, D.: Cut-elimination for a logic with definitions and induc-
tion. Theoretical Computer Science 232, 91–119 (2000)

[MNPS91] Miller, D., Nadathur, G., Pfenning, F., Scedrov, A.: Uniform proofs as a foundation
for logic programming. Annals of Pure and Applied Logic 51, 125–157 (1991)

[MS05] Miller, D., Saurin, A.: A game semantics for proof search: Preliminary results. In:
Proceedings of the Mathematical Foundations of Programming Semantics (MFPS)
(2005)

[MS07] Miller, D., Saurin, A.: From proofs to focused proofs: a modular proof of focal-
ization in linear logic. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS,
vol. 4646, pp. 405–419. Springer, Heidelberg (2007)

[MT03] Momigliano, A., Tiu, A.: Induction and co-induction in sequent calculus. In: Be-
rardi, S., Coppo, M., Damiani, F. (eds.) TYPES 2003. LNCS, vol. 3085, pp. 293–
308. Springer, Heidelberg (2004)

[PM05] Pimentel, E., Miller, D.: On the specification of sequent systems. In: Sutcliffe, G.,
Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835, pp. 352–366. Springer,
Heidelberg (2005)

[SH93] Schroeder-Heister, P.: Rules of definitional reflection. In: Vardi, M. (ed.) Eighth
Annual Symposium on Logic in Computer Science, pp. 222–232. IEEE Computer
Society Press, Los Alamitos (1993)

[Sti96] Stirling, C.: Games for bisimulation and model checking. Notes for Mathfit Work-
shop on Finite Model Theory, University of Wales, Swansea (July 1996)

[Tiu04] Tiu, A.: A Logical Framework for Reasoning about Logical Specifications. PhD
thesis, Pennsylvania State University (May 2004)

[Tiu05] Tiu, A.: Model checking for
-calculus using proof search. In: Abadi, M., de Alfaro,
L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 36–50. Springer, Heidelberg (2005)

[TNM05] Tiu, A., Nadathur, G., Miller, D.: Mixing finite success and finite failure in an auto-
mated prover. In: Proceedings of ESHOL 2005: Empirically Successful Automated
Reasoning in Higher-Order Logics, pp. 79–98 (December 2005)

The Semantics of Consistency and Trust in Peer

Data Exchange Systems

Leopoldo Bertossi1 and Loreto Bravo2

1 Carleton University, School of Computer Science, Ottawa, Canada
bertossi@scs.carleton.ca

2 University of Edinburgh, School of Informatics, Edinburgh, UK
lbravo@inf.ed.ac.uk

Abstract. We propose and investigate a semantics for peer data ex-
change systems (or peer data management systems) where different peers
are pairwise related to each other by means of data exchange constraints
and trust relationships. These two elements plus the data at the peers’
sites and the local integrity constraints for a peer are made compatible
via the proposed semantics by determining a set of solution instances,
which are the intended virtual instances for the peer. The semantically
correct answers from a peer to a query, called its peer consistent answers,
are defined as those answers that are invariant under all its different so-
lution instances. We show that solution instances can be specified as the
models of logic programs with a stable model semantics.

1 Introduction

A peer data exchange system (PDES) consists of a finite set of peers {P1, . . .Pn},
each of them with a local database instance. Peers may be pairwise related by
means of logical sentences, called data exchange constraints (DECs), which are
expressed in terms of the participating schemas and are expected to be satisfied
by the combined data. Furthermore, a peer P may trust its data the same as or
less than other peers’ data, i.e. there may be trust relationships between pairs of
peers. We may also have integrity constraints (ICs) that are local to each peer.

The DECs could be seen as ICs on a global database obtained by conceptually
putting together all the peers’ schemas and data. Most likely, these DECs will
not be satisfied in this global database, but virtually enforcing their satisfaction
at query time has the effect of shipping (sub)queries and data between peers.
Actually, in such a PDES, a query Q is posed to a peer P, who, in order to
answer it, may need to consider both its own data and the data stored at other
peers’ sites that are related to P by DECs. Keeping P’s DECs satisfied at query
time may imply getting data from other peers to complement P’s data, but also
not using part of its own data.

The decision by a peer P on what other data to consider does not depend only
on its DECs, but also on the trust relationships that P has with other peers. For
example, if peer P trusts peer Q’s data more than its own, P will accommodate
its data to Q’s in order to keep the DECs between them satisfied.

N. Dershowitz and A. Voronkov (Eds.): LPAR 2007, LNAI 4790, pp. 107–122, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

108 L. Bertossi and L. Bravo

In order for P to return meaningful answers, its local semantic constraints
have to be taken into account. The consistency of its instance should be pre-
served when it is virtually updated due to the interaction with other peers. In
consequence, still at query time, P may also need to “virtually repair” its data.

Our semantics makes all these elements compatible, by defining a set of virtual
global instances called solution instances (or simply solutions) for a peer. In
consequence, the “data” for a peer, the one in its solution instances, depends
upon its instance, the local instances of the related peers, the satisfaction of the
DECs, and the satisfaction by P of its local ICs. After that, having a precise
definition of the intended solution instances for a peer P, the peer consistent
answers (PCAs) from peer P to query Q are defined as those answers that can
be retrieved from every possible solution for P.

The definition of solution for P may suggest that P may physically change
other peers’ data, but this is not the case. The notion of solution is used as
an auxiliary notion to characterize the correct answers from P’s point of view.
Ideally, P should be able to obtain its peer consistent answers just by querying
the already available local instances. This resembles the approach to consistent
query answering (CQA) in databases, where consistent answers to a query posed
to a database, which is possibly inconsistent wrt to a given set of ICs, are defined
as those answers that can be retrieved from every minimally repaired version of
the original instance. Methods have been developed for computing these answers
without having to physically repair the given instance [1, 9, 10].

Our work goes in the direction of semantic approaches to peer-to-peer data
exchange [27, 29, 28, 14, 21, 7, 15, 23]. In [7] trust relationships were introduced
for the first time in this scenario and the notions of solution instance for a
peer and of peer consistent answer to a query were introduced. The case of a
peer and its immediate neighbors was considered and investigated. However, the
situation where a peer is related by logical transitivity via DECs to other, non
neighboring peers was not modelled. Actually, in [7] it was only indicated that
giving a semantics to solution instances for a peer that consider the transitive
relationships to other peers could be done by using logic programs with stable
model semantics. We fully develop this idea here. First, we provide a general
model-theoretic definition of solutions for a peer, including the transitive case,
and next, we specify the solutions as the models of disjunctive logic programs
with stable model semantics [24], aka. answer set programs [25, 3]. An extended
version of this paper can be found in [8].

Logic programs can capture the different ways the system stabilizes after satis-
fying the DECs, the trust relationships, and the local ICs. Disjunctive programs
allow for the specification of alternative virtual updates on data sources under
certain conditions. We propose appropriate logic programs and then we establish
that there is a one-to-one correspondence between the set of solution instances
for a peer and the set of stable models of the program. Logic programs provide
an expressive language for representing and specifying the alternative solutions
for a peer, and become executable specifications for computing peer consistent

The Semantics of Consistency and Trust in Peer Data Exchange Systems 109

answers. This approach has been exploited in CQA, where database repairs are
specified as stable models of a program [2, 26, 4, 17].

2 A Semantics for PDESs

We consider peers that have mutually disjoint relational schemas; but all of them
share a possibly infinite database domain U . Peers are denoted by A, B, P, Q, ...

Definition 1. A peer data exchange system P consists of: (a) A finite set
P of peers, with each peer P owning a relational database schema R(P), and
a database instance D(P) conforming to schema R(P). The schemas determine
FO languages, e.g. L(P), L(P, Q). (b) For each peer P, collections Σ(P, Q) of
sentences of L(P, Q), which contain the DECs between P and a peer Q. Here,
Σ(P) :=

⋃
Q Σ(P, Q) and Σ :=

⋃
P∈P Σ(P). (c) For each peer P, a set of L(P)-

sentences IC (P) that are ICs on R(P). Here, IC =
⋃

P∈P IC(P). (d) A relation
trust ⊆ P×{less, same}×P , with exactly one triple of the form 〈P, ·, Q〉 for each
non empty Σ(P, Q). �

The intended semantics of (A, less, B) ∈ trust is that peer A trusts itself less than
B; while (A, same, B) ∈ trust indicates that A trusts itself the same as B.

Definition 2. (a) A universal data exchange constraint (UDEC) between peers
P1, P2 is a first-order (FO) formula of form:

∀x̄(
n∧
i=1

Ri(x̄i) −→ (
m∨
j=1

Qj(ȳj) ∨ ϕ)); (1)

where the Ri, Qj are relations in R(P1)∪R(P2), ϕ is a formula containing built-in
atoms1 only, and x̄i, ȳj ⊆ x̄. (b) A referential data exchange constraint (RDEC)
between peers P1, P2 is an L(P1, P2)-sentence of the form:

∀x̄(R(x̄) −→ ∃ȳ Q(x̄′, ȳ)); (2)

where R, Q ∈ R(P1) ∪R(P2), and x̄′ ⊆ x̄. �

Notice that the sets of DECs Σ(P1, P2) and Σ(P2, P1) can be different. When
exchanging or repairing data, the existential quantifier in RDECs will be inter-
preted as a null value. By having one database atom in the consequent, we avoid
existential joins that, when filled with nulls, do not have a clear semantics (cf.
[12] for a discussion and a FO semantics of nulls in SQL databases).2

Example 1. Consider a PDES P with four peers and R(P1) = {R1(·, ·)}, R(P2) =
{R2(·, ·), S2(·, ·)}, R(P3) = {R3(·, ·)}, R(P4) = {R4(·, ·, ·)}, and DECs:

Σ(P1, P2)= {∀xy(R2(x, y) → R1(x, y))},
Σ(P2, P3)= {∀xy(R2(x, y) ∧ R3(x, y) → false)},
Σ(P4, P2)= {∀xyz(R2(x, y) ∧ S2(y, z) → R4(x, y, z))},
Σ(P4, P3)= {∀xy(R3(x, y) → ∃zR4(x, y, z))}.

1 For example, x �= 3, y = z and z > 3.
2 Our framework can be easily adapted to cases where, instead of null , one uses arbi-

trary elements of the database domain [13] or labelled nulls [30].

110 L. Bertossi and L. Bravo

Here false in the second DEC is a built-in atom that is false in every instance, so
the DEC specifies that relations R2 and R3 are disjoint. The DECs in Σ(P1, P2),
Σ(P2, P3) and Σ(P4, P2) are UDECs and the one in Σ(P4, P3) is a RDEC. Finally,
we could have trust = {(P1,less,P2), (P2,same,P3), (P4,less,P2), (P4,less,P3)}.
Peer P1 trusts P2 more than itself, and it will import all the data from R2 into
its table R1. On the other hand, peer P2 trusts peer P3 as much as itself, and its
DEC states that it is not possible to have the same tuple in both R3 and R2. �

Local ICs IC (P) are also of the form in Definition 2, but with all database
predicates in R(P). So, we can identify IC (P) with Σ(P, P). All the common ICs
found in database practice can be accommodated into these syntactic classes.
In particular, using the atom false, denial constraints are of the form (1). In
Example 1, we could have IC (P2) = {∀x∀y(R2(x, y) ∧ S2(x, y) → false)}.

Each peer P is responsible for maintaining its material instance consistent
with respect to its ICs IC (P), independently from other peers; and we may
assume that this is the case. However, our semantics works the same if we allow
peers with locally inconsistent data. According to our semantics presented below,
unsatisfied local ICs are considered when solution instances are specified, which
is done by using a repair semantics and techniques developed for CQA [10, 6].

When a peer P is posed a query, it may have to submit queries to other peers
according to its DECs, using data in other peers’ relations appearing in them.
Data brought from other peers will possibly cause virtual updates on P’s data,
which may create virtual violations of P’s local ICs, which has to be considered.

From the perspective of a peer P, its own database may be inconsistent with
respect to the data owned by another peer Q it trusts more or the same, and the
DECs in Σ(P, Q). When P queries its own database, the answers from P should
be consistent with Σ(P, Q) and its own ICs IC (P). In principle, P, which is not
allowed to change other peers’ data, could try to physically repair its database in
order to satisfy Σ(P) ∪ IC (P). This is not a realistic approach. Rather, P should
solve its semantic conflicts at query time. This leads to a set of virtual instances,
the minimal repairs of P’s local database, where P’s DECs and ICs are satisfied,
while respecting P’s trust relationships to other peers. The answers returned by
P to the user are those that are true of all these instances.

The solution instances of a peer will be determined not only by its relation-
ships with its neighbors, but also by the neighbors of its neighbors, etc.

Definition 3. (a) The accessibility graph G(P) of a PDES P contains a vertex
for each peer P ∈ P and a directed edge from Pi to Pj if Σ(Pi, Pj) is non empty.
An edge from Pi to Pj is labelled with “<” when (Pi, less, Pj) ∈ trust, and with
“=” when (Pi, same, Pj) ∈ trust .3 (b) Peer P’ is accessible from P if there is a
path in G(P) from P to P’ or if P’=P. Peer P’ is a neighbor of P if there is an
edge from P to P’ in G(P), or if P’ = P. With AC(P) and N (P) we denote the
sets of peers that are accessible from P and the neighbors of P, respectively. For
P ∈ P , G(P) is the restriction of G(P) to AC(P). �

3 In case a peer P trusts itself more than another peer, the information of the latter
is irrelevant to P.

The Semantics of Consistency and Trust in Peer Data Exchange Systems 111

P1

P4

P2

P3

<
=

<
<

(a) G(P)

P1 P2

P3

<
=

(b) G(P1)

P4

P2

P3

<
<

=

(c) G(P4)
Fig. 1. Graphs for Example 2

Example 2. (Example 1 continued) In this system, AC(P1) = {P1, P2, P3},
AC(P2) = {P2, P3}, AC(P3) = {P3}, AC(P4) = {P2, P3, P4}, N (P1) = {P1, P2},
N (P2) = {P2, P3}, N (P3) = {P3}, and N (P4) = {P2, P3, P4}. �

The data distributed across different peers has to be appropriately gathered
to build solution instances for a peer, and different semantics may emerge as
candidates, depending on the granularity of the data sent between peers. We
develop one of them,4 according to which, the data that a peer P receives from
a neighbor Q to build its own solutions is the intersection of the solutions for
Q. After P collects this data, only P’s DECs and ICs are considered. This is a
recursive definition since the solutions for the neighbors have to be determined,
under the same semantics. Base cases of the recursion are peers with no relevant
DECs. In consequence, this semantics requires an acyclic accessibility graph.

In [27] problematic cases involving cyclic dependencies through DECs are
identified, which implicitly involve a cyclic accessibility graph. For example, we
may have a PDES P with P = {P1, P2, P3}, with relations R1(·), R2(·), R3(·),
resp., and DECs Σ(P1) = {∀x(R2(x) → R1(x))}, Σ(P2) = {∀x(R3(x) →
R2(x))}, Σ(P3) = {∀x(R1(x) → R3(x))}, each of them satisfied only by im-
porting data into the peer who owns the DEC. The implicit trust relation
{(P1, less, P2), (P2, less, P3), (P3, less, P1)} makes AC(P) cyclic. In [27] it is as-
sumed that no cycles of this kind appear. In the following, we will also assume
that G(P) is acyclic, and then for each particular peer P, G(P) is acyclic.

Null values will be used to satisfy referential DECs and local referential ICs;
and the repair semantics based on introduction of null values, presented and
developed in [12, 11] for single relational databases and RICs, can be adapted
here, but now taking into account the trust relationships. Data sources at the
peers’ sites may contain null values that, as those used to satisfy referential con-
straints, will have a semantics that corresponds to the way nulls are handled by
DBMSs that follow the SQL standard. In particular, there is only one constant,
null , that is used as the null value.5 We use a semantics for IC satisfaction in the
presence of nulls that generalizes the one implemented in DBMSs, and coincides
with the first-order notion of formula satisfaction in databases without nulls [11].
4 In [11] also two other alternative semantics are fully developed and compared, in

particular establishing some conditions under which they coincide or differ. The
other semantics assume that more detailed information, such as mappings and trust
relationships, can be sent between peers.

5 This null is obviously different from the multiple labelled null values that are con-
sidered in data exchange for satisfying existential quantifiers (cf. [30] for a survey).

112 L. Bertossi and L. Bravo

A formal development of the notion of constraint satisfaction, denoted D |= ψ,
with D possibly containing null and ψ a constraint, can be found in [12, 11] (cf.
[8, appendix B] for a review). What matters most for the rest of this paper
is that the satisfaction of a constraint ψ depends upon the presence of null in
attributes of database relations which are also relevant attributes for ψ.

Solutions for a peer should stay close to its original physical instance while
satisfying the DECs and local ICs. We do not want to import or give up more
data than strictly required to satisfy the constraints. To formalize this idea, we
first need to compare tuples that may contain null . A constant c provides less or
equal information than a constant d, denoted c � d, iff c is null or c = d [31]. A
tuple t̄1 = (c1, . . . , cn) provides less or equal information than t̄2 = (d1, . . . , dn),
denoted t̄1 � t̄2, iff ci � di for every i = 1, . . . , n. Finally, t̄1 � t̄2 means t̄1 � t̄2
and t̄1 = t̄2 . In the following, a database instance is identified with a finite set
of ground database atoms; and Δ(·, ·) denotes the symmetric difference of sets.

Definition 4. Let D, D′, D′′ be database instances for the same schema. It
holds that D′ ≤D D′′ iff for every P (ā) ∈ Δ(D, D′), there exists P (ā′), such
that: (a) P (ā′) ∈ Δ(D, D′′); (b) ā � ā′; and (c) if ā � ā′, then P (ā′) ∈
Δ(D, D′). Finally, D′′ <D D′ means D′′ ≤D D′ but not D′ ≤D D′′. �

If D′ ≤D D′′, we say that D′ is closer to D than D′′. Condition (c) in Def. 4
ensures that a database that adds to D a tuple with null is closer to D than other
that adds other constant. This condition will later ensure that the satisfaction
of RDECs is enforced by using null .

For an instance D of a schema S, and S′ a subschema of S, D|S′ denotes the
restriction of D to S′. Thus, if R is a predicate in S and D is an instance for S,
D|{R} denotes the extension of R in D. If R(P) ⊆ S, D|P is the restriction of D to
R(P). A neighborhood solution for P and a database for its whole neighborhood
is a closest database that satisfies P’s DECs, ICs, and trust relationships.

Definition 5. Given a peer P in a PDES P and instances D, D′ on schema⋃
Q∈N (P) R(Q), D′ is a neighborhood solution for P and D if : (a) D′ |=⋃
Q∈N (P) Σ(P, Q) ∪ IC (P). (b) D′|{R} = D|{R} for every predicate R ∈ R(Q)

with (P, less, Q) ∈ trust. (c) There is no instance D′′ that satisfies (a) and (b),
and such that D′′ <D D′. �

We do not require in (a) IC (Q) to be satisfied, because Q will move data to P’s
site, where inconsistencies will be solved locally, according to Definition 6, where
S(P) denotes the set of solutions for peer P.

Definition 6. Given a peer P in a PDES P with local instance D(P), an instance
D over R(P) is a solution instance for P if: (a) D = D(P) and Σ(P) = ∅; or (b)
Σ(P) = ∅, D = D|P where D is a neighborhood solution for P and the database
instance D(P) ∪ ⋃

Q∈(N (P)�{P})
⋂
I∈S(Q)I over schema

⋃
Q∈N (P) R(Q). �

Intuitively, before constructing P’s solutions, P has its local instance D(P) and
each of its neighbors has as local instance the intersection of its own solutions.
This produces a combined database. After that, the solutions for P are obtained
by restricting to P the neighborhood solutions for the combined instance. The

The Semantics of Consistency and Trust in Peer Data Exchange Systems 113

neighborhood solution captures the minimal virtual updates that are necessary
to satisfy the DECS and local ICs. As there may be several neighborhood solu-
tions, several solutions for a peer are possible.

Example 3. (Example 1 and 2 continued) Consider the following instances of
peers P1, P2 and P3 : D(P1) = {R1(a, 2)}, D(P2) = {R2(c, 4), R2(d, 5)}, D(P3) =
{R3(c, 4)} and D(P4) = {R4(d, 5, 1)}. If we want the solutions for P1, the so-
lutions for P2 are needed, who will need in turn the solutions for P1. Since P3
has no DECs with other peers, its only neighborhood solution is it local instance
D(P3). This data is sent back to P2, who needs to repair {R2(c, 4), R2(d, 5), R3(c,
4)} now wrt Σ(P2, P3). As P2 trusts P3 the same as itself, it can modify its
own data or the data it got from P3. There are two neighborhood solutions
for P2: {R2(c, 4), R2(d, 5)} and {R2(d, 5), R3(c, 4)}, that lead to two solutions
for P2: {R2(c, 4), R2(d, 5)} and {R2(d, 5)}. Peer P2 will send to P1 the intersec-
tion of its solutions: {R2(d, 5)}. Now, P1 has to repair {R1(a, 2), R2(d, 5)} wrt
Σ(P1, P2)= {∀xy (R2(x, y) → R1(x, y))}. Since P1 trusts its own data less than
the data of P2, it will solve inconsistencies by modifying its own data. There is
only one neighborhood solution, {R1(a, 2), R2(d, 5), R1(d, 5)}, and the solution
for P1 is {R1(a, 2), R1(d, 5)}.

To compute the solutions for P4, the solutions of P2 and P3 are computed as
shown before. Neighborhood solutions for P4 are obtained by repairing {R4(d, 5,
1), R2(d, 5), R3(c, 4)} wrt Σ(P4, P2), and Σ(P4, P3). The DECs in Σ(P4, P2) are
already satisfied, but not the ones in Σ(P4, P3). Since P4 trusts the data in P3
more, a repair is obtained by adding a tuple with null into P4. The unique neigh-
borhood solution for P4 is {R4(d, 5, 1), R2(d, 5), R3(c, 4), R4(c, 4, null)}. Conse-
quently, S(P4) = {{R4(d, 5, 1), R4(c, 4, null)}}. �

The peer consistent answers are the semantically correct answers to a query
returned by a peer who consistently considers the data of- and trust relationships
with its neighbors.

Definition 7. Given a FO query Q(x̄) ∈ L(P) posed to P, a ground tuple t̄ is
a peer consistent answer (PCA) to Q from P iff D |= Q(t̄) for every solution
instance D for P. �

Example 4. (Example 3 continued) If P2 is posed the query Q : R2(x, y), from
its first solution instance we get {(c, 4), (d, 5)}, and from the second, {(d, 5)}.
Therefore, the only PCA from P2 is {(d, 5)}. �

Even in the absence of cycles in G(P), there may be no solutions for a peer.
Furthermore, still with acyclic G(P), the decision problem of peer consistent an-
swering, i.e. deciding if a tuple is a PCA to a query, may be undecidable if con-
sistency wrt RDECs is achieved using arbitrary values in the domain.6 However,
using null instead avoids this problem, making the problem decidable. Actually,
by reduction from CQA to PCA and known results on the data complexity of
CQA [12], we obtain

Theorem 1. The problem of peer consistent answering is ΠP
2 -complete. �

6 The undecidability result for CQA in [13] can be reconstructed in our framework,
because even with G(P) acyclic, DECs can have ref-cycles (cf. Example 5).

114 L. Bertossi and L. Bravo

3 Answer Set Programs and the Solutions for a Peer

In order to define the solutions for a peer P, we have to consider P’s relevant peers,
which are those in AC(P). The presence of cycles, through trust relationships or
constraints (DECs or ICs), have an impact on the semantics. The former cycles
appear in a cyclic G(P). The latter appear when the DECs and local ICs of peers
in AC(P) put together present cycles through the implications that involve an
RDEC or a local referential IC (a RIC). Sets of local ICs of this kind are called
RIC-cyclic in [12]. For example, IC = {∀x(S(x) → Q(x)), ∀x (Q(x) → S(x)),
∀x(Q(x) → ∃y T (x, y))} is not RIC-cyclic, whereas IC ′ = IC ∪ {∀xy (T (x, y)
→ Q(y))} is, because there is a cycle involving the RIC ∀x(Q(x) → ∃y T (x, y)).
RIC-cyclicity at the level of local ICs may lead to more solutions than intended
when capturing the repair semantics by means of logic programs [12].

In order to deal with the new issues arising in PDESs, we will assume that, for
each peer P, IC (P) is RIC-acyclic (cf. Section 4 for a discussion). Cycles through
DECs and ICs will be crucial for a logic programming-based specification of
solutions for a peer. We will say that the PDES P is ref-acyclic when in Σ ∪ IC
there are no cycles that involve an RDEC or a RIC.

As Example 5 below shows, even assuming the acyclicity of G(P), and RIC-
acyclicity at the level of local ICs (or no local ICs at all), we may have ref-cycles
in the set of all DECs. This is due to the generality of DECs, where we can have
relations of any of the two peers on both sides of the implication.

Example 5. Peers P1, P2 have relations R1, R2, resp. Σ(P1) = {∀xz(R1(x, z) →
∃yR2(x, y)), ∀xz(R2(x, z) → ∃yR1(x, y)}, Σ(P2) = ∅; and (P1, less, P2) ∈ trust .
Here, AC(P) is acyclic, but Σ(P1) ∪ Σ(P2) has a ref-cycle. �

Now we will show how to specify solutions for a peer, given instances for the
other peers, as the stable models of disjunctive logic programs. These programs
use annotation constants to indicate the atoms that may become true or false
(virtually inserted or deleted) in order to satisfy the DECs and local ICs. For
each database predicate P we generate a new copy P with an extra argument to
accommodate the annotation. In P (ā, ta), annotation ta means that the atom
is advised to be made true; and fa, that the atom should be made false. For each
DEC and local IC ψ, a rule captures through its disjunctive head the alternative
virtual updates that can be performed to satisfy ψ (cf. rules 2. and 3. in Definition
9 for DECs, and 4. and 5. for local ICs).

Annotation t� indicates that the atom is true or becomes true in the program.
It is introduced in order to execute a sequence of virtual updates that is needed
due to interacting DECs and ICs. Finally, atoms annotated with t�� are those
that become true in a solution. They are the relevant atoms, and are used to
read off the database atoms in the solutions (rules 8. below).

The relevant attributes of a constraint are those where the occurrence of null
is relevant for its satisfaction [12], and then, they receive a special treatment in
the logic programs. For the DEC in Σ(P4, P3) in Example 1, the two attributes
of R3 and the first two of R4 are relevant, but not the third attribute of R4.

The Semantics of Consistency and Trust in Peer Data Exchange Systems 115

Definition 8. For a constraint ψ ∈ L(R) and a variable or a domain constant
t, posR(ψ, t) is the set of positions in predicate R ∈ R where t appears in ψ. The
set of relevant variables for ψ is V(ψ) = {x | x is a repeated variable in ψ}. The
set of relevant attributes for ψ is A(ψ) = {R[i] | x ∈ V(ψ) and i ∈ posR(ψ, x)} ∪
{R[i] | c is a constant in ψ and i ∈ posR(ψ, c)}, where R[i] denotes the attribute
in position i in R. �

Definition 9. Consider a PDES P, a peer P ∈ P with N (P) = {P, P1, . . . , Pn},
and I = {I1, . . . , In}, where Ij is a database instance over the schema of Pj.
The solution program Π(P, P, I) for P contains:
1. dom(a), for every a ∈ (U � {null}). R(ā), for each atom R(ā) ∈ D(P).

R(ā), for each R(ā) ∈ I with I ∈ I.
2. For every UDEC ψ ∈ Σ(P, Pj) of the form (1) with Pj ∈ N (P) and (P, {same

or less}, Pj) ∈ trust, the rule:
∨

R∈RP

R(x̄i, fa) ∨
∨

Q∈QP

Q (ȳj , ta) ←
n∧

i=1

Ri (x̄i, t
�),

m∧
j=1

Qj (ȳj , f
�),

∧
xl∈A(ψ)

xl �= null , ϕ̄,

where A(ψ) is the set of relevant attributes of ψ, ϕ̄ is a conjunction of
built-ins that is equivalent to the negation of ϕ; and, given R = {Ri | i =
1, . . . , n, Ri appears in (1)}, RP is defined by RP = R∩R(P) if (P, less, Pj) ∈
trust ; and RP = R if (P, same, Pj) ∈ trust. QP is defined analogously in terms
of the Qj predicates in (1).

3. For every RDEC ψ ∈ Σ(P, Pj) of the form (2) such that Pj ∈ N (P) and
(P, {same or less}, Pj) ∈ trust:
(a) If (P, same, Pj) ∈ trust , the rule:

R (x̄, fa) ∨ Q (x̄′, null , ta) ← R (x̄, t�), not auxψ(x̄′), x̄′ = null .
(b) If (P, less, Pj) ∈ trust and R ∈ R(P), the rule:

R (x̄, fa) ← R (x̄, t�), not auxψ(x̄′), x̄′ = null .
(c) If (P, less, Pj) ∈ trust and Q ∈ R(P), the rule:

Q (x̄′, null , ta) ← R (x̄, t�), not auxψ(x̄′), x̄′ = null .
Plus the auxiliary rules:
auxψ(x̄′)← Q(x̄′,null), not Q (x̄′,null , fa), x̄

′ �= null .

For every yi ∈ ȳ:
auxψ(x̄′)← Q (x̄′, ȳ, t�), not Q (x̄′, ȳ, fa), x̄′ �= null , yi �= null .

4. For every UIC ψ ∈ IC (P) of the form (1), the rule:
n∨

i=1

Pi (x̄i, fa) ∨
m∨

j=1

Qj (ȳj , ta) ←
n∧

i=1

Pi (x̄i, t
�),

m∧
j=1

Qj (ȳj , f
�),

∧
xl∈A(ψ)

xl �= null , ϕ̄.

5. For every RIC ψ ∈ IC (P) of the form (2), the rules:
P (x̄, fa) ∨ Q (x̄′, null , ta) ← P (x̄, t�), not auxψ(x̄′), x̄′ = null .
auxψ(x̄′) ← Q(x̄′, null), not Q (x̄′, null , fa), x̄′ = null .
For every yi ∈ ȳ:
auxψ(x̄′) ← Q (x̄′, ȳ, t�), not Q (x̄′, ȳ, fa), x̄′ = null , yi = null .

6. For each predicate R ∈ R(N (P)), the annotation rules:
R (x̄, f�) ← dom(x̄), not R(x̄). R (x̄, f�) ← R (x̄, fa).
R (x̄, t�) ← R(x̄). R (x̄, t�) ← R (x̄, ta).

7. For each predicate R ∈ R(N (P)), the program constraint:
← R (x̄, ta), R (x̄, fa).

116 L. Bertossi and L. Bravo

8. For each predicate R ∈ R(P), the interpretation rule:
R (x̄, t��) ← R (x̄, t�), not R (x̄, fa). �

In bodies of rules associated to DECs or ICs ψ, the conditions of the form x =
null , with x a variable appearing in a relevant attribute of ψ are used to capture
the semantics of null values as used in SQL (cf. [12] for details). An atom of the
form P (x̄, null , ...) in the program represents an atom with possibly several oc-
currences of null, not necessarily in its last arguments, e.g. P (x, null , y, null , ...).
For x̄ = x1, . . . , xn, x̄ = null abbreviates x1 = null , . . . , xn = null . The program
constraints in 7. discard models where an atom is both inserted and deleted.

The facts of the program are those in instance D(P) of P and those in instances
I(Pi) for P’s neighbors Pi. The instances I(Pi) used in the program may not
coincide with the physical instances D(Pi). Actually, as shown below, if each
I(Pi) is the intersection of the solutions of Pi, then the stable models of the
program are in one-to-one correspondence with the solutions of peer P.

Since virtual updates are executed on the peers’ instances, their local ICs
have to be kept satisfied. That is the role of rules 4. (for universal ICs) and 5.
(for referential ICs) above. We adopt the stable model semantics for the solution
programs [24], i.e. their intended models are their stable models.

Example 6. (Example 1 continued) Consider D(P1) = {R1(a, 2)}, and the in-
stance I2 = {R2(d, 5)} for P2, the neighbor of P1. The solution program Π(P, P1,
{I2}) contains: dom(a). dom(c). . . . R1(a, 2). R2(d, 5).
R1(x, y, ta) ← R2(x, y, t�), R1(x, y, f�), x = null , y = null .
R1(x, y, t�) ← R1(x, y, ta). R1(x, y, t�) ← R1(x, y).
R1(x, y, f�) ← R1(x, y, fa). R1(x, y, f�) ← dom(x), dom(y), not R1(x, y).
← R1(x, y, ta), R1(x, y, fa). R1(x, y, t��) ← R1(x, y, t�), not R1(x, y, fa).
With similar rules to the 2nd-6th for R2. The first rule makes sure that an R2-
tuple that is not in R1, is also virtually inserted into R1. In this case, since P1
trusts P2 more than itself, virtual changes affect only peer P1. �

Example 7. Consider a PDES P with R(P1) = {R1(·, ·)}, D(P1) = {R1(s, t),
R1(a, null)}, R(P2) = {R2(·, ·)}, D(P2) = {R2(c, d), R2(a, e)}, Σ(P1, P2)
= {∀xy (R2(x, y) → ∃z R1(x, z))}, IC (P1) = {∀xyz (R1(x, y) ∧ R1(x, z) →
y = z)}, Σ(P2, P1) = IC (P2) = ∅, and trust = {(P1, less, P2)}. The program
Π(P, P1, {I2}) for P1 needs an instance for P2 that may be different from D(P2),
but in this case we choose I2 = D(P2), obtaining the following program (omit-
ting rules 6., 7.): dom(a). dom(b). . . . R1(a, null). R1(s, t). R2(c, d). R2(a, e).

R1(x, null , ta) ← R2(x, t�), not aux(x), x = null .
aux(x) ← R1(x, null), not R1(x, null , fa).
aux(x) ← R1(x, y, t�), not R1(x, y, fa), x = null , y = null .

R1(x, y, fa) ∨ R1(x, z, fa) ← R1(x, y, t�), R1(x, z, t�), x = null , y = z.

R1(x, y, t��) ← R1(x, y, t�), not R1(x, y, fa).

The first rule has the role of satisfying the RDEC by introducing a null into R1.
The fourth rule takes care of the local functional dependency. �

The Semantics of Consistency and Trust in Peer Data Exchange Systems 117

The atoms annotated with t�� in a stable model of P’s program have predicates
of P only. They define a database instance for P. In Example 7, only R1 -atoms
become annotated with t��. The program has only one stable model, with asso-
ciated instance {R1(a, null), R1(s, t), R1(c, null)}.

Definition 10. The database instance for peer P associated to a stable model
M of program Π(P, P, I) is DM = {R(ā) | R (ā, t��) ∈ M}. �

Theorem 2. Given a PDES P, P ∈ P , N (P) = {P, P1, . . . , Pn}, n ≥ 0, D(P) an
instance for P, and I� = {I1, . . . , In} instances for P1, . . . , Pn, resp. If Σ ∪ IC
is ref-acyclic and each of the Ii is the intersection of the solution instances for
peer Pi, then the instances of the form DM, where M is a stable model of
Π(P, P, I�), are the all and only solution instances for P. �

In Example 7, given that D(P2) is already the only solution instance for P2 (P2
has neither DECs nor local ICs) and Σ(P1, P2) is ref-acyclic, the only solution
instance for P is D = {R1(s, t), R1(a, null), R1(c, null)}. However, if there are
ref-cycles, the stable models may correspond to a strict superset of the solutions
for a peer. In this case, post-processing that deletes models corresponding to
non-minimal “solutions” is necessary.

Under the assumption that we have already computed the (intersection of
the) solution instances for the neighbors of P, the program for P allows us to
compute its solution instances. This generates a recursive process that can be
applied because G(P) is acyclic. The terminal peers Pt, i.e. those with no outgoing
edges in G(P), will become the base cases for the recursion. If a peer P’ has Pt
as one of its neighbors, the instance It to be used for Pt in the program for P’
is simply D(Pt), Pt’s original local instance.

Theorem 2 still holds if peer P, instead of collecting the intersection Ii of the
solutions of a neighbor Pi, uses the intersection of the solutions for Pi restricted
to the subschema of Pi that contains Pi’s relations that appear in Σ(P, Pi),
which are those P needs to run its program.

With a solution program for P, PCAs for a query Q posed to P can be ob-
tained by running under the stable model semantics a query program Π(Q) that
represents the query in combination with Π(P, P, I�).
Example 8. (Example 6 continued) In order to obtain the PCAs to the query
Q1 : R1(x, y), asking for the tuples in R1, the rule ans1(x, y) ← R1(x, y, t��)
has to be added to Π(P, P1, {I2}) (assuming that I2 is the intersection of the
solution instances for P2). The ground ans1-atoms in the intersection of all stable
models correspond to the PCAs. For the query Q2 : ∃yR1(x, y), the projection
of R1 on its first attribute, the query rule is ans2(x) ← R1(x, y, t��). �

Our semantics could be naively implemented as follows. When P is posed a query,
P has to run its program, for which it needs as facts those in the intersections
of the solutions of its neighbors. So, P sends to each neighbor P’ queries of the
form Q : R(x̄), where R is a relation of P’ that appears in Σ(P, P’). P expects to
receive from P’ the set of PCAs to Q, because they corresponds to the extension
of R in the intersection of solutions for P’. In order to return to P the PCAs to

118 L. Bertossi and L. Bravo

its queries, the neighboring peers have to run their own programs (except for the
facts, each peer has a fixed solution program that can be used with any query).
As before, they will need PCAs from their own neighbors; etc. This recursion will
eventually reach peers that have no DECs (and its local ICs will be satisfied),
who will offer answers from their original instances to queries by other peers.
Now, propagation of PCAs goes backwards until reaching P, and P gets the facts
to run its program and obtain the PCAs to the original query.

Example 9. (Example 6 continued) Consider local instances D(P1) = {R1(a, 2)},
D(P2) = {R2(c, 4), R2(d, 5)}, and D(P3) = {R3(c, 4)}. A user poses the query
Q0 : R1(x, y) to P1, expecting its PCAs. To run its program, P1 needs the
intersection of the solutions of peer P2. So, P1 sends to P2 the queries Q1

1 :
R2(x, y) and Q1

2 : S2(x, y) (actually, P1 does not need the latter, S2 is not
relevant to P1). In order to peer-consistently-answer these queries, P2 needs
from P3 the PCAs to Q2

3 : R3(x, y). Since P3 has no neighboring peers, it returns
to P2 the entire extension in its local database of relation R3: I3 = D(P3) =
{R3(c, 4)} is given to P2. Now, P2 can run its solution program Π(P, P2, {I3}),
containing: dom(c). dom(d). . . . R2(c, 4). R2(d, 5). R3(c, 4).

R2(x, y, fa) ∨ R3(x, y, fa) ← R2(x, y, t�), R3(x, y, t�), x = null , y = null .
R2(x, y, t��) ← R2(x, y, t�), not R2(x, y, fa).
S2(x, y, t��) ← S2(x, y, t�), not S2(x, y, fa).

We obtain two solutions: {{R2(d, 5)} and {R2(c, 4), R2(d, 5)}}. So, the inter-
section of P2’s solutions is I2 = {R2(d, 5)}. Finally, the program Π(P, P1, {I2})
given in Example 6 is run. It has only one solution, namely {R1(a, 2), R1(d, 5)}}.
Therefore, the peer consistent answers to Q0 are (a, 2) and (d, 5). �

4 Discussion

The domain predicate, dom , in the solution programs can always be instantiated
in a finite active domain; actually dom can be eliminated by adding rules [11].

In the most common PDESs, let us call them the unrestricted import case,
peers P only import data from other peers they trust more than themselves; and
using DECs Σ(P) of the form (1) or (2) that have only one database predicate
in the consequent which belongs to R(P), and all predicates in the antecedent
belonging to another peer’s schema. In this case, the relevant part of the inter-
section of the solutions of each neighbor can be obtained as the PCAs to a single
conjunctive query, namely the one in the antecedent of the DEC.

Proposition 1. For the unrestricted import case of PDES, a peer P with an
empty set IC (P) of local ICs always has a solution instance. �

This result still holds under rather weak conditions, e.g. if the ICs in IC(P): (a)
have a consequent that contains at least one database predicate (not a built-in);
or (b) if only built-ins appear in the consequent, e.g. false, there is a predicate
in the antecedent of the IC that does not appear in any of P’s DECs.

If a PDES has no local ICs, then it is easy to see that the solution program
is head-cycle free [18], and we obtain

The Semantics of Consistency and Trust in Peer Data Exchange Systems 119

Proposition 2. In the unrestricted import case, the solution program for a peer
with an empty set of local ICs is equivalent to a non-disjunctive program. �

The hypothesis on local ICs in this result can be much weakened by assuming
that local ICs are of the form identified in [5, 12], that lead to head-cycle free
repair programs. Since cautious reasoning from normal logic programs is coNP-
complete [18], peer consistent answering is in coNP in data complexity.

We have assumed that G(P) is acyclic. However, the peers, not being aware of
being in a cyclic G(P), could attempt to do data exchange as described above.
In order not to detect an infinite loop, for each query a unique identifier can be
created and kept in all the queries that have origin in it.

The assumption of acyclicity of the accessibility graph is quite cautious in the
sense that it excludes cases where a reasonable semantics could be given and the
logic programs would work correctly, because the cycles in G(P) are not relevant.

We have also assumed that the sets IC (P) of local ICs of peers P are each
ref-acyclic. Even under this assumption, and also with Σ(P) ref-acyclic, IC (P)∪
Σ(P) can have ref-cycles. For example, with IC (P1) = {∀x(R1(x) → S1(x))},
Σ(P1, P2) = {∀x(S1(x) → ∃yR2(x, y)), ∀x(R2(x, y) → R1(x))}. There are also
cases with an acyclic G(P), but with ref-cycles in the DECs, where the logic
programming counterpart of the semantics is correct due to the role of the trust
relationships.

It becomes clear that it is possible to find more relaxed conditions, both
on the accessibility graph and ref-cycles, under which a sensible semantics for
solutions and semantically corresponding logic programs can be given. Also, with
general cyclic accessibility graphs, super peers [32] could be used to detect cycles
and prune certain DECs, making the graph acyclic if necessary; and then our
semantics could be applied.

In [14, 16, 15], the semantics of a PDES is given in terms of epistemic logic.
The mappings (our DECs) are of the form cqi → cqj, with cqi and cqj conjunctive
queries over Pi and Pj’s schemas, resp. Those DECs keep the schemas separate.
It is implicitly assumed that peers trust themselves less than other peers. The
semantics can be applied in the presence of cycles in the accessibility graph.

The treatment of local ICs differs from ours in two ways : (a) A peer that
is inconsistent wrt its local ICs is not considered for data exchange, while in
our case such a peer may apply a repair semantics, as in CQA. (b) Atoms are
imported into a peer by interaction with other peers only if this does not produce
a local IC violation. In our case, under the same trust conditions, the data is
accepted and the peer applies again a local repair semantics.

In order to answer a query [15], a peer traverses the network eventually collect-
ing at its site all DECs, ICs and data of other logically related peers. With these
elements, the peer can construct its epistemic theory, that is used for query an-
swering. An accessibility cycle can be detected by using request identifiers. The
use of epistemic logic makes sure that certain data, the one a peer really knows,
is passed to another peer. In our case, a peer collects only data from its neigh-
bors; and certainty is achieved by using the PCAs of a peer, or more generally,
the intersection of its solutions. A more detailed comparison can be found in [11].

120 L. Bertossi and L. Bravo

The semantics in [21, 22] coincides with the epistemic semantics in [16]. They
provide a distributed algorithm, where peers’ data is updated by instruction of
a super peer. When a query is posed to a peer, it can answer the query right
away with its data because the PDES is already updated.

5 Conclusions

We have introduced a framework for peer data exchange with trust relationships.
Each peer solves its data and semantic conflicts at query time, when querying
its own and other peers’ data.

Logic programs can be used to specify solutions for a peer and to obtain
peer consistent answers. Techniques to partially compute the solution instances
can be useful, since we are not interested in them per se, but in the PCAs.
Techniques used in CQA, such as magic sets for stable model semantics [20] and
identification of predicates that are relevant to queries and constraints, could
also be used in this setting, to restrict the number of rules and the amount of
data that are needed to run the program [17, 19].

The problem of query evaluation from disjunctive programs is ΠP
2 -complete

[18], which matches the complexity of PCA. In spite of this, it is possible to
identify syntactic classes of PDESs for which peer consistent query answering
has a lower complexity, and specifically tailored mechanisms to solve this problem
could be developed, as for CQA (cf. [10] for a survey).

The concepts and results presented in this paper smoothly extend the se-
mantics for local solutions for a peer as introduced in [7] to the transitive case.
Basically, those local solutions correspond to the neighborhood solutions we in-
troduced above. No general solution programs were presented in [7].

Semantics for PDESs have been introduced and analyzed in [27, 21, 29, 28,
22, 14, 16, 15, 23], but without considering trust relationships. In them, if there
is a DEC from P to Q, it is implicitly assumed that P trusts itself less than Q.
Also, all the research so far, has concentrated on the unrestricted import case.
In our setting, a DEC may also restrict the data that can belong to a peer.

Acknowledgements. Research supported by NSERC and a CITO/IBM-CAS
Student Internship. L. Bertossi is Faculty Fellow of IBM CAS (Toronto Lab.).
Part of this work was done when L. Bertossi was visiting the Database Group
at Edinburgh University. Their hospitality is much appreciated.

References

[1] Arenas, M., Bertossi, L., Chomicki, J.: Consistent Query Answers in Inconsistent
Databases. In: PODS 1999. Proc. ACM Symposium on Principles of Database
Systems, pp. 68–79. ACM Press, New York (1999)

[2] Arenas, M., Bertossi, L., Chomicki, J.: Answer Sets for Consistent Query Answers.
Theory and Practice of Logic Programming 3(4&5), 393–424 (2003)

[3] Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solv-
ing. Cambridge University Press, Cambridge (2003)

The Semantics of Consistency and Trust in Peer Data Exchange Systems 121

[4] Barcelo, P., Bertossi, L.: Logic Programs for Querying Inconsistent Databases. In:
Dahl, V., Wadler, P. (eds.) PADL 2003. LNCS, vol. 2562, pp. 208–222. Springer,
Heidelberg (2002)

[5] Barceló, P., Bertossi, L., Bravo, L.: Characterizing and Computing Semantically
Correct Answers from Databases with Annotated Logic and Answer Sets. In:
Bertossi, L., Katona, G.O.H., Schewe, K.-D., Thalheim, B. (eds.) Semantics in
Databases. LNCS, vol. 2582, pp. 7–33. Springer, Heidelberg (2003)

[6] Bertossi, L., Bravo, L.: Consistent Query Answers in Virtual Data Integration
Systems. In: Bertossi, L., Hunter, A., Schaub, T. (eds.) Inconsistency Tolerance.
LNCS, vol. 3300, pp. 42–83. Springer, Heidelberg (2005)

[7] Bertossi, L., Bravo, L.: Query Answering in Peer-to-Peer Data Exchange Systems.
In: Lindner, W., Mesiti, M., Türker, C., Tzitzikas, Y., Vakali, A.I. (eds.) EDBT
2004. LNCS, vol. 3268, pp. 476–485. Springer, Heidelberg (2004)

[8] Bertossi, L., Bravo, L.: The Semantics of Consistency and
Trust in Peer Data Exchange Systems (extended version).
http://www.scs.carleton.ca/∼bertossi/papers/lparExt.pdf

[9] Bertossi, L., Chomicki, J.: Query Answering in Inconsistent Databases. In: Logics
for Emerging Applications of Databases, pp. 43–83. Springer, Heidelberg (2003)

[10] Bertossi, L.: Consistent Query Answering in Databases. ACM Sigmod
Record 35(2), 68–76 (2006)

[11] Bravo, L.: Handling Inconsistency in Databases and Data Integration Systems.
PhD. Thesis, Carleton University, Department of Computer Science (2007),
http://homepages.inf.ed.ac.uk/lbravo/Publications.htm

[12] Bravo, L., Bertossi, L.: Semantically Correct Query Answers in the Presence of
Null Values. In: Grust, T., Höpfner, H., Illarramendi, A., Jablonski, S., Mesiti,
M., Müller, S., Patranjan, P.-L., Sattler, K.-U., Spiliopoulou, M., Wijsen, J. (eds.)
EDBT 2006. LNCS, vol. 4254, pp. 336–357. Springer, Heidelberg (2006)

[13] Cal̀ı, A., Lembo, D., Rosati, R.: On the Decidability and Complexity of Query
Answering over Inconsistent and Incomplete Databases. In: PODS 2003. Proc.
ACM Symposium on Principles of Database Systems, pp. 260–271. ACM Press,
New York (2003)

[14] Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.: Logical Foundations
of Peer-To-Peer Data Integration. In: PODS 2004. Proc. ACM Symposium on
Principles of Database Systems, pp. 241–251. ACM Press, New York (2004)

[15] Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Incon-
sistency Tolerance in P2P Data Integration: An Epistemic Logic Approach. In:
Bierman, G., Koch, C. (eds.) DBPL 2005. LNCS, vol. 3774, pp. 90–105. Springer,
Heidelberg (2005)

[16] Calvanese, D., Damaggio, E., De Giacomo, G., Lenzerini, M., Rosati, R.: Semantic
Data Integration in P2P Systems. In: Aberer, K., Koubarakis, M., Kalogeraki, V.
(eds.) VLDB 2003. LNCS, vol. 2944, pp. 77–90. Springer, Heidelberg (2004)

[17] Caniupan, M., Bertossi, L.: Optimizing Repair Programs for Consistent Query
Answering. In: SCCC 2005. Proc. International Conference of the Chilean Com-
puter Science Society, pp. 3–12. IEEE Computer Society Press, Los Alamitos
(2005)

[18] Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and Expressive
Power of Logic Programming. ACM Computing Surveys 33(3), 374–425 (2001)

[19] Eiter, T., Fink, M., Greco, G., Lembo, D.: Efficient Evaluation of Logic Programs
for Querying Data Integration Systems. In: Palamidessi, C. (ed.) ICLP 2003.
LNCS, vol. 2916, pp. 163–177. Springer, Heidelberg (2003)

http://www.scs.carleton.ca/~bertossi/papers/lparExt.pdf
http://homepages.inf.ed.ac.uk/lbravo/Publications.htm

122 L. Bertossi and L. Bravo

[20] Faber, W., Greco, G., Leone, N.: Magic Sets and their Application to Data Inte-
gration. J. Comp. and Sys. Sciences 73(4), 584–609 (2007)

[21] Franconi, E., Kuper, G., Lopatenko, A., Serafini, L.: A Robust Logical and Com-
putational Characterisation of Peer-to-Peer Database Systems. In: Aberer, K.,
Koubarakis, M., Kalogeraki, V. (eds.) VLDB 2004. LNCS, vol. 2944, pp. 64–76.
Springer, Heidelberg (2004)

[22] Franconi, E., Kuper, G., Lopatenko, A., Zaihrayeu, I.: A Distributed Algorithm
for Robust Data Sharing and Updates in P2P Database Networks. In: Lindner,
W., Mesiti, M., Türker, C., Tzitzikas, Y., Vakali, A.I. (eds.) EDBT 2004. LNCS,
vol. 3268, pp. 446–455. Springer, Heidelberg (2004)

[23] Fuxman, A., Kolaitis, Ph., Miller, R., Tan, W.: Peer Data Exchange. ACM Trans.
Database Systems 31(4), 1454–1498 (2006)

[24] Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive
Databases. New Generation Computing 9, 365–385 (1991)

[25] Gelfond, M., Leone, N.: Logic Programming and Knowledge Representation: The
A-Prolog Perspective. Artificial Intelligence 138(1-2), 3–38 (2002)

[26] Greco, G., Greco, S., Zumpano, E.: A Logical Framework for Querying and Re-
pairing Inconsistent Databases. IEEE Transactions on Knowledge and Data En-
gineering 15(6), 1389–1408 (2003)

[27] Halevy, A., Ives, Z., Suciu, D., Tatarinov, I.: Schema Mediation in Peer Data
Management Systems. In: ICDE 2003. Proc. International Conference on Data
Engineering, pp. 505–518. IEEE Computer Society, Los Alamitos (2003)

[28] Halevy, A., Ives, Z., Madhavan, J., Mork, P., Suciu, D., Tatarinov, I.: The Pi-
azza Peer Data Management System. IEEE Transactions on Knowledge and Data
Engineering 16(7), 787–798 (2004)

[29] Kementsietsidis, A., Arenas, M., Miller, R.: Mapping Data in Peer-to-Peer Sys-
tems: Semantics and Algorithmic Issues. In: SIGMOD 2003. Proc. ACM Interna-
tional Conference on Management of Data, pp. 325–336. ACM Press, New York
(2003)

[30] Kolaitis, Ph.: Schema Mappings, Data Exchange, and Metadata Management. In:
PODS 2005. Proc. of ACM Symposium on Principles of Database Systems, pp.
61–75. ACM Press, New York (2005)

[31] Levene, M., Loizou, G.: Null Inclusion Dependencies in Relational Databases.
Information and Computation 136(2), 67–108 (1997)

[32] Yang, B., Garcia-Molina, H.: Designing a Super-Peer Network. In: ICDE 2003.
Proc. International Conference on Data Engineering, p. 49. IEEE Computer So-
ciety, Los Alamitos (2003)

Completeness and Decidability in Sequence

Logic

Marc Bezem1, Tore Langholm2, and Micha�l Walicki1

1 Department of Informatics, University of Bergen
{bezem,michal}@ii.uib.no

2 Department of Informatics, University of Oslo
tore.langholm@ifi.uio.no

Abstract. Sequence logic is a parameterized logic where the formulas
are sequences of formulas of some arbitrary underlying logic. The se-
quence formulas are interpreted in certain linearly ordered sets of models
of the underlying logic. This interpretation induces an entailment relation
between sequence formulas which strongly depends on which orderings
one wishes to consider. Some important classes are: all linear orderings,
all dense linear orderings and all (or some specific) wellorderings.

For all these classes one can ask for a sound and complete proof sys-
tem for the entailment relation, as well as for its decidability. For the
class of dense linear orderings and all linear orderings we give sound and
complete proof systems which also yield decidability (assuming that the
underlying logic is sound, complete and decidable). We formulate some
open problems on the entailment relation in the case of wellorderings.

1 Introduction

Sequence logic is a parameterized logic where the formulas are sequences of
formulas of some underlying logic. It can be viewed as a subsystem of linear
temporal logic where the temporal aspects are completely separated from other
logical aspects. This separation makes it easy to change the underlying logic
without having to rethink the temporal aspects. Sequence logic has recently been
proposed in [11] and its virtues for modelling dynamically changing knowledge
are studied in [9].

Examples can be provided by systems of interacting agents, in which com-
munication involves state-changes, such as in protocols. A simple example is the
Muddy Children Puzzle in epistemic logic, see [5]. Here each child’s knowledge
is dynamically extended every round, a process which can be described by the
sequence formula a1; . . . ; an, where events causing changes are modelled exclu-
sively as changes in the states expressed by the successive formulas. The problem
is to prove that after m rounds, where m is the number of children, each child
knows whether it is muddy. In sequence logic this problem can be cast as the
entailment a1; . . . ; am |= �; b, where �; b expresses that eventually each child
knows whether it is muddy. The underlying logic will, most naturally, be some
epistemic logic. The example is simple in that the children’s knowledge increases

N. Dershowitz and A. Voronkov (Eds.): LPAR 2007, LNAI 4790, pp. 123–137, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

124 M. Bezem, T. Langholm, and M. Walicki

monotonically. As a consequence, the example is valid with respect to any order-
ing. Other examples discriminate between various classes of orderings and will
be given at relevant places in the paper.

In this paper we give sound and complete proof systems for sequence logic
and draw some conclusions on decidability of entailment. We start by reviewing
some necessary preliminaries.

1.1 Orderings

An ordering (D, <) is an irreflexive and transitive relation < on a non-empty set
D. The non-strict variant (reflexive closure) of < is denoted by ≤. An ordering
is linear if, for any x, y ∈ D, either x < y or x = y or y < x. A least (greatest)
element is an x ∈ D such that x ≤ y (y ≤ x) for all y ∈ D. A linear ordering is
right-open if it has no greatest element. An ordering is dense if for any x, y ∈ D
with x < y, there exists a z ∈ D with x < z < y. A wellordering is a linear
ordering in which every non-empty subset has a least element. In a right-open
wellordering every element x ∈ D has a successor, that is, the least element
y ∈ D with x < y. Any element of a wellordering that is not the least element
of the ordering nor the successor of another element, is called a limit. Classes of
wellorderings modulo isomorphy are called ordinals. An important ordinal is ω,
the class of the natural numbers equipped with their natural ordering.

Unless explicitly stated otherwise, we assume all orderings to be linear, right-
open and to have a least element, and we will denote this class by LO. The
subclasses of dense orderings and of wellorderings are denoted by DLO and
WO, respectively. Note that right-openness excludes all successor ordinals and,
in particular, all finite orderings.

Given an ordering < and d < d′, we use the common notation [d, d′) to denote
the left-closed, right-open interval from d to d′, that is, the set {x ∈ D | d ≤ x <
d′}. We use [d,∞) to denote the set of elements that are greater than or equal
to d. For a function s : D→X we use s(I) to denote the s-image of interval I.

1.2 Sequence Logic

The formulas of sequence logic are non-empty finite sequences a1; . . . ; an where
each ai is a formula of some underlying logic, ul, which is a fixed parameter. We
define hd(a1; . . . ; an) = a1.

Notation and Terminology 1

1. The language of ul consists of a set of formulas which are denoted by the
initial lower case Latin letters, a, b, ... The formulas of sequence logic, se-
quence formulas, are denoted by the initial lower case Greek letters α, β, ...
We write α; β for the concatenation of sequence formulas α and β. Similarly
for α; a; β and α; a; b; β when a and b are ul formulas.

2. If A is a set of ul formulas, Al denotes the set of sequences of length l of
formulas from A. For any single formula a, al denotes the sequence of l
occurrences of a. For a formula b and sequence formula α = a1; . . . ; an we

Completeness and Decidability in Sequence Logic 125

write b ◦ α for the sequence formula b ∧ a1; . . . ; b ∧ an formed by conjoining
b to each member of α (whenever ul contains conjunction ∧).

3. We use |= both for satisfaction and for entailment, both in sequence logic
and in ul. To disambiguate this overloading, the types of the lhs and the rhs
are crucial: s |= a denotes satisfaction of a in a ul structure s; s |= α denotes
satisfaction of α in a structure s in sequence logic. For a set of ul structures
S, S |= a means s |= a for all s ∈ S. We let a |= b express entailment in ul.
In sequence logic, entailment will depend on a class of orderings C and this
will be expressed by α |=C β.

A structure of sequence logic is a tuple S = (d0, D, <, s) where (D, <) is an
ordering, d0 its least element and s a mapping from D to models of the underlying
logic. We identify the structure S with the mapping s when the ordering is clear
from the context.

A structure S satisfies a sequence formula α = a1; . . . ; an if there exist
d1, . . . , dn−1 ∈ D, d0 < d1 < · · · < dn−1, such that for all 1 ≤ i < n we have
s([di−1, di)) |= ai and s([dn−1,∞)) |= an. Then [di−1, di) ([dn−1,∞)) is called
the interval of s satisfying ai (an), or, equivalently, the interval that s uses to
satisfy ai. Note that this terminology refers to a specific instance of S |= α and
that it is possible that the same S satisfies α using different intervals. Satisfac-
tion of α in S will also be denoted by s |= α when the structure S is clear from
the context.

The satisfaction relation defined in the previous paragraph gives rise to the
following entailment relation: Given a class C of orderings we define α |=C β
if for all structures S = (d0, D, <, s) with (D, <) ∈ C we have s |= β whenever
s |= α.

The operator ; corresponds to the chop operator, e.g., [7,6]. Sequence logic
can also be viewed as a fragment of linear-time temporal logic LTL. For exam-
ple, a1; ...; an can be expressed in LTL as a1U(a2U . . . (an−1U¬(�U¬an)) . . .).
Here U is an until-operator1 and � is always true. We are not aware of the
separate study of this fragment elsewhere. Complexity theoretic questions are
not considered in the present paper, but it would be interesting to investigate
whether the restricted expressivity of sequence logic results in lower complexity.
To give a concrete example of such a question: in [8] it is proved that satisfiabil-
ity of LTL based on ω is PSPACE-complete. This constitutes an upper bound
for the complexity of |=ω, with co-NP as an obvious lower bound, both with
classical propositional logic as ul. An open question is now: what is the exact
computational complexity of |=ω?

The main novelty and strength of sequence logic is its parameterization by
the underlying logic ul. The general assumption about the derivability relation

1 There exists a rich variety of temporal operators. For convenience we have used an
until-operator with semantics defined by i |= φUψ if ∃k > i (k |= ψ∧∀j (i ≤ j < k ⇒
j |= φ)). This until-operator is definable by φ ∧ (φU ′ψ) with U ′ the until-operator
from [1], and by φ∧X(φU ′′ψ) with U ′′ the until-operator and X the next-operator
from [8].

126 M. Bezem, T. Langholm, and M. Walicki

	 of ul is that it satisfies the classical closure properties, [10,2], namely (X, Y
range over sets of formulas):

extension: X 	 a if a ∈ X
idempotence: X 	 a if {b | X 	 b} 	 a
monotonicity: Y 	 a if for some X ⊆ Y : X 	 a

Besides these three we assume that ul contains a formula ⊥ such that ⊥ 	 a for
all a. A formula a is called consistent if a �	 ⊥. Semantically we require that ⊥
is unsatisfiable.

We will use classical propositional logic as the main example of ul, but sound-
ness, completeness and decidability results below only use the fact that the un-
derlying logic is sound, complete (strongly, that is, Γ 	 a if Γ |= a) and decidable,
respectively. Combinations with other underlying logics can easily be conceived
and some examples can be found in [11,9]. In some cases, we assume that ul is
closed under propositional connectives with the usual semantics but even then
the results apply to an arbitrary logic extending the classical propositional one.

Recall that hd(α) denotes the first ul formula of α. Table 1 gives some rules of
inference for sequence logic based on a proof system 	 for the underlying logic.
This minimal proof system, denoted �min, will be augmented with distinct rules
depending on the class of orderings.

Table 1. Axioms and rules for �min

�

�

�

�

Ex Falso: a1; . . . ; an � β, if some ai 	 ⊥ (1 ≤ i ≤ n)

Lift: a � b1; ...; bn, if n ≥ 1 and a 	 bi for all bi (1 ≤ i ≤ n)

Double;-Intro:
α � β

a; α � b; β
, if a 	 b

Left;-Intro:
α � β

a; α � β
, if a 	 hd(β)

Theorem 2. The rules of �min are sound for |=LO, provided that 	 is sound for
|= in ul.

Proof. Soundness of Ex Falso and Lift is trivial.
For Double;-Intro, assume α |=LO β and a 	 b and let s |= a; α. Then the first
interval which is used by s to satisfy a can also be used to satisfy b, relying
on the soundness of the ul. We can restrict s to the ordering starting with the
second interval and get a model s′ |= α, so s′ |= β. It follows that s |= b; β, and
hence a; α |=LO b; β.

For Left;-Intro, assume α |=LO β and a 	 hd(β) and let s |= a; α. Then the
first interval which is used by s to satisfy a can also be used to satisfy hd(β),
relying on the soundness of the ul. We can restrict s to the ordering starting
with the second interval and get a model s′ |= α, so s′ |= β. It follows that s |= β
by joining the first two intervals.

Completeness and Decidability in Sequence Logic 127

As a corollary to the proof, we have soundness of the proof system �min for any
subclass of LO.

2 Dense Linear Orderings

In this section we give a proof system extending �min which is sound and com-
plete for the class of dense linear orderings. Inspection of the proof rules imme-
diately gives the decidability of |=DLO.

Note that joining two intervals, as done in the proof of Theorem 2, is always
possible but the dual operation, splitting an interval in two, is not. For example,
we do not have a;¬a |=ω a; a;¬a since the first interval can have length one.
Consequently, the following rule Right;-Intro is not sound for all orderings, but
it is sound for the class of dense orderings.

�

�

�

	
Right;-Intro:

α � β

α � b; β
provided hd(α) 	 b

The system �DLO is obtained by adding the rule Right;-Intro to �min.

Theorem 3. The proof system �DLO is sound for |=DLO, i.e., if α �DLO β then
α |=DLO β.

Proof. In view of the proof of Theorem 2, which can be carried out with DLO
instead of LO, it suffices to show that the rule Right;-Intro is sound. Assume
α |=DLO β and hd(α) 	 b and let s |= α. Then by density the first interval which
is used by s to satisfy hd(α) can be split in two, say [d0, x) and [x, d1). We can
use [d0, x) to satisfy b, since hd(α) 	 b. We can use [x, d1) to satisfy hd(α), and
so s restricted to [x,∞) satisfies α and hence β. It follows that s |= b; β.

The following construction will play a central role in the proof of completeness.
Given two sequence formulas α, β, of respective lenghts n, m, the structures
of the underlying logic can be divided in at most 2n+m equivalence classes,
with two structures being in the same class iff they assign the same truth value
to all formulas in α and β. By S(α, β) we will denote some finite set of ul
structures containing a member of each equivalence class. For any formula c of
the underlying logic we let [[c]]S(α,β) = {S ∈ S(α, β) | S |= c}. For every pair of
ul formulas a, b from α and β, respectively, we then have:

a |= b ⇐⇒ [[a]]S(α,β) |= b. (1)

We use [[c]]S(α,β) to define special kinds of models of α:

Definition 1. Given a satisfiable α = a1; . . . ; an and β, a β-dense model of
α is a dense model s |= α such that, for every 1 ≤ i ≤ n, [[ai]]S(α,β) is densely
distributed on the interval I that s uses to satisfy ai. This means that for every
non-empty subinterval I ′ of I we have [[ai]]S(α,β) ⊆ s(I ′).

128 M. Bezem, T. Langholm, and M. Walicki

The idea behind the notion of β-dense model s of α is that on every interval of
s satisfying ai we have all possible behaviours of ai models on every bj of β. It
can be proved that for all β-dense models s, s′ of α:

s |= β ⇐⇒ s′ |= β (2)

The existence of β-dense models of a satisfiable α follows, for instance, by
distributing for each 1 ≤ i ≤ n the models [[ai]]S(α,β) = {S0, . . . , Sk−1}, k > 1,
in the following standard way on the rational interval [i− 1, i). We describe the
construction only for i = 1, i.e., for [0, 1). Put s(jk) = Sj for all 0 ≤ j < k. Put
s(jk + j′

k2) = S(j+j′)mod k for all 0 ≤ j, j′ < k. Continue in this way, in the nth
round all intervals of length k−n are divided in intervals of length k−n−1 and the
models are assigned in a cyclic way. If s(q′) has not been defined in the above
procedure then s(q′) can be chosen arbitrarily from [[ai]]S(α,β). Note that every
β-dense model of α is also a γ-dense model of α, for every subsequence γ of β,
assuming S(α, γ) ⊆ S(α, β). Of course, β-dense models of α are not unique, but
the arguments below only depend on (1) and (2).

Lemma 1. If ul is complete and s |= β for some β-dense model s of α, then
α �DLO β.

Proof. By induction on |α|+ |β|. Base case: Assume α = a, β = b and let s |= β
be a β-dense model of α. Then [[a]]S(a,b) |= b, which implies a |= b by (1) and
hence a 	 b by the completeness of ul. Hence a �DLO b by the Lift rule. For the
induction step, let |α| + |β| > 2 and assume the lemma has been proved for all
smaller cases. Let s |= β be a β-dense model of α. If |α| = 1, that is, α = a for
some ul formula a, then every bj in β is true in [[a]]S(α,β), and hence a |= bi, by
(1), and a 	 bi by completeness of ul. We then get a �DLO β by one application
of the rule Lift. The case in which |β| = 1 is proved analogously, with repeated
applications of the rule Left;-Intro instead of Lift. Now assume α = a1; . . . ; an
and β = b1; . . . ; bm with n, m > 1. In view of (2) we may assume without loss of
generality that s has domain [0, n) in the rationals, and uses [i − 1, i) to satisfy
ai. Let [0, q) be the interval s uses to satisfy b1. We distinguish the following
three cases.

q < 1 Then the first interval that s uses to satisfy a1 overlaps with the first and
the second interval that s uses to satisfy b1; b2. Hence we have a1 	 b1 and
a1 	 b2. Consequently, for the subsequence γ = b2; . . . ; bm of β, s is a γ-dense
model of α satisfying γ. By the induction hypothesis we get α �DLO γ and
by the rule Right;-Intro we get α �DLO β.

q = 1 Then a1 	 b1 and with γ as in the previous case, s restricted to [1, n)
is a γ-dense model of a2; . . . ; an satisfying γ. Now we get α �DLO β by the
induction hypothesis and an application of the rule Double;-Intro.

q > 1 Then a1 	 b1 and s restricted to [1, n) is a β-dense model of a2; . . . ; an
satisfying β. Now we get α �DLO β by the induction hypothesis and an
application of the rule Left;-Intro.

In all cases we have proved the conclusion of the lemma.

The completeness theorem follows directly from the above lemma.

Completeness and Decidability in Sequence Logic 129

Theorem 4. If α |=DLO β then α �DLO β.

Proof. Assume α |=DLO β. If α is not satisfiable, then α �DLO β by the Ex Falso
rule. Otherwise, let s be a β-dense model of α. Then s |= β since α |=DLO β, and
so α �DLO β by Lemma 1.

As an example, consider a; a∨ b; b �|=DLO a; b; a∨ b. Semantically we can see that
the entailment doesn’t hold by distributing models of a ∧ b and a ∧ ¬b in a
dense way on the second interval. Using the completeness theorem we get the
same result from the observation that a ∨ b proves neither a nor b, so that all
applications of the ;-introduction rules are blocked.

Since the base cases Ex Falso and Lift only use provability in the underly-
ing logic and the other rules decrease the length of the sequence when applied
bottom-up, we obtain the following corollary.

Corollary 1. If ul is decidable then so is |=DLO.

In particular, decidability of ul gives also decidability of �min.

3 All Linear Orderings

As an appetizer, showing that even with classical propositional logic as ul the
relation |=LO is far from trivial, consider the following entailment:

a; a ∧ b; c ∧ (a ∨ b); b; b ∧ c |=LO a; b; c; c; b (3)

Intuitively, two consecutive c’s needed to validate the conclusion can be found
either in the interval for c ∧ (a ∨ b), provided that it is not a single point, or for
b ∧ c. But it is far from obvious that every ordering satisfying the assumption
can be chopped into intervals satisfying the conclusion.

In this section we give a sound, complete and decidable system �LO for |=LO,
under the assumption that ul is closed under boolean operators. We start by
introducing a series of concepts and conventions which will be applied throughout
this section.

Notation and Terminology 5

1. A convex set A of natural numbers is such that i ∈ A whenever k ≤ i ≤ j
are natural numbers such that k, j ∈ A. Any finite, non-empty convex set of
natural numbers equals {k, . . . , k + j} for natural numbers k, j.

2. If R is a binary relation and A, B are sets, then we write R[A] for the set
{j | ∃i ∈ A iRj} and R−1[B] for the set {i | ∃j ∈ B iRj}.

3. An n, m-coupling is a relation C ⊆ {1, . . . , n} × {1, . . . , m} such that
– C[{1, ..., n}] = {1, ..., m} and C−1[{1, ..., m}] = {1, ..., n}, and
– i1Cj2 and i2Cj1 never both hold when i1 < i2 and j1 < j2.

An n, m-coupling C is said to be quasi-functional if it is functional on
{1, . . . , n − 1}, i.e., if C[{i}] is a singleton for every i ∈ {1, . . . , n − 1}.

130 M. Bezem, T. Langholm, and M. Walicki

4. Let α = a1; . . . ; an and β = b1; . . . ; bm be sequence formulas and let R ⊆
{1, . . . , n} × {1, . . . , m} be a binary relation. We write α 	R β if ai 	 bj for
all i, j such that iRj.

An important consequence of the definition of coupling in point 3 is that for
any n, m and n, m-coupling C the images C[A] and C−1[B] are convex sets of
natural numbers whenever A and B are.

The characterisations below are proved by straightforward induction.

Lemma 2. Suppose all formulas of α are consistent. Then

(i) α �DLO β iff α 	C β for a |α|, |β|-coupling C.
(ii) α �min β iff α 	C β for a quasi-functional |α|, |β|-coupling C.

It can be seen that, with α and β as in (3), there exists a 5,5-coupling C such
that α 	C β, but not a quasi-functional one. Hence �min is not complete for
|=LO. It is, however, complete for pairs α, β in a certain normal form which we
now proceed to describe.

In the rest of this section we shall take particular interest in blocks of identical
formulas occurring consecutively in a sequence formula. For this purpose we de-
fine ≡α, for any sequence formula α = a1; . . . ; an, to be the smallest equivalence
relation on {1, . . . , n} such that i ≡α i + 1 whenever 1 ≤ i < n and ai = ai+1.
The equivalence class of i relative to ≡α is written [i]≡α , and is always a convex
set. We refer to the cardinality of [i]≡α as the padding of i. Hence the padding
of i is the size of the (maximal) block of consecutive, identical formulas in which
ai occurs:

Definition 2. The n, m-coupling C is said to be sparse if C[{i}] is a singleton
set for every i ∈ {1, . . . , n − 1} with padding less than m.

We can now state the following Redistribution Lemma which will lead to the
restricted completeness of �min.

Lemma 3 (Redistribution). If α 	C β for some sparse |α|, |β|-coupling C,
then also α 	C′ β for some quasi-functional |α|, |β|-coupling C′.

Proof. Suppose α 	C β for the sequence formulas α = a1; . . . ; an and β =
b1; . . . ; bm and the sparse n, m-coupling C. The first step is to define the (possibly
partial) function F on numbers i ∈ {1, . . . , n} by the following clauses.

– if i �= n and i has padding less than m, then F (i) is the unique member of
C[{i}].

– if i has padding at least m, then [i]≡α = {j, . . . , j + k} for some j ≤ i and
k ≥ (m − 1). Being the image of a convex set, C[[i]≡α] is also convex and
hence equals {j′, . . . , j′ + k′} for some j′ and k′. As 1 ≤ j′ and j′ + k′ ≤ m,
it follows that k′ ≤ (m − 1) ≤ k. Now define

F (j + r) =
{

j′ + r for 0 ≤ r ≤ k′

j′ + k′ for k′ < r ≤ k

Completeness and Decidability in Sequence Logic 131

If n itself has padding at least m, then F is total on {1, . . . , n}. Then let C′ be
F itself, considered as a binary relation, i.e., let C′ be the graph of F . If n has
padding less than m, then F is defined only on {1, . . . , n − 1}. In that case let
C′ be the union of F and {(n, j) | nCj}.

It is seen that C′[[i]≡α] = C[[i]≡α] for any i with padding at least m, and that
C′[{i}] and C[{i}] are the same singleton set for i < n with padding less than
m, and it follows that C′ is a quasi-functional coupling.

Since iC′j only if i′Cj for some i′ ∈ [i]≡α , the assumption α 	C β directly
implies α 	C′ β.

Definition 3. Let α = a1; . . . ; an and β = b1; . . . ; bm be sequence formulas. We
say that ai is β-definite if ai 	 bj or ai 	 ¬bj for every j ∈ {1, . . . , m}.

α is β-expanded if ai is β-definite for every i ∈ {1, . . . , n− 1} with padding
less than m.

Lemma 4. If ul is complete, α |=LO β and α is β-expanded, then α �min β.

Proof. By the Ex Falso rule, we may assume that each member of α is satisfiable.
Let D =

⋃i=n
i=1 Di, where each Di is

– {i − 1} if ai is β-definite and i �= n,
– the rationals in [i − 1, i) otherwise.

Now consider the structure S = (d0, D, <, s), where d0 = 0 and < is the standard
ordering and s is such that for each i ∈ {1, . . . , n},

– s(i) ∈ [[ai]]S(α,β) if ai is β-definite and i �= n,
– otherwise, s distributes the members of [[ai]]S(α,β) densely over Di (cf. the

construction following Definition 1).

Since S |= α so, by assumption, S |= β. Define C ⊆ {1, . . . , n} × {1, . . . , m}
to be such that iCj iff Di intersects with the interval for bj . C is clearly an
n, m-coupling, and the construction also guarantees that it is sparse: if i < n has
padding less than m, then by assumption ai is β-definite. Hence Di is a singleton
and can only intersect with the interval for one bj .

Finally α 	C β, i.e., iCj implies ai 	 bj. We argue for this in cases:

– If Di = {i− 1} then ai is β-definite. Then ai 	 bj follows from the fact that
the two have a common model.

– If Di = [i − 1, i), and this interval intersects with the interval for bj , then
bj is true in all members of [[ai]]S(α,β). Hence ai |= bj by (1) and ai 	 bj by
completeness of ul.

α �min β follows now by the Redistribution Lemma 3 and Lemma 2.

The above lemma is the restricted completeness referred to previously: when
α is β-expanded then the pair α, β is in a normal form for which |=LO and
�min coincide. To obtain a general procedure for proving (and, in fact, deciding)
whether α |=LO β holds, we show how to compute, given the pair (α, β) a finite set
{(ρ1, ρ

′
1), . . . , (ρk, ρ′k)} of pairs in normal form, such that α |=LO β iff ρi |=LO ρ′i,

and hence ρi �min ρ′i, for every i. For this purpose, we introduce the following
definition.

132 M. Bezem, T. Langholm, and M. Walicki

Definition 4. The proof system �LO is obtained by adding the following Cut
rule to �min:�

�

�

	
Cut

α1; a; a; α2 � β α1; a ∧ c; α2 � β α1; a ∧ ¬c; α2 � β

α1; a; α2 � β

In an application of the Cut rule, the formula occurrence displayed as a is referred
to as the expansion formula.

In view of Theorem 2, the following lemma is established by an easy verification
of soundness of the Cut rule.

Lemma 5. �LO is sound for |=LO.

With β = a; b; c; c; b, α1 = a; a ∧ b, α2 = b; b ∧ c, it can be seen that (3) follows
by Cut from α1; c∧ (a ∨ b); c∧ (a ∨ b); α2 � β and α1; c∧ (a∨ b)∧ a; α2 � β and
α1; c ∧ (a ∨ b) ∧ ¬a; α2 � β, which are all provable in �min.

To show completeness (and decidability) of �LO, we first consider the following
generalizations of Cut.

Definition 5. For any sequence formula δ = d1; . . . ; dl let vals(δ) be the set of
all conjunctions c1 ∧ . . . ∧ cl, where each cj is dj or ¬dj . Now let the i-, ii- and
iii-Cut rules be the following where l ≥ 1 (recall notational conventions al and
a ◦ ρ from Notation and Terminology 1):

i-Cut
α1; a; a; α2 � β α1; a ∧ ρ; α2 � β for all ρ ∈ vals(δ)

α1; a; α2 � β

ii-Cut
α1; al+1; α2 � β α1; a ◦ ρ; α2 � β for all ρ ∈ vals(δ)l

α1; al; α2 � β

iii-Cut
α1; al+1; α2 � β α1; a ◦ ρ; α2 � β for all ρ ∈ vals(δ)≤l

α1; a; α2 � β

The four cut rules are closely related. Cut is the special case of i-Cut correspond-
ing to δ being a single ul formula c, while i-Cut is the special case of ii-Cut, as
well as of iii-Cut, corresponding to l = 1. The following lemma is easy to verify
and is stated without a proof.

Lemma 6. All four cut rules are sound and invertible (i.e., sound when applied
bottom-up) for |=LO.

Corollary 2. If ul is decidable then so is |=LO.

Proof. For any candidate entailment a1; . . . ; an |=LO β apply iii-Cut bottom-up,
with the first ai which is not β-definite as expansion formula and with δ = β and
l = |β|, to obtain 1 + 2l + 22l + . . . + 2l

2
< 2(l+1)2 new items, which by Lemma 6

are all valid iff the original item was valid. Then proceed, for each of the new
items, with a new bottom-up application of iii-Cut, this time using the next ai′

which is not β-definite as the expansion formula, etc., to obtain eventually less
than 2n(l+1)2 items in normal form which are all valid iff the original item was.
Validity of each of these items is decidable, provided that ul is, by Corollary 1.

Completeness and Decidability in Sequence Logic 133

From this proof we see that the system obtained by adding iii-Cut to �min is
complete and decidable with respect to |=LO. However, already �LO, i.e., �min

extended with Cut, has these properties and the rest of this Section is devoted to
proving this fact by showing admissibility of iii-Cut in �LO. The proof proceeds
stepwise by showing first admissibility of i-Cut and then of ii-Cut. First, we need
the following auxiliary result.

Lemma 7. If c 	 a and α1; a; α2 �LO β, then α1; c; α2 �LO β.

Proof. Proceeding by induction on proofs, we skip the trivial cases of the rules
of �min and consider only the final step being an application of the Cut rule.
This gives three cases to consider, corresponding to whether the a mentioned
in the lemma is the expansion formula itself, or it occurs to its left or to its
right. In the two latter cases, the induction hypothesis is applied once to each
of the three premises, always strengthening a to c, while in the former case the
induction hypothesis is applied twice to the first premise, strengthening a to c,
and once to each of the other premises, strengthening a ∧ b and a ∧ ¬b to c ∧ b
and c ∧ ¬b respectively.

Lemma 8. i-Cut is admissible in �LO.

Proof. We prove this by induction on the length of δ, which is always positive.
The base case is just Cut itself; now suppose the result holds for δ, and that

(1) α1; a; a; α2 �LO β, and
(2) α1; a ∧ ρ; α2 �LO β for all ρ in vals(δ; b).

Now let κ be an arbitrary member of vals(δ), then from (1) we obtain α1; a ∧
κ; a∧κ; α2 �LO β by Lemma 7, and from (2) α1; a∧κ∧b; α2 �LO β and α1; a∧κ∧
¬b; α2 �LO β by definition. Hence by Cut we also obtain (3) α1; a∧ κ; α2 �LO β.
Since κ was arbitrary, we can now apply the induction hypothesis to (1) and (3),
to obtain α1; a; α2 �LO β.

Lemma 9. ii-Cut is admissible in �LO.

Proof. We prove this by induction on l. The base case, for l = 1, is just an
instance of i-Cut and was shown in the previous Lemma 8. Now suppose the
result holds for l ≥ 1, and that

(1) α1; al+2; α2 �LO β, and
(2) α1; a ◦ ρ; α2 �LO β for all ρ ∈ vals(δ)l+1.

For an arbitrary κ ∈ vals(δ)l we obtain from (1) α1; a; a; a ◦ κ; α2 �LO β by
Lemma 7, and from (2) α1; a∧ρ; a ◦κ; α2 �LO β for all ρ ∈ vals(δ) by definition.
Hence we also obtain (3) α1; a; a ◦ κ; α2 �LO β by i-Cut. Since κ was arbitrary,
we are now in a position to apply the induction hypothesis to (1) and (3),
treating the first occurrence of a in all the involved items as “passive”, to obtain
α1; al+1; α2 �LO β.

Lemma 10. iii-Cut is admissible in �LO.

134 M. Bezem, T. Langholm, and M. Walicki

Proof. We prove this by induction on l. The base case (l = 1) is an instance of
i-Cut shown in Lemma 8. So suppose the result holds for l ≥ 1, and that

(1) α1; al+2; α2 �LO β, and
(2) α1; a ◦ ρ; α2 �LO β for all ρ in vals(τ)≤l+1.

In particular α1; a ◦ ρ; α2 �LO β then holds for all ρ in vals(τ)l+1, and hence
α1; al+1; α2 �LO β by ii-Cut. Combining this with “the rest of (2)” we then
obtain α1; a; α2 �LO β by the induction hypothesis.

Theorem 6. �LO is sound and complete for |=LO.

The proof is immediate from the previous results. From the proofs it can also
be seen that �LO remains complete when the use of Cut is restricted to cases in
which the cut formula is chosen from formulas occurring in β.

4 Wellorderings

Recall that α |=λ β denotes entailment with respect to structures (0, λ, <, s)
with < the ordering on a limit ordinal λ and s mapping ordinals < λ to ul struc-
tures. Using the standard translation of modal logic into first-order logic (see for
example [1]) one can express the entailment relation in the first-order theory of
the ordering. It is known that the first-order theory of every countable ordinal
is decidable, c.f. [3]. As a consequence, for every countable λ, the entailment
relation α |=λ β is decidable, provided that ul is decidable.

The decidability of α |=ω β also follows from the (much stronger) result from
[8] that ω-based linear-time temporal logic is PSPACE-complete. This complex-
ity theoretic result is extended to all countable ordinals in [4]. In the next section
we give a simple argument for decidability of |=ω based on a form of finite model
property, Lemma 11, which may be of independent interest. In the concluding
Section 4.2, we discuss some results concerning the entailment relation in the
case of wellorderings and list some open problems.

4.1 Decidability of |=ω

The first step in our decidability proof is a simplification of the definition of |=ω.
For this we use models s defined on finite initial segments of ω, the only place
in this paper where we use orderings with a greatest element.

Definition 6. For α = a1; . . . ; an and β = b1; . . . ; bm we define

k(α, β) =
{

m if an |= b1 ∧ · · · ∧ bm
m − j if an �|= bj and an |= bj+1 ∧ · · · ∧ bm

In words, the function k computes the maximal length of a suffix of β which is
entailed by the last formula of α.2

2 In this subsection, we use propositional conjunction, as in an |= b1 ∧ ... ∧ bm, only
as an abbreviation for an |= b1 and . . . and an |= bm. That is, ul need not contain
propositional logic.

Completeness and Decidability in Sequence Logic 135

Lemma 11. Let α = a1; . . . ; an be satisfiable and let β = b1; . . . ; bm. Then we
have α |=ω β if and only if an |= bm and s |= β for every s defined on an initial
segment of ω and satisfying s |= α where the last interval (used to satisfy an) is
of length k(α, β).

Proof. Let α, β be as above. In the equivalence we have to prove, the implication
from right to left is the easiest. Assume the rhs and let s |= α with s defined on
ω. The last interval of s is infinite, let s− be s with the last interval cut down
to length k(α, β). Then s− satisfies the condition of the rhs and hence s− |= β.
By an |= bm it follows that s |= β.

For the converse, assume α |=ω β. Then in particular an |= bm. Let s |= α
be as assumed in the rhs, that is, defined on [0, . . . , i + k) ⊆ ω and with the
last interval [i, i + k) of length k = k(α, β). In proving s |= β we distinguish two
cases.

k = m Then an |= b1∧· · · ∧bm. Let s+ be s extended with ω (arbitrary) models
of an. Then s+ |= α, so by the lhs we get s+ |= β. Since an |= b1 ∧ · · · ∧ bm
we can shift intervals that (possibly) occur to the right of i to the left and
shorten them to length 1. In this way they all fit within the last interval of
s. It follows that s |= β.

k < m Then an �|= bj with j = m− k and an |= bj+1 ∧ · · · ∧ bm. In the argument
we will use a propositional model V satisfying an ∧ ¬bj . Let s′ be s with
the last interval replaced by ω copies of V . Then we still have s′ |= α, so by
the lhs we get s′ |= β. Since bj is false in V , the jth interval of s′ must be
to the left of i. Intervals used to satisfy the remaining formulas bj+1, . . . , bm
and (possibly) occurring to the right of i can be shortened and shifted to the
left as in the previous case. With this new interval structure we still have
s′ |=ω β. Restoring the last interval of s, that is, replacing the ω copies of V
by the models in the last interval of s, we get s |= β.

The last step in the last case relies on an |= bj+1 ∧ · · · ∧ bm.

Now that we have expressed |=ω in terms of finite sequences of models we use
the fact these can be viewed as words over an alphabet, where the symbols
are valuations. Model classes then become languages. Let α = a1; . . . ; an and
β = b1; . . . ; bm and k = k(α, β). Let V1, . . . , Vp be all possible valuations of
the atoms occurring in α, β. For any proposition a, define L(a) = {Vi | Vi |=
a}. Being a finite language consisting of one-letter words, L(a) is regular. The
finite models m |= α correspond one-to-one to words in the regular language
L(α) = L(a1)+ · · ·L(an)+, where juxtaposition stands for concatenation and
+ for one or more iterations (Kleene +). The finite models s |= α with last
interval of length k correspond one-to-one to words in the regular language
L(α, k) = L(a1)+ · · ·L(an−1)+L(an)k. In this way we can rephrase the rhs of
Lemma 11 as: an |= bm and L(α, k) ⊆ L(β). Since inclusion between regular
languages is decidable we get the following result.

Theorem 7. If ul is decidable then so is the entailment relation |=ω.

136 M. Bezem, T. Langholm, and M. Walicki

Proof. We have α |=ω β if and only if either α is unsatisfiable, or k(α, β) > 0
and L(α, k(α, β)) ⊆ L(β). All ingredients of the rhs are computable/decidable.

As an example, consider a; a∨b; b |=ω a; b; a∨b. Semantically, given m |= a; a∨b; b
we can see this by looking at the second interval of m. If all models in this interval
satisfy a we are done. Otherwise, use the first model in the second interval that
satisfies b as second interval (of length 1) for a; b; a∨b. The more general method
would be to apply the above theorem. We can actually take two-bit sequences
as symbols representing valuations: 11 represents the valuation which makes
both a and b true, 10 makes only a true, 01 only b, and 00 neither a nor b.
Then L(a) is the regular language {10, 11}, L(b) is {01, 11} and L(a ∨ b) is
{01, 10, 11}. Obviously, k(a; a ∨ b; b , a; b; a ∨ b) = 2. So by Lemma 11 we have
a; a∨b; b |=ω a; b; a∨b if and only if L(a)+L(a∨b)+L(b)2 ⊆ L(a)+L(b)+L(a∨b)+.
The latter can be verified by a decision procedure for inclusion between regular
languages.

4.2 Wellorderings and Open Problems

The following lemma states that |=λ is weakly decreasing in λ.

Lemma 12. For limit ordinals λ < λ′ : if α |=λ′ β then α |=λ β.

Proof. Let α = a1; . . . ; an, β = b1; . . . ; bm and k = k(α, β). Let λ < λ′ be limit
ordinals and assume α |=λ′ β. Let s |= α for some λ model s. Let V be a model
of an that, in case k < m, also satisfies ¬bm−k. Let [o, λ) be the last interval
used by s to satisfy an. Define sVo (o′) = s(o′) if o′ < o and sVo (o′) = V for all
o ≤ o′ < λ′. In other words, sVo is s with the last interval replaced by sufficiently
many copies of V in order to be a λ′ model of α. As a consequence, sVo |= β.
By the particular choice of V we have V |= bm−k+1 ∧ · · · ∧ bm. Since λ > o is a
limit ordinal we have o + ω ≤ λ. Consequently, like in the proof of Lemma 11,
we can shorten and shift to the left , i.e., into the interval [o, λ), those of the last
k intervals that occur in sVo to the right of o, obtaining a λ model which still
satisfies β. But since an |= bm−k+1 ∧ · · · ∧ bm, restoring now back the original
[o, λ) interval from s, we obtain that s |= β.

The implication cannot be reversed: we have a; a∧¬b; a; a∧ b |=ω a; a∧¬b; a∧ b
(look at the third interval satisfying a!), but not a; a ∧ ¬b; a; a ∧ b |=ω+ω a; a ∧
¬b; a∧b. A counterexample to the latter is (11 10)ω(11)ω, where we use the same
representation of valuations by two-bit sequences as in the previous section. A
trivial corollary of the previous theorem is: α |=ω β if and only if there exists a
limit ordinal λ such that α |=λ β.

Since the wellorderings form a class, and |=ω is a set, it can be expected that
|=λ in Lemma 12 stabilizes. This can be made precise by the following argument.
Assume by contradiction that for all λ there exists a λ′ > λ such that |=λ′ ⊂ |=λ.
Define a function f from ordinals to limit ordinals by f(0) = ω, f(o + 1) = the
smallest λ such that |=λ ⊂ |=f(o), and in the limit case f(λ) = the smallest λ′

such that |=λ′ ⊂ |=λ′′ , where λ′′ is the supremum of all f(o), o < λ. Then we

Completeness and Decidability in Sequence Logic 137

have that o �→ |=f(o) is a strictly decreasing mapping from the class of ordinals
into the power set of |=ω, which is impossible. In fact, using results from [3],
it can be shown that |=λ stabilizes for some λ ≤ ωω and then, by Lemma 12,
coincides with |=WO. We finish by formulating some open problems.

Open Problem 8. For which λ < λ′ < ωω do |=λ and |=λ′ coincide? Even the
case λ = ω ∗ 2, λ′ = ω ∗ 3 is open.

Open Problem 9. Are there natural sound and complete proof systems for |=λ

with λ ≥ ω?

Acknowledgement. We are indebted to Stéphane Demri for pointing out the
relevance of [3] to us.

References

1. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press,
Cambridge (2001)

2. Brown, D.J., Suszko, R.: Abstract logics. Dissertationes Mathematicae 102, 9–42
(1973)

3. Büchi, J.R., Siefkes, D.: VDM 1988. LNM, vol. 328. Springer, Heidelberg (1988)
4. Demri, S., Rabinovich, A.: The complexity of temporal logic with until and since

over ordinals (submitted to LPAR 2007)
5. Fagin, R., Halpern, J., Moses, Y., Vardi, M.: Reasoning about Knowledge. MIT

Press, Cambridge (1995)
6. Goranko, V., Montanari, A., Sciavicco, G.: Propositional interval neighborhood

temporal logics. Journal of Universal Computer Science 9(9), 1137–1167 (2003)
7. Halpern, J., Shoham, Y.: A propositional modal logic of time intervals. Journal of

the ACM 38(4), 935–962 (1991)
8. Sistla, A.P., Clarke, E.M.: The complexity of propositional linear temporal logics.

Journal of the ACM 32(3), 733–749 (1985)
9. Szajnkenig, W.: Sequence Logic. PhD thesis, Department of Informatics, University

of Bergen, forthcoming
10. Tarski, A.: Logic, Semantics, Metamathematics. Oxford University Press, New

York (1956)
11. Walicki, M., Bezem, M.A., Szajnkenig, W.: A strongly complete logic of dense

time intervals. In: Alechina, N., Ågotnes, T. (eds.) Proceedings of the Workshop
on Logics for Resource-Bounded Agents, ESSLLI, Malaga, Spain (2006)

HORPO with Computability Closure:

A Reconstruction

Frédéric Blanqui1, Jean-Pierre Jouannaud2,�, and Albert Rubio3

1 INRIA & LORIA, Protheo team, Campus Scientifique, BP 239, 54506
Vandœuvre-lès-Nancy Cedex, France

2 LIX, École Polytechnique, 91400 Palaiseau, France
3 Technical University of Catalonia, Pau Gargallo 5, 08028 Barcelona, Spain

Abstract. This paper provides a new, decidable definition of the higher-
order recursive path ordering in which type comparisons are made only
when needed, therefore eliminating the need for the computability clo-
sure, and bound variables are handled explicitly, making it possible to
handle recursors for arbitrary strictly positive inductive types.

1 Introduction

The Higher-order Recursive Path ordering was first introduced in [3]. The goal
was to provide a tool for showing strong normalization of simply typed lambda
calculi in which higher-order constants were defined by higher-order recursive
rules using plain pattern matching. Inspired by Dershowitz’s recursive path or-
dering for first-order terms, comparing two terms started by comparing their
types under a given congruence generated by equating given basic types, before
to proceed recursively on the structure of the compared terms. In [4], the type
discipline was generalized to a polymorphic type discipline with type construc-
tors, the congruence on types was replaced by a well-founded quasi-ordering on
types (in practice, a restriction of the recursive path ordering on types), and
the recursive definition itself could handle new cases. There were two variants of
the subterm case: in the first, following the recursive path ordering tradition, a
subterm of the left-hand side was compared with the whole right-hand side; in
the second, a term belonging to the computability closure of the left-hand side
was used instead of a subterm. And indeed, a subterm is the basic case of the
computability closure construction, whose fixpoint definition included various
operations under which Tait and Girard’s notion of computability is closed. The
ordering and the computational closure definitions shared a lot in common, rais-
ing some expectations for a simpler and yet more expressive definition able to
handle inductive types, as advocated in [2]. This paper meets these expectations
(and goes indeed much further) with a new definition of HORPO that improves
over the previous one [4] in several respects:

� Project LogiCal, Pôle Commun de Recherche en Informatique du Plateau de Saclay,
CNRS, École Polytechnique, INRIA, Université Paris-Sud.

N. Dershowitz and A. Voronkov (Eds.): LPAR 2007, LNAI 4790, pp. 138–150, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

HORPO with Computability Closure: A Reconstruction 139

1. There is a single decidable recursive definition, instead of a pair of mutually
inductive definitions for the computability closure and the ordering itself;

2. In contrast with the definition of HORPO with computability closure, the
new definition is decidable and syntax-directed (except, as usual, for the
subterm case);

3. Type checking applies only when really needed, that is, when the comparison
does not follow from computability arguments;

4. Bound variables are handled explicitly by the ordering, allowing for arbitrary
abstractions in the right-hand sides;

5. Strictly positive inductive types are accommodated;
6. There is no need for flattening applications on the right-hand side.

This new definition appears to be powerful enough to prove strong normaliza-
tion of recursors for arbitrary strictly positive inductive types. The two major
technical innovations which make it possible are the integration of the com-
putability closure within the ordering definition on the one hand, and the explicit
handling of binders on the other hand. This integration of the computability
closure is not obtained by adding new cases in the definition, as was suggested
in [2], but instead by eliminating from the previous definition the unnecessary
type checks.

2 Higher-Order Algebras

Polymorphic higher-order algebras are introduced in [4]. Their purpose is
twofold: to define a simple framework in which many-sorted algebra and typed
lambda-calculus coexist; to allow for polymorphic types for both algebraic con-
stants and lambda-calculus expressions. For the sake of simplicity, we will restrict
ourselves to monomorphic types in this presentation, but allow us for polymor-
phic examples. Carrying out the polymorphic case is no more difficult, but surely
more painful.

Given a set S of sort symbols of a fixed arity, denoted by s : ∗n → ∗, the set
of types is generated by the constructor → for functional types:

TS := s(T n
S) | TS → TS

for s : ∗n → ∗ ∈ S
Types are functional when headed by the → symbol, and data types otherwise.

→ associates to the right. We use σ, τ, ρ, θ for arbitrary types.
Function symbols are meant to be algebraic operators equipped with a fixed

number n of arguments (called the arity) of respective types σ1, . . . , σn, and an
output type σ. Let F =

⊎
σ1,...,σn,σ

Fσ1×...×σn→σ. The membership of a given
function symbol f to Fσ1×...×σn→σ is called a type declaration and written f :
σ1 × . . . × σn → σ.

The set T (F ,X) of raw algebraic λ-terms is generated from the signature F
and a denumerable set X of variables according to the grammar:

T := X | (λX : TS .T) | @(T , T) | F(T , . . . , T).

140 F. Blanqui, J.-P. Jouannaud, and A. Rubio

The raw term λx : σ.u is an abstraction and @(u, v) is an application. We may
omit σ in λx : σ.u and write @(u, v1, . . . , vn) or u(v1, . . . , vn), n > 0, omitting
applications. Var(t) is the set of free variables of t. A raw term t is ground if
Var(t) = ∅. The notation s shall be ambiguously used for a list, a multiset, or a
set of raw terms s1, . . . , sn.

Raw terms are identified with finite labeled trees by considering λx : σ.u, for
each variable x and type σ, as a unary function symbol taking u as argument
to construct the raw term λx : σ.u. Positions are strings of positive integers. t|p
denotes the subterm of t at position p. We use t�t|p for the subterm relationship.
The result of replacing t|p at position p in t by u is written t[u]p.

An environment Γ is a finite set of pairs written as {x1 : σ1, . . . , xn : σn},
where xi is a variable, σi is a type, and xi �= xj for i �= j. Our typing judgements
are written as Γ �Σ s : σ. A raw term s has type σ in the environment Γ if
the judgement Γ �Σ s : σ is provable in the inference system given in Figure 1.
An important property of our type system is that a raw term typable in a given
environment has a unique type.

Variables:
x : σ ∈ Γ
Γ �Σ x : σ

Functions:
f : σ1 × . . .× σn → σ ∈ F

Γ �Σ t1 : σ1 . . . Γ �Σ tn : σn

Γ �Σ f(t1, . . . , tn) : σ

Abstraction:
Γ · {x : σ} �Σ t : τ

Γ �Σ (λx : σ.t) : σ → τ

Application:
Γ �Σ s : σ → τ Γ �Σ t : σ

Γ �Σ @(s, t) : τ

Fig. 1. The type system for monomorphic higher-order algebras

Typable raw terms are called terms. We categorize terms into three disjoint
classes:

1. Abstractions, which are headed by λ;
2. Prealgebraic, which are headed by a function symbol, assuming that the

output type of f ∈ F is a base type;
3. Neutral, which are variables or headed by an application.

A substitution σ of domain Dom(σ) = {x1, . . . , xn} is a set of triples σ =
{Γ1 �Σ x1 �→ t1, . . . , Γn �Σ xn �→ tn}, such that xi and ti have the same
type in the environment Γi. Substitutions are extended to terms by morphism,
variable capture being avoided by renaming bound variables when necessary. We
use post-fixed notation for substitution application.

A rewrite rule is a triple Γ � Σ l → r such that Var(r) ⊆ Var(l), and
Γ �Σ l : σ and Γ �Σ r : σ for some type σ. Given a set of rules R,

s
p−→

l→r∈R
t iff s|p = lγ and t = s[rγ]p for some substitution γ

HORPO with Computability Closure: A Reconstruction 141

The notation l → r ∈ R assumes that the variables bound in l, r (resp. the
variables free in l, r) are renamed away from the free variables of s[]p (resp. the
bound variables of s[]p), to avoid captures.

For simplicity, typing environments are omitted in the rest of the paper.
A higher-order reduction ordering
 is a well-founded ordering of the set of

typable terms which is
(i) monotonic: s
 t implies that u[s]
 u[t];
(ii) stable: s
 t implies that sγ
 tγ for all substitution γ.
(iii) functional : s−→β ∪−→η t implies s
 t,
In [4], we show that the rewrite relation generated by R∪{β, η} can be proved

by simply checking that l > r for all l → r ∈ R with some higher-order reduction
ordering.

3 The Improved Higher-Order Recursive Path Ordering

The improved higher-order recursive path ordering on higher-order terms is gen-
erated from four basic ingredients: a type ordering; an accessibility relationship;
a precedence on functions symbols; and a status for the function symbols. Ac-
cessibility is a new ingredient originating from inductive types, while the other
three were already needed for defining HORPO. We describe these ingredients
before defining the improved higher-order recursive path ordering.

3.1 Ingredients

– A quasi-ordering on types ≥TS , called type ordering, satisfying the following
properties (let >TS = ≥TS \ ≤TS be its strict part and =TS = ≥TS ∩ ≤TS
be its associated equivalence relation):
1. Well-foundedness: >TS is well-founded;
2. Arrow preservation: τ → σ =TS α iff α = τ ′ → σ′, τ ′ =TS τ and σ =TS

σ′;
3. Arrow decreasingness : τ → σ >TS α implies σ ≥TS α or α = τ ′ →

σ′, τ ′ =TS τ and σ >TS σ′;
4. Arrow monotonicity: τ ≥TS σ implies both α → τ ≥TS α → σ and τ →

α ≥TS σ → α;
We denote by T min

S the set of minimal types with respect to ≥→TS = (>TS ∪
�)∗ (reflexive and transitive closure).
We say that a data type σ occurs positively (resp. negatively) in a type τ
if τ is a data type (resp. τ is a data type non equivalent to σ in =TS), or
if τ = ρ → θ and σ occurs positively (resp. negatively) in θ and negatively
(resp. positively) in ρ.

– A set Acc(f) of accessible arguments for every function declaration f :
σ1 . . . σn → σ with σ being a data type, where i ∈ [1..n] is said to be accessi-
ble if all data types occuring in σi are smaller than σ in the quasi-order ≥TS ,
and in case of equivalence (with =TS), they must occur only positively in σi.
Note that the application operator @ : (α → β) × α → β can be seen as a

142 F. Blanqui, J.-P. Jouannaud, and A. Rubio

function symbol with an empty set of accessible positions, since its output
type τ may occur negatively in any of its two argument types σ and σ → τ .

A term u is accessible in f(s), f ∈ F , iff there is i ∈ Acc(f) such that
u = si or u is accessible in si. Accessibility for f ∈ F ∪ {@} is now obtained
by adding the minimal type subterms: s �accv : τ iff v is accessible in s, or
τ ∈ T min

S , v is a strict subterm of s and Var(v) ⊆ Var(s). We denote by
�acc the reflexive closure of �acc.

– A precedence ≥F on F ∪ {@}, with f >F @ for all f ∈ F .
– A status (lexicographic or multiset) for all symbols in F∪{@} with @ ∈ Mul.

The status of the symbol f is denoted by statf .

We recall important properties of the type ordering [4]:

Lemma 1. Assuming σ =TS τ , σ is a data type iff τ is a data type.

Lemma 2. Let ≥TS be a quasi-ordering on types such that >TS is well-founded,
arrow monotonic and arrow preserving. Then, the relation ≥→TS , defined as
(≥TS ∪ �)∗, is a well-founded quasi-ordering on types extending ≥TS and �,
whose equivalence coincides with =TS .

Lemma 3. T min
S is a non-empty set of data types if TS �= ∅.

3.2 Notations

– s
X t for the main ordering, with a finite set of variables X ⊂ X , with the
convention that X is omitted when empty;

– s : σ
XTS t : τ for s
X t and σ ≥TS τ ;
– s : σ �acc�XTS t : τ for s �accw for some w and @(w, x) : σ′ =TS τ �TS t for

some x ∈ X .

3.3 Ordering Definition

Definition 1. s : σ
X t : τ iff either:

1. s = f(s) with f ∈ F and either of
(a) si �acc�XTS t for some i

(b) t = g(t) with f =F g ∈ F , s
X t and s(
TS ∪ �acc�XTS)statf t

(c) t = g(t) with f >F g ∈ F ∪ {@} and s
X t
2. s = @(u, v) and either of

(a) u �acc�XTS t or v �acc�XTS t
(b) t = @(u′, v′) and {u, v}(
XTS)mul{u′, v′}
(c) u = λx : α.w and w{x �→ v}�X t

3. s = λx : α.u and either of
(a) u{x �→ z}�XTS t for z : α fresh
(b) t = λy : β.v, α =TS β and u{x �→ z}
Xv{y �→ z} for z : β fresh
(c) u = @(v, x), x �∈ Var(v) and v�X t

4. (a) s �∈ X and t ∈ X
(b) s �∈ X , s �= λx : α.u, t = λy : β.w and s
X∪{z} w{y �→ z} for z : β fresh

HORPO with Computability Closure: A Reconstruction 143

Our ordering definition comes in four parts, the first three dealing with left-hand
sides headed respectively by an algebraic symbol, the application symbol and an
abstraction, while the fourth factors out those cases where the right-hand side
is a previously bound variable or an abstraction.

Cases 1 are very similar (up to type checks) to those of Dershowitz’s recursive
path ordering with the subterm case 1a, the status case 1b and the precedence
case 1c. So are Cases 2 and 3. One difference is that there is an additional case for
handling respectively beta and eta. A more substantial difference is that variable
renaming has become explicit.

The major innovation of this new definition is the annotation of the ordering
by the set of variables X that were originally bound in the right-hand side
term, but have become free by taking some subterm. This allows rule 4b to
pull out abstractions from the right-hand side regardless of the left-hand side
term, meaning that abstractions are smallest in the precedence. Note that freed
variables become smaller than everything else but variables.

One may wonder why Case 1b is so complicated: the reason is that using
recursively s(
XTS)statf t would yield to lose strong normalization of the ordering.

We give now an example of use of this new definition with the inductive
type of Brouwer’s ordinals, which constructor lim takes an infinite sequence of
ordinals to build a new, limit ordinal, hence admits a functional argument of
type IN → Ord, in which Ord occurs positively. As a consequence, the recursor
admits a much more complex structure than that of natural numbers, with an
explicit abstraction in the right-hand side of the rule for lim.

Example 1. Brouwer’s ordinals.
0 : Ord S : Ord ⇒ Ord lim : (IN → Ord) ⇒ Ord
n : IN N : IN F : IN → Ord
rec : Ord × α × (Ord→α→α) × ((IN→Ord)→(IN→α)→α) ⇒ α

rec(0, U, V, W) → U
rec(s(N), U, V, W) → @(V, N, rec(N, U, V, W))
rec(lim(F), U, V, W) → @(W, F, λn.rec(@(F, n), U, V, W))

Although the strong normalization of such rules is known to be difficult to prove,
it is checked automatically by our ordering. We only show how the third rule is
included in the ordering.

rec(lim(F), U, V, W)
TS @(W, F, λn.rec(@(F, n), U, V, W))

yields 2 subgoals according to Case 1c: α ≥TS α and
rec(lim(F), U, V, W)
{W, F, λn.rec(@(F, n), U, V, W)}.
The first one is trivial and the second one simplifies to:

1. rec(lim(F), U, V, W)
 W which succeeds by Case 1a,
2. rec(lim(F), U, V, W)
 F , which succeeds by Case 1a since F is accessible in

lim(F),
3. rec(lim(F), U, V, W)
 λn.rec(@(F, n), U, V, W) which yields, by Case 4b,

rec(lim(F), U, V, W)
{n}rec(@(F, n), U, V, W) yielding, by Case 1b, two
goals

144 F. Blanqui, J.-P. Jouannaud, and A. Rubio

(a) {lim(F), U, V, W}(
TS ∪�acc�{n}TS)mul{@(F, n), U, V, W},

which reduces to lim(F)�acc�{n}TS @(F, n) which holds by Case 1a since
F is accessible in lim(F), and

(b) rec(lim(F), U, V, W)
{n}{@(F, n), U, V, W}, that decomposes into three
goals trivially solved by Case 1a, and
rec(lim(F), U, V, W)
{n}@(F, n) yielding, by Case 1c,

i. rec(lim(F), U, V, W)
{n} F , which holds by Case1a, since F is ac-
cessible in lim(F), and

ii. rec(lim(F), U, V, W)
{n} n which holds by Case 4a, therefore ending
the computation.

4 Strong Normalization

Theorem 1.
+
TS is a decidable higher-order reduction ordering.

Contrasting with our previous proposal made of an ordering part and a com-
putability closure part, our new ordering is a decidable inductive definition:
s
X t is defined by induction on the triple (n, s, t), using the order
(>IN,−→β ∪�, �)lex, where n is the number of abstractions in t. The quadratic
time decidability follows since all operations used are clearly decidable in linear
time. The fact that
X is quadratic comes from those cases that recursively com-
pare one side with each subterm of the other side. This assumes of course that
precedence and statuses are given, since inferring them yields NP-completeness
as is well-known for the recursive path ordering on first-order terms.

The stability and monotonicity proofs are routine. As the old one, the new
definition is not transitive, but this is now essentially due to the beta-reduction
case 2c. We are left with strong normalization, and proceed as in [4]. The com-
putability predicate differs however in case of data types, since it has to care
about inductive type definitions.

4.1 Candidate Terms

Because our strong normalization proof is based on Tait and Girard’s reducibility
technique, we need to associate to each type σ, actually to the equivalence class
of σ modulo =TS , a set of terms [[σ]] closed under term formation. In particular,
if s ∈ [[σ → τ]] and t ∈ [[σ]], then the raw term @(s, t) must belong to the set
[[τ]] even if it is not typable, which may arise in case t does not have type σ but
σ′ =TS σ. Relaxing the type system to type terms up to type equivalence =TS
is routine [4]. We use the notation t :C σ to indicate that the raw term t, called
a candidate term (or simply, a term), has type σ in the relaxed system.

4.2 Candidate Interpretations

In the coming sections, we consider the well-foundedness of the strict ordering
(
TS)+, that is, equivalently, the strong normalization of the rewrite relation

HORPO with Computability Closure: A Reconstruction 145

defined by the rules s−→ t such that s
TS t. Note that the set X of previ-
ously bound variables is empty. We indeed have failed proving that the ordering
(
XTS)+ is well-founded for an arbitrary X , and we think that it is not. As usual
in this context, we use Tait and Girard’s computability predicate method, with
a definition of computability for candidate terms inspired from [4,1].

Definition 2. The family of candidate interpretations {[[σ]]}σ∈TS is a family of
subsets of the set of candidate terms which elements are the least sets satisfying
the following properties:

(i) If σ is a data type and s :C σ is neutral, then s ∈ [[σ]] iff t ∈ [[τ]] for all
terms t such that s
TS t :C τ ;

(ii) If σ is a data type and s = f(s) :C σ is prealgebraic with f : σ1 . . . σn ⇒
σ′ ∈ F , then s ∈ [[σ]] iff si ∈ [[σi]] for all i ∈ Acc(f) and t ∈ [[τ]] for all terms t
such that s
TS t :C τ ;

(iii) If σ is the functional type ρ → τ then s ∈ [[σ]] iff @(s, t) ∈ [[τ]] for all
t ∈ [[ρ]];

A candidate term s of type σ is said to be computable if s ∈ [[σ]]. A vector
s of terms of type σ is computable iff so are all its components. A (candidate)
term substitution γ is computable if all candidate terms in {xγ | x ∈ Dom(γ)}
are computable.

Our definition of candidate interpretations is based on a lexicographic combi-
nation of an induction on the well-founded type ordering >→TS , and a fixpoint
computation for data types.

4.3 Computability Properties

We start with a few elementary properties stated without proofs:

Lemma 4. Assume σ =TS τ . Then, [[σ]] = [[τ]].

Lemma 5. s = @(u, v) is computable if u and v are computable.

Lemma 6. s is computable if s ∈ T min
S is strongly normalizable.

Lemma 7. Assume that s are computable and that f(s) �accv for some f ∈
F ∪ {@}. Then v is computable.

We now give the fundamental properties of the interpretations. Note that we use
our term categorisation to define the computability predicates, and that this is
reflected in the computability properties below.

(i) Every computable term is strongly normalizable for
TS ;
(ii) If s is computable and s�TS t, then t is computable;
(iii) A neutral term s is computable iff t is computable for all terms t such

that s
TS t;
(iv) An abstraction λx : σ.u is computable iff u{x �→ w} is computable for all

computable terms w :C σ;
(v) A prealgebraic term s = f(s) :C σ such that f : σ → τ ∈ F is computable

if s :C σ is computable.

146 F. Blanqui, J.-P. Jouannaud, and A. Rubio

All proofs are adapted from [4], with some additional difficulties. The first
four properties are proved together.

Proof. Properties (i), (ii), (iii), (iv). Note first that the only if part of properties
(iii) and (iv) is property (ii). We are left with (i), (ii) and the if parts of (iii) and
(iv) which spell out as follows:

Given a type σ, we prove by induction on the definition of [[σ]] that
(i) Given s :C σ ∈ [[σ]], then s is strongly normalizable;
(ii) Given s :C σ ∈ [[σ]] such that s�TS t for some t :C τ , then t ∈ [[τ]];
(iii) A neutral candidate term u :C σ is computable if w :C θ ∈ [[θ]] for all w

such that u
TS w; in particular, variables are computable;
(iv) An abstraction λx : α.u :C σ is computable if u{x �→ w} is computable

for all w ∈ [[α]].
We prove each property in turn, distinguishing in each case whether σ is a

data or functional type.

(ii) 1. Assume that σ is a data type. The result holds by definition of the
candidate interpretations.

2. Let σ = θ → ρ. By arrow preservation and decreasingness properties,
there are two cases:
(a) ρ ≥TS τ . Let y :C θ ∈ X . By induction hypothesis (iii), y ∈ [[θ]],

hence @(s, y) ∈ [[ρ]] by definition of [[σ]]. Since @(s, y) :C ρ
TS t :C τ
by case 2a of the definition, t is computable by induction hypothesis
(ii).

(b) τ = θ′ → ρ′, with θ =TS θ′ and ρ ≥TS ρ′. Since s is computable, given
u ∈ [[θ]], then @(s, u) ∈ [[ρ]]. By monotonicity, @(s, u)
XTS @(t, u). By
induction hypothesis (ii) @(t, u) ∈ [[ρ′]]. Since [[θ]] = [[θ′]] by Lemma 4,
t is computable by definition of [[τ]].

(i) 1. Assume first that σ is a data type. Let s
TS t. By definition of [[σ]], t is
computable, hence is strongly normalizable by induction hypothesis. It
follows s is strongly normalizable in this case.

2. Assume now that σ = θ → τ , and let s0 = s :C σ = σ0
TS s1 :C
σ1 . . .
TS sn :C σn
TS . . . be a derivation issuing from s. Therefore si ∈
[[σi]] by induction on i, using the assumption that s is computable for
i = 0 and otherwise by the already proved property (ii). Such derivations
are of the following two kinds:
(a) σ >TS σi for some i, in which case si is strongly normalizable by

induction hypothesis (i). The derivation issuing from s is therefore
finite.

(b) σi =TS σ for all i, in which case σi = θi → τi with θi =TS θ. Then,
{@(si, y :C θ) :C τi}i is a sequence of candidate terms which is
strictly decreasing with respect to
TS by monotonicity. Since y :C θ
is computable by induction hypothesis (iii), @(si, y) is computable
by definition of [[τi]]. By induction hypothesis, the above sequence is
finite, implying that the starting sequence itself is finite.

Therefore, s is strongly normalizing as well in this case.

HORPO with Computability Closure: A Reconstruction 147

(iii) 1. Assume that σ is a data type. The result holds by definition of [[σ]].
2. Assume now that σ = σ1 → σ2. By definition of [[σ]], u is computable if

the neutral term @(u, u1) is computable for all u1 ∈ [[σ1]]. By induction
hypothesis, @(u, u1) is computable iff all its reducts w are computable.
Since u1 is strongly normalizable by induction hypothesis (i), we show
by induction on the pair (u1, |w|) ordered by (
TS , >IN) that all reducts
w of @(u, u1) are computable. Since u is neutral, hence is not an ab-
straction, there are three possible cases:

(a) @(u, u1)
TS w by Case 2a, therefore u�accv�TS w or u1�accv�TS w
for some v. Since the type of w is smaller or equal to the type of
@(u, u1), it is strictly smaller than the type of u, hence w �= u.
Therefore, in case v = u, w is a reduct of u, hence is computable
by assumption. Otherwise, v is u1 or a minimal-type subterm of u1,
in which case it is computable by assumption on u1 and Lemma 6,
or a minimal-type subterm of u in which case u
TS v by Case 1a
or 2a since the neutral term u is not an abstraction, and therefore
v is computable by assumption. It follows that w is computable by
induction hypothesis (ii).

(b) @(u, u1)
TS w by Case 2b, therefore w = @(v, v1) and also
{u, u1}(�TS)mul{w1, w2}. For type reasons, there are again two
cases:
• w1 and w2 are strictly smaller than u, u1, in which case w1 and

w2 are computable by assumption or induction hypothesis (ii),
hence w is computable by Lemma 5.

• u = w1 and u1
TS w2, implying that w2 is computable by
assumption and induction hypothesis (ii). Then, since (u1,)
(
TS , >IN)lex(w2,), we conclude by induction hypothesis.

(c) @(u, u1)
TS w by Case 4b, then w = λx : β.w′, x �∈ Var(w′) and
@(u, u1)
 w′. By induction hypothesis (iv) and the fact that x �∈
Var(w′), w is computable if w′ is computable. Since the type of
λx : β.w′ is strictly bigger than the type of w′, we get @(u, u1)
TS w′.
We conclude by induction hypothesis, since (u1, λx.w′)(
TS , >IN)lex
(u1, w

′).
(iv) By definition of [[σ]], the abstraction λx : α.u :C σ is computable if the term

@(λx.u, w) is computable for an arbitrary w ∈ [[α]].
Since variables are computable by induction hypothesis (iii), u = u{x �→

x} is computable by assumption. By induction hypothesis (i), u and w are
strongly normalizable. We therefore prove that @(λx.u, w) is computable by
induction on the pair (u, w) compared in the ordering (
TS ,
TS)lex.

Since @(λx.u, w) is neutral, we need to show that all reducts v of @
(λx.u, w) are computable. We consider the four possible cases in turn:
1. If @(λx.u, w)
TS v by Case 2a, there are two cases:

- if w�TS v, we conclude by induction hypothesis (ii) that v is com-
putable.
- if λx.u�TS v, then λx.u
TS v since the type of λx.u must be strictly
bigger than the type of v. There are two cases depending on the latter
comparison.

148 F. Blanqui, J.-P. Jouannaud, and A. Rubio

If the comparison is by Case 3a, then u�TS v, and we conclude by in-
duction hypothesis (ii) that v is computable.

If the comparison is by Case 3b, then v = λx : α′.u′ with α =TS α′. By
stability, u{x �→ w}
TS u′{x �→ w}, hence u′{x �→ w} is computable by
property (ii) for an arbitrary w ∈ [[α]] = [[α′]] by lemma 4. It follows that
v is computable by induction hypothesis, since (u,)(
TS ,
TS)lex(u′,).

2. If @(λx.u, w)
TS v by case 2b, then v = @(v1, v2), and by definition of

, {λx.u, w}(
TS)mul{v1, v2}. There are three cases:
- v1 = λx.u and w
TS v2. Then v2 is computable by induction hy-
pothesis (ii) and, since u{x �→ v2} is computable by the main assump-
tion, @(v1, v2) is computable by induction hypothesis, since (λx.u, w)
(
TS ,
TS)lex(λx.u, v2).
- Terms in {v1, v2} are reducts of u and w. Therefore, v1 and v2 are com-
putable by induction hypothesis (ii) and v is computable by Lemma 5.
- Otherwise, for typing reason, v1 is a reduct of λx.u of the form λx.u′

with u
TS u′, and v2 is a reduct of the previous kind. By the main
assumption, u{x �→ v′′} is computable for an arbitrary computable v′′.
Besides, u{x �→ v′′}
TS u′{x �→ v′′} by stability. Therefore u′{x �→ v′′}
is computable for an arbitrary computable v′′ by induction hypothesis
(ii). Then @(v1, v2) is computable by induction hypothesis, since (u,)
(
TS ,
TS)lex (u′,).

3. If @(λx.u, w)
TS v by Case 4b, then v = λx.v′, x �∈ Var(v′) and @
(λx.u, w)
TS v′. Since λx.v′
TS v′ by Case 3a, v′ is computable by
induction hypothesis. Since x �∈ Var(v′), it follows that λx.v′ is com-
putable.

4. If @(λx.u, w)
TS v by case 2c, then u{x �→ w}�horpo v. By assumption,
u{x �→ w} is computable, and hence v is computable by property (ii). �

We are left with property (v) whose proof differs from [4].

Proof. Property (v). As we have seen, each data type interpretation [[σ]] is the
least fixpoint of a monotone function G on the powerset of the set of terms.
Hence, for every computable term t ∈ [[σ]], there exists a smallest ordinal o(t)
such that t ∈ Go(t)(∅), where Ga is the a transfinite iteration of G. The relation
�, defined by t � u iff o(t) > o(u), is a well-founded ordering which is compatible
with
TS : if t
TS u then t � u. The proof is by induction on the type ordering.
Therefore,
TS ∪ � is well-founded on computable terms. Note that the result
would again hold for terms headed by a function symbol with a functional output.

We use this remark to build our outer induction argument: we prove that
f(s) is computable by induction on the pair (f, s) ordered lexicographically by
(>F , (
TS ∪ �)statf)lex. This is our outer statement (OH).

Since f(s) is prealgebraic, it is computable if every subterm at an accessible
position is computable (which follows by assumption) and reducts t of s are
computable.

Since
TS is defined in terms of
X , we actually prove by an inner induction
on the recursive definition of
X the more general inner statement (IH) that

HORPO with Computability Closure: A Reconstruction 149

tγ is computable for an arbitrary term t such that f(s)
X t and computable
substitution γ of domain X such that X ∩ Var(s) = ∅. Since the identity sub-
stitution is computable by property (iii), our inner induction hypothesis implies
our outer induction hypothesis.

1. If f(s)
X u by Case 4a, Then u ∈ X and we conclude by assumption on γ
that uγ is computable.

2. If f(s)
X u by Case 1a, then si �acct for some i and @(t, x)�TS u for some
x ∈ X . By assumption on s and Lemma 7, t is computable. Since t is a
subterm of s and X ∩Var(s) = ∅, then tγ = t is computable. It follows that
@(t, xγ) is computable. Thus, by stability, uγ is computable.

3. If f(s)
X u by case 1b, then u = g(u), f =F g, s
X u and finally s (
TS ∪
�acc�XTS)stat u. By the inner induction hypothesis, uγ is computable. Assume
now that si : σi�accv and @(v, x) : σ′i =TS σi�TS uj. Using the fact that X∩
Var(s) = ∅, by stability we get siγ = si�accvγ = v and @(v, x)γ = @(v, xγ) :
σ′i =TS σi�TS ujγ. Moreover, by definition of computability, si � @(v, xγ).
Therefore, uγ = f(uγ) is computable by the outer induction hypothesis.

4. If f(s)
XTS u by case 4b, then u = λx.v with x �∈ Var(s) and f(s)
X∪{x} v.
By the inner induction hypothesis, v(γ ∪ {x �→ w}) is computable for an ar-
bitrary computable w. Assuming without loss of generality that x �∈ Ran(γ),
then v(γ ∪ {x �→ w}) = (vγ){x �→ w}. Therefore, u = λx.vγ is computable
by computability property (iv).

5. If f(s)
X u by Case 1c, then u = g(u) with g ∈ F ∪ {@} and s
X u. By
the inner induction hypothesis, uγ is computable. We conclude by Lemma 5
in case g = @ and by the outer induction hypothesis if g ∈ F . �

4.4 Strong Normalization

We are now ready for the strong normalization proof. From the previous proper-
ties, one can easily prove the following lemma by induction on the term structure:

Lemma 8. Let γ be a type-preserving computable substitution and t be an alge-
braic λ-term. Then tγ is computable.

The proof of our main theorem follows from Lemma 8 when using the identity
substitution, and of computability property (i).

5 Conclusion

An implementation of the new definition with examples is available from the
web page of the third author.

There are still a few possible improvements that we have not yet explored,
such as ordering the abstractions according to their type, increasing the set
of accessible terms for applications that satisfy the strict positivity restriction,
and showing that the new definition is strictly more general that the general
schema when adopting the same type discipline. A more difficult problem to be
investigated then is the generalization of this new definition to the calculus of
constructions along the lines of [5].

150 F. Blanqui, J.-P. Jouannaud, and A. Rubio

References

1. Blanqui, F. (HO)RPO revisited. Research Report 5972, INRIA (2006)
2. Blanqui, F., Jouannaud, J.-P., Rubio, A.: Higher order termination: from Kruskal

to computability. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI),
vol. 4246, Springer, Heidelberg (2006)

3. Jouannaud, J.-P., Rubio, A.: The higher-order recursive path ordering. In: 14th
IEEE Symposium on Logic in Computer Science, IEEE Computer Society Press,
Los Alamitos (1999)

4. Jouannaud, J.-P., Rubio, A.: Polymorphic higher-order recursive path orderings.
Journal of the ACM 54(1), 1–48 (2007)

5. Walukiewicz-Chrzaszcz, D.: Termination of rewriting in the Calculus of Construc-
tions. In: Proceedings of the Workshop on Logical Frameworks and Meta-languages
(2000)

Zenon: An Extensible Automated Theorem Prover
Producing Checkable Proofs

Richard Bonichon1, David Delahaye2, and Damien Doligez3

1 LIP6/Paris 6, Paris, France
Richard.Bonichon@lip6.fr

2 CEDRIC/CNAM, Paris, France
David.Delahaye@cnam.fr

3 INRIA, Rocquencourt, France
Damien.Doligez@inria.fr

Abstract. We present Zenon, an automated theorem prover for first or-
der classical logic (with equality), based on the tableau method. Zenon is
intended to be the dedicated prover of the Focal environment, an object-
oriented algebraic specification and proof system, which is able to pro-
duce OCaml code for execution and Coq code for certification. Zenon can
directly generate Coq proofs (proof scripts or proof terms), which can be
reinserted in the Coq specifications produced by Focal. Zenon can also be
extended, which makes specific (and possibly local) automation possible
in Focal.

1 Introduction

Theorem proving is generally separated into two distinct domains: automated
theorem proving and interactive theorem proving. Even if these two domains are
obviously connected, it seems that in practice, they have little interaction. Actu-
ally, the motivations are quite different: automated theorem proving focuses on
heuristic concerns (complexity, efficiency, ...) to solve well-identified problems,
whereas interactive theorem proving is more concerned with providing means (es-
sentially tools) to achieve proofs of theorems. As a consequence, in automated
theorem proving, it is quite difficult to produce formal proofs and in general, the
corresponding tools only generate proof traces, which can be seen as abstractions
of formal proofs and cannot be directly translated into machine checkable proofs.
In this way, we can understand how complicated it is to integrate automated the-
orem proving features into interactive theorem provers, which tend to suffer from
a certain lack of automation. Over the past ten years, some experiments have
aimed to make these two kinds of theorem proving activities interact, such as
between Gandalf and HOL by J. Hurd [5], between Otter and ACL2 by W. Mc-
Cune and O. Shumsky [8], between Bliksem and Coq by M. Bezem, D. Hendriks
and H. de Nivelle [2], or more recently between E, SPASS, Vampire and Isabelle
by L. C. Paulson and K. W. Susanto [9]. However, these examples of integration
are not fully satisfactory, since the design of the corresponding automated the-
orem provers is clearly separated from the automation that could be required

N. Dershowitz and A. Voronkov (Eds.): LPAR 2007, LNAI 4790, pp. 151–165, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

152 R. Bonichon, D. Delahaye, and D. Doligez

by the respective interactive theorem provers. In particular, it is impossible to
extend the automated theorem prover to manage a very specific and local need
for automation.

In this paper, we present Zenon, an automated theorem prover for first or-
der classical logic (with equality), based on the tableau method. Zenon is not
supposed to be only another general-purpose automated theorem prover, but is
designed to be the reasoning support mechanism of the Focal [15] environment,
initially conceived by T. Hardin and R. Rioboo. Focal is a language in which
it is possible to build applications step by step, going from abstract specifica-
tions to concrete implementations. These different structures are combined using
inheritance and parameterization, inspired by object-oriented programming; in
addition, each of these structures is equipped with a carrier set, providing a
typical algebraic specification flavor. Moreover, in this language, there is a clean
separation between the activities of programming and proving. In particular,
the compiler is able to produce OCaml [14] code for execution and Coq [13] code
for certification. In this compilation scheme, Zenon is involved in the certifica-
tion part, between the specification level and the generated Coq implementation.
Zenon is intended to be the prover of Focal, whereas Coq is used only as a proof
checker to ensure the soundness of the final output.

Beyond the automation itself, Zenon brings an effective help to the design
of Focal. First, Zenon uses the tableau method. Even though, these days, this
method is generally considered as not very efficient (compared to resolution, for
example), it has the advantage of being very appropriate for building formal
proofs. In this way, Zenon has a low-level format of proofs, which is very close
to a sequent calculus. From this low-level format, Zenon can directly produce
proofs for Coq (it could be easily done for other proof assistants). This feature
can be seen as a guarantee of soundness for the implementation of Zenon, but it
is also essential to Focal, where the Coq proofs produced by Zenon are reinserted
in the Coq specifications generated by the Focal compiler and fully verified by
Coq. In addition, Zenon is also able to produce proof terms for Coq (using its
Curry-Howard isomorphism capability), so that Zenon verifies the De Bruijn
criterion [1], i.e. it generates proof terms that can be checked independently
by a relatively small and easily hand checked algorithm. This means that it is
possible to verify Zenon’s proofs without Coq, using another tool that would
implement only the type-checking of Coq. Second, Zenon can be easily extended
and this is directly related to the use of the tableau method, which is also very
appropriate to handle additional rules. Thanks to this feature, it is possible
to manage specific (and possibly local) needs of automation in Focal, such as
arithmetic, induction, etc.

The paper is organized as follows: in Section 2, we give the rules of the search
method used by Zenon, as well as the format of the generated proofs (in this part,
we also point out some specific implementation techniques, such as the use of
non-destructive rules and pruning, the management of lemmas or the extension
mechanism); in Section 3, we describe the intermediate proof format produced by
translating from the proof search rules; in Section 4, we give the translation from

Zenon: An Extensible Automated Theorem Prover 153

this intermediate format to Coq proofs; in Section 5, we provide some examples
of use, coming from the TPTP library but also from Focal applications.

2 MLproof

The MLproof inference rules (Figures 1 and 2) are used by Zenon to search for
a proof. These rules are applied with the normal tableau method: starting from
the negation of the goal, apply the rules in top-down fashion to build a tree.
When all branches are closed (i.e. end with an application of a closure rule), the
tree is closed. The closed tree is a proof of the goal.

Note that this algorithm is applied in strict depth-first order: we close the
current branch before starting work on another branch. Moreover, we work in
a non-destructive way: working on one branch will never change the formulas
present in any other branch.

We divide these rules into five distinct classes to be used for a more efficient
proof search. This extends the usual sets of rules dealing with α, β, δ, γ-formulas
and closure (�) with the specific rules of Zenon. We list below the five sets of
rules and their elements:

α α¬∨, α∧, α¬⇒, α¬¬,¬refl
unfolding rules

β β∨, β¬∧, β⇒, β⇔, β¬⇔, �=func
trans, pred, sym, transsym, transeq, transeqsym

δ δ∃, δ¬∀
γ γ∀, γ¬∃, γ∀inst, γ¬∃inst, γ∀un, γ¬∃un
� �	,�⊥,�,�r,�s

As hinted by the use of the ε symbol in the rules, the δ rules are handled with
Hilbert’s operator [7] rather than using skolemization.

The following subsections describe specific features of our theorem prover,
starting with how metavariables are used in a non-destructive setting.

2.1 Handling of Metavariables

What we call here metavariables are often named free variables in tableau-related
literature. They are not used as variables in Zenon as they are never substituted.

Instead of substitution, we use the following method: when we encounter a
universal formula ∀x P (x), we apply rule γ∀M , which introduces a new metavari-
able, linked to this universal formula. Then, when we have a potential contra-
diction such as ¬Rr(t, X), we apply rule γ∀inst (with the t given by the potential
contradiction) in the current branch to our original universal formula. If this
instantiation closes the subtree rooted at the γ∀inst node, we know that pruning
(see section 2.2) will remove the nodes between the two γ nodes, hence removing
the need for substitution of the metavariable.

If the instantiation does not close the subtree, the formulas containing the
metavariable are still available in the current branch to trigger other potential

154 R. Bonichon, D. Delahaye, and D. Doligez

Fig. 1. MLproof rules (part 1)

Zenon: An Extensible Automated Theorem Prover 155

Unfolding rules: if P (x)=̂Def(x) and f(x)=̂def(x) then

P (x)
p-unfold

Def(x)
¬P (x)

p-unfold¬¬Def(x)

f(x) = t
f-unfoldl=def(x) = t

t = f(x)
f-unfoldr=

t = def(x)

f(x) �= t
f-unfoldldef(x) �= t

t �= f(x)
f-unfoldr

t �= def(x)

Extension rule

C1, ..., Cp ext(name,args,
[Ci],[H1j , ..., Hnk])H11, ..., H1m | ... | Hn1, ..., Hnq

where name is the name of a predefined lemma s.t.
C1 ∧ ... ∧ Cp ⇒ ∨

j(
∧

i Hij)

Fig. 2. MLproof rules (part 2)

contradictions, hence we get as many instantiations as needed from a single
application of the γ∀M rule. This means that we do not need to use iterative
deepening to ensure completeness.

Let us consider the following example:

∀x, P (x) ∨ Q(x) ¬P (a) ¬Q(a) γ∀M
P (X) ∨ Q(X)

β∨P (X) γ∀inst
P (a) ∨ Q(a)

β∨P (a) ��
Q(a) ��

Q(X)

In this case, the rule γ∀inst is triggered by the match between ¬P (a) and
P (X), which tells us to instantiate ∀x, P (x) ∨ Q(x) with the value a. This tree
is not a complete proof because it has an open branch (under Q(X)). As we will
see in Section 2.2, this open branch does not need to be explored because we
can remove it (along with some nodes) to yield a closed proof tree of the original
formulas.

2.2 Minimizing the Tree Size

For efficient proof search, a prover must minimize the size of the search tree. This
is done in two ways. The first is by choosing the order in which the rules are
applied : non-branching rules are tried first. It induces the following ≺ ordering
on the application of the rules � ≺ α ≺ δ ≺ β ≺ γ, stating thereby that any
applicable � rule has priority over any of the other possible rules.

156 R. Bonichon, D. Delahaye, and D. Doligez

The second is by pruning. When a branching node N has a closed subtree as
one of its branches B, we can examine this closed subtree to determine which
formulas are useful. If the formula introduced by N in B is not in the set of
useful formulas, we can remove N and graft the subtree in its place because the
subtree is a valid refutation of B without N .

The notion of useful formula is defined as follows: a formula is useful in a
subtree if it is one of the formulas appearing in the hypotheses (the upper side)
of a rule application in that subtree.

Consider the example of section 2.1. There is a subtree rooted at the ∀inst
node. This subtree does not use the formula P (X) that appears just above it,
because the premise of the ∀inst rule is the formula ∀x, P (x) ∨Q(x) at the root
of the proof tree, and none of the other subtree nodes uses P (X). Because of
this, we can remove the β∨ node above the subtree, and graft the subtree in its
place. We can proceed in the same fashion to remove the γ∀M node, and we get
the following tree:

∀x, P (x) ∨ Q(x) ¬P (a) ¬Q(a) γ∀inst
P (a) ∨ Q(a)

β∨P (a) ��
Q(a) ��

This time, the proof tree is closed and the proof search is over. The importance
of this pruning is that we have completely avoided doing the proof search below
the Q(X) branch by carefully examining the result of the proof search in the
P (X) branch, thereby reducing the branching factor of the search tree. In the
process, we have reduced the size of the resulting proof as compared to the proof
search tree.

2.3 Extensions

Zenon offers the ability to extend its core of deductive rules to match certain
specific requirements. For instance, the extension named Coqbool is regularly
used in the setting of Focal, where a function P (x, y) returning a boolean result
is encapsulated into a Is_true(P(x,y)) predicate as it is translated into the cor-
responding Coq file. In the case where P is transitive (for example), this prevents
Zenon from using its specific inference rules, thereby reducing the efficiency of the
proof search. Our solution is to transform all occurrences of Is_true(P(x,y))
into a corresponding Is_true__P(x,y) predicate which will let Zenon make use
of its transitivity property.

Concretely, extensions are arbitrary OCaml files that implement new inference
rules; they are loaded through command-line options when Zenon is started,
along with Coq files containing the lemmas used to translate the inference rules
introduced by the extension.

2.4 Subsumption

Whenever the current branch contains a superset of the formulas used in an
already-closed subtree, we can graft this subtree at the current node because it

Zenon: An Extensible Automated Theorem Prover 157

is a valid closure of the current branch. The implementation maintains a data
structure with all the subtrees closed so far (indexed by their used formulas) and
queries this data each time a formula is added to the current branch.

We can illustrate subsumption with the following example:

B ∨ C B ⇒ D C ⇒ D D ⇒ E ¬E
β∨B

β⇒¬B ��
D∗

β⇒¬D ��
E ��

C
β⇒¬C ��

D

Consider the D∗ subtree in the left half of the tree and the open branch under
D. The formulas used by the D∗ subtree are D, D ⇒ E, and ¬E. The same
formulas are already available in the open branch, thus we do not need to search
for a proof: we can simply reuse the D∗ subtree. In fact, the implementation
does not copy the subtree, but uses sharing (hence turning the proof tree into a
dag). Such shared subtrees appear as lemmas in the Coq proof output.

3 LLproof

LLproof is the low-level language of proofs produced by Zenon, which makes the
generation of machine checkable proofs possible (see Section 4 for an example in
the framework of Coq). Once a proof has been found with the MLproof rules, it
is translated to this sequent-like language. We will sketch a proof of soundness
and completeness of MLproof proofs w.r.t. LLproof proofs.

LLproof rules (Figures 3 and 4) indeed describe a one-sided sequent calculus
with explicit contractions in every inference rule, which roughly resembles an
upside-down non-destructive tableau method. This sequent calculus is extended
to handle unfolding, lemmas and the extension mechanism of Zenon.

Translating mid-level to low-level proofs gives us a direct proof of soundness
for MLproof w.r.t. LLproof. There is a one-to-one correspondence between parts
of the two calculi, most notably those which do not introduce quantifiers in
MLproof (quantifier-free fragment, axioms).

We can now proceed to prove the following proposition.

Theorem 1 (Soundness and completeness of MLproof w.r.t. LLproof)

1. Every formula provable in LLproof has a proof in MLproof.
2. Every formula provable in MLproof has a proof in LLproof.

Proof. Proof of (1) is immediate as every rule of LLproof has a direct equivalent
in MLproof, except the lemma rule, but we can only apply the lemma rule when
we have a proof of the lemma’s statement, which we can handle in MLproof by
grafting a copy of the lemma’s proof in the place of the lemma rule.

The proof of (2) is not so immediate as we have to transform some MLproof
rules which are the combination of two or more lower-level rules. It proceeds by
induction on the size of the MLproof proofs; the details of the proof are not given
here.

158 R. Bonichon, D. Delahaye, and D. Doligez

Closure and quantifier-free rules

⊥⊥ � ⊥ ¬�¬� � ⊥ ax
Γ, P,¬P � ⊥

�=
t �= t � ⊥

Γ, P,¬¬P � ⊥ ¬¬
Γ, P � ⊥

Γ, P � ⊥ Γ,¬P � ⊥
cut

Γ � ⊥
Γ, P ∧Q,P,Q � ⊥ ∧
Γ, P ∧Q � ⊥

Γ, P ∨Q,P � ⊥ Γ, P ∨Q,Q � ⊥ ∨
Γ, P ∨Q � ⊥

Γ, P,¬Q,¬(P ⇒ Q) � ⊥ ¬ ⇒
Γ,¬(P ⇒ Q) � ⊥

Γ,¬P, P ⇒ Q � ⊥ Γ,Q, P ⇒ Q � ⊥ ⇒
Γ, P ⇒ Q � ⊥

Γ,¬P,¬Q,¬(P ∨Q) � ⊥ ¬ ∨
Γ,¬(P ∨Q) � ⊥

Γ,¬P,¬(P ∧Q) � ⊥ Γ,¬Q,¬(P ∧Q) � ⊥ ¬ ∧
Γ,¬(P ∧Q) � ⊥

Γ, P ⇔ Q,¬P,¬Q � ⊥ Γ, P ⇔ Q,P,Q � ⊥ ⇔
Γ, P ⇔ Q � ⊥

Γ,¬P,Q,¬(P ⇔ Q) � ⊥ Γ, P,¬Q,¬(P ⇔ Q) � ⊥ ¬ ⇔
Γ,¬(P ⇔ Q) � ⊥

Fig. 3. LLproof rules (part 1)

4 Producing Coq Proofs

As we said in the introduction, Zenon is able to produce Coq [13] proofs, and
this automatic generation is carried out from the LLproof format described in
Section 3. From a theoretical point of view, this feature ensures the soundness of
the LLproof formalism (w.r.t. a known theory), whereas from a practical point of
view, this provides a (local) guarantee of Zenon’s implementation. But especially,
in the context of the Focal system [15], this allows us to produce homogeneous
Coq code (where the Coq proofs built by Zenon are reinserted in the Coq speci-
fications generated by the Focal compiler), that can be fully verified by Coq.

4.1 Translation

The translation consists in producing, from proofs provided in LLproof format,
proofs in the theory of the theorem prover we chose to perform the validation,
which is Coq in our case. This translation is not straightforward for some rea-
sons inherent to the underlying theory of Coq, but also to Coq itself. One of
them is that the theory of Coq is based on an intuitionistic logic, i.e. without
the excluded middle, whereas LLproof is purely classical. To adapt the theory of
Coq to LLproof, we have to add the excluded middle and the resulting theory is
still consistent. But Coq does not provide a genuine classical mode (even if the
classical library is loaded), i.e. with a classical sequent allowing several propo-
sitions on the right hand side, so that proofs must still be completed using an

Zenon: An Extensible Automated Theorem Prover 159

Quantifier rules

Γ, P (c),∃x P (x) � ⊥ ∃
Γ,∃x P (x) � ⊥

Γ,¬P (c),¬∀x P (x) � ⊥ ¬∀
Γ,¬∀x P (x) � ⊥ where c is a fresh constant

Γ, P (t),∀x P (x) � ⊥ ∀
Γ,∀x P (x) � ⊥

Γ,¬P (t),¬∃x P (x) � ⊥ ¬∃
Γ,¬∃x P (x) � ⊥ where t is any closed term

Special rules

Δ, t1 �= u1 � ⊥ ... Δ, tn �= un � ⊥ pred
Γ, P (t1, ..., tn),¬P (u1, ..., un) � ⊥

where Δ = Γ ∪ {P (t1, ..., tn),¬P (u1, ..., un)}

Δ, t1 �= u1 � ⊥ ... Δ, tn �= un � ⊥
fun

Γ, f(t1, ..., tn) �= f(u1, ..., un) � ⊥

where Δ = Γ ∪ {f(t1, ..., tn) �= f(u1, ..., un)}

Γ,C,H � ⊥
def(name,C,H)

Γ,C � ⊥

if one can go from C to H by unfolding definition name.

Δ,H11, ..., H1m � ⊥ ... Δ,Hn1, ..., Hnq � ⊥ ext(name,args,
[Ci],[H1j , ..., Hnk])Γ,C1, ..., Cp � ⊥

where Δ = Γ ∪ {C1, ..., Cp}
name is the name of a predefined lemma s.t.
C1 ∧ ... ∧ Cp ⇒ ∨

j(
∧

i Hij)

lemma(name, args)
C � ⊥

if C is the conclusion associated with name in the list of previously-done proofs.
Arguments args are the parameters of name.

Fig. 4. LLproof rules (part 2)

intuitionistic sequent (with only one proposition to the right hand side) and the
excluded middle must be added as an axiom. Such a system does not correspond
to Gentzen’s LK sequent calculus, which is normally used when doing classical
proofs, but rather to Gentzen’s LJ sequent calculus provided with an explicit
excluded middle rule. From a practical point of view, doing proofs in this system
is more difficult than in LK (where the right contraction rule is a good short-
cut), but in our case this has little effect because all our proofs are produced
automatically.

160 R. Bonichon, D. Delahaye, and D. Doligez

Beyond predicate calculus in general, Zenon, like most of first order automated
deduction systems, considers equality as a special predicate and uses specific
rules to deal with it. Thus, to translate equality proofs correctly, we have to
extend the theory of LJ with equational logic rules. Such a theory will be called
LJeq (due to space constraints, we cannot give the corresponding rules, but this
theory is quite standard and can be found in literature).

We have the following theorem:

Theorem 2 (Soundness of LLproof w.r.t. LJeq). Every sequent provable in
LLproof has a proof in LJeq.

Proof. The proof is done by induction over the structure of the proof of the
sequent in LLproof. Due to space constraints, we cannot detail the many cases,
but as an example, we can consider the translation of the ¬ ∧ rule of LLproof,
which is the following:

π1

Γ ,¬(P ∧ Q),¬P
 ⊥
π2

Γ ,¬(P ∧ Q),¬Q
 ⊥ ¬ ∧
Γ ,¬(P ∧ Q)
 ⊥

where π1 and π2 are respectively the proofs of Γ ,¬(P ∧Q),¬P
 ⊥ and Γ ,¬(P ∧
Q),¬Q
 ⊥.

This rule is translated in LJeq as follows:

π̂1

Γ ,¬(P ∧ Q),¬P
 ⊥ ¬right
Γ ,¬(P ∧ Q)
 ¬¬P

em
Γ ,¬(P ∧ Q)
 P

π̂2

Γ ,¬(P ∧ Q),¬Q
 ⊥ ¬right
Γ ,¬(P ∧ Q)
 ¬¬Q

em
Γ ,¬(P ∧ Q)
 Q ∧right

Γ ,¬(P ∧ Q)
 P ∧ Q ¬left
Γ ,¬(P ∧ Q),¬(P ∧ Q)
 ⊥

cont
Γ ,¬(P ∧ Q)
 ⊥

where π̂1 and π̂2 are the translated proofs of π1 and π2, em the excluded middle
rule, cont the left contraction rule, ¬/∧ right the right rule for ¬/∧ , and ¬left the
left rule for ¬.

4.2 Implementation

General Scheme. The proof of Theorem 2 allows Zenon to produce Coq proofs
from proofs in LLproof, since LJeq is included in the underlying theory of Coq,
i.e. the Calculus of Inductive Constructions (CIC for short). Actually, we have
two kinds of translations: a first one generating proof scripts and a second one
directly generating proof terms (thanks to the Curry-Howard isomorphism capa-
bility of Coq). In both translations, in order to factorize proofs and especially to
minimize the size of the produced proofs, the idea is not to build the proof scripts
corresponding to the translated rules, but to prove a lemma for each translated
rule once and for all (a macro tactic in Ltac is not appropriate because the body

Zenon: An Extensible Automated Theorem Prover 161

of these macros is rerun each time a translated rule is used in a proof). Thus,
the generated Coq proofs are just sequences of applications of these lemmas, and
they are not only quite compact, but also quite efficient in the sense that the
corresponding Coq checking is fast. For instance, if we consider the ¬ ∧ rule of
LLproof translated in the proof of Theorem 2, the associated Coq lemma is the
following:

Lemma zenon_notand : f o ra l l P Q : Prop ,
(∼P→ False) → (∼Q→ False) → (∼(P ∧ Q) → False) .

As an example of complete Coq proof produced by Zenon and involving the
previous lemma, let us consider the proof of ¬(P ∧ Q) ⇒ ¬P ∨ ¬Q, where P
and Q are two propositional variables. For this proof, Zenon is able to generate
a Coq proof script as follows:

Parameters P Q : Prop .
Lemma de_morgan : ∼(P ∧ Q) → ∼P ∨ ∼Q.
Proof .

apply NNPP. intro G.
apply (notimply_s _ _ G) . zenon_intro H2 . zenon_intro H1 .
apply (notor_s _ _ H1) . zenon_intro H4 . zenon_intro H3 .
apply H3 . zenon_intro H5 .
apply H4 . zenon_intro H6 .
apply (notand_s _ _ H2) ;

[zenon_intro H8 | zenon_intro H7] .
exact (H8 H6) .
exact (H7 H5) .

Qed.

where NNPP is the excluded middle, rule_s (where rule is notimply, notor, etc)
a definition which allows us to apply partially the corresponding lemma rule
providing the arguments at any position (not only beginning by the leftmost po-
sition), and zenon_intro a macro tactic to introduce (in the context) hypotheses
with possibly fresh names if the provided names are already used.

For the same example, Zenon is also able to directly produce the following
proof term (without the help of Coq):

Parameters P Q : Prop .
Lemma de_morgan : ∼(P ∧ Q) → ∼P ∨ ∼Q.
Proof .

exact (NNPP _ (fun G : ∼(∼(P ∧ Q) → ∼P ∨ ∼Q) ⇒ (notimply
(∼(P ∧ Q)) (∼P ∨ ∼Q) (fun (H5 : ∼(P ∧ Q))
(H8 : ∼(∼P ∨ ∼Q)) ⇒ (notor (∼P) (∼Q) (fun (H6 : ∼∼P)
(H7 : ∼∼Q) ⇒ (H7 (fun H1 : Q ⇒ (H6
(fun H3 : P ⇒ (notand P Q (fun H4 : ∼P ⇒ (H4 H3))
(fun H2 : ∼Q ⇒ (H2 H1)) H5)))))) H8)) G))) .

Qed.

As said in the introduction, this possibility of generating proof terms is partic-
ularly important in the sense that Zenon verifies the De Bruijn criterion [1], i.e.
it generates a proof format that can be checked by Coq but also independently,

162 R. Bonichon, D. Delahaye, and D. Doligez

by means of another program or proof system which implements the same type
theory. For example, as an alternative and with an appropriate printer, we can
imagine using the Matita [16] theorem prover, which has the same underlying
theory (CIC) as Coq.

Difficulties. In this implementation, we have to be aware of some difficulties.
One of them is that we plug first order logic, which is a priori untyped, into
a typed calculus (CIC). To deal with this problem, we consider that we have
a mono-sorted first order logic, of sort U, and we provide types to variables,
constants, predicates and functions explicitly (the type inference offered by Coq
does not always allow us to guess these types). Obviously, this must be done only
when dealing with purely first order propositions, but can be avoided with propo-
sitions coming from Coq or Focal, which are possible inputs for Zenon, since these
systems are strongly typed and Zenon keeps the corresponding type information
(this is possible since Zenon works in a non-destructive way, see Section 2); in
this case, we generally have a multi-sorted first order logic.

Another difficulty, probably deeper, is that mono/multi-sorted first order logic
implicitly supposes that each sort is not empty, while in the CIC, types may be
not inhabited. This problem is fixed by skolemizing the theory and considering
at least one element for each sort, e.g. E for U. Thus, for example, it is possible
to prove Smullyan’s drinker paradox with Zenon as follows:
Parameter U : Set .
Parameter E : U.
Parameter d : U→ Prop .
Lemma drinker_paradox :

exists X : U, (d X) → f o ra l l Y : U, (d Y) .
Proof .

apply NNPP. intro G.
apply G. exists E. apply NNPP. zenon_intro H3 .
apply (notimply_s _ _ H3) . zenon_intro H5 . zenon_intro H4 .
apply H4 . zenon_intro T0 . apply NNPP. zenon_intro H6 .
apply G. exists T0 . apply NNPP. zenon_intro H7 .
apply (notimply_s _ _ H7) . zenon_intro H8 . zenon_intro H4 .
exact (H6 H8) .

Qed.

5 Using Zenon in Practice

In this section, we consider the effectiveness of Zenon through benchmarks and
applications. The interested reader can get the distribution of Zenon, which is
available either as part of the Focal environment at http://focal.inria.fr/,
or directly (as a separate tool) at http://focal.inria.fr/zenon/.

5.1 Benchmarks

In order to see how Zenon fares w.r.t. available first-order theorem provers, we
benchmarked it against parts of the latest TPTP library [12] release (v3.2.0).

Zenon: An Extensible Automated Theorem Prover 163

The Zenon runs were made on an Apple Power Mac Core 2 Duo 2 GHz, with
Zenon’s default timeout of 5 min and size limit of 400 Mbytes. The set of TPTP
syntactic problems SYN was chosen as representative of Zenon’s typical target
problems, and indeed we get good results. We also tried Zenon against the prob-
lems of the FOF category for the latest CASC competition [11].

Problems Proof found No proof
time size other

SYN theorems (282) 264 10 7 1
CASC-J3 (150) 48 46 56 0

Some of the formulas proved by Zenon in CASC have a rather high rating,
such as SWV026+1 (0.79), SWV038+1 (0.71), or MSC010+1 (0.57). This last
one consists in proving ¬¬P , assuming P , where P is a large first-order formula.
Thanks to the tableau method, Zenon does not need to decompose the formula,
and the proof is found immediately. All the proofs found by Zenon were verified
by Coq.

5.2 The EDEMOI Project

In the framework of the EDEMOI1 [10] project, Zenon was used to certify the
formal models of two regulations related to airport security: the first one is the
international standard Annex 17 produced by the International Civil Aviation
Organization (ICAO), an agency of the United Nations; the second one is the Eu-
ropean Directive Doc 2320 produced by the European Civil Aviation Conference
(ECAC) and which is supposed to refine the first one at the European level. The
EDEMOI project aims to integrate and apply several requirements engineering
and formal methods techniques to analyze standards in the domain of airport
security. The novelty of the methodology developed in this project, resides in
the application of techniques, usually reserved for safety-critical software, to the
domain of regulations (in which no implementation is expected).

The two formal models of the two considered standards were completed using
the Focal [15] environment and can be found in [3], where the reader can also find
a brief description of Focal. In this formalization, Zenon was used to prove the
several identified theorems ensuring the correctness and the completeness of both
regulations (consistency was not studied formally). Concretely, the development
represents about 10,000 lines of Focal and 200 proofs (2 years to be completed).
Regarding the validation part, Zenon allowed us to discharge most of the proof
obligations automatically (about 90% of them). Actually, Zenon also succeeded
in completing the remaining 10% automatically but beyond the default timeout
(set to 3 min in Focal). This tends to show that Zenon is quite appropriate when
dealing with abstract specifications (no concrete types and very few definitions).
1 The EDEMOI project is supported by the French National "Action Concertée Inci-

tative Sécurité Informatique".

164 R. Bonichon, D. Delahaye, and D. Doligez

Zenon also helped us to study the consistency of the regulations from a prac-
tical point of view. The idea is to try to derive False from the set of security
properties and to let Zenon work on it for a while. If the proof succeeds then we
have a contradiction, otherwise we can only have a certain level of confidence.
This approach may seem rather naive but appears quite pertinent when used
to identify the correlation between the several security measures according to
specific attack scenarios. The principle is to falsify an existing hypothesis or to
add an inconsistent hypothesis and to study its impact over the entire regula-
tion, i.e. where the potential conflicts are located and which security properties
are concerned. For more information regarding this experiment with Zenon, the
reader can refer to [4].

6 Conclusion

Zenon is an experiment in progress, but we already have a reasonably powerful
prover (see the benchmarks) that can output actual proofs in Coq format (proof
scripts or proof terms) for use in a skeptic-style system, such as the Focal envi-
ronment for example. In addition, the help provided by Zenon in the EDEMOI
project framework, where most of the proofs were discharged (and even all the
proofs with an extended timeout), tends to show how this tool is appropriate for
real-world applications, so that we can be quite optimistic regarding its use, in
particular in the context of Focal.

Future work will focus on improving the handling of metavariables in order
to get better heuristics for finding the right instantiations, and on implement-
ing some theory-based reasoning by using the extension mechanism of Zenon.
Amongst other extensions, we plan to add a theory of arithmetic, but also
reasoning by induction (this feature is under development), which is crucial
when dealing with specifications close to implementations involving, in partic-
ular, concrete datatypes. Finally, it is quite important to apply Zenon to other
case-studies, not only to get a relative measure of its automation power, but
also to understand the practical needs of automation. For example, proofs pro-
vided by Zenon are progressively integrated into the Focal standard library [15]
(which mainly consists of a large kernel of Computer Algebra), and a certified
development regarding security policies [6] is in progress.

References

1. Barendregt, H., Barendsen, E.: Autarkic Computations in Formal Proofs. Journal
of Automated Reasoning (JAR) 28(3), 321–336 (2002)

2. Bezem, M., Hendriks, D.H., de Nivelle, H.: Automated Proof Construction in Type
Theory Using Resolution. Journal of Automated Reasoning (JAR) 29(3–4), 253–
275 (2002)

3. Delahaye, D., Étienne, J.-F., Donzeau-Gouge, V.V.: Certifying Airport Security
Regulations using the Focal Environment. In: Misra, J., Nipkow, T., Sekerinski, E.
(eds.) FM 2006. LNCS, vol. 4085, pp. 48–63. Springer, Heidelberg (2006)

Zenon: An Extensible Automated Theorem Prover 165

4. Delahaye, D., Étienne, J.-F., Donzeau-Gouge, V.V.: Reasoning about Airport Se-
curity Regulations using the Focal Environment. In: International Symposium on
Leveraging Applications of Formal Methods, Verification and Validation (ISoLA),
Paphos (Cyprus) (November 2006)

5. Hurd, J.: Integrating Gandalf and HOL. In: Bertot, Y., Dowek, G., Hirschowitz, A.,
Paulin, C., Théry, L. (eds.) TPHOLs 1999. LNCS, vol. 1690, pp. 311–322. Springer,
Heidelberg (1999)

6. Jaume, M., Morisset, C.: Formalisation and Implementation of Access Control
Models. In: Information Assurance and Security (IAS), International Conference on
Information Technology (ITCC), Las Vegas (USA), pp. 703–708. IEEE Computer
Society Press, Los Alamitos (2005)

7. Leisenring, A.C.: Mathematical Logic and Hilbert’s ε-Symbol. MacDonald Techni-
cal and Scientific, London (1969) ISBN 0356026795

8. McCune, W., Shumsky, O.: System Description: IVY. In: McAllester, D. (ed.)
CADE-17. LNCS, vol. 1831, pp. 401–405. Springer, Heidelberg (2000)

9. Paulson, L.C., Susanto, K.W.: Source-Level Proof Reconstruction for Interactive
Theorem Proving. In: Theorem Proving in Higher Order Logics (TPHOLs). LNCS,
Springer, Heidelberg (2007)

10. The EDEMOI Project (2003), http://www-lsr.imag.fr/EDEMOI/
11. Sutcliffe, G.: CASC-J3 - The 3rd IJCAR ATP System Competition. In: Furbach, U.,

Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 572–573. Springer,
Heidelberg (2006)

12. Sutcliffe, G., Suttner, C.B.: The TPTP Problem Library: CNF Release v1.2.1. Jour-
nal of Automated Reasoning (JAR) 21(2), 177–203 (1998)

13. The Coq Development Team. Coq, version 8.1. INRIA (November 2006), available
at: http://coq.inria.fr/

14. The Cristal Team. Objective Caml, version 3.10. INRIA (May 2007), available at:
http://caml.inria.fr/

15. The Focal Development Team. Focal, version 0.3.1. CNAM/INRIA/LIP6 (May
2005), available at: http://focal.inria.fr/

16. The HELM Team. Matita, version 0.1.0. Computer Science Department, University
of Bologna (July 2006), available at: http://matita.cs.unibo.it/

http://www-lsr.imag.fr/EDEMOI/
http://coq.inria.fr/
http://caml.inria.fr/
http://focal.inria.fr/
http://matita.cs.unibo.it/

Matching in Hybrid Terminologies

Sebastian Brandt

School of Computer Science, Manchester, UK
brandt@cs.manchester.ac.uk

Abstract. In the area of Description Logic (DL) based knowledge rep-
resentation, hybrid terminologies have been proposed as a means to make
non-standard inference services available to knowledge bases that con-
tain general concept inclusion (GCI) axioms. Building on existing work
on subsumption in hybrid terminologies, the present paper provides the
first in-depth investigation of the non-standard inferences least-common
subsumer, and matching in hybrid EL-TBoxes; providing sound and com-
plete algorithms for both inference services.

1 Motivation

In Description Logic (DL) based knowledge representation (KR), intensional
knowledge of a given domain is represented by a terminology (TBox) that defines
properties of concepts relevant to the domain [1]. A TBox usually comprises
definitions of the form A ≡ C by which a concept name A is assigned to a concept
description C. Concept descriptions are terms built from atomic concepts by
means of a set of constructors provided by the DL under consideration. TBoxes
are interpreted with a model-theoretic semantics which allows to reason over
the terminology in a formally well-defined way. Our DL of interest is EL which
provides top concept (�), conjunction (�), and existential restriction (∃r.C).

General TBoxes additionally allow for general concept inclusion (GCI) axioms
of the form C � D, where both C and D may be complex concept descriptions.
GCIs define implications (“D holds whenever C holds”) relevant to the termi-
nology as a whole. The utility of GCIs for practical KR applications has been
examined in depth; see, e.g., [2,3,4]. In addition to constraining (admissible mod-
els of) terminologies further without explicitly changing all its definitions, using
GCIs can lead to smaller, more readable TBoxes, and can facilitate the re-use
of data in applications of different levels of detail. Consequently, GCIs are sup-
ported by most modern DL reasoners such as FaCT [5], Racer [6], Pellet [7],
and Cel [8].

One of the most important reasoning services provided by such DL systems
is classification, i.e., computing the subsumption hierarchy. Before DL systems
can be deployed for reasoning over terminologies in an application area, however,
the relevant TBoxes must be built-up and maintained. In order to support these
knowledge engineering tasks, additional so-called ‘non-standard’ inference ser-
vices have been proposed, most notably least-common subsumer (lcs) [9,10,11,12]
and matching [13,14,15]. As discussed in [16], the lcs facilitates the build-up of

N. Dershowitz and A. Voronkov (Eds.): LPAR 2007, LNAI 4790, pp. 166–180, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Matching in Hybrid Terminologies 167

DL knowledge bases in a ‘bottom-up’ fashion suitable for domain experts with
limited KR background. Among other applications, matching can be used as
a means of querying TBoxes for concepts of a certain structure [17]. This can
be utilized to construct new concepts by retrieving and modifying structurally
similar ones in the TBox.

Unfortunately, non-standard inferences are not straightforwardly available for
general TBoxes: it has been shown in [18] that lcs need not always exist, even for
cyclic EL-TBoxes interpreted with descriptive semantics, the standard semantics
for DL systems. This result carries over to general EL-TBoxes and any extension
of EL. The same holds for matching which relies on the lcs.

In order to provide non-standard inferences in the presence of GCIs, so-called
hybrid TBoxes have been proposed [19]. A hybrid EL-TBox is a pair (F , T) of
a general TBox F (‘foundation’) and a possibly cyclic TBox T (‘terminology’)
defined over the same set of atomic concepts and roles. F serves as a foundation
of T in that the GCIs in F define relationships between concepts used as atomic
concept names in the definitions in T . Hence, F lays a foundation of general
implications constraining T . The semantics of hybrid TBoxes is different from the
usual descriptive semantics: while the foundation of a hybrid TBox is interpreted
with descriptive semantics, the terminology is interpreted with so-called greatest-
fixpoint (gfp) semantics to be introduced in detail in Section 2.

With respect to non-standard inferences for hybrid EL-TBoxes, our point of
departure is as follows: it has been sketched in [19] how an equivalence-preserving
reduction from hybrid to cyclic EL-TBoxes with gfp-semantics can be exploited
to utilize the lcs defined for cyclic EL-TBoxes with gfp-semantics in [18]. The
lcs algorithm thus obtainable for hybrid EL-TBoxes has not yet been studied,
though. In case of matching, the above mentioned reduction appears useful as
well, only that no matching algorithm for cyclic EL-TBoxes with descriptive
semantics exists as yet. The present paper closes both gaps before turning to
matching in hybrid TBoxes: after introducing matching in cyclic EL-TBoxes with
gfp-semantics in Section 3 and the least-common subsumer for hybrid TBoxes
in Section 4.1, our matching algorithm for hybrid TBoxes is presented in Sec-
tion 4.2. It should be noted that matching problems have not yet been defined
for cyclic or hybrid EL TBoxes. Hence, Sections 3 and 4 start by introducing
the relevant notions for the cyclic and hybrid case, respectively. Given that hy-
brid TBoxes may be viewed as a rather exotic KR formalism, we conclude by
discussing the utility of our results for common general EL-TBoxes.

All details and complete proofs can be found in our technical report [20].

2 Formal Preliminaries

Concept descriptions are inductively defined with the help of a set of concept
constructors, starting with arbitrary but fixed disjoint sets Nprim�Ndef =: Ncon of
primitive concept names (Nprim) and defined concept names (Ndef), respectively,
and a set Nrole of role names. The DL EL provides the concept constructors
top-concept (�), conjunction (�), and existential restrictions (∃r.C). Concept
descriptions using only these constructors are called EL-concept descriptions.

168 S. Brandt

As usual, the semantics of concept descriptions is defined in terms of an in-
terpretation I = (ΔI , ·I). The domain ΔI of I is a non-empty set and the
interpretation function ·I maps each concept name P ∈ Nprim ∪Ndef to a subset
P I ⊆ ΔI and each role name r ∈ Nrole to a binary relation rI ⊆ ΔI×ΔI .
The extension of ·I to arbitrary EL-concept descriptions is defined inductively
as follows: �I := ΔI , (C � D)I := CI ∩ DI , and

(∃r.C)I := {x ∈ ΔI | ∃y : (x, y) ∈ rI ∧ y ∈ CI}.

The main purpose of DLs is to be used as underlying representation language
for knowledge bases. Two common kinds of DL knowledge bases, TBoxes and
general TBoxes, are defined as follows.

For every A ∈ Ndef and every EL-concept description C over Ncon and Nrole,
A ≡ C is a definition of A. Every finite set of definitions is an EL-terminology
(EL-TBox) over Ndef , Nprim, and Nrole iff it contains at most one definition of
A for every A ∈ Ndef . An EL-TBox T is acyclic iff T is of the form {Ai ≡
Ci | 1 ≤ i ≤ n} such that for every i ∈ {1, . . . , n}, only defined names from
{A1, . . . , Ai−1} occur in Ci. For concept descriptions C, D over Ncon and Nrole,
C � D is a general concept inclusion (GCI) axiom. Every finite set of GCIs is a
general EL-TBox. For every EL-TBox T , denote by NTcon (NTdef , NTprim) and NTrole
the sets of all (defined, primitive) concept names and role names, respectively,
occurring in T . For general EL-TBoxes, only NTcon and NTrole apply. For the sake
of brevity, we may write TBox instead of EL-TBox.

Descriptive semantics: an interpretation I is a model of a general TBox T
(I |= T) iff CI ⊆ DI for every GCI C � D ∈ T . Every (non-general) TBox
can be viewed as a general TBox since every definition A ≡ C is equivalent to
the pair of GCIs A � C, C � A. This semantics is usually called descriptive
semantics [22].

One of the most basic inference services provided by DL systems is computing
the subsumption hierarchy. For concept descriptions C, D defined in a TBox T ,
C is subsumed by D w.r.t. T (C �T D) iff CI ⊆ DI for every model of T . C is
equivalent to D w.r.t. T (C ≡T D) iff C �T D and D �T C. Explicit reference
to the empty TBox may be omitted: if T = ∅, write C � D instead of C �T D,
and analogously for equivalence.

Greatest-fixpoint semantics: for (non-general) TBoxes, we additionally in-
troduce greatest-fixpoint semantics. We begin by interpreting only primitive con-
cepts and roles occurring: for every TBox T , a primitive interpretation (ΔJ , ·J)
of T interprets all primitive concepts P ∈ Nprim by subsets of ΔJ and all roles
r ∈ Nrole by binary relations on ΔJ . An Interpretation I := (ΔI , ·I) is based
on J iff ΔJ = ΔI and ·J and ·I coincide on Nrole and Nprim. The set of all
interpretations based on J is denoted by Int(J). On Int(J), a binary relation
�J is defined for all I1, I2 ∈ Int(J) by I1 �J I2 iff AI1 ⊆ AI2 for all A ∈ NTdef .

The pair (Int(J),�J) is a complete lattice, so that every subset of Int(J) has
a least upper bound (lub) and a greatest lower bound (glb) w.r.t. �J . Hence, by

Matching in Hybrid Terminologies 169

Tarski’s fixpoint theorem [23], every monotonic function on Int(J) has a fixpoint.
In particular, this applies to the function OT ,J defined by OT ,J : Int(J) →
Int(J) with I1 �→ I2 iff AI2 = CI1 for all A ≡ C ∈ T .

As shown in [21], OT ,J is in fact a fixpoint operator on Int(J). Moreover, it
holds that I is a fixpoint of OT ,J iff I is a model of T . As a consequence, an
interpretation I is called a gfp-model of T iff there is a primitive interpretation
J such that I ∈ Int(J) is the greatest fixpoint of OT ,J .

As (Int(J),�J) is a complete lattice, the gfp-model is uniquely determined
for a given TBox T and a primitive interpretation J . We may thus refer to the
gfp-model gfp(T ,J) for any given T and J . With this preparation, we define
gfp-subsumption by: for concept names A, B defined in T , A is subsumed by B
w.r.t. gfp-semantics (A �gfp,T B) iff AI ⊆ BI for all gfp-models I of T .

Note that descriptive semantics considers a superset of the set of gfp-models,
implying that descriptive subsumption entails gfp-subsumption. Hence, all sub-
sumption relations w.r.t. �T also hold w.r.t. �gfp,T . Moreover, both semantics
coincide on acyclic TBoxes. For EL, our DL of interest, least-fixpoint semantics
is inappropriate w.r.t. cyclic TBoxes [21] and hence is not considered.

See [20] for details of how gfp-models can actually be computed.

Deciding subsumption w.r.t. cyclic EL-TBoxes with gfp-semantics: a
decision procedure for the subsumption problem w.r.t. cyclic EL-TBoxes with
descriptive semantics has been presented in [21]. We repeat the notions central
to this procedure in so far as they are required for our matching algorithms w.r.t.
cyclic and hybrid EL-TBoxes.

An EL-TBox T is normalized iff A ≡ D ∈ T implies that D is of the form
P1 � · · · � Pm � ∃r1.B1 � . . . ∃r�.B�, where for m, � ≥ 0, P1, . . . , Pm ∈ Nprim

and B1, . . . , B� ∈ Ndef . If m = � = 0 then D = �. The subsumption algorithm
in [21] represents normalized EL-TBoxes by means of description graphs. Given
a normalized EL TBox T , the EL-description graph GT = (NTdef , ET , LT) of T is
defined as follows:

– the nodes of GT are the defined concepts of T ;
– if A is defined in T and A ≡ P1 � · · · � Pm � ∃r1.B1 � · · · � ∃r�.B� is its

definition then LT (A) := {P1, . . . , Pm}, and A is the source of the edges
(A, r1, B1), . . . , (A, r�, B�) ∈ ET .

Any primitive interpretation J = (ΔJ , ·J) can be represented by an EL-
description graph as well, see [20] for details.

In preparation for the characterization of subsumption we need to introduce
simulation relations on description graphs. Given two EL-description graphs Gi =
(Vi, Ei, Li), i = 1, 2, the binary relation Z ⊆ V1 × V2 is a simulation relation
from G1 to G2 (Z : G1 ⇀∼ G2) iff (S1) (v1, v2) ∈ Z implies L1(v1) ⊆ L2(v2); and
(S2) if (v1, v2) ∈ Z and (v1, r, v

′
1) ∈ E1 then there exists a node v′2 ∈ V2 such

that (v′1, v
′
2) ∈ Z and (v2, r, v

′
2) ∈ E2.

It has been shown in [21] that simulation relations are closed under con-
catenation. Moreover, one of the main results in [21] is a characterization of

170 S. Brandt

gfp-subsumption w.r.t. cyclic EL-TBoxes by simulation relations over descrip-
tion graphs. The following results provide the relevant characterizations.

Theorem 1. Let T be an EL-TBox and A, B be defined concepts in T . Then
A �gfp,T B iff there is a simulation relation Z : GT ⇀∼ GT such that (B, A) ∈ Z.

Since the description graph of a TBox is of polynomial size in the size of the
TBox and since the existence of simulation relations with the required properties
can be tested in polynomial time, subsumption w.r.t. cyclic EL-TBoxes with gfp-
semantics is decidable in polynomial time. [21].

The least-common subsumer w.r.t. cyclic EL-TBoxes: a main prepara-
tory step towards matching w.r.t. cyclic EL-TBoxes is to introduce the lcs for
cyclic EL-TBoxes. The relevant definitions are due to [18].

Let T1 be a cyclic EL-TBox and let A, B ∈ NT1def . Let T2 be a conservative
extension of T1 with E ∈ NT2def \ NT1def . Then E is the least common subsumer of
A and B in T1 w.r.t. gfp-semantics (gfp-lcs) iff the following conditions hold:

1. A �gfp,T2 E and B �gfp,T2 E;
2. if T3 is a conservative extension of T2 and F a defined concept in T3 such

that A �gfp,T3 F and B �gfp,T3 F then E �gfp,T3 F .

In order to be able to actually compute the lcs, we need to compute the
product of description graphs. Let Gi := (Vi, Ei, Li), i = 1, 2 be two description
graphs. Their product is the description graph G1 × G2 := (V, E, L) with V :=
V1×V2; E := {((v1, v2), r, (v′1, v

′
2)) | ∀i ∈ {1, 2} : (vi, r, v′i) ∈ Ei}; and L(v1, v2) :=

L1(v1)∩L2(v2). For a description graph G = (V, E, L), the n-ary graph product
is inductively defined in the obvious way, i.e., G1 := G and Gn+1 := Gn × G.

In order to transform product graphs back to TBoxes, we define TBoxes in-
duced by description graphs. Let G := (V, E, L) be a description graph. Then
the TBox of G is defined by

tbox(G) := {A ≡ �
P∈L(A)

P � �
(A,r,B)∈E

∃r.B | A ∈ V }.

Two of the main results from [18] prove that the gfp-lcs w.r.t. cyclic EL-TBoxes
always exists and can in fact be computed by means of the graph product: for
concept names A, B defined in T , the concept (A, B) defined in T ∪ tbox(GT ×
GT) is the gfp-lcs of A and B w.r.t. T . Hence, the gfp-lcs can be computed in
polynomial time in the binary case can and in exponential time in the general
case. We are now prepared to introduce hybrid TBox, our main TBox formalism
of interest.

2.1 Hybrid TBoxes

Definition 1. (Hybrid TBox) For every general EL-TBox F over Nprim and
Nrole, and every EL-TBox T over Ndef, Nprim, and Nrole, the pair (F , T) is
called a hybrid EL-TBox.

Matching in Hybrid Terminologies 171

In order to simplify the presentation of our subsumption algorithm, we introduce
a normal form for hybrid EL-TBoxes. Analogous to the case of cyclic TBoxes,
we normalize hybrid TBoxes in order to simplify the presentation of our proofs.
See [20] for an example of what an actual hybrid EL-TBox looks like and for
details about normalization. The semantics of hybrid TBoxes can now be defined
as follows.

Let (F , T) be a hybrid TBox over Nprim, Nrole, and Ndef . A primitive inter-
pretation J is a model of F (J |= F) iff CJ ⊆ DJ for all GCIs C � D in F . A
model I ∈ Int(J) is a gfp-model of (F , T) iff J |= F and I is a gfp-model of T .

Note that F (“foundation”) is interpreted with descriptive semantics while
T (“terminology”) is interpreted with gfp-semantics. Note also that every gfp-
model of (F , T) can be expressed as the greatest fixpoint gfp(T ,J) for some
primitive interpretation J with J |= F .

In order to complete the semantics of hybrid TBoxes, we still have to introduce
an appropriate notion of subsumption: Let A, B be defined concepts in T . Then
A is subsumed by B w.r.t. (F , T) (A �gfp,F ,T B) iff AI ⊆ BI for all gfp-models
I of (F , T).

Hybrid TBoxes generalize cyclic TBoxes with gfp-semantics in the sense that
every cyclic EL-TBox T can be viewed as a hybrid TBox with an empty foun-
dation. Thus, gfp-subsumption w.r.t. T coincides with subsumption w.r.t. the
hybrid TBox (∅, T). Also note that every general TBox T ′ can be seen as a
hybrid TBox (T ′, ∅). In this case, a descriptive subsumption P �T ′ Q holds iff
AP is subsumed by AQ w.r.t. the normalized instance of (T ′, ∅).

Deciding subsumption w.r.t. hybrid EL-TBoxes: in order to decide sub-
sumption of concepts defined in a EL-hybrid TBox, an equivalence preserving
reduction from hybrid to cyclic EL-TBoxes with gfp-semantics has been pro-
posed in [19]. After the reduction, subsumption can be decided as described
above.

The idea underlying the reduction is to use the descriptive subsumption re-
lations induced by the GCIs in F to extend the definitions in T accordingly. To
this end, we view the union of F and T as a general TBox and ask for all de-
scriptive implications in T directly involving names from F . These implications
are then added to the definitions in T . This notion is formalized as follows: for
a given normalized hybrid EL-TBox (F , T), the F-completion f(T) extends the
definitions in T to f(T) := {A ≡ C � f(A) | A ≡ C ∈ T }, where for every
A ∈ NTdef , the concept description f(A) is defined as follows.

f(A) := �
P∈{P ′∈NF

prim|A�F∪T P ′}
P � �

r∈NT
role

�
Q∈{Q′∈NF

prim|A�F∪T ∃r.Q′}
∃r.AQ .

Note that f(T) is still a normalized EL-TBox. To preserve normalization,
f(A) adds ∃r.AQ instead of ∃r.Q whenever A implies ∃r.Q. It has been shown
in [19] that the above reduction yields a cyclic TBox equivalent to the original
hybrid one in the following sense.

Theorem 2. Let (F , T) be a normalized hybrid EL-TBox and A, B ∈ NTdef.
Then, A �gfp,F ,T B iff A �gfp,f(T) B.

172 S. Brandt

It has been shown in [19] that subsumption w.r.t. hybrid EL-TBoxes can be
decided in polynomial time in the size of the hybrid TBox.

In the following sections, we introduce matching problems w.r.t. cyclic and
hybrid TBoxes and present appropriate matching algorithms for both cases.

3 Matching w.r.t. Cyclic EL-TBoxes

Our first step towards defining matching w.r.t. cyclic TBoxes is to extend concept
descriptions to concept patterns by admitting concept variables.

Denote by Nvar a finite set of variables pairwise disjoint to Ncon and Nrole.
The set of concept patterns over Ncon, Nrole, and Nvar is inductively defined as
follows: every EL-concept description over Ncon and Nrole is a concept pattern;
every variable X ∈ Nvar is a concept pattern; and if r ∈ Nrole and D1, D2 are
concept patterns then so are D1 � D2 and ∃r.D1.

Trivially, every concept description is a concept pattern. The following defini-
tion similarly extends cyclic TBoxes to pattern TBoxes in which the right-hand
side of a definition may be a concept pattern.

Definition 2. (Pattern TBox) An EL-pattern TBox T is a finite set of defini-
tions of the form A ≡ C, where A ∈ Ndef and C is a concept pattern over Nprim,
Ndef, Nrole, and Nvar. A is called defined in T and may occur on the left-hand
side of no other definition in T . Denote by NTvar the set of all variables occurring
in T .

Note that variables do not occur on left-hand sides of definitions. Denote by
NTvar(A) the set of variables in T ‘reachable’ from A. Matching problems over
cyclic TBoxes can now be defined as follows.

Definition 3. (Matching problem) Let T be an EL-pattern TBox with A, B ∈
NTdef. Moreover, let NTvar(A) = ∅. Then A ≡?

gfp,T B is an EL-matching problem
modulo equivalence w.r.t. T with gfp-semantics.

Throughout this section, we shall refer to ‘EL-matching problem modulo equiva-
lence with gfp-semantics’ by ‘EL-matching problem’. In order to define solutions
to matching problems appropriately, some preparation is necessary. The follow-
ing definition introduces conservative extensions for pattern TBoxes.

Definition 4. (Conservative extension) Let T1 be an EL-pattern TBox over
Nprim, Ndef, Nrole, and Nvar. Then an EL-pattern TBox T2 is a conservative
extension of T1 iff NT2prim = NT1prim, NT2role = NT1role, NT1var ⊇ NT2var, and T1 ⊆ T2.

The above definition coincides on ordinary TBoxes with the definition of con-
servative extensions from [18]. Moreover, since T2 is a pattern TBox, NT1def and
N
T2\T1
def are disjoint. In contrast to concept matching (as, e.g., in [24]), we do

not use substitutions to instantiate variables. Instead, we simply extend pattern
TBoxes by appropriate definitions for the occurring variables. This leads to the
notion of instantiation.

Matching in Hybrid Terminologies 173

Definition 5. (Instantiation) Let T1 be an EL-pattern TBox over Nprim, Ndef,
Nrole, and Nvar. Let T2 be a conservative extension of T1. For every X ∈ NT1var, let
DX be a concept pattern over Nprim, Ndef, Nrole, and NT1var. Then T3 := T2∪{X ≡
DX | X ∈ NT1var} is an instantiation of T1.

Intuitively, an instantiation turns variables into defined concepts, and thus turns
a pattern TBox into an ordinary TBox. Using these notions, it is particularly
simple to define solutions to matching problems.

Definition 6. (Matcher) Let A ≡?
gfp,T B be an EL-matching problem and let T ′

be an instantiation of T . Then T ′ is a matcher of A ≡?
gfp,T B iff A ≡gfp,T ′ B.

Hence, a matcher to A ≡?
gfp,T B extends the pattern TBox T by definitions for

all variables reachable from B such that A and B become equivalent. Clearly,
we may restrict ourselves to matching problems over names because it holds
for every concept description C and every concept pattern D defined over a
pattern TBox T that the matching problem C ≡?

gfp,T D can be simulated by
A ≡?

gfp,T ∪{A≡C,B≡D} B with A, B fresh defined names.
We are now ready to show how to solve matching problems w.r.t. cyclic EL-

TBoxes as defined above.

3.1 Solving Matching Problems w.r.t. Cyclic EL-TBoxes

By treating variables as primitive concepts, pattern TBoxes can, syntactically, be
regarded as ordinary TBoxes. This allows us to define normalized pattern TBoxes
analogously to normalized cyclic TBoxes, and to transform pattern TBoxes into
description graphs and vice versa. Similarly, we adopt the notion of a product
TBox. For an EL-pattern TBox and n ∈ N, let T n := tbox(GnT). In order to
extend the notion of simulation relations to graphs of pattern TBoxes, variables
are simply ignored. We can now define our matching algorithm w.r.t. cyclic EL-
TBoxes as follows.

Definition 7. (match) Let T be a normalized EL-pattern TBox and let A ≡?
gfp,T

B be an EL-matching problem. For every simulation relation Z : GT ⇀∼ GT and
for every X ∈ NTvar, define

Z(X) := {A′ ∈ Ndef | ∃B′ ∈ Ndef : (B′, A′) ∈ Z ∧ X ∈ LT (B′)}.

Then, match(A ≡?
gfp,T B) is defined as shown in Figure 1.

Upon input A ≡?
gfp,T B, our matching algorithm match returns all instantiations

TZ for which, firstly, Z is a simulation relation on GT with (B, A) ∈ Z; and
secondly, A subsumes B w.r.t. TZ interpreted with gfp-semantics.

For a given Z, TZ is defined as an instantiation of a conservative extension of
T . We discuss the conservative extension first and the additional definitions for
variables afterwards. For every variable X ∈ NTvar, T is extended by the |Z(X)|-
ary graph product of T . For every X , the set Z(X) contains all ‘destination’
vertices onto which vertices in GT labeled by X are mapped. Hence, whenever

174 S. Brandt

Input: matching problem P := A ≡?
gfp,T B with normalized EL-pattern TBox T

Output: set of matchers of P

Return {TZ | Z : GT ⇀∼ GT ∧ (B,A) ∈ Z ∧A �gfp,TZ B},
where, for every Z : GT ⇀∼ GT , TZ is defined by:

TZ := T ∪
⋃

i∈{|Z(X)||X∈NT
var(B)}\{1}

(T [X/� | X ∈ NT
var])

i

∪ {X ≡ (A1, . . . , An) | X ∈ NT
var(B)

∧ Z(X) = {A1, . . . , An} ∧ |Z(X)| = n}
∪ {X ≡ � | X 	∈ NT

var(B)}.

Fig. 1. The algorithm match for cyclic EL-TBoxes

Z maps vertices labeled by X onto n different vertices then T is extended by
the n-ary graph product of T . More precisely, the graph product is computed
after removing variables from T . Note that this removal is only done for conve-
nience to simplify the notation in our proofs and not necessary for correctness
or completeness of the algorithm.

As a result, the relevant conservative extension of T for every X contains a
definition of the lcs over all destination vertices of vertices labeled by X : if Z(X)
contains n pairwise distinct destination vertices {A1, . . . , An} then the relevant
lcs is the vertex (A1, . . . , An) in the n-ary product of T .

As the second line of the definition of TZ shows, X is finally assigned the lcs
over all destinations of X : X ≡ (A1, . . . , An). Note that the condition |Z(X)| =
n only ensures pairwise distinctness of the vertices A1, . . . , An. Without this
condition, X might be assigned to vertices not existing in the relevant extension.
Note also that variables unreachable from B are assigned �.

In order to get an impression how the above matching algorithm works, see
our example in [20].

We can show that the above algorithm is sound and complete and that the
set of all matchers of a given matching problem can be computed in exponential
time, see [20] for details. More precisely, we show that our matching algorithm
is s-complete. Intuitively, this means that the set of matchers computed by the
algorithm contains all ‘interesting’ solutions which contain as much information
about the input matching problem as possible; see [20] for details.

In addition to that, we obtain that our matching algorithm for cyclic EL-
TBoxes with greatest-fixpoint semantics generalizes the EL-matching algorithm
w.r.t. the empty TBox presented in [24]. This immediately implies several com-
plexity lower bounds: Firstly, deciding the solvability of matching problems
modulo equivalence w.r.t. cyclic EL-TBoxes is NP-hard. Secondly, the minimal
matchers to matching problems w.r.t. cyclic EL-TBoxes can be of exponential
size in the input TBox. Moreover, the number of minimal matchers can also
be exponential in the input TBox. Any algorithm solving matching problems

Matching in Hybrid Terminologies 175

w.r.t. cyclic EL-TBoxes is therefore necessarily worst-case exponential. In this
sense, our algorithm is worst-case optimal. It is open whether deciding the solv-
ability of matching problems modulo equivalence w.r.t. cyclic EL-TBoxes with
gfp-semantics is in NP.

4 Matching w.r.t. Hybrid TBoxes

The main ingredient of the matching algorithm presented in the previous section
has been the gfp-lcs w.r.t. cyclic EL-TBoxes with gfp-semantics from [18]. Our
aim now is to extend the algorithm from cyclic to hybrid TBoxes. We begin by
extending the notion of a pattern TBox from Definition 2 to hybrid TBoxes.

Definition 8. (Hybrid pattern TBox) A hybrid EL-pattern TBox T is a pair
(F , T) of a general EL-TBox F defined over Nprim and Nrole, and an EL-pattern
TBox defined over Ndef, Nprim, and Nrole.

Hence, hybrid pattern TBoxes extend ordinary pattern TBoxes by adding a
‘foundation’ general TBox. Conservative extensions and instantiations of hybrid
pattern TBoxes are defined analogous to their counterpart cyclic TBoxes, i.e.,
they affect only T and leave F unchanged. We can now immediately extend the
notion of matching problems to hybrid pattern TBoxes.

Definition 9. (Matching problem) Let (F , T) be a hybrid EL-pattern TBox with
A, B ∈ NTdef . Moreover, let NTvar(A) = ∅. Then A ≡?

gfp,F ,T B is a hybrid EL-
matching problem modulo equivalence w.r.t. (F , T).

Note that, despite the restriction of A to defined concept names from T , concept
patterns can also be matched against concept names defined in F . For instance,
in order to match a concept pattern B defined in T against some P ∈ NTcon from
F , it suffices to extend T by a definition of the form AP ≡ P , with AP a fresh
concept name, and solve the matching problem AP ≡?

gfp,F ,T B. Clearly, one can
also define concept patterns using only names from F .

Solutions to hybrid EL-matching problems can now be defined analogous to
matchers for matching problems w.r.t. cyclic TBoxes.

Definition 10. (Matcher) Let A ≡?
gfp,F ,T B be a hybrid EL-matching problem

and let (F , T ′) be an instantiation of (F , T). Then (F , T ′) is a matcher of
A ≡?

gfp,F ,T B iff A ≡gfp,F ,T ′ B.

In preparation to solving matching problems w.r.t. hybrid TBoxes, we extend
the lcs algorithm to hybrid TBoxes in the following section. In Section 4.2, the
actual matching algorithm for hybrid TBoxes is presented.

4.1 The Least-Common Subsumer w.r.t. Hybrid EL-TBoxes

Our aim is to extend the lcs w.r.t. cyclic EL-TBoxes to hybrid EL-TBoxes. To this
end, we begin by extending the notion of conservative extensions of EL-TBoxes
from cyclic to hybrid TBoxes. A hybrid TBox (F , T2) is a conservative extension

176 S. Brandt

of (F , T1) iff T2 is a conservative extension of T1 in the sense of Definition 4.
Hence, a conservative extension of (F , T) is obtained by fixing F and extending
T in the usual way. We can now define the lcs w.r.t. hybrid TBoxes analogously
to the case of cyclic ones.

Definition 11. (Hybrid lcs) Let (F , T1) be a hybrid TBox and A, B ∈ NT1def. Let
(F , T2) be a conservative extension of (F , T1) with C ∈ NT2def. Then, C in (F , T2)
is the hybrid least-common subsumer (lcs) of A, B in (F , T1) iff the following
conditions hold.

1. A �gfp,F ,T2 C and B �gfp,F ,T2 C; and
2. If (F , T3) is a conservative extension of (F , T2) and D ∈ NT3def such that

A �gfp,F ,T3 D and B �gfp,F ,T3 D then C �gfp,F ,T3 D.

In order to compute the lcs w.r.t. hybrid EL-TBoxes, we again utilize the
reduction from hybrid to cyclic TBoxes from [19] and the usual gfp-lcs algorithm
for cyclic EL-TBoxes from [18]. We show in [20] that the hybrid lcs algorithm
thus obtained in fact yields the correct results: (A, B) in (F , f(T) ∪ f(T)2) is
the hybrid lcs of any concepts A, B defined in a given hybrid TBox (F , T).

As the lcs of arbitrary arity can be reduced to the binary lcs, the above results
immediately carry over to the n-ary lcs. As the reduction from hybrid to cyclic
EL-TBoxes can be computed in polynomial time and as the lcs algorithm for
cyclic EL-TBoxes with gfp-semantics has already been studied [18], we find that
the lcs of concepts defined in a hybrid TBox (F , T) always exists and (in the
binary case) can be computed in polynomial time in the size of (F , T). Moreover,
the lcs of arbitrary arity w.r.t. hybrid EL-TBoxes can be computed in exponential
time in the size of the input and is of exponential size in the size of the input in
the worst-case. In particular, our lcs algorithm is worst-case optimal.

4.2 Solving Matching Problems w.r.t. Hybrid EL-TBoxes

We are now prepared to introduce our matching algorithm for hybrid TBoxes.

Definition 12. (matchhy) Let (F , T) be a normalized hybrid EL-TBox and let
A ≡?

gfp,F ,T B be a hybrid EL-matching problem. Then define

matchhy(A ≡gfp,F ,T B) := {(F , (T ′ \ f(T)) ∪ T) | T ′ ∈ match(A ≡gfp,f(T) B)}.

In the above definition, f(T) denotes the F -completion of T from Section 2.1 and
match the matching algorithm for cyclic EL-TBoxes from Definition 7. Hence, the
algorithm matchhy proceeds in three main steps. Firstly, the input hybrid pattern
TBox (F , T) is translated into an equivalent1 cyclic pattern TBox f(T). Sec-
ondly, for the translated matching problem A ≡gfp,f(T) B, the algorithm match
computes all minimal solutions and returns them in the form of instantiations
T ′ of f(T). Thirdly, the solution is returned as a set of instantiations of hybrid
pattern TBoxes. How exactly these hybrid instantiations are defined deserves a
closer look.
1 Treating variables as atomic concepts.

Matching in Hybrid Terminologies 177

As every instantiation T ′ returned by the algorithm match is a conservative
extension of f(T) and not T , T ′ already completely specifies a solution to the
initial hybrid matching problem. Or, in other words, F becomes redundant. As
we are interested in hybrid instantiations of (F , T), and not of (F , f(T)), we
modify every T ′ by removing f(T) and replacing it by the original TBox T , i.e.,
compute (T ′ \ f(T)) ∪ T . This modification preserves equivalence as a direct
consequence of the correctness of the F -completion shown in [19]. Together with
the correctness of our hybrid lcs algorithm, we immediately obtain soundness
and completeness of the hybrid matching algorithm.

Corollary 1. Let (F , T) be a normalized hybrid EL-TBox and let A ≡gfp,F ,T B
be an EL-matching problem w.r.t. (F , T). Then, matchhy(A ≡gfp,F ,T B) com-
putes an s-complete set of matchers to A ≡gfp,F ,T B.

The complexity results obtained in the previous section together with the fact
that f(T) can be computed in polynomial time in the size of (F , T) [19] imply the
following complexity results: Deciding the solvability of matching problems mod-
ulo subsumption w.r.t. hybrid EL-TBoxes is tractable. Deciding the solvability
of matching problems modulo equivalence w.r.t. hybrid EL-TBoxes is NP-hard.
The solutions to a matching problem w.r.t. hybrid EL-TBoxes can be exponen-
tial in number and of exponential size in the input matching problem. They can
be computed by a deterministic exponential-time algorithm. The computation
algorithm is worst-case optimal. See [20] for details.

It is open whether deciding the solvability of matching problems modulo
equivalence w.r.t. hybrid EL-TBoxes is in NP. Note that that additional rewriting
might be desirable in order to present the solutions of matchhy more succinctly:
T ′ can contain the n-ary product of f(T) which might contain information al-
ready implied by F .

5 Conclusion and Outlook

In the present paper, we have proposed the notion of matching problems in
cyclic EL-TBoxes with gfp-semantics and have devised a sound and s-complete
exponential time algorithm for that case. Using an existing reduction from hybrid
EL-TBoxes to cyclic ones, we have shown that the lcs w.r.t. hybrid EL-TBoxes
always exists and have devised a sound and complete exponential time algorithm
to compute it. Utilizing both the reduction and the result on the hybrid lcs, we
could devise a sound and complete exponential time matching algorithm for
matching problems w.r.t. hybrid TBoxes. All computation algorithms are worst-
case optimal. Optimality of the relevant algorithms for the decision problem,
i.e., existence of a matcher, remains an open problem.

Apart from the fact that reasoning over EL-TBoxes has an attractive compu-
tational complexity, ontologies based on EL-TBoxes are of some significance to
the life sciences. For instance, the widely used medical terminology Snomed [27]
corresponds to an EL-Tbox [28]. Similarly, the Gene Ontology [29] can be rep-
resented by an EL-TBox with one transitive role, and large parts of the medical

178 S. Brandt

knowledge base Galen [30] can be expressed by a general EL-TBox with tran-
sitive roles. Similarly, the widely used International Classification for Nursing
Practice (ICNP) [31] corresponds to a general EL-TBox.

Matching in general EL-TBoxes: the apparent popularity of ‘common’ gen-
eral EL-TBoxes motivates the question to which extent the above results have
any potential to be used for that KR formalism.

It has been shown in [18] that the least-common subsumer w.r.t. cyclic EL-
TBoxes with descriptive semantics need not exist2, a result that carries over
to general EL-TBoxes. Moreover, as every lcs can be expressed as a minimal
solution to some matching problem, minimal matchers need not always exist
likewise.

On the other hand, we have pointed out in Section 2.1 that every general
EL-TBox T can be viewed as a hybrid TBox (T , ∅) with empty terminology.
Hence, we can define matching problems in general TBoxes (with descriptive
semantics) and use our hybrid matching algorithm to compute a set of solutions
S with gfp-semantics. As descriptive subsumption entails gfp-subsumption, every
‘descriptive’ solution to the matching problem is obtained by a gfp-matching
algorithm. All matchers w.r.t. descriptive semantics can thus be computed by
first computing S with our hybrid matching algorithm and then removing every
matcher from S that is not valid w.r.t. descriptive semantics.

The pure decision problem for general TBoxes might be even more interest-
ing for our hybrid matching algorithm. As pointed out in [17], matching can
be utilized as a retrieval mechanism over TBoxes in a straightforward way.
The user specifies a concept pattern with the syntactic structure he has in
mind. The matching algorithm is then used to retrieve all concepts in the
TBox for which a matcher exists. The fact that variables in concept patterns
are named, in contrast to, e.g., wildcards (‘∗’) known from standard database
queries, allows us to search the TBox for concepts with very specific structural
properties.

In the application scenario sketched above, two ways of dealing with ‘descrip-
tive’ results suggest themselves. The first option is to solve the full computation
problem in the background and return only those concepts for which the matcher
is also valid with descriptive semantics. Queries of the above kind, however, are
motivated by structural properties of concepts defined in the TBox. Therefore,
a viable second option might be to just present all solutions retrieved with gfp-
semantics.

In order to substantiate the claim that the above query mechanism driven
by our hybrid matching algorithm is useful for the task of knowledge engineer-
ing, we plan to implement our matching algorithm as a plugin to the widely
used ontology editor Protégé [32]. One way to achieve this might be to in-
tegrate the query functionality into the system Sonic [33], a plug-in specif-
ically designed for the purpose to bring non-standard inferences to users of
Protégé.

2 Nevertheless, the existence of the lcs under these circumstances is decidable, see [26].

Matching in Hybrid Terminologies 179

Acknowledgements

We would like to thank Hongkai Liu for his valuable contribution to the results
for matching in cyclic EL-TBoxes.

References

1. Nardi, D., Brachmann, R.J.: An introduction to description logics. In: The De-
scription Logic Handbook: Theory, Implementation, and Applications, pp. 1–40.
Cambridge University Press, Cambridge (2003)

2. Rector, A., Nowlan, W., Glowinski, A.: Goals for concept representation in the
galen project. In: Proc. of SCAMC, Washington, USA, pp. 414–418 (1993)

3. Rector, A.: Medical informatics. In: The Description Logic Handbook: Theory, Im-
plementation, and Applications, pp. 406–426. Cambridge University Press, Cam-
bridge (2003)

4. Horrocks, I., Rector, A.L., Goble, C.A.: A description logic based schema for the
classification of medical data. In: Proc. of KRDB 1996 (1996)

5. Horrocks, I.: Using an expressive description logic: FaCT or fiction? In: Proc. of
KR 1998, pp. 636–645. Morgan-Kaufmann Publishers, San Francisco (1998)

6. Haarslev, V., Möller, R.: Racer system description. In: Goré, R.P., Leitsch, A.,
Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 701–712. Springer,
Heidelberg (2001)

7. Sirin, E., Parsia, B.: Pellet: An OWL DL reasoner. In: Proc. of DL 2004. CEUR-WS
(2004) Proceedings (2004), http://CEUR-WS.org/Vol-104/

8. Baader, F., Lutz, C., Suntisrivaraporn, B.: CEL—a polynomial-time reasoner for
life science ontologies. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS
(LNAI), vol. 4130, pp. 287–291. Springer, Heidelberg (2006)

9. Cohen, W.W., Borgida, A., Hirsh, H.: Computing least common subsumers in
description logics. In: Proc. of AAAI 1992, pp. 754–760. The MIT Press, USA
(1992)

10. Cohen, W.W., Hirsh, H.: The learnability of description logics with equality con-
straints. Machine Learning 17(2/3), 169–199 (1994) Special Issue for COLT 1992.

11. Frazier, M., Pitt, L.: CLASSIC learning. Machine Learning 25, 151–193 (1996) Was
in COLT 1994.

12. Baader, F., Küsters, R.: Computing the least common subsumer and the most
specific concept in the presence of cyclic ALN -concept descriptions. In: Herzog,
O. (ed.) KI 1998. LNCS (LNAI), vol. 1504, pp. 129–140. Springer, Heidelberg
(1998)

13. McGuinness, D.: Explaining Reasoning in Description Logics. Ph.D. dissertation,
Department of Computer Science, Rutgers University, USA (1996)

14. Borgida, A., McGuinness, D.L.: Asking queries about frames. In: Proc. of KR 1996,
pp. 340–349. Morgan-Kaufmann Publishers, San Francisco (1996)

15. Baader, F., Küsters, R., Borgida, A., McGuinness, D.: Matching in description
logics. Journal of Logic and Computation 9(3), 411–447 (1999)

16. Baader, F., Küsters, R., Molitor, R.: Computing least common subsumers in de-
scription logics with existential restrictions. In: Proc. of IJCAI 1999, pp. 96–101.
Morgan-Kaufmann Publishers, San Francisco (1999)

17. Brandt, S., Turhan, A.Y.: Using non-standard inferences in description logics —
what does it buy me? In: Proc. of KIDLWS 2001. CEUR-WS (September 2001)
Proceedings online available from http://CEUR-WS.org/Vol-44/

http://CEUR-WS.org/Vol-104/
http://CEUR-WS.org/Vol-44/

180 S. Brandt

18. Baader, F.: Least common subsumers and most specific concepts in a description
logic with existential restrictions and terminological cycles. In: Proc. of IJCAI 2003,
pp. 319–324. Morgan-Kaufmann Publishers, San Francisco (2003)

19. Brandt, S., Model, J.: Subsumption in EL w.r.t. hybrid TBoxes. In: Furbach, U.
(ed.) KI 2005. LNCS (LNAI), vol. 3698, pp. 34–48. Springer, Heidelberg (2005)

20. Brandt, S.: Matching and general concept inclusion axioms. Technical re-
port (2007), See http://personalpages.manchester.ac.uk/staff/Sebastian-

philipp.Brandt/tr0707.pdf

21. Baader, F.: Terminological cycles in a description logic with existential restrictions.
In: Proc. of IJCAI 2003, pp. 325–330. Morgan-Kaufmann Publishers, San Francisco
(2003)

22. Nebel, B.: Terminological cycles: Semantics and computational properties. In: Proc.
of Principles of Semantic Networks, pp. 331–361. Morgan Kaufmann, San Francisco
(1991)

23. Tarski, A.: A lattice-theoretic fixpoint theorem and its applications. Pacific Journal
of Mathematics 5(2), 285–309 (1955)

24. Baader, F., Küsters, R.: Matching in description logics with existential restrictions.
In: Proc. of KR 2000, pp. 261–272. Morgan-Kaufmann Publishers, San Francisco
(2000)

25. Küsters, R.: Non-Standard Inferences in Description Logics. In: Küsters, R. (ed.)
Non-Standard Inferences in Description Logics. LNCS (LNAI), vol. 2100, Springer,
Heidelberg (2001)

26. Baader, F.: A graph-theoretic generalization of the least common subsumer and
the most specific concept in the description logic EL. In: Hromkovič, J., Nagl, M.,
Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 177–188. Springer, Heidelberg
(2004)

27. Côté, R., Rothwell, D., Palotay, J., Beckett, R., Brochu, L.: The systematized
nomenclature of human and veterinary medicine. Technical report, Snomed Inter-
national, Northfield, IL (1993)

28. Spackman, K.: Normal forms for description logic expressions of clinical concepts in
snomed rt. Journal of the American Medical Informatics Association (Symposium
Supplement) (2001)

29. Consortium, T.G.O.: Gene Ontology: Tool for the unification of biology. Nature
Genetics 25, 25–29 (2000)

30. Rector, A., Bechhofer, S., Goble, C.A., Horrocks, I., Nowlan, W.A., Solomon, W.D.:
The grail concept modelling language for medical terminology. Artificial Intelli-
gence in Medicine 9, 139–171 (1997)

31. International council of Nurses, Geneva, CH. See http://www.icn.ch/icnp.html

32. Horridge, M., Tsarkov, D., Redmond, T.: Supporting early adoption of OWL 1.1
with Protege-OWL and FaCT++. In: Proc. of OWL-ED 2006 (2006)

33. Turhan, A.Y.: Pushing the SONIC border—SONIC 1.0. In: Proc. of FTP 2005.
Technical Report, University of Koblenz (2005)

http://personalpages.manchester.ac.uk/staff/Sebastian-philipp.Brandt/tr0707.pdf
http://personalpages.manchester.ac.uk/staff/Sebastian-philipp.Brandt/tr0707.pdf
http://www.icn.ch/icnp.html

Verifying Cryptographic Protocols with

Subterms Constraints

Yannick Chevalier1, Denis Lugiez2, and Michaël Rusinowitch3,�

1 IRIT, Team LiLac, Université de Toulouse, France
ychevali@irit.fr

2 LIF, CNRS, Aix-Marseille Université, France
lugiez@lif.univ-mrs.fr

3 LORIA-INRIA-Lorraine, France
rusi@loria.fr

Abstract. Many analysis techniques and decidability results have been
obtained for cryptographic protocols. However all of them consider pro-
tocols with limited procedures for the processing of messages by agents or
intruders: Information expected in a protocol message has to be located
at a fixed position. However this is too restrictive for instance to model
web-service protocols where messages are XML semi-structured docu-
ments and where significant information (name, signature, . . .) has to
be extracted from some nodes occurring at flexible positions. Therefore
we extend the standard Dolev Yao intruder model by a subterm predi-
cate that allows one to express a larger class of protocols that employs
data extraction by subterm matching. This also allows one to detect so-
called rewriting attacks that are specific to web-services. In particular
we show that protocol insecurity is decidable with complexity NP for
finite sessions in this new model. The proof is not a consequence of the
standard finite sessions case; on the contrary, it provides also a new short
proof for this case.

1 Introduction

Cryptographic protocols have been applied to securing communications over an
insecure network for many years. However, the underlying difficulties in prop-
erly designing cryptographic protocols are reflected by repeated discovery of
logical bugs in these protocols. As an attempt to solve the problem, there
has been a sustained effort to devise formal methods for specifying and veri-
fying the security goals of protocols. Various symbolic approaches have been
proposed to represent protocols and reason about them, and to attempt to
verify security properties such as confidentiality and authenticity, or to dis-
cover bugs. Such approaches include process algebra, model-checking, modal
logics, equational reasoning, constraint solving and resolution theorem-proving
(e.g., [20,1,5,2]).

� This work has been supported by ARA SSIA Cops.

N. Dershowitz and A. Voronkov (Eds.): LPAR 2007, LNAI 4790, pp. 181–195, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

182 Y. Chevalier, D. Lugiez, and M. Rusinowitch

Although some of these approaches have been successful in detecting security
flaws or showing their absence in many protocols, their scope remains limited.
Typically in all this work the processing of messages by agents or intruders
is very limited: Information expected in a protocol message has to be located
at a fixed position. However this is too restrictive for instance to model web-
service protocols where messages are XML semi-structured documents and where
significant information (name, signature, . . .) has to be extracted from some
nodes occurring at flexible positions. Also protocols for searching databases (such
as the LDAP protocol for internet directories) cannot be modelled properly in
the previous approaches.1

As a first step to relax these restrictions, we consider an extension of the
standard Dolev Yao intruder model by a subterm predicate that allows one to
express protocols applying subterm matching for extracting data in a received
message. This extended model also allows one to detect some rewriting attacks
that are specific to web services. In particular we show that protocol insecurity
(i.e. whether the protocol preserves the confidentiality of some data) is decidable
with complexity NP for fixed number of protocol sessions. The proof is short and
does not follow from previous ones. As a matter of fact our result gives also as
a by-product a new short proof that insecurity is in NP for the standard Dolev
Yao case with non-atomic keys.

Related work. Several decidability and complexity results have been obtained for
cryptographic protocols [1,16,5,18]. These results have been extended to handle
algebraic properties of basic cryptographic primitives [3,15,10]. In particular we
have shown in [6] how to handle an associative-commutative message construc-
tor. The result in [6] relies on unification and combination techniques [7] and
allows the modelling of an immediate subterm relation: a is an immediate sub-
term of a.f(b) where . is associative-commutative, but b is not. Here we consider
an unrestricted subterm relation which allows to detect attacks on XML proto-
cols that are out of the scope of [6] as shown in Section 2. In [9] the authors
consider ordering constraints on atomic keys, but do not give precise complexity
analysis. The results of the present paper are in some respects extensions of [9]
and rely on a different proof technique.

The previous works on web service security protocols (e.g. [13,8]) have rather
focused on encoding XML messages and the design of attack preserving abstrac-
tion. To our knowledge no specific decidability results have been provided yet in
this context.

Paper organization. In Section 2 we give an example of an attack on a web
service that motivates our result. In Section 3 we introduce the needed basic
notions on terms and subterm constraints. Then we present in Section 4 the
protocol model we consider. In Section 5 we introduce the constraints we have
to solve to verify security properties of a protocol in the given model. Then
Sections 6, 8, 9, 10, 11 correspond to the different steps of the algorithm for
solving these constraints. We conclude in Section 12.
1 Since honest agents in usual models [4] can only search a fixed part of the database.

Verifying Cryptographic Protocols with Subterms Constraints 183

2 Motivating Example

Web services promise to be a standard technology for Internet and enterprise
networks. They require the ability to securely transmit messages in XML syntax
using the SOAP protocol. Messages that travel over the networks can be observed
and modified by intruders. Hence the protocol was extended by W3C for allowing
one to sign and encrypt some parts of the contents. They can be subject to
the same attacks as classical cryptographic protocols, but the XML syntax and
the specific way messages are processed (e.g. not examining the full content)
also gives the opportunity to mount a new class of attacks as shown in [8]
and illustrated by the following example. These attacks are sometimes called
XML rewriting attacks since the intruder modifies some message contents for
his purpose.

Example 1. Let us consider an abstraction of the security protocol P that sup-
ports a travel agency service and composes two roles: a client A and a server
B. Each role consists of send (!) and receive (?) actions combined with some
pattern-matching process.

Client A : !xA
1 = 〈se(h(order(x, y, z)), KA,B), order(x, y, z)〉

?xA
2 = 〈uh, ub〉 where se(h(order(x, y, z)), KA,B) ≺ uh,

se(accesscode(z), Kx,y) ≺ ub

Server B : ?xB
1 = 〈vh, vb〉 where se(h(order(x, y, z)), KA,B) ≺ vh,

order(x, y, z) ≺ vb

!xB
2 = 〈se(h(order(x′, y′, z′)), KA,B), se(accesscode(z′), Kx′,y′)〉

where order(x′, y′, z′) ≺ vb

where ≺ denotes the subtree relation, h denotes a hashing function, order(x, y, z)
denotes the request for trip z for beneficiary x, with y the account to charge,
accesscode(z) is the code requested to get the ticket from an automaton, se(u, v)
denotes the encryption of u using key v, Kx,y denotes a private key shared by
x and y. The symbol 〈 , 〉 is a free binary symbol that denotes pairing. The
intruder deductive power is given by the classical Dolev-Yao rules (see [12])
extended by a rule that allows to select any argument of a free symbol. For some
realistic implementations of the service, the following attack (described in [17])
will be possible:

A→ I(B) : 〈se(h(order(A, A,Erevan)), KA,B), order(A, A,Erevan)〉
I(A)→ B : 〈〈se(h(order(A, A,Erevan)), KA,B), order(C, A,Hawai)〉 ,

Bogus(order(A, A,Erevan))〉
B → I(A) : 〈se(h(order(A, A,Erevan)), KA,B), se(accesscode(Hawaii), KC,B)〉

where I(A) (resp. I(B)) denotes a malicious agent I masquerading as the hon-
est participant A (resp. B), and the secret key SKC is known by I (C = I
or C has been compromised). The bogus symbol mimicks an encapsulation
<Bogus>...</> with a Bogus header. The <Bogus> element and its content are
ignored by the receiver since the header is unknown. However the signature is
still acceptable since the element that is linked to the signature (via its URI)
remains in the message.

184 Y. Chevalier, D. Lugiez, and M. Rusinowitch

Example 2. The subterm relation can be quite useful to model database search
as in the following simple protocol (inspired by the Lightweight Directory Access
Protocol) for retrieving public keys of users in some directory D owned by some
server B. We assume that the term D represents a tree structured directory and
that the records are leaves of type r(name, pkey). K is a term representing the
knowledge set of A.

Client A : !xA
1 where xA

1 ≺ K ?xA
2 where xA

2 = se(Y ′, KA,B)
Server B : ?xB

1 !xB
2 = se(Y, KA,B) where r(xB

1 , Y) ≺ D

3 Terms, Unification and Subterm Relation

We refer to [11] for all notions on terms, substitutions,. . . and recall only the
main ones. Terms are constructed from a finite set of function symbols F , a
denumerable set of variables X and TF(X) denotes the set of terms. The set of
ground terms is denoted by TF . Constants are functions of arity 0. For finite sets
of terms, we abbreviate E ∪F by E, F , the union E ∪{t} by E, t and E \ {t} by
E \ t. The set of subterms of a term t, denoted by Sub(t), is the smallest set such
that Sub(t) = {t} if t ∈ X or t is a constant, and Sub(t) = {t} ∪

⋃i=n
i=1 Sub(ti) if

t = f(t1, . . . , tn). A subterm s of t is strict if s �= t. The size of a term t, denoted
by size(t), is the cardinality of Sub(t). A position is a sequence of integers and the
subterm of t at position p, denoted by t|p, is defined by t|p = t if p = ε, t|p.i = ti
if t|p = f(t1, . . . , tn), i ≤ n. The set of positions in a term t is denoted by Pos(t).
Var(t) denotes the set of variables occurring in the term t. A substitution σ is
defined by σ = {x1 ← t1, . . . , xn ← tn} where {x1, . . . , xn} is the domain of σ,
denoted by Dom(σ). The substitution is ground if Var(ti) = ∅ for i = 1, . . . , n.

A unification system S is a finite set of equations (ui
?= vi)i∈{1,..,n} where

ui, vi ∈ TF(X) for i = 1, . . . , n. A ground substitution σ is a solution of S,
denoted by σ |= S, iff for i = 1, . . . , n we have uiσ = viσ.

A subterm constraint is an expression s ≺ t where ≺ denotes the strict sub-
term relation on terms. The notation s � t stands for s ≺ t ∨ s = t. Let σ be a
substitution, we write σ |= s ≺ t iff sσ ∈ Sub(tσ) and sσ �= tσ and we say that
σ is a solution of or satisfies s ≺ t. A subterm constraint system T is a finite
set of subterm constraints. A substitution is a solution of a subterm constraint
system iff it is a solution of each constraint of the system.

There exist polynomial time algorithms for solving unification systems and a
NPTIME procedure to solve subterm constraint systems [19].

4 Protocol Model

4.1 Dolev Yao Model

A protocol is defined by a finite set of roles (denoted by A, B,. . .) acting in this
protocol. Each role is specified by a finite sequence of receive/send actions to per-
form according to its current state and is parameterized by some variables that

Verifying Cryptographic Protocols with Subterms Constraints 185

represent the arguments passed to the program at the beginning of its execution.
An agent is defined by a set of values (its identity, its public/private keys,. . .)
and a role instance is the execution of a role with its values as parameters. In
the Dolev-Yao model [12], attacks on protocols are modelled by the addition of
a malicious participant, called the intruder, that controls the network. It can
intercept, block and/or redirect all messages sent by honest agents. It can also
masquerade its identity and take part in the protocol under the identity of an
honest participant. Its control of the communication network is modelled by
assuming that all messages sent by honest agents are sent directly to the in-
truder and that all messages received by the honest agents are always sent by
the intruder. Besides the control on the net, the intruder has specific rules to
deduce new values and compute messages. From the intruder’s point of view a
finite execution of a protocol is therefore the interleaving of a finite sequence
of messages it has to send and a finite sequence of messages it receives (and
add to its knowledge). Therefore the intruder is simply an additional role that
runs concurrently with the honest participants. The protocol is said to be inse-
cure if some secret knowledge is revealed to the intruder during the execution
of the protocol. Deciding whether a protocol is insecure (for a single or a fixed
number of sessions) has been shown equivalent to solving constraints in a term
algebra [16,1,5].

4.2 Deduction Rules

Deduction rules are introduced to describe the operational behavior of roles
(including the intruder). They are used to define deduction systems and deriva-
tions on sets of ground terms. A rule pattern d is a rule s1, . . . , sn → s where
s1, . . . , sn, s are terms of TF(X), and Var(s) ⊆

⋃
i=1,..,n Var(si). The set GI(d)

is the set of instances of d, i.e. GI(d) = {l1, . . . , ln → r | li = siσ, i = 1, ..., n, r =
sσ, σ ground substitution}. An instance of a rule pattern is called a deduction
rule.

The Dolev-Yao model is defined by the following deduction system. The sig-
nature is F = {se(,), 〈, 〉 , . . . }, where se(x, y) denotes the symmetric encryption
of x by the key y and 〈x, y〉 denotes the pair of two messages x and y, and the
rule patterns are:

Composition rule patterns: Decomposition rule patterns:
x, y → se(x, y) se(x, y), y → x
x, y → 〈x, y〉 〈x, y〉 → x

〈x, y〉 → y

The model can be extended with free symbols and the Composition rule and
Decomposition rule patterns x1, . . . , xn → f(x1, . . . , xn) and f(x1, . . . , xn) → xi

(i = 1, . . . , n) for each symbol f of arity n. These new symbols and rules behave
like the pairing operation and we shall not consider these symbols for the sake
of simplicity.

The set GIc is the union of all ground instances of composition rule patterns,
and the set GId is the union of all ground instances of decomposition rule patterns.

186 Y. Chevalier, D. Lugiez, and M. Rusinowitch

The set GI is the union of GIc and GId. We shall also call a (de)composition rule
a ground instance of a (de)composition rule pattern.

Given two sets of ground terms E, F and a deduction rule l → r ∈ GI we
write E →l→r F iff F = E ∪ {r} and l ⊆ E. Recall that l is a set of terms. We
write E → F (resp. E →d F , resp. E →c F) if there exists a deduction rule
l → r in GI (resp. GId, resp. GIc) such that E →l→r F .

A derivation D of length n ≥ 0, is a sequence of finite sets of ground terms
E0, . . . , En such that E0 → E1 → · · · → En where Ei = Ei−1, ti for every
i ∈ {1, . . . , n}. The term tn is called the goal of the derivation. A derivation is
without stutter iff ti ∈ Ej implies j ≥ i for i, j ∈ {1, .., n}.

A term is derivable from E if there exists a derivation starting from E of goal
t. The set Der(E) is the set of terms derivable from E and the set Derc(E) is
the set of terms derivable from E using only composition rules.

5 Constraint Systems

The insecurity problem of protocols with subterm predicates can be reduced to
solving special constraint systems to be defined below. The process of translating
a security problem to a constraint system will not be detailed here since it is
similar to the standard case [16,5].

An expression E � t where E is a finite set of terms (not necessarily ground
ones) and t ∈ TF(X) will be called a deduction constraint, and means that t
can be deduced from E. A ground substitution σ is a solution of a deduction
constraint, denoted by σ |= E � s iff sσ ∈ Der(Eσ). We shall consider also a
slight variant of deduction constraints denoted by E �c t. A ground substitution
σ is a solution of E �c t iff sσ ∈ Derc(Eσ).

A constraint system C is a triple ((Ei � ti)i∈{1,...,n}; S; T) where

1. Ei are finite sets of terms such that i) Ei−1 ⊆ Ei, and ii) for each x occuring
in a term of Ei, there exist j < i such that x ∈ Var(tj) or there exist s such
that x ∈ Var(s) and s � ti ∈ T or there exists a ground term t such that
s ≺ t ∈ T . Property ii) is called determinacy;

2. S is a unification system;
3. T is a subterm constraint system.

A ground substitution is a solution of C, denoted by σ |= C, iff σ |= E � s for
each E � s ∈ E , σ |= S and σ |= T .

Example 3. For instance if we consider one session of the protocol described in
Example 2:

Client A : !xA
1 where xA

1 ≺ K ?xA
2 where xA

2 = se(Y ′, KA,B)
Server B : ?xB

1 !xB
2 = se(Y, KA,B) where r(xB

1 , Y) ≺ D

The secrecy of Y , i.e. whether the intruder initially knowing {A, B} can view Y ,
can be reduced to solving the following constraint system:

(({A, B, w} � x, {A, B, w, se(y, KA,B)} � y) ; ∅ ; {w ≺ K, r(x, y) ≺ D})

Verifying Cryptographic Protocols with Subterms Constraints 187

In other words the intruder should build some well-chosen term x and send it to
server B so that he receives back a term se(y, KA,B) satisfying r(x, y) ≺ D and
from this term and his previous knowledge he can derive the secret term y.

As mentioned above, we may also consider constraint systems where � is replaced
by �c. A constraint system C = (E ; S; T) is a solved form iff the following
conditions are satisfied:

1. each deduction constraint has the form E � x where x is a variable,
2. S = ∅ and
3. each constraint of T has the form s ≺ x.

A solved form is normalized iff for each s ≺ x ∈ T , for each y ∈ Var(s), there
exists a constraint Ey � y occurring before the first constraint Ex � x in E .

The main result of this paper is the following theorem.

Theorem 1. Satisfiability of constraint systems is decidable in NPTIME.

The rest of the paper is devoted to the description and the proof of correctness
and completeness of the successive steps of an algorithm deciding the satisfi-
ability of constraint systems in NPTIME. This algorithm is non-deterministic
and applies 6 steps for transforming a constraint system C0 = (E0; S0; T0) into a
normalized solved form. Finally the satisfiability of the normalized solved form
is checked in the last step.

6 Guessing Unification and Subterm Ordering

The first two steps of the algorithm guess identifications between subterms and
subterm contraints.

Step 1 : Guess a subset S′ of {s
?= t | s, t ∈ Sub(C0)} and guess T ′ a finite set of

subterm constraints s ≺ x for s ∈ Sub(C0), x ∈ V ar(C0).
Check that S0 ∪ S′ defines a congruence and that T0 ∪ T ′ defines a transitive
antisymmetric relation. Let E1 = E0, let S1 = S0 ∪ S′, let T1 = T0 ∪ T ′, and
finally let C1 = (E1; S1; T1). We check easily:

Lemma 1. If σ = mgu(S1) then C1σ respects the determinacy condition.

Step 2 : Let σ = mgu(S1). Let T 2 be obtained from T1σ by applying the sim-
plification rules: s ≺ t → true if t|p = s for some position p in t

s ≺ t → s ≺ x for x ∈ Var(t), if there is no p such that t|p = s
Let E2 = E1σ and let C2 = (E2; S2; T2) where S2 = ∅.

Steps 1,2 are non-deterministic and there are finitely many possible outcomes
C2 since the number of guesses is finite and the number of possible results of
simplification rules is finite.

188 Y. Chevalier, D. Lugiez, and M. Rusinowitch

Remark 1. The simplification rules for ≺ are correct and complete because we
perform all possible guesses of equalities between terms. For instance, given a
constraint g(a) ≺ f(g(x)), one guess is g(a) = g(x) and the subterm constraint
becomes g(a) ≺ f(g(a)) and the other guesses make g(a) and g(x) different and
the subterm constraint is equivalent to g(a) ≺ x.

Proposition 1. For each solution σ of C0 there exists some C2 such that σ is a
solution of C2. Each solution σ of C2 is a solution of C0.

Remark 2. A solution σ of the initial constraint system defines a congruence ≡σ

on the subterms of C0, namely s ≡σ t iff sσ = tσ. It also defines a transitive and
anti-symmetric relation ≺σ on Sub(C0), namely s ≺σ t if sσ ∈ Sub(tσ) \ {t}.
In Step 1 of the algorithm, we guess any possible choices for congruence and
the transitive and anti-symmetric relations ≡σ and ≺σ. Therefore, in the follow-
ing we consider solutions that match exactly the congruence and the ordering
guessed in Step 1, i.e. for all terms in Sub(C2) if the equality u = v is not induced
by S2, we shall assume that uσ �= vσ, and if u ≺ v is not induced by S2 and T2,
we shall assume uσ �≺ vσ.

This first guessing phase permits us to obtain the following two lemmas. We
denote by s � t the reflexive transitive closure of the binary relation on terms
defined by s ≺ t ∈ T2 or s ∈ Sub(t).

Lemma 2. Let C2 = (E2; S2; T2) and let E2 = (Ei � si)i∈{1,...,n}. Let x be a
variable in Ei. Then there is j < i such that x � sj, x �∈ Var(Ej) and xσ �∈
Sub(Ejσ)

Proof. Let j be minimal such that x � sj . The guessings at Step 1 imply that
there is no u ∈ Sub(Ej) \ x with uσ = xσ. By contradiction, if there is y ∈
Var(Ej) such that x � y, by definition of constraint systems either there is
j′ < j such that y � sj′ or there is a ground term t with y ≺ t. The latter is
impossible since y has not been unified with a subterm of C0 at Step 1. Hence
y � sj′ and x � y. By transitivity we also have x � sj′ , which contradicts the
minimality of j.

Lemma 3. Let σ be a solution of C2 = (E2; S2; T2) and let (E � s) ∈ E2. Let
t ∈ Sub(C2) be such that (i) t is not in Sub(E) and (ii) tσ ∈ Sub(sσ). Then tσ is
in Der(Eσ) and there is a derivation of goal tσ ending with a composition rule.

Proof. Since the sequence E2 = (Ei � si)i=1,...,n is such that Ei ⊆ Ej if i ≤ j,
we may choose E � s as the first deduction constraint such that tσ ∈ Sub(sσ),
and thus, given the guessing at Step 1, such that t � s.

We first show that there is no x ∈ Var(E) such that tσ ∈ Sub(xσ), and thus
t � x. By contradiction if there exists such a variable x, by Lemma 2 there exists
a constraint E′ � s′ prior to E � s such that x � s′. By transitivity of � this
implies that t � s′, thereby contradicting the choice of the deduction constraint
E � s. Thus there is no variable x ∈ Var(E) such that tσ is a subterm of xσ.

Thus if tσ is in Sub(Eσ), there existsy u ∈ Sub(E)\Var(E) such that uσ = tσ.
Given the choice at Step 1, this implies in turn that u = t, and thus that

Verifying Cryptographic Protocols with Subterms Constraints 189

t ∈ Sub(E). The lemma is then trivially true since its hypotheses are not met
on E.

Assume now tσ /∈ Sub(Eσ). Let D be a minimal derivation of goal sσ, say

F0 = Eσ → . . . → Fj = Eσ, t1, . . . , tj → . . . → Fm = Eσ, t1, . . . , tm = sσ

Let j be the smallest index such that tσ ∈ Sub(Fj). This index is defined since
tσ ∈ Sub(tn), and is not 0 since tσ /∈ Sub(Eσ). The minimality implies that tσ /∈
Sub(Fj−1), and thus tσ ∈ Sub(tj). Since the right-hand side of a decomposition
rule is always a subterm of its left-hand side, the deduction rule applied must be
a composition rule. In this case, Sub(tj) \ {tj} ⊆ Sub(Fj−1) and thus we must
have tj = tσ. Truncating the derivation yields a derivation starting from Eσ of
goal tσ ending with a composition rule.

7 Adding Deduction Constraints for Variables

Given a constraint system C = ((Ei � si)i∈{1,...,n}; S; T), a variable x may occur
in Var(Ei) but not in Var(sj) for j < i. The next step transforms the constraint
system into a constraint system where all variables of Var(Ei) occur in Var(sj)
for j < i.

Step 3 : For each variable x such that x ∈ Var(Ei) and x �∈ Var(sj) for j < i,
replace (Ei � si) in E2 by Ej � x, Ei � si for some j < i.
Let C3 = (E3; S3; T3) be the resulting constraint system.

The correctness of the transformation relies on the following lemmas.

Lemma 4. Let C2 = (E2; S2; T2) and let Ei � si ∈ E2 such that there is a
variable x ∈ Var(Ei). Then there exists j < i such that for any solution σ of
C2 there is a derivation starting from Ejσ of goal xσ ending with a composition
rule.

Proof. By Lemma 2, the hypothesis x ∈ Var(Ei) implies that there exists j < i
with x /∈ Var(Ej) and such that x � sj . By Lemma 3 applied on x, we derive
this Lemma 4.

8 Eliminating Decomposition Rules

We prove in this section that for any deduction constraint E �m belonging to a
constraint system C2 produced by Step 2, if there exists a ground substitution σ
solution of C2, then there exists a derivation starting from Eσ of goal mσ such
that any decomposition rule s1, s2 → s or s1 → s applied in this derivation is
such that there exists u ∈ Sub(E) \ Var(E) with u = se(t, d) or u = 〈t, t′〉 with
s1 = uσ, s2 = dσ and s = tσ or s = t′σ. This implies that there exists a subset
of Sub(E)\Var(E) such that, once these terms have been decomposed, all terms
derivable from E can be derived by applying only composition rules.

190 Y. Chevalier, D. Lugiez, and M. Rusinowitch

In Step 3, we guess this set of subterms of E. The derivation contains several
instances of decomposition rules that derive a new term tj (a message below an
encryption for instance) using a term dj (a term used as an encryption key for
instance) which is derived using composition rules.

Step 4 : For each (E � s) ∈ E3, guess t1, . . . , tn, d1, . . . , dn ∈ Sub(E) such that
for j = 1, . . . , n,

E, t1, . . . , tj−1, dj →d E, t1, . . . , tj , dj

Replace (E � s) in E3 by

E �c d1, E, t1 �c d2, . . . , E, t1, . . . , tn−1 �c dn, E, t1, . . . , tn �c s

Let C4 = (E4; S4; T4) be the resulting constraint system.
To state the correctness and completeness of this step, we need to prove several

lemmas.

Lemma 5. Let C3 = (E3; S3; T3) and let σ be such that σ |= C3, and σ |= E � s
for E a left-hand side of a constraint in E3 and s ∈ Sub(C3).
Then there exists a derivation starting from Eσ of goal sσ that does not contain
any decomposition of a term xσ for x ∈ Var(E).

Proof. By contradiction let us assume there exists E and s as specified such
that the minimal number of decompositions of a term xσ (with x ∈ Var(E)) in a
derivation starting from Eσ of goal sσ is n > 0. Without loss of generality let us
consider this is the first such E in the order of the deduction constraints. Notice
that this cannot be the leftmost E since the first left-hand side contains only
ground terms (as a result of Step 3). Let x ∈ Var(E) be such that there exists a
derivation with n decompositions of terms yσ with y ∈ Var(E), and x is one of
those variables. By Lemma 4 there exists Ex � sx before E � s such that there
is a derivation starting from Exσ with goal xσ ending with a composition rule.
By minimality of E we can assume that this derivation does not contain any
decomposition of a term yσ for y ∈ Sub(Ex). Since it ends with a composition
rule, the strict maximal subterms of xσ, and thus the result of its decomposition,
are also deduced by this derivation. Since Ex ⊆ E by definition of constraint
systems, we can replace the decomposition of xσ by this derivation. This permits
us to obtain a derivation in which n− 1 variable instances are decomposed, thus
contradicting the minimality of n.

Lemma 6. Let C3 = (E3; S3; T3) and let σ such that σ |= C3, and E � s ∈ E3,
and let

SE(s) = {ε} ∪ {p ∈ Pos(s) | ∀q < p, σ |= E � s|q
and a derivation starting from Eσ of goal s|qσ
ends with a composition rule}

Then for any maximal position p in SE(s), we have s|p ∈ Sub(E)∪X . Moreover
if s|p /∈ X ∪E, the term s|p is obtained by a decomposition rule applied to another
term of Sub(E).

Verifying Cryptographic Protocols with Subterms Constraints 191

Proof. Let p be maximal in SE(s). Then either p = ε or there exists a position
p′ and an integer i such that p = p′ · i.

First, if p = ε then sσ cannot be obtained by a composition rule. Since
σ |= E � s, By Lemma 3 we must have s ∈ Sub(E).

Now if p �= ε, by definition of SE(s) we must have s|p′σ is in Der(Eσ) and there
exists a derivation starting from Eσ of goal s|p′σ ending with a composition rule.
This implies that this derivation contains the term s|p′·iσ in its next to last term
set, and thus that s|pσ is in Der(Eσ). By maximality of p either s|p is a variable
or there is no derivation starting from Eσ of goal s|pσ ending with a composition
rule, and thus in this last case by Lemma 3 we must have s|p ∈ Sub(E).

Thus, if p is maximal in SE(s) and is not a variable, we have s|pσ ∈ Der(Eσ),
and s|p ∈ Sub(E), and there exists no derivation starting from Eσ of goal s|pσ
ending with a composition rule.

Let us now consider a derivation starting from Eσ of goal s|pσ. Without loss
of generality we can consider it is without stutter (and thus no decomposition
is applied on a term that has been composed before) and such that no variable
instance is decomposed (this is possible by Lemma 5.) Let us prove that in this
derivation, for any decomposition rule t1, t2 → t applied (with t ∈ Sub(t1)),
there exists u ∈ Sub(E) \ Var(E) such that uσ = t. By contradiction, let us
assume this is not the case, and let t1, t2 → t of a decomposition rule such that
there does not exist u ∈ Sub(E)\Var(E) with uσ = t1. Since there is no stutter,
t1 has not been obtained by a composition rule. Thus either there exists u ∈ E
with uσ = t1 or there exists a previous decomposition rule t′1, t

′
2 → t1. Since we

have taken the first decomposition rule t1, t2 → t where t1 is not an instance
of a non-variable subterm of E, there exists u′ ∈ Sub(E) \ Var(E) such that
u′σ = t′1. This implies there exists u ∈ Sub(E) such that t1 = uσ. But then
either u is a variable, and we contradict the fact that the derivation does not
contain any decomposition of the instance of a variable, or u ∈ Sub(E) \ Var(E)
and we contradict the fact that there does not exists u ∈ Sub(E) \ Var(E) such
that uσ = t1. This terminates the proof of the lemma.

Proposition 2. If C3 is satisfiable, then there exists t1, . . . , tn, d1, . . . , dn a se-
quence of guesses such that C4 is satisfiable. Moreover, for each t ∈ Sub(C4) and
for each E left-hand side of a deduction constraint in C4 we have σ |= E � t iff
σ |= E �c t.

Proof. Let C3 = (E3; S3; T3) with E3 = (Ei � si)i=1,...,m and let us assume that
C3 has a solution σ.

Firstly we prove that C4 is satisfiable. Let

Mi = {t | ∃s ∈ Sub(C4), σ |= Ei � s and t = s|p with p maximal in SEi(t)}

First note that Mi is finite and included in Sub(Ei) ∪ X by Lemma 6.
Let Mi \ Ei = {t1, . . . , tn} and let us choose t1, . . . , tn as the sequence of

guesses used in Step 3 for the ti’s. By definition there is a derivation that con-
structs t1σ, . . . , tnσ from Eiσ. W.l.o.g. we may assume that the indices of the ti
are in the order in which they appear in this derivation.

192 Y. Chevalier, D. Lugiez, and M. Rusinowitch

By Lemma 6, tiσ is obtained by the decomposition of a term uiσ with ui ∈
Sub(Ei). The decomposition is uiσ → tiσ (rule 〈x, y〉 → x) or uiσ, diσ → tiσ
(rule se(x, y), y → x).

Since all the terms that are not among the ti can be obtained by composition
we can assume, by considering a derivation with a minimal number of decompo-
sition rules, that all terms but the ti, are deduced by a composition rule or are
already present.

Thus diσ is composable using only composition rules from Eiσ, t1σ, . . . , ti−1σ.
Provided that ui, di → ti is a decomposition rule, this implies that σ is a

solution of C4.
Since the tiσ are obtained by decomposition of a term uiσ with ui ∈ Sub(Ei),

the deduction rule instances permitting the deduction of tiσ are uiσ → tiσ for
the pair and uiσ, diσ → tiσ for deciphering.

Now we prove that σ |= E � t iff σ |= E �c t.
⇒ direction. This direction comes from the identification of subterms at Step 1

and on the definition of a right guess at Step 3, i.e. the guess at the beginning
of this proof.

⇐ direction. Straightforward.

9 Computing Normalized Solved Forms

Step 5 : For each E �c s in E4, check that s ∈ Derc(E ∪ Var(s)) and replace
E �c s by deduction constraints E �c x for all x ∈ Var(s).
Let C5 = (E5; S5; T5) be the resulting normalized solved form.

The soundness and completeness of Step 5 is a direct consequence of the next
proposition.

Proposition 3. Let C4 = (E4; S4; T4) and m ∈ Sub(C4). Then we have τ |=
E �c m iff τ |= E �c x for all x ∈ Var(m) and m ∈ Derc(E, Var(m)).

Proof. Assume first that τ |= E �c m. Let Π be the set of minimal positions
in S(m). By Lemma 6 we know that m|p is either a variable or a term among
the tj terms guessed in Step 3 or in a knowledge set at Step 2. By definition of
Dolev-Yao composition rules, we have m ∈ Derc({t | m|p = t for p ∈ Π}), and
thus, after the guess in Step 3, we have m ∈ Derc(E ∪ Var(m)). Given a variable
x ∈ Var(m), by the determinacy of constraint systems there exists a constraint
Ex � mx in C4 with x ∈ Var(mx) \ Var(Ex). By Lemma 3 this implies that
xτ ∈ Der(Exτ). By the inclusion of knowledge sets we have Ex ⊆ E and thus
xτ ∈ Der(Eτ). Given the guess at Step 3 this implies xτ ∈ Derc(Eτ) and thus
τ |= E �c x.

Conversely, if τ |= E �c x for all x ∈ Var(m) then starting from Eτ one
can first construct a set of terms F containing Eτ ∪ Var(m)τ . Then one can
instantiate with τ a derivation starting from E ∪ Var(m) of goal m. These two
derivations employ only composition rules, therefore mτ ∈ Derc(Eτ).

Verifying Cryptographic Protocols with Subterms Constraints 193

10 Permuting Deduction Constraints

This step aims at providing a compatibility between the ordering on variables
induced by T and the ordering on variables induced by the deduction constraints.
It is not necessary for the algorithm, but simplifies the proof of the last step.
The variables X , Y and Z stand for (possibly empty) sequences of deduction
constraints.

Step 6: E ← E5

For all x, y ∈ Var(C5) with
E = (X, Ex �c x, Y, Ey �c y, Z) and y ≺ x ∈ T

do
E ← (X, Ex �c y, Ex �c x, Y, Z)

od
Let C6 = (E6; S6; T6) be the resulting normalized solved form.

Proposition 4. A ground substitution σ is a solution of C5 iff it is a solution
of C6.

Proof. Since the Ei are nondecreasing sets, it is obvious that if σ is a solution
of C6 then it is a solution of C5.

Assume now that a ground substitution σ is a solution of C5. It suffices to
prove that if σ is a solution before a swap, it will remain a solution of the
constraint system after the swap. There are two cases:

– If there exists a constraint E′y �c y before Ex�c, then E′y ⊆ Ex implies that
if σ is a solution before the swap, it will be a solution after;

– Else, the determinacy of constraint systems implies that y /∈ Sub(Ex), and
the σ solution implies that yσ ∈ Sub(xσ). Thus by Lemma 3 this implies
yσ ∈ Der(Exσ). By Proposition 2 this implies in turn yσ ∈ Derc(Exσ), and
thus the resulting constraint system is still satisfied by σ.

11 Decision of Normalized Solved Forms

This is the last step of the algorithm.

Step 7 : For each Ex �c x ∈ E6, s ≺ x ∈ T6, check that there exists t ∈ E such
that s ≺ t or s ∈ Derc(E ∪ Var(s)) and return true otherwise return fail.

Proposition 5. Step 7 returns true iff C6 has a solution.

Proof. Let C6 = (E6; S6; T6).
⇒ direction: Let us assume that the variables occur in deduction constraints
in the order x1, x2, We construct a solution σ inductively according to this
ordering. For simplicity we still call σ the restriction of σ to {x1, . . . , xn}.

Assume that we have constructed σ = {x1 ← x1σ, . . . , xn−1 ← xn−1σ} such
that σ |= E �c xi and σ |= s ≺ xi for all deduction and subterm constraints of
C6 with i < n.

194 Y. Chevalier, D. Lugiez, and M. Rusinowitch

Let s1 ≺ xn, . . . , sm ≺ xn be the subterm constraints of T6 which have xn as
a right-hand side. Let E �c xn be the first deduction constraint of E containing
xn as a right-hand side.

Let ti be such that ti ∈ E and si ≺ ti or ti = si if si ∈ Derc(E ∪ Var(s)). By
hypothesis ti always exists for i = 1, . . . , m.

We extend σ by setting xnσ = 〈t1σ, 〈t2σ, . . . 〈tm−1σ, tmσ〉〉〉.
By construction σ |= E �c xn (hence σ |= E′�c xn since E ⊆ E′) and σ |= T .

⇐ direction: Let σ be a solution of C6. Let E �c x ∈ E6 and s ≺ x ∈ T6.
Let F0 = Eσ → Eσ, t1 . . . → Eσ, t1, . . . , tj → . . . → xσ be a derivation of goal

xσ using composition rules only. Let j be the first index such that sσ occurs
in tj .

Either there is t ∈ E such that tσ = sσ then s = t ∈ E and the check succeeds.
Or, tj = sσ for some j ≥ 1 and σ |= E �c s. By Proposition 3, we have

s ∈ Derc(E ∪ V ars) and the check succeeds.

12 Conclusion

We have shown how to decide secrecy for cryptographic protocols that can check
a subterm relation. The proof is short (no appendix!) and shows that the com-
plexity of the problem is in NP. In future work we will investigate the case
of negative subterm constraints and also whether the results can be combined
with known results on protocols that employ associative-commutative message
constructors: this would enlarge the scope of techniques for addressing XML
protocol security. We also plan to investigate whether our result generalizes to
more general queries than subterm.

References

1. Amadio, R., Lugiez, D., Vanackère, V.: On the symbolic reduction of processes
with cryptographic functions. Theor. Comput. Sci. 290(1), 695–740 (2003)

2. Armando, A., Compagna, L.: Automatic SAT-Compilation of Protocol Insecurity
Problems via Reduction to Planning. In: Foundation of Computer Security & Ver-
ification Workshops, Copenhagen, Denmark (2002)

3. Basin, D.A., Mödersheim, S., Viganò, L.: Algebraic intruder deductions. In: Sut-
cliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835, pp. 549–564.
Springer, Heidelberg (2005)

4. Cervesato, I., Durgin, N.A., Lincoln, P., Mitchell, J.C., Scedrov, A.: A meta-
notation for protocol analysis. In: CSFW, pp. 55–69 (1999)

5. Chevalier, Y., Vigneron, L.: A Tool for Lazy Verification of Security Protocols. In:
ASE 2001. Proceedings of the Automated Software Engineering Conference, IEEE
Computer Society Press, Los Alamitos (2001)

6. Chevalier, Y., Lugiez, D., Rusinowitch, M.: Towards an automatic analysis of web
services security. In: Konev, B., Wolter, F. (eds.) FroCoS 2007. LNCS (LNAI),
Springer, Heidelberg (2007)

7. Baader, F., Schulz, K.U.: Unification in the union of disjoint equational theories.
combining decision procedures. J. Symb. Comput. 21(2), 211–243 (1996)

Verifying Cryptographic Protocols with Subterms Constraints 195

8. Bhargavan, K., Fournet, C., Gordon, A.D., Pucella, R.: Tulafale: A security tool
for web services. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P.
(eds.) FMCO 2003. LNCS, vol. 3188, pp. 197–222. Springer, Heidelberg (2004)

9. Cortier, V., Zalinescu, E.: Deciding Key Cycles for Security Protocols. In: Her-
mann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp. 317–331.
Springer, Heidelberg (2006)

10. Delaune, S., Jacquemard, F.: A decision procedure for the verification of security
protocols with explicit destructors. In: CCS 2004. Proceedings of the 11th ACM
Conference on Computer and Communications Security, pp. 278–287. ACM Press,
Washington, D.C., USA (2004)

11. Dershowitz, N., Jouannaud, J.P.: Rewrite systems. In: Handbook of Theoretical
Computer Science, vol. B, pp. 243–320. Elsevier, Amsterdam (1990)

12. Dolev, D., Yao, A.: On the Security of Public-Key Protocols. IEEE Transactions
on Information Theory 2(29) (1983)

13. Kleiner, E., Roscoe, A.: On the Relationship Between Web Services Security and
Traditional Protocols. Electr. Notes Theor. Comput. Sci. 155, 583–603 (2006)

14. Lynch, L., Meadows, C.: On the Relative Soundness of the Free Algebra Model for
Public Key Encryption. In: Proc. 4th Workshop on Issues in the Theory of Security
(WITS) (2004)

15. Meadows, C., Narendran, P.: A unification algorithm for the group Diffie-Hellman
protocol. In: Workshop on Issues in the Theory of Security (in conjunction with
POPL’02), Portland, Oregon, USA, pp. 14–15 (January 2002)

16. Millen, J., Shmatikov, V.: Constraint solving for bounded-process cryptographic
protocol analysis. In: ACM Conference on Computer and Communications Secu-
rity, pp. 166–175 (2001)

17. Rits, M., Rahaman, M.A.: Secure SOAP Requests in Enterprise SOA. In: Jesshope,
C., Egan, C. (eds.) ACSAC 2006. LNCS, vol. 4186, Springer, Heidelberg (2006)

18. Rusinowitch, M., Turuani, M.: Protocol insecurity with finite number of sessions
is NP-complete. In: Proc.14th IEEE Computer Security Foundations Workshop,
Cape Breton, Nova Scotia (2001)

19. Venkataraman, K.N.: Decidability of the purely existential fragment of the theory
of term algebras. J. ACM 34(2), 492–510 (1987)

20. Weidenbach, C.: Towards an automatic analysis of security protocols in first-order
logic. In: Ganzinger, H. (ed.) CADE-16. LNCS (LNAI), vol. 1632, pp. 314–328.
Springer, Heidelberg (1999)

Deciding Knowledge in Security Protocols for

Monoidal Equational Theories�

Véronique Cortier and Stéphanie Delaune

LORIA, CNRS & INRIA project Cassis, Nancy, France

Abstract. In formal approaches, messages sent over a network are usu-
ally modeled by terms together with an equational theory, axiomatiz-
ing the properties of the cryptographic functions (encryption, exclusive
or, . . .). The analysis of cryptographic protocols requires a precise un-
derstanding of the attacker knowledge. Two standard notions are usually
used: deducibility and indistinguishability. Only few results have been
obtained (in an ad-hoc way) for equational theories with associative and
commutative properties, especially in the case of static equivalence. The
main contribution of this paper is to propose a general setting for solv-
ing deducibility and indistinguishability for an important class (called
monoidal) of these theories. Our setting relies on the correspondence be-
tween a monoidal theory E and a semiring SE which allows us to give
an algebraic characterization of the deducibility and indistinguishability
problems. As a consequence we recover easily existing decidability results
and obtain several new ones.

1 Introduction

Security protocols are paramount in today’s secure transactions through public
channels. It is therefore essential to obtain as much confidence as possible in their
correctness. Formal methods have proved their usefulness for precisely analyzing
the security of protocols. Understanding security protocols often requires rea-
soning about knowledge of the attacker. In formal approaches, two main kind of
definitions have been given in the literature for this knowledge. They are known
as message deducibility and indistinguishability relations.

Most often, the knowledge of the attacker is described in terms of message
deducibility [15,18,16]. Given some set of messages φ representing the knowl-
edge of the attacker and another message M , intuitively the secret, one can ask
whether an attacker is able to compute M from φ. To obtain such a message he
uses his deduction capabilities. For instance, he may encrypt and decrypt using
keys that he knows.

This concept of deducibility does not always suffice for expressing the knowl-
edge of an attacker. For example, if we consider a protocol that transmits an
encrypted Boolean value (e.g., the value of a vote), we may ask whether an at-
tacker can learn this value by eavesdropping on the protocol. Of course, it seems
� This work has been partly supported by the RNTL project POSÉ and the ARA

SSIA Formacrypt.

N. Dershowitz and A. Voronkov (Eds.): LPAR 2007, LNAI 4790, pp. 196–210, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Deciding Knowledge in Security Protocols for Monoidal Equational Theories 197

to be completely unrealistic to say that the Boolean true and false are not de-
ducible. We need to express the fact that the two transcripts of the protocol,
one running with the Boolean value true and the other one with false are indis-
tinguishable. Besides allowing more careful formalization of secrecy properties,
indistinguishability can also be used for proving the more involved notion of
cryptographic indistinguishability (e.g. [6]): two sequences of messages are cryp-
tographically indistinguishable if their distributions are indistinguishable to any
attacker, that is to any probabilistic polynomial Turing machine.

In both cases, deduction and indistinguishability apply to observations on
messages at a particular point in time. They do not take into account the dy-
namic behavior of the protocol. For this reason the indistinguishability relation
is called static equivalence. Nevertheless those relations are quite useful to reason
about the dynamic behavior of a protocol. For instance, the deducibility rela-
tion is often used as a subroutine of many decision procedures [19,8,10]. In the
applied-pi calculus framework [2], it has been shown that observational equiv-
alence (relation which takes into account the dynamic behavior) coincides with
labeled bisimulation which corresponds to checking static equivalences and some
standard bisimulation conditions.

Both of these relations rely on an underlying equational theory axiomatiz-
ing the properties of the cryptographic functions (encryption, exclusive or, . . .).
Many decision procedures have been provided to decide these relations under
a variety of equational theories. For instance algorithms for deduction are pro-
vided for exclusive or [10], homomorphic operators [11] and subterm theories [1].
These theories allow basic equations for functions such as encryption, decryption
and digital signature. There are also results for static equivalence. For instance,
a general decidability result for the class of subterm convergent equational the-
ories is given in [1]. This class contains classical cryptographic primitives like
encryption, signatures and hashes. Also in [1] some abstract conditions on the
underlying equational theory are proposed to ensure decidability of deduction
and static equivalence. Note that the use of this result requires checking some
assumptions, which might be difficult to prove. Regarding theories with asso-
ciative and commutative properties (AC), they only obtain decidability for pure
AC and exclusive or. A weakness of most of these approaches is their lack of
generality since each new theory requires a new proof. Homomorphic properties
occur in many protocols and cannot be dealt with by a simple adaptation of the
techniques that have been developed so far.

In this paper, we consider the axioms of Associativity-Commutativity (AC),
Unit element (U), Nilpotency (N), Idempotency (I), homomorphism (h), and
more especially the combinations of these axioms that constitute monoidal the-
ories. We propose a general approach to handle monoidal theories that covers
several cases already studied, and furthermore includes some new decidability
and complexity results on homomorphic operators. Monoidal theories have been
extensively studied by F. Baader and W. Nutt [17,4,5] who have provided a com-
plete survey of unification in these theories. More recently, these theories have
been studied in the context of security protocols. S. Delaune et al. have shown

198 V. Cortier and S. Delaune

that deduction is decidable for a subclass of monoidal equational theories, also
considering active attacks [12]. However, they do not address static equivalence.

Studying monoidal theories might seem very restricted since they do not con-
tain the equational theories for classical operators like encryption or signatures.
However, it has been shown in [3] that equational theories can easily be combined
for both deduction and static equivalence, provided the signatures are disjoint.
That is why it is sufficient to focus on the important case of monoidal theories.
As a consequence of our general approach, we recover many existing results and
we obtain several new ones (10 new decidability or complexity results) for static
equivalence or deduction.

Outline of the paper. In Section 2 we recall some basic notation and the central
notion of monoidal theory. Then, in Section 3, we define the two notions of
knowledge we are interested in. In Section 4 we show how to represent terms and
substitutions by means of vectors and matrices over semirings. Then Sections 5
and 6 are devoted to the study of deduction and static equivalence respectively.
In Section 7, we sum up our results and provide new results obtained as a
consequence of our main theorems.

2 Preliminaries

2.1 Terms

A signature Σ consists of a finite set of function symbols, each with an arity.
A function symbol with arity 0 is a constant symbol. We assume given a sig-
nature Σ, an infinite set of names N , and an infinite set of variables X . The
concept of names is borrowed from the applied pi calculus [2] and corresponds
to the notion of free constant used for instance in [9]. Let M be a set of names
and variables, we denote by T (Σ,M) the set of terms over Σ ∪M. T (Σ,N)
is called the set of ground terms while T (Σ,N ∪ X) is simply called the set
of terms. We write fn(M) (resp. fv (M)) for the set of names (resp. variables)
that occur in the term M . A substitution σ is a mapping from a finite subset
of X called its domain and written dom(σ) to T (Σ,N ∪ X). Substitutions are
extended to endomorphisms of T (Σ,X) as usual. We use a postfix notation for
their application. Given two terms N1 and N2, the replacement of N1 by N2,
denoted by [N1 �→ N2], maps every term M to the term M [N1 �→ N2] which is
obtained by replacing all occurrences of N1 in M by N2.

2.2 Monoidal Theories

Equational theories are very useful for modeling the algebraic properties of the
cryptographic primitives. Given a signature Σ, an equational theory E is a set of
equations (i.e., a set of unordered pairs of terms in T (Σ,X)). Given two terms M
and N such that M, N ∈ T (Σ,N∪X), we write M =E N if the equation M = N
is a consequence of E. In this paper, we are particularly interested in the class of
monoidal theories introduced by W. Nutt [17]. It captures many theories with AC
properties, which are known to be difficult to deal with.

Deciding Knowledge in Security Protocols for Monoidal Equational Theories 199

Definition 1 (monoidal theory). A theory E over Σ is called monoidal if it
satisfies the following properties:

1. The signature Σ contains a binary function symbol + and a constant sym-
bol 0, and all other function symbols in Σ are unary.

2. The symbol + is associative-commutative with unit 0. This means that the
equations x + (y + z) = (x + y) + z, x + y = y + x and x + 0 = x are in E.

3. Every unary function symbol h ∈ Σ is an endomorphism for + and 0, i.e.
h(x + y) = h(x) + h(y) and h(0) = 0.

Note that a monoidal theory on a given signature Σ may contain arbitrary
additional equalities over Σ. The only requirement is, that at least the laws
given above hold.

Example 1. Suppose + is a binary function symbol and 0 is nullary. Moreover
assume that the others symbols, i.e −, h, are unary symbols. The equational
theories below are monoidal.

– The theory ACU over Σ = {+, 0} which consists of the axioms of associativity
and commutativity with unit 0.

– The theories ACUI and ACUN (exclusive or) over Σ = {+, 0} which consist
of the axioms (AC) and (U) with in addition Idempotency (I) x + x = x,
or Nilpotency (N) x + x = 0.

– The theory AG (Abelian groups) over Σ = {+,−, 0} which is generated
by the axioms (AC), (U) and x + −(x) = 0 (Inv). Indeed, the equations
−(x + y) = −(x) + −(y) and −0 = 0 are consequences of the others.

– The theories ACUh, ACUIh, ACUNh over Σ = {+, h, 0} and AGh over Σ =
{+,−, h, 0}: these theories correspond to the ones described above extended
by the homomorphism laws (h) for the symbol h, i.e., h(x+ y) = h(x) + h(y)
and h(0) = 0 (if it is not a consequence of the other equations).

Note that there are two homomorphisms in the theory AGh, namely − and h.
These two homomorphisms commute: h(−x) = −(h(x)) is a consequence of the
others. Other examples of monoidal theories can be found in [17].

3 Deduction and Static Equivalence

We now describe our two notions of knowledge for an intruder.

3.1 Assembling Terms into Frames

At a particular point in time, while engaging in one or more sessions of one or
more protocols, an attacker may know a sequence of messages M1, . . . , M�. This
means that he knows each message but he also knows in which order he obtained
the messages. So it is not enough for us to say that the attacker knows the set of
terms {M1, . . . , M�} since the information about the order is lost. Furthermore,
we should distinguish those names that the attacker knows from those that were

200 V. Cortier and S. Delaune

freshly generated by others and which are a priori secret from the attacker; both
kinds of names may appear in the terms. In the applied pi calculus [2], such a
sequence of messages is organized into a frame φ = νñ.σ, where ñ is a finite set
of restricted names (intuitively the fresh ones), and σ is a substitution of the
form:

{M1/x1 , . . . ,
M�/x�

} with dom(σ) = {x1, . . . , x�}.
The variables enable us to refer to each Mi and we always assume that the
terms Mi are ground. The names ñ are bound to φ and can be renamed. Moreover
names that do not appear in the names of φ can be added or removed from ñ. In
particular, we can always assume that two frames share the same set of restricted
names.

3.2 Deduction

Given a frame φ that represents the information available to an attacker, we may
ask whether a given ground term M may be deduced from φ. Given a theory E
over Σ, this relation is written φ �E M and is axiomatized by the rules:

if ∃x ∈ dom(σ) s.t. xσ = M
νñ.σ �E M

s ∈ N � ñ
νñ.σ �E s

φ �E M1 . . . φ �E M�
f ∈ Σ

φ �E f(M1, . . . , M�)

φ �E M
M =E M ′

φ �E M ′

Intuitively, the deducible messages are the messages of φ and the names
that are not protected in φ, closed by equality in E and closed by application
of function symbols. Since the deducible messages depend on the underlying
equational theory, we write �E and simply � when E is clear from the con-
text. When νñ.σ �E M , any occurrence of names from ñ in M is bound by νñ.
So νñ.σ �E M could be formally written νñ.(σ �E M). It is easy to prove by
induction the following characterization of deduction.

Lemma 1 (characterization of deduction). Let M be a ground term and
νñ.σ be a frame. Then νñ.σ �E M if and only if there exists ζ ∈ T (Σ,N ∪ X)
such that fn(ζ)∩ ñ = ∅ and ζσ =E M . Such a term ζ is a recipe of the term M .

Example 2. Consider Σ = {+, 0} and the equational theory ACUN given in
Example 1. Let φ = νn1, n2, n3.{n1+n2+n3/x1 ,

n1+n2/x2,
n2+n3/x3}. We have that

φ � n2 + n4. Indeed x1 + x2 + x3 + n4 is a recipe of the term n2 + n4.

Deduction problem for the equational theory E built over Σ.

Entries : A frame φ and a term M (both built over Σ)
Question: φ �E M?

Deciding Knowledge in Security Protocols for Monoidal Equational Theories 201

3.3 Static Equivalence

Deduction does not always suffice for expressing the knowledge of an attacker.
Sometimes, the attacker can deduce exactly the same set of terms from two
different frames but he could still be able to tell the difference between these two
frames. Static equivalence is particularly important when defining for example
the confidentiality of a vote or anonymity-like properties.

Definition 2 (static equivalence). Let φ be a frame and M ,N be two terms.
We say that M and N are equal in φ under the theory E, and write (M =E N)φ,
if there exists ñ such that φ = νñ.σ, (fn(M) ∪ fn(N)) ∩ ñ = ∅ and Mσ =E Nσ.
We say that two frames φ1 = νñ.σ1 and φ2 = νñ.σ2 are statically equivalent
w.r.t. E, and write φ1 ≈E φ2 when dom(φ1) = dom(φ2), and

∀M, N ∈ T (Σ,N ∪ X) we have that (M =E N)φ1 ⇔ (M =E N)φ2.

Example 3. Consider the equational theory ACU given in Example 1 and let
φ = νn1, n2, n3.{3n1+2n2+3n3/x1,

n2+3n3/x2 ,
3n2+n3/x3 ,

3n1+n2+4n3/x4} where the
notation kn with k ∈ N denotes n + · · · + n (k times). Let M = 2x1 + x2 and
N = x3 + 2x4. We have that (M =E N)φ.

Static equivalence problem for the equational theory E built over Σ.
Entries : Two frames φ1 and φ2 (both built over Σ)
Question: φ1 ≈E φ2?

In what follows, we consider decidability and complexity issues for deduction
and static equivalence for monoidal theories.

4 Monoidal Theories

It has been shown that the deduction problem for ACU amounts to solving linear
equations over the semiring N whereas for AGh this problem amounts to solving
linear equations over the ring Z[h], the ring of polynomials in one indeterminate
with coefficients over Z [11]. Some results of this kind also exist in the case of
static equivalence. For instance, static equivalence has been shown decidable for
the equational theories ACUN and AC [1]. By using an algebraic characterization
of the problem, we will generalize these results by associating to every monoidal
theory E a semiring SE, that will be used to solve the deduction and the static
equivalence problems in E.

4.1 Monoidal Theories Define Semirings

Monoidal theories have an algebraic structure close to rings except that elements
might not have an inverse. Such a structure is called a semiring.

Definition 3 (semiring). A semiring is a set S (called the universe of the
semiring) with distinct elements 0 and 1 that is equipped with two binary opera-
tions + and · such that (S, +, 0) is a commutative monoid, (S, ·, 1) is a monoid,
and the following identities hold for all α, β, γ ∈ S:

202 V. Cortier and S. Delaune

– (α + β) · γ = α · γ + β · γ (right distributivity)
– α · (β + γ) = α · β + α · γ (left distributivity)
– 0 · α = α · 0 = 0 (zero laws).

We call the binary operations + and · respectively the addition and the multi-
plication of the semiring. The elements 0 and 1 are called respectively zero and
unit. A semiring is commutative if its multiplication is commutative. Semirings
are different from rings in that they need not be groups with respect to addition.
Every ring is a semiring. In a ring, we will denote by −α the additive inverse
of α.

It has been shown in [17] that for any monoidal theory E there exists a cor-
responding semiring SE. We can rephrase the definition of SE as follows. Let 1
be a free constant (1 ∈ Σ), the universe of SE is T (Σ, {1})/E, that is the set
of equivalence classes of terms built over Σ and 1 under equivalence by the
equational axioms E. The constant 0 and the sum + of the semiring are defined
as in the algebra T (Σ, {1})/E. The multiplication in the semiring is defined
by M · T := M [1 �→ T]. Recall that M [1 �→ T] denotes the term M where any
occurrence of 1 has been replaced by T . As a consequence, 1 acts as a neutral ele-
ment of multiplication in SE. This is the reason why we call this new generator 1
instead of, say, x, as it is often done in the literature. It can be shown [17] that SE

is a ring if, and only if, E is a group theory, and also that SE is commutative if,
and only if, E has commuting homomorphisms, i.e., h1(h2(x)) =E h2(h1(x)) for
any two homomorphisms h1 and h2. For instance, we have that

1. The semiring SACU is isomorphic to N, the semiring of natural numbers.
2. The semiring SACUN consists of the two elements 0 and 1 and we have 0+1 =

1 + 0 = 1, 0 + 0 = 1 + 1 = 0, 0 · 0 = 1 · 0 = 0 · 1 = 0, and 1 · 1 = 1. Hence,
SACUN is isomorphic to the commutative ring (field) Z/2Z.

3. The semiring SAGh is isomorphic to Z[h] which is a commutative ring.

Let b be a free symbol (name or variable). We denote by ψb : T (Σ, {b}) → SE

the function which maps any term M ∈ T (Σ, {b}) to M [b �→ 1] considered as
an element of the semiring SE.

Example 4. Let E = ACUN and t = b + b + b. We have ψb(t) = 1 + 1 + 1 = 1.

4.2 Representation of Terms and Frames

A base B is a sequence [b1, . . . , bm] of free symbols (names or variables). We say
that B is a base of names when b1, . . . , bm are names.

Definition 4 (decomposable in a base). A term M ∈ T (Σ,N ∪ X) is de-
composable in B if fn(M) ∪ fv(M) ⊆ B. Let φ = νñ.{M1/x1 , . . . ,

M�/x�
} be a

frame. We say that φ is decomposable in B if each Mi is decomposable in B.

Let B = [b1, . . . , bm]. We generalize the construction of the previous section and
obtain a function which assigns to any term in T (Σ,B) a tuple in SmE , that is
a tuple of m elements over SE. The function ψB : T (Σ, {b1, . . . , bm}) → SmE is

Deciding Knowledge in Security Protocols for Monoidal Equational Theories 203

defined as follows: Any term M ∈ T (Σ, {b1, . . . , bm}) has a unique decomposi-
tion M1, . . . , Mm such that M = M1 + . . . + Mm with Mi ∈ T (Σ, {bi}) [17]. We
define ψB(M) = (ψb1(M1), . . . , ψbm(Mm)). Given a vector X ∈ SmE of size m,
ψ−1
B (X) is a term M ∈ T (Σ,B) such that ψB(M) = X . This term is uniquely

defined modulo E.

Example 5. Taking into account that the semiring SAGh is (isomorphic to) Z[h],
we have that ψ[b1,b2,b3](b1 + b1 + h(b3) + h(h(h(b3)))) = (2, 0, h + h3). Indeed, we
have that ψb1(b1 + b1) = 2, ψb2(0) = 0 and ψb3(h(b3) + h(h(h(b3)))) = h + h3.

A term can be uniquely decomposed on a base B. This can be extended to asso-
ciate a (unique) matrix to a frame. Let φ = νñ.σ be a frame and B = [b1, . . . , bm]
be a base of names in which φ is decomposable. Let σ = {M1/x1 . . .M�/x�

}. We
denote by ψB(φ) the matrix of size � × m (� rows and m columns) defined by
(ψB(M1); . . . ; ψB(M�)). This matrix is the decomposition of φ in B.

Example 6. Consider the frame φ given in Example 3 and let B = [n1, n2, n3].
We have that

ψB(φ) =

⎛
⎜⎜⎝

3 2 3
0 1 3
0 3 1
3 1 4

⎞
⎟⎟⎠ since

– ψB(3n1 + 2n2 + 3n3) = (3, 2, 3),
– ψB(n2 + 3n3) = (0, 1, 3),
– ψB(3n2 + n3) = (0, 3, 1), and
– ψB(3n1 + n2 + 4n3) = (3, 1, 4).

Applying a recipe to a frame is equivalent to multiplying the corresponding
matrices.

Lemma 2. Let φ = νñ.σ be a frame and ζ be a term in T (Σ, dom(φ)). Let B
be a base of names in which we can decompose φ. We have that

ψB(ζσ) = ψdom(φ)(ζ) · ψB(φ).

Note that to apply the equation stated in Lemma 2, the recipe ζ has to be
built without names. To ensure that such kind of recipes always exist, we will
work with frames saturated w.r.t. B (base of names in which the frames are
decomposable).

Definition 5 (frame saturated w.r.t. B). Let φ = νñ.σ be a frame and B
be a base of names [b1, . . . , bm] in which φ is decomposable. We say that φ is
saturated w.r.t. B if for each bi ∈ B such that bi ∈ ñ we have that bi = xσ for
some x ∈ dom(φ).

Given a frame φ = νñ.{M1/x1 , . . . ,
M�/x�

} and a base of names B = [b1, . . . , bk]
in which φ is decomposable, we denote by φ

B
the frame defined as follows:

φ
B

= νñ.{M1/x1, . . . ,
M�/x�

, bi1 /y1, . . . ,
bip /yp}

where bi1 , . . . , bip is a subsequence of B such that bij ∈ ñ and bij = xσ for
every x ∈ dom(φ). The variables y1, . . . yp are fresh, which means that they do
not appear in dom(φ). Note that the resulting frame φ

B
is saturated w.r.t. B.

204 V. Cortier and S. Delaune

Example 7. Let φ be the frame given in Example 3. Let B = [n1, n2, n3]. We
have that φ is decomposable on B and also that φ is saturated w.r.t. B. How-
ever, note that φ is not saturated w.r.t. B′ = [n1, n2, n3, n4]. We have that

φ
B′

= νn1, n2, n3.{3n1+2n2+3n3/x1 ,
n2+3n3/x2 ,

3n2+n3/x3,
3n1+n2+4n3/x4,

n4/y1}.

5 Deduction

We show that solving a deduction problem can be reduced to solving a linear
system of equations in the corresponding semiring.

Theorem 1. Let E be a monoidal theory and SE be its associated semiring.
Deduction in E is reducible in polynomial time to the following problem:
Entries: A matrix A over SE of size � × m and a vector b over SE of size �
Question: Does there exists X (a vector over SE of size �) such that X · A = b?

Note that when SE is commutative, this problem is equivalent to the problem of
deciding whether AT · Y = bT, i.e., whether bT is in the image of AT where MT

is the transpose of M . Before proving the reduction we need to establish that
we can restrict our attention to saturated frames. Moreover, for such frames, it
is sufficient to consider recipes without names, i.e., such that fn(ζ) = ∅.

Lemma 3. Let φ = νñ.σ be a frame and M be a ground term. Let B be a base
of names in which φ and M are decomposable. We have that φ �E M if and
only if φ

B �E M . Moreover when φ
B �E M there exists a recipe ζ of M such

that fn(ζ) = ∅.

Reduction. Let φ = νñ.σ be a frame and M be a ground term. Let B be a
base of names in which φ and M are decomposable. We will also assume w.l.o.g.
that φ is saturated w.r.t. B. Let A = ψB(φ), matrix of size � × m over SE,
and b = ψB(M), vector of size m over SE.

Proof. (of Theorem 1) The construction described above is such that X · A = b
has a solution over SE if and only if φ �E M .
(⇒) We know that there exists X ∈ S�E such that X · A = b. Consider the recipe
ζ = ψ−1

dom(φ)(X). By construction, we have that fn(ζ) ∩ ñ = ∅. It remains to
show that ζσ =E M . For this, we establish that ψB(ζσ) = ψB(M). Thanks to
Lemma 2, we have that ψB(ζσ) = ψdom(φ)(ζ) · ψB(φ). Hence we deduce that
ψB(ζσ) = X · A = b = ψB(M). Hence the result.
(⇐) Assume that φ �E M . Thanks to Lemma 3 and by the fact that φ is
saturated w.r.t. B, we know that there exists ζ ∈ T (Σ, dom(φ)) such that ζσ =E

M . Let Y = ψdom(φ)(ζ). It remains to establish that Y ·A = b. Since ζσ =E M ,
we have ψB(ζσ) = ψB(M). By Lemma 2, we have ψdom(φ)(ζ) · ψB(φ) = ψB(M),
i.e., Y · A = b witnessing the fact that X · A = b has a solution over SE. �

Deciding Knowledge in Security Protocols for Monoidal Equational Theories 205

Example 8. Consider the theory ACUNh and the term M = n1 + h(h(n1)). Let
φ = νn1, n2.{n1+h(n1)+h(h(n1))/x1,

n2+h(h(n1))/x2 ,
h(n2)+h(h(n1))/x3}. We have:

A =
(

1 + h + h2 h2 h2

0 1 h

)
and b =

(
1 + h2

0

)

The equation X · A = b has a solution over Z/2Z[h] : (1 + h, h, 1). The term M
is deducible from φ by using the recipe x1 + h(x1) + h(x2) + x3.

As a consequence, decidability/complexity results for deduction can be deduced
from decidability/complexity results for solving linear system of equations (see
Section 7).

6 Static Equivalence

We show that deciding whether two frames are equivalent can be reduced to
deciding whether two matrices satisfy the same set of equalities.

Theorem 2. Let E be a monoidal theory and SE be its associated semiring.
Static equivalence in E is reducible in polynomial time to the following problem:
Entries: Two matrices A1 and A2 over SE of size � × m
Question: Does the following equality holds?

{(X, Y) ∈ S�E × S�E | X · A1 = Y · A1} = {(X, Y) ∈ S�E × S�E | X · A2 = Y · A2}

Similarly to deduction, we first show that we can restrict our attention to sat-
urated frames. Moreover, we show that it is sufficient to consider recipes, i.e.,
tests (M, N), without names.

Lemma 4. Let φ1 = νñ.σ1, φ2 = νñ.σ2. and B be a base of names in which φ1

and φ2 are decomposable. We have that φ1 ≈E φ2 if and only if φ1
B ≈E φ2

B
.

Moreover, if φ1
B ≈E φ2

B
then there exist M, N ∈ T (Σ, dom(φ1

B
)) such that

(M =E N)φ1
B ⇔ (M =E N)φ2

B
.

Reduction. Let φ1 = νñ.σ1 and φ2 = νñ.σ2 be two frames having the same
domain. Let B be a base of names in which the two frames are decompos-
able. We assume w.l.o.g. that φ1 and φ2 are saturated w.r.t. B. Let m = |B|.
Let A1 = ψB(φ1) and A2 = ψB(φ2), two matrices of size � × m, over SE.

Proof. (of Theorem 2) The construction is such that φ1 ≈E φ2 if and only if

{(X, Y) ∈ S�E × S�E | X · A1 = Y · A1} = {(X, Y) ∈ S�E × S�E | X · A2 = Y · A2}.

(⇒) Assume by contradiction that there exists (XM , XN) such that XM · A1 =
XN ·A1 and XM ·A2 = XN ·A2 (or the converse). Let M = ψ−1

dom(φ1)
(XM) and

N = ψ−1
dom(φ1)

(XN). We have that

206 V. Cortier and S. Delaune

– (M =E N)φ1. For this, it is sufficient to show that ψB(Mσ1) = ψB(Nσ1),
i.e., ψdom(φ1)(M) ·ψB(φ1) = ψdom(φ1)(N) ·ψB(φ1) thanks to Lemma 2. Now
to conclude, it is sufficient to notice that we have XM = ψdom(φ1)(M),
XN = ψdom(φ1)(N) and A1 = ψB(φ1) and to rely on the hypothesis.

– (M =E N)φ2 can be shown similarly.

(⇐) Assume that φ1 ≈E φ2. We have that there exists a test (M, N) such that
(M =E N)φ1 and (M =E N)φ2 (or the converse). Thanks to Lemma 4 and the
fact that the frames are saturated, we can assume that M, N ∈ T (Σ, dom(φ1)).
Let XM = ψdom(φ1)(M) and XN = ψdom(φ1)(N). We have

– XM · A1 = XN · A1. We have Mσ1 =E Nσ1, hence ψB(Mσ1) = ψB(Nσ1).
By Lemma 2, we have that ψdom(φ1)(M) · ψB(φ1) = ψdom(φ1)(M) · ψB(φ1),
i.e., XM · A1 = XN · A1.

– X · A2 = Y · A2 can be established in a similar way. �

Going further. Thanks to Theorem 2, we give a way to decide static equivalence
in monoidal equational theories provided we can decide whether two sets of linear
equations over SE have the same set of solutions. Actually, when SE is a ring
or when we can extend the semiring SE into a ring RE, the static equivalence
problem is equivalent to the problem of deciding whether the following equality
holds.

{Z ∈ R�
E | Z · A1 = 0} = {Z ∈ R�

E | Z · A2 = 0}
WhenRE is commutative, it is equivalent to deciding whether Ker(A1) = Ker(A2),
where Ker(M) denotes the kernel of the matrices M , i.e., the set {X | M ·X = 0}.
The ring associated to a given monoidal theory E, denoted by RE, is equal to SE

when E is a group theory. Otherwise, it might be possible to extend the equational
theory E with a new unary symbol − and the law x + −(x) = 0 in order to obtain
a theory E′ that is consistent with E, i.e., for all u, v ∈ SE such that u =E′ v, we
have also that u =E v. In such a case, the ring RE is the semiring SE′ associated
to E′ as explained in Section 4.1.

Example 9. We have seen that the semiring associated to AG is isomorphic to Z

which is a commutative ring. Hence, we have that RE is isomorphic to Z. The
associated semiring to the monoidal equational theory ACU is isomorphic to N

whereas its associated ring is Z.

Note that the transformation described above does not allow us to associate a
ring to any semiring. For instance, if we consider the theory ACUI and the the-
ory E′ obtained by the transformation described above, we have that
0 =E′ (1 + 1) + −(1) =E′ 1 + (1 + −(1)) =E′ 1 whereas this equality does not
hold in ACUI.

7 Applications and Discussion

In this section we show that several interesting monoidal equational theories
induce a ring or a semiring for which solving linear systems or checking for

Deciding Knowledge in Security Protocols for Monoidal Equational Theories 207

equalities of sets of solutions of linear systems are decidable. A summary is given
in Figure 1. Note that any of these decidability results for deduction and static
equivalence can be combined with any existing ones provided the signatures
of the equational theories are disjoint [3]. For example, let E be a monoidal
equational theory for which deduction and static equivalence are decidable (e.g.,
ACU, ACUNh, . . .) then deduction and static equivalence are also decidable for
the theory Eenc ∪ E where Eenc is defined by the following equations:

dec(enc(x, y), y) = x, proj1(〈x, y〉) = x and proj2(〈x, y〉) = y.

Theory ACU. This equational theory is the simplest monoidal theory. The
semiring corresponding to this theory is N whereas its associated ring is Z. This
equational theory has been particularly studied. Since the problem of solving
linear equations over N is strongly NP-complete, we obtain that deduction is
a NP-complete problem. The problem of static equivalence for this theory has
been shown decidable in [1]. Actually thanks to the algebraic characterization
given in this paper, this problem can be solved in polynomial time [20].

At first sight, it might seem surprising since it has been shown [1] that deduc-
tion in a given theory E can be reduced in polynomial time to static equivalence
in E. However, this reduction required the presence of a free function symbol and
such a function symbol is not available in the theory ACU. Hence, the polynomial
reduction provided in [1] does not apply in this setting.

Theories ACUI and ACUN (Exclusive Or). The semirings corresponding to
these equational theories are respectively the Boolean semiring B, which is finite,
and the finite field Z/2Z. The theory ACUN has already been studied in terms of
deduction [10,8] and static equivalence [1]. Deduction and static equivalence are
both decidable in polynomial time. As far as we know the theory ACUI has only
been studied in term of deduction [12]. Actually, since its associated semiring is
finite, we easily deduce that deduction and static equivalence are decidable.

Theory AG (Abelian Groups). The semiring associated to this equational
theory is in fact a ring, namely the ring Z of all integers. There exist several
algorithms to compute solutions of linear equations over Z and to compute a
base of the set of solutions (see for instance [20]). Hence, we easily deduce that
both problems are decidable in PTIME. Deduction for this theory has already
been studied in [10] and [7].

Theories ACUh, ACUNh and AGh. The semiring associated to ACUh is N[h],
the semiring of polynomial in one indeterminate over N whereas the ring associ-
ated to ACUh is Z[h]. For the theory ACUNh (resp. AGh) the associated semiring
is Z/2Z[h] (resp. Z[h]). Deduction for these three equational theories has already
been studied in [13,11]. However, results obtained on static equivalence are new.

1. ACUh and AGh: Deciding static equivalence for both these theories is re-
ducible to the problem of deciding whether Ker(A) = Ker(B) where A and B

208 V. Cortier and S. Delaune

are matrices built over N[h] in the case of ACUh and Z[h] in the case of AGh.
This problem has been solved by F. Baader to obtain a unification algorithm
for the theory AGh (see [4]). This is done by the help of Gröbner Base meth-
ods in a more general settings. Actually, he provides an algorithm even in
the case of several commutating homomorphisms.

2. ACUNh: Deciding static equivalence in ACUNh is reducible to the problem
of deciding whether Ker(A) = Ker(B) where A and B are matrices built
over Z/2Z[h]. This is achieved in [14] with an automata-theoretic approach.

Theory ACUIh. The semiring associated to ACUIh is B[h]. Deduction for this
theory has never been studied but is clearly decidable. Indeed, to find a solution
to A ·X = b, it is easy to see that each component of a solution to A ·X = b has
a degree smaller than the degree of b. Hence, the question of deciding whether
there exists X such that A · X = b can be reduced to solving a system of linear
equations over B. Theorem 2 does not help us to provide an algorithm to solve
static equivalence. Note also that we cannot reduce the problem to the problem
of deciding whether Ker(A) = Ker(B) since, as for ACUI, we are not able to
associate a ring to this theory.

Adding more equations. A monoidal theory on a signature Σ may contain
arbitrary additional equalities over Σ. Hence, the techniques developed in Sec-
tion 5 and 6 can be applied to many different theories.

Example 10. Consider the theory E1 over Σ1 = {+, 0,−, h} which consists of the
equalities of AGh and the additional equality h(h(x)) = x which states that h is
an involution. The theory E1 is a monoidal theory and its associated semiring SE1

that is actually a ring is isomorphic to Z[h]/(h2−1), i.e., the ring Z[h] quotiented
by the ideal generated by the polynomial h2 − 1.

We can also consider more complex equational theories by simply associating
each equation to a polynomial. This is illustrated in the next example.

Example 11. Consider the signature Σ2 = {+, 0,−, h1, h2} and the theory E2

made up of the axioms of AG extending by h1(h2(x)) = h2(h1(x)) and the fol-
lowing laws:

h1(x + y) = h1(x) + h1(y) h1(0) = 0 h1(h1(h2(x))) + h2(h2(x)) = 0
h2(x + y) = h2(x) + h2(y) h2(0) = 0 h1(x) + h1(h2(h2(x))) = 0

The theory E2 is a monoidal theory and it is easy to see that its associated semir-
ing SE2 is isomorphic to Z[h1, h2]/(h2

1h2+h2
2,h1+h1h2

2)
, i.e., the ring Z[h] quotiented

by the ideal generated by the polynomials h2
1h2 + h2

2 and h1 + h1h
2
2.

Thus decidability of deduction and static equivalence can be reduced to solving
linear equations in the corresponding semiring and deciding the equalities of ker-
nels of matrices in the corresponding ring. Hence, we can reduced our problems
to rather classical problems of Algebra, which can often be solved using Gröbner
basis for example.

Deciding Knowledge in Security Protocols for Monoidal Equational Theories 209

Theory E SE RE Deduction Static Equivalence

ACU N Z NP-complete decidable [1], PTIME (new)

ACUI B − decidable [12] decidable (new)

ACUN Z/2Z PTIME [8] decidable [1], PTIME (new)

AG Z PTIME [7] PTIME (new)

ACUh N[h] Z[h] NP-complete [13] decidable (new)

ACUIh B[h] − decidable (new) ?

ACUNh Z/2Z[h] PTIME [11] decidable (new)

AGh Z[h] PTIME [11] decidable (new)

AGh1 . . . hn Z[h1, . . . , hn] decidable (new) decidable (new)

Fig. 1. Summary of the results

8 Conclusion

We have proposed a general schema for deciding deduction and static equivalence
algorithms. This schema has to be filled with procedures for linear equations in
order to yield complete algorithms. Such algorithms strongly depend on the
structure of the semiring. In this paper, we have mentioned and used several
existing results of Algebra. But Algebra can still provide useful techniques that
allow us to deduce some new results. Moreover, efficient existing tools for solving
algebraic problems can also be used to implement our algorithms.

Acknowledgment. We wish to thank Jean-Charles Faugère, Daniel Lazard
and Paul Zimmermann for fruitful discussions.

References

1. Abadi, M., Cortier, V.: Deciding knowledge in security protocols under equational
theories. Theoretical Computer Science 387(1-2), 2–32 (2006)

2. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication.
In: POPL 2001. Proc. 28th ACM Symposium on Principles of Programming Lan-
guages, London (UK), pp. 104–115. ACM Press, New York (2001)

3. Arnaud, M., Cortier, V., Delaune, S.: Combining algorithms for deciding knowledge
in security protocols. In: Konev, B., Wolter, F. (eds.) FroCoS 2007. LNCS (LNAI),
vol. 4720, pp. 103–117. Springer, Heidelberg (2007)

4. Baader, F.: Unification in commutative theories, Hilbert’s basis theorem, and
Gröbner bases. Journal of the ACM 40(3), 477–503 (1993)

5. Baader, F., Nutt, W.: Combination problems for commutative/ monoidal theories
or How algebra can help in equational unification. Applicable Algebra Engineering
Communication and Computing 7(4), 309–337 (1996)

210 V. Cortier and S. Delaune

6. Baudet, M., Cortier, V., Kremer, S.: Computationally sound implementations of
equational theories against passive adversaries. In: Caires, L., Italiano, G.F., Mon-
teiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp.
652–663. Springer, Heidelberg (2005)

7. Chevalier, Y., Küsters, R., Rusinowitch, M., Turuani, M.: Deciding the security
of protocols with Diffie-Hellman exponentiation and product in exponents. In:
Pandya, P.K., Radhakrishnan, J. (eds.) FST TCS 2003. LNCS, vol. 2914, pp. 124–
135. Springer, Heidelberg (2003)

8. Chevalier, Y., Küsters, R., Rusinowitch, M., Turuani, M.: An NP decision proce-
dure for protocol insecurity with XOR. In: LICS 2003. Proc. 18th IEEE Symposium
on Logic in Computer Science, Ottawa (Canada), pp. 261–270. IEEE Computer
Society Press, Los Alamitos (2003)

9. Chevalier, Y., Rusinowitch, M.: Combining intruder theories. In: Caires, L., Ital-
iano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS,
vol. 3580, pp. 639–651. Springer, Heidelberg (2005)

10. Comon-Lundh, H., Shmatikov, V.: Intruder deductions, constraint solving and
insecurity decision in presence of exclusive or. In: LICS 2003. Proc. 18th IEEE
Symposium on Logic in Computer Science, Ottawa (Canada), pp. 271–280. IEEE
Computer Society Press, Los Alamitos (2003)

11. Delaune, S.: Easy intruder deduction problems with homomorphisms. Information
Processing Letters 97(6), 213–218 (2006)

12. Delaune, S., Lafourcade, P., Lugiez, D., Treinen, R.: Symbolic protocol analysis for
monoidal equational theories. Information and Computation (to appear)

13. Lafourcade, P., Lugiez, D., Treinen, R.: Intruder deduction for AC-like equational
theories with homomorphisms. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp.
308–322. Springer, Heidelberg (2005)

14. Lafourcade, P., Lugiez, D., Treinen, R.: ACUNh: Unification and disunification
using automata theory. In: UNIF 2006. Proc. 20th Int. Workshop on Unification,
Seattle (Washington, USA), pp. 6–20 (2006)

15. Lowe, G.: Breaking and fixing the Needham-Schroeder public-key protocol using
FDR. In: Margaria, T., Steffen, B. (eds.) TACAS 1996. LNCS, vol. 1055, Springer,
Heidelberg (1996)

16. Millen, J., Shmatikov, V.: Constraint solving for bounded-process cryptographic
protocol analysis. In: CCS 2001. Proc. 8th ACM Conference on Computer and
Communications Security, ACM Press, New York (2001)

17. Nutt, W.: Unification in monoidal theories. In: Stickel, M.E. (ed.) 10th Interna-
tional Conference on Automated Deduction. LNCS, vol. 449, pp. 618–632. Springer,
Heidelberg (1990)

18. Paulson, L.C.: The inductive approach to verifying cryptographic protocols. Jour-
nal of Computer Security 6(1-2), 85–128 (1998)

19. Rusinowitch, M., Turuani, M.: Protocol insecurity with a finite number of sessions,
composed keys is NP-complete. Theoretical Computer Science 299(1-3), 451–475
(2003)

20. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Chichester (1986)

Mechanized Verification of CPS Transformations

Zaynah Dargaye and Xavier Leroy

INRIA Paris-Rocquencourt
B.P. 105, 78153 Le Chesnay, France

Zaynah.Dargaye@inria.fr, Xavier.Leroy@inria.fr

Abstract. Transformation to continuation-passing style (CPS) is
often performed by optimizing compilers for functional programming
languages. As part of the development and proof of correctness of a
compiler for the mini-ML functional language, we have mechanically
verified the correctness of two CPS transformations for a call-by-value
λ-calculus with n-ary functions, recursive functions, data types and
pattern-matching. The transformations generalize Plotkin’s original
call-by-value transformation and Danvy and Nielsen’s optimized trans-
formation, respectively. We used the Coq proof assistant to formalize
the transformations and conduct and check the proofs. Originalities of
this work include the use of big-step operational semantics to avoid
difficulties with administrative redexes, and of two-sorted de Bruijn
indices to avoid difficulties with α-conversion.

1 Introduction

Continuation-passing style (CPS) is a programming style in the λ-calculus and
related functional languages where a function never returns directly the result
of its computations, but instead passes it to another function, the continuation,
received as an extra argument and representing the meaning of the rest of the
program. For instance, the successor function, written λx. x + 1 in direct style,
becomes λx.λk. k(x+1) in continuation-passing style, where k is the continuation
parameter. Programs can be systematically translated to semantically equivalent
programs in CPS using a variety of CPS transformation algorithms (see Sect. 2
for examples).

CPS and the related CPS transformations play an important role in three
domains relevant to programming languages: semantics, programming, and com-
pilation.

As a semantic device, CPS makes it possible to use the pure λ-calculus (with-
out a fixed evaluation strategy) as a meta-language to describe faithfully the
semantics of functional or imperative programming languages. After translation
to CPS, the evaluation strategy of these languages is encoded in the structure of
the resulting λ-term. Additionally, CPS makes it easy to give formal semantics
to advanced control structures such as exceptions, backtracking, coroutines and
control operators.

As a programming device, CPS enables functional programmers to define
advanced, application-specific control structures such as coroutines or non-blind

N. Dershowitz and A. Voronkov (Eds.): LPAR 2007, LNAI 4790, pp. 211–225, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

212 Z. Dargaye and X. Leroy

backtracking. These control structures need not be supported natively by the
programming language.

As a compilation device, programs in CPS lend themselves to aggressive op-
timizations that are significantly harder to perform on direct-style programs.
CPS has several features that facilitate optimizations: all intermediate results
are named, and compile-time β-reductions are always semantically valid. Several
optimizing compilers for functional languages, such as Orbit Scheme [15], Standard
ML of New Jersey [2], and SML.NET [13], use CPS as an intermediate language.

In this paper, we describe the formal verification, using the Coq proof assistant
[7,4], of the correctness (semantic preservation) of two CPS transformations for
a realistic, pure, call-by-value functional language. This language features n-ary
functions, recursive functions, and ML/Haskell-style data types and pattern-
matching. The two CPS transformations are extensions of Plotkin’s original call-
by-value transformation [22] and Danvy and Nielsen’s optimized transformation
[8,9], respectively.

This work is part of a larger project that aims at mechanically verifying the
correctness of a whole compiler for mini-ML, a pure, call-by-value functional
language rich enough to be used as a target language for automatic extraction
of functional programs from Coq specifications [19]. In a context where formal
methods are increasingly being applied to critical software, it becomes important
to guarantee that compilers preserve the semantics of the programs they compile:
a bug in a compiler could result in incorrect executable code being produced from
correct, formally verified source programs. One way to obtain this guarantee is
to formally verify the compiler itself, using theorem provers to prove that it
is correct, i.e. preserves the semantics of source programs. Several non-trivial
compilers have been formally verified along these lines, for assembly languages
[21], imperative languages [16,18,5], object-oriented languages [14] and functional
languages [6]. The work presented here is part of the development and verification
of a front-end compiler from mini-ML to the Cminor intermediate language
[18]. Our long-term plan is to combine this front-end with the verified back-end
for Cminor described in [18] and with a future verification of the extraction
mechanism from Coq functional specifications to mini-ML to obtain a trusted
execution path for programs directly written in the Coq specification language.

Related Work

Many on-paper proofs of correctness for various CPS transformations have been
published already, starting with Plotkin’s seminal article [22]. We are aware of
three earlier on-machine formalizations and correctness proofs for CPS transfor-
mations: one by Minamide and Okuma [20], using Isabelle/HOL; one by Tian
[24], using Twelf; and one by Chlipala [6], using Coq.

A recurring difficulty in mechanizing programming language semantics, type
systems and program transformations is the handling of binders and α-conversion
(the fact that λx.x and λy.y are equivalent terms). Most existing proof assistants
provide no native support for working with terms modulo α-conversion like we rou-
tinely do on paper. (The only exception is Urban’s Isabelle/HOL implementation

Mechanized Verification of CPS Transformations 213

of nominal logic [25].) The POPLmark challenge [3] gives an excellent summary
of the difficulties this raises when mechanizing properties of programming lan-
guages and of the known techniques to circumvent these difficulties: de Bruijn
indices, higher-order abstract syntax, locally nameless representations, . . . In
the case of CPS transformations, Minamide and Okuma use named variables
with no α-conversion for Plotkin’s naive CPS transformation, and with explicit
renamings for Danvy and Nielsen’s optimized transformation. Tian uses higher-
order abstract syntax to reason about Danvy and Nielsen’s CPS transformation.
Like Chlipala, we use de Bruijn indices [11] to provide unique representatives for
λ-terms. We avoid some of the difficulties associated with standard de Bruijn
indices by using two kinds of de Bruijn indices, independently numbered: one
for source variables and one for continuation variables introduced by the CPS
transformation.

Earlier work also differs on the kind of operational semantics used to prove
the correctness of CPS transformations. Following Plotkin’s original proof, Mi-
namide and Okuma use small-step semantics, while Tian uses a combination of
big-step semantics and small-step semantics for the source and target languages,
respectively, and Chlipala uses a form of denotational semantics directed by the
types of the simply-typed λ-calculus. We use (untyped) big-step semantics for
the source and target languages. A strength of big-step semantics is that it avoids
the well-known difficulties caused by administrative redexes in Plotkin’s origi-
nal, small-step proof of CPS transformations. A weakness of big-step semantics
is that it captures only terminating executions, and therefore cannot be used
to prove semantic preservation for diverging source programs. This limitation
is unproblematic in our intended usage scenario, since programs extracted from
Coq functional specifications are strongly normalizing.

Finally, earlier mechanizations handle only the pure λ-calculus, while we cover
a larger, more realistic functional language including n-ary functions, recursive
functions, data types and pattern-matching. These extensions are conceptually
easy but technically not entirely obvious. Mechanizing the correctness proof is
especially useful to ensure that we do not overlook the small difficulties raised
by these extensions.

Outline

The remainder of this paper is organized as follows. Section 2 reviews some of the
known CPS transformations. Section 3 defines the source and target languages
for our transformations. We define and outline the correctness proof of two CPS
transformations in Sect. 4 and 5. Section 6 gives some practical information on
the Coq mechanization of these results. Concluding remarks are given in Sect. 7.

2 Examples of CPS Transformations

We start by reviewing some of the many known variants of CPS transformation
for call-by-value λ-calculus. One of the earliest and simplest transformations is
that of Plotkin [22]:

214 Z. Dargaye and X. Leroy

[[x]]1 = λk. k x

[[λx.M]]1 = λk. k (λx. [[M]]1)
[[M N]]1 = λk. [[M]]1 (λm. [[N]]1 (λn. m n k))

Each source term is transformed into an abstraction λk . . . over the continua-
tion for this term. A weakness of this transformation is that it generates many
administrative redexes, that is, β-redexes that correspond to no redex in the orig-
inal source term. For instance, the translation of x y contains four such redexes,
outlined below:

[[x y]]1 = λk. (λk. k x) (λm. (λk. k y) (λn. m n k))
β→ λk. (λm. (λk. k y) (λn. m n k)) x

β→ λk. (λk. k y) (λn. x n k)
β→ λk. (λn. x n k) y

β→ λk. x y k

When CPS transformation is used as part of a compiler, these administrative re-
dexes introduce inefficiencies that must be eliminated by a later pass of compile-
time β-reduction.

The following variant of Plotkin’s transformation avoids the generation of
some, but not all administrative redexes. Here, instead of λ-abstracting over the
continuation variable k, we turn k into an additional parameter of the (mathe-
matical) function that defines the translation. The translation therefore becomes
[[M]]2 � k where M is the source term and k a continuation term.

[[x]]2 � k = k x

[[λx.M]]2 � k = k (λx.λk. [[M]]2 � k)
[[M N]]2 � k = [[M]]2 � λm. [[N]]2 � λn. m n k

We now have [[x y]]2 � k = (λm. (λn. m n k) y) x, which contains only two
administrative β-redexes.

Danvy and Nielsen [8] present the following refinement of the two-place trans-
lation above that avoids generating any administrative redex. It distinguishes λ-
terms that are atoms A, B ::= x | λx.M from the other λ-terms P, Q ::= M N .
The transformation is presented as two mutually recursive functions, Ψ3(A) for
atoms A and [[M]]3 � k for arbitrary terms M .

[[A]]3 � k = k Ψ3(A) Ψ3(x) = x

[[A B]]3 � k = Ψ3(A) Ψ3(B) k Ψ3(λx.M) = λx.λk. [[M]]3 � k

[[P B]]3 � k = [[P]]3 � λp. p Ψ3(B) k

[[A Q]]3 � k = [[Q]]3 � λq. Ψ3(A) q k

[[P Q]]3 � k = [[P]]3 � λp. [[Q]]3 � λq. p q k

We now have [[x y]]3�k = x y k, as desired. However, the case for applications was
split in 4 different cases, depending on whether the function and its argument

Mechanized Verification of CPS Transformations 215

are atoms or not. This combinatorial explosion makes it difficult to extend this
transformation to n-ary function applications and data constructor applications.

To circumvent this difficulty, we use (in Sect. 5) the following alternate presen-
tation of Danvy and Nielsen’s transformation. We define the “smart application”
constructor @β that reduces (on the fly) administrative redexes that would arise
if the first argument is a lambda-abstraction and the second argument is an
atom:

(λx.M) @β A = M{x ← A} M @β N = M N otherwise

We then use @β instead of regular applications in the variable and abstraction
cases of the translation [[M]]2 � k, obtaining:

[[x]]4 � k = k @β x

[[λx.M]]4 � k = k @β (λx.λk. [[M]]4 � k)
[[M N]]4 � k = [[M]]4 � λm. [[N]]4 � λn. m n k

We have [[x y]]4 � k = (λm. (λn. m n k) @β y) @β x = x y k as expected.
More generally, this transformation is extensionally equivalent to that of Danvy
and Nielsen: [[M]]4 � k = [[M]]3 � k if k is a λ-abstraction. Therefore, just like
Danvy and Nielsen’s transformation, it produces CPS terms that are free of
administrative redexes.

3 Source and Target Languages

The source language for the CPS transformation has the following grammar:1

Source terms:
M, N, P ::= x0 | x1 | . . . variables (de Bruijn)

| λn. M function of n + 1 arguments
| μn. M recursive function (n + 1 args.)
| M(N1, . . . , Nk) function application
| let M in N bind x0 to M in N
| C(N1, . . . , Nk) data constructor application
| match M with π1, . . . , πk pattern-matching

Match cases:
π ::= Cn → M n is the arity of constructor C

Variables xi are identified by their de Bruijn indices i. Indices start at 0. The
abstraction λn. M has arity n+1; it binds variables xn, . . . , x0 in M . A recursive
abstraction μn. M is similar, but in addition xn+1 is bound within M to the
abstraction itself. In the right-hand side M of a match case Cn → M , variables
xn−1, . . . , x0 are bound to the n arguments of the matched constructor C.

1 Our Coq development also supports numeric constants and arithmetic and relational
operators over numbers. These are omitted in this paper for brevity.

216 Z. Dargaye and X. Leroy

λn. M ⇒ λn. M μn. M ⇒ μn. M

M ⇒ λn. P Ni ⇒ vi P{vn, . . . , v0} ⇒ v

M(N0, . . . , Nn)⇒ v

M ⇒ μn. P Ni ⇒ vi P{vn, . . . , v0, μ
n. P} ⇒ v

M(N0, . . . , Nn)⇒ v

M ⇒ v1 N{v1} ⇒ v

(let M in N)⇒ v

M ⇒ C(v1, . . . , vn) πi = (Cn → N) N{vn, . . . , v1} ⇒ v

(match M with π1, . . . , πk)⇒ v

Fig. 1. Big-step semantics for the source language

The dynamic semantics of this language is given in big-step operational style
by the rules in Fig. 1. The rules define the predicate M ⇒ v, “the term M
evaluates to the value v”. Values are

v ::= λn. M | μn. M | C(v1, . . . , vn).

We write M{N0, . . . , Nk} for the simultaneous substitution of terms N0, . . . , Nk

for variables x0, . . . , xk in term M . Note the two rules for function applica-
tion M(N0, . . . , Nn), depending on whether M evaluates to a recursive or non-
recursive abstraction. In the evaluation rule for the match construct, the selected
case πi is the first case that matches constructor C with arity n.

The target language for the CPS transformation is similar, except that it has
two kinds of variables, independently numbered by de Bruijn indices: variables
xn correspond to variables already present in the source term, while variables
κn correspond to variables introduced by the transformation to hold continua-
tions and intermediate evaluation results. The grammar of the target language
is therefore:

Target terms:
M ′, N ′, P ′ ::= xn source-level variables

| κn continuation variables
| λn. M ′ function of n + 1 arguments
| μn. M ′ recursive function (n + 1 args.)
| M ′(N ′1, . . . , N ′k) function application
| let M ′ in N ′ bind x0 to M in N
| C(N ′1, . . . , N

′
k) data constructor application

| match M ′ with π′1, . . . , π
′
k pattern-matching

Match cases:
π′ ::= Cn → M ′ n is the arity of constructor C

Conventionally, every function takes its continuation as first argument. There-
fore, in λn.M ′, the first argument is bound to κ0 in M ′, and the remaining n
arguments are bound to xn−1, . . . , x0. For a recursive abstraction μn.M ′, the
variable xn is additionally bound to the abstraction itself. Match cases and the
let binding bind source-level variables xn exactly as in the source language.

Mechanized Verification of CPS Transformations 217

λn. M ′ ⇒ λn. M ′ μn. M ′ ⇒ μn. M ′

M ′ ⇒ λn. P ′ N ′
i ⇒ vi P ′{v0}{vn, . . . , v1} ⇒ v

M ′(N ′
0, . . . , N

′
n)⇒ v

M ′ ⇒ μn. P N ′
i ⇒ vi P ′{v0}{vn, . . . , v1, μ

n. P ′} ⇒ v

M ′(N ′
0, . . . , N

′
n)⇒ v

M ′ ⇒ v1 N ′{ }{v1} ⇒ v

(let M ′ in N ′)⇒ v

M ′ ⇒ C(v1, . . . , vn) π′
i = (Cn → N ′) N ′{ }{vn, . . . , v1} ⇒ v

(match M ′ with π′
1, . . . , π

′
k)⇒ v

Fig. 2. Big-step semantics for the target language

The reason why we use two kinds of de Bruijn indices is to simplify the
definition of CPS transformations. As observed by Minamide and Okuma [20],
if regular de Bruijn indices are used, the transformations need to shift indices
of source-level variables to reflect the additional bindings that it inserts. For
instance, the naive CPS transformation of xi xj in regular de Bruijn notation is

λ0. (λ0. x0(xi+2)) (λ0. (λ0. x0(xj+3)) (λ0. x1(x2, x0)))

where the indices i and j of the two source variables are shifted by 2 and 3,
respectively. This shifting makes it delicate to define and reason about CPS
transformations. Using two kinds of variables avoids this difficulty: the CPS
transformation of xi xj is, then,

λ0. (λ0. κ0(xi)) (λ0. (λ0. κ0(xj)) (λ0. κ1(κ2, κ0)))

The source variables xi and xj need not be shifted because all bindings intro-
duced by the translation bind continuation variables κ0, κ1, . . . but not source
variables.

Figure 2 defines the big-step semantics for the target language. The eval-
uation rules are direct adaptations of those for the source language. We
write M{N0, . . . , Nn}{P0, . . . , Pp} for the double simultaneous substitution of
terms N0, . . . , Nn for variables κ0, . . . , κn and of terms P0, . . . , Pp for variables
x0, . . . , xp in term M .

As the semantics use substitution, we will need some standard properties over
substitution and the lifting operation such as commutation between lifting and
substitution, or neutrality of substitution over closed terms.

The ⇑ operator denotes lifting of free de Bruijn indices: ⇑nx M ′ replaces all xi
variables free in M ′ by xi+n, and similarly ⇑nκ M ′ replaces all κi variables free
in M ′ by κi+n.

The following two lemmas about compositions of substitutions play a crucial
role in proving semantic preservation for the CPS transformation.

218 Z. Dargaye and X. Leroy

Lemma 1. (M{ �N}{ �P}){ �Q}{ �R} = (M{⇑| �N|κ ⇑|�P |x �Q}{⇑| �N|κ ⇑|�P |x �R}){ �N}{ �P}

Lemma 2. (M{⇑| �N|κ ⇑|�P |x �Q}{⇑| �N|κ ⇑|�P |x �R}){ �N}{ �P} = M{ �N, �Q}{ �P , �R}

4 Verification of a Non-optimizing CPS Transformation

The non-optimizing CPS transformation for our source language is a straightfor-
ward extension of Plotkin’s original call-by-value CPS transformation. We define
two mutually recursive transformations, Ψ for atoms and [[·]] for arbitrary terms.
Atoms are defined by the following grammar:

Atoms: A ::= xn | λn. M | μn. M | C(A1, . . . , An)

The transformation is defined by the following equations:

Ψ(xn) = xn

Ψ(λn. M) = λn+1. [[M]](κ0)
Ψ(μn. M) = μn+1. [[M]](κ0)

Ψ(C(A1, . . . , An)) = C(Ψ(A1), . . . , Ψ(An))

[[A]] = λ0. κ0(Ψ(A))
[[M(N1, . . . , Nn)]] = λ0. [[M.N1 . . . Nn then κn(κn+1, κn−1, . . . , κ0)]]

[[let M in N]] = λ0. [[M]](λ0. let κ0 in [[N]](κ1))
[[C(N1, . . . , Nn)]] = λ0. [[N1 . . . Nn then κn(C(κn−1, . . . , κ0)]]

if C(N1, . . . , Nn) is not an atom
[[match M with π1, . . . , πn]] = λ0. [[M]](λ0. match κ0 with [[π1]], . . . , [[πn]])

[[M1 . . . Mn then N ′]] = [[M1]](λ0. . . . [[Mn]](λ0. N ′) . . .)

[[Cn → M]] = Cn → [[M]](κ1)

The translation [[M]] of a source term M is always a one-argument abstrac-
tion λ0 . . . that will receive the current continuation and bind it to variable κ0.
A source function of arity n + 1 becomes a function of arity n + 2 that expects
the continuation of the call as first argument (bound to variable κ0), along with
n + 1 regular arguments (bound to variables xn, . . . , x0). For n-ary applications
of functions and constructors, we use an auxiliary transformation for lists of
expressions, written [[M1 . . .Mn then N ′]]. The generated term evaluates the
translations [[M1]], . . . , [[Mn]] and binds them to κn−1, . . . , κ0 (respectively) be-
fore evaluating N ′. In the case of a function application M(N1, . . . , Nn), we
translate the list M.N1 . . . Nn and finish with κn bound to the translation of M ,
κn−1, . . . , κ0 bound to the translations of N1, . . . , Nn, and κn+1 bound to the
outer continuation for the application. We therefore finish the computation by
evaluating κn(κn+1, κn−1, . . . , κ0).

The case of a constructor application is similar. However, if all arguments to
the constructor are atoms, the constructor application itself is an atom and we

Mechanized Verification of CPS Transformations 219

force it to be translated as such. This not only improves the efficiency of the
generated CPS term, but more importantly this is necessary for the proof of
correctness to go through.

The CPS transformation satisfies the following syntactic properties, which
play a crucial role in the proof of semantic preservation. We say that a term is
κ-closed if no κi variables appear free in this term.

Lemma 3. [[M]] and Ψ(A) are κ-closed. As a corollary, transformed terms are
invariant by substitution of κ-variables:

[[M]]{ �N}{ �P} = [[M]]{ }{ �P}

Proof. By structural induction over M and A. For the n-ary applications, notice
that κi is free in [[M1 . . .Mn then N ′]] only if κi+n is free in N ′.

Lemma 4. The transformation commutes with substitution of atoms for x-
variables:

[[M{A1, . . . , An}]] = [[M]]{ }{Ψ(A1) . . . Ψ(An)}
Ψ(A{A1, . . . , An}) = Ψ(A){ }{Ψ(A1) . . . Ψ(An)}

Proof. By structural induction over M and A. Notice that atoms are stable by
substitution: A{A1, . . . , An} is an atom whenever A, A1, . . . , An are atoms.

To show that the CPS transformation preserves the semantics of the source
program, we would like to show that if the source program P evaluates to the
value v, then the CPS program [[P]] applied to the initial continuation λ0. κ0

(the identity function) evaluates to the value Ψ(v), which has the same shape
as v and differs only on the bodies of functions contained in v. Of course, this
result cannot be proved by induction over P : we need to generalize the result to
continuations other than the initial continuation.

The intuition for this generalization is simple: if M ⇒ v, the intended effect
for the transformation [[M]] applied to a continuation K is to compute the value
Ψ(v), then apply K to this value. Therefore, whenever K Ψ(v) ⇒ v′, it should
be the case that [[M]](K) ⇒ v′.

Lemma 5. Let K = λ0.P be a κ-closed, one-argument abstraction of the target
language. If M ⇒ v in the source language, and P{Ψ(v)}{ } ⇒ v′ in the target
language, then [[M]](K) ⇒ v′ in the target language.

Proof. The proof proceeds by induction on the evaluation derivation of M ⇒ v
and case analysis over the term M . To give an idea of the proof, we sketch one
case of intermediate difficulty: the case where M = let M1 in M2. We have
M1 ⇒ v1 and M2{v1} ⇒ v. We need to show

(λ0. [[M1]](λ0. let κ0 in [[M2]](κ1))) (K) ⇒ v′ (1)

under the assumptions that K = λ0.P , K is κ-closed, and P{Ψ(v)}{ } ⇒ v′.

220 Z. Dargaye and X. Leroy

Applying the induction hypothesis to the second premise M2{v1} ⇒ v and
the continuation K, we obtain:

[[M2{v1}]](K) ⇒ v′ (2)

By Lemma 4 and the fact that v1 is a value and therefore also an atom, (2) is
equivalent to:

([[M2]]{ }{Ψ(v1)})(K) ⇒ v′ (3)

Take P1 = let κ0 in [[M2]](⇑1
x K). By the evaluation rule for let, Lemma 3,

and some calculation over substitutions, (3) implies

P1{Ψ(v1)}{ } ⇒ v′ (4)

The expected result (1) follows from (4) and the induction hypothesis applied to
the first premise M1 ⇒ v1 and to the continuation K1 = λ0.P1, which is κ-closed
by Lemma 3.

Theorem 1. If M ⇒ v in the source language, then [[M]](λ0. κ0) ⇒ Ψ(v) in
the target language. Moreover, if v is a first-order data structure (composed of
constructors, but containing no function abstractions), then [[M]](λ0. κ0) ⇒ v in
the target language.

Proof. We apply Lemma 5 to the initial continuation K = λ0. κ0, obtaining
[[M]](λ0. κ0) ⇒ Ψ(v). For the corollary, we observe that Ψ(v) = v for any first-
order data structure v.

5 Verification of an Optimizing CPS Transformation

We now define an optimized CPS transformation that does not generate admin-
istrative redexes. This transformation generalizes transformation [[·]]4 � · from
Sect. 2, namely the transformation of Danvy and Nielsen [8,9] presented using
a “smart application” constructor @β. This constructor is defined over terms of
the target language by

(λ0.M) @β A = M{A}{ } M @β N = M(N) otherwise

The optimizing transformation is presented as two mutually recursive functions,
a one-place function Ψ for atoms and a two-place function [[·]] � · for arbitrary
terms.

Ψ(xn) = xn

Ψ(λn. M) = λn+1. [[M]] � κ0

Ψ(μn. M) = μn+1. [[M]] � κ0

Ψ(C(A1, . . . , An)) = C(Ψ(A1), . . . , Ψ(An))

Mechanized Verification of CPS Transformations 221

[[A]] � k = k @β Ψ(A)
[[M(N1, . . . , Nn)]] � k = [[M.N1 . . . Nn then κn(⇑n+1

κ k, κn−1, . . . , κ0)]]
[[let M in N]] � k = [[M]] � λ0. let κ0 in [[N]]� ⇑1

κ⇑1
x k

[[C(N1, . . . , Nn)]] � k = [[N1 . . . Nn then ⇑nκ k(C(κn−1, . . . , κ0)]]
if C(N1, . . . , Nn) is not an atom

[[match M with π1, . . . , πn]] � k = [[M]] � λ0. match κ0 with
[[π1]] � k, . . . , [[πn]] � k

[[M1 . . . Mn then N ′]] = [[M1]] � λ0. . . . [[Mn]] � λ0. N ′

[[Cn → M]] � k = Cn → [[M]]� ⇑1
κ k

To show that the optimizing CPS transformation preserves semantics, we
would like to prove an analogue of Theorem 1: if M ⇒ v and v is a first-order
data structure, then [[M]] � λ0. κ0 ⇒ v. However, a direct proof of this theorem
in the style of Lemma 5 is difficult. The root of the problem is that the “smart
application” @β does not commute with substitutions. For example,

(x0 @β C){x0 ← λ0. κ0} = (x0(C)){x0 ← λ0. κ0} = (λ0. κ0)(C)

while

(x0{x0 ← λ0. κ0}) @β (C{x0 ← λ0. κ0}) = (λ0. κ0) @β C = C

Consequently, the optimizing transformation does not commute with substitu-
tions of atoms for x-variables, as was the case for the non-optimizing transfor-
mation (Lemma 4).

To avoid these difficulties, we do not attempt to directly prove the correctness
of the optimizing transformations, but instead show a semantic equivalence result
between the naive and the optimizing transformations. This equivalence builds
on the intuition that [[M]] � k is identical to [[M]](k) modulo the contraction of
some administrative redexes. These contractions are instances of βv reductions:

(λ0. M)(A) → M{A}{ } (βv)

where the argument A must be an atom. It is well known that βv reductions are
valid in call-by-value semantics [22].

We first formally define parallel βv reduction between terms of the target
language. This parallel reduction relation, written �, is defined by the inference
rules in Fig. 3. The first rule corresponds to one βv reduction. The other rules
build the congruence closure of this reduction, enabling zero, one or several βv
redexes to be reduced simultaneously at any position in the term. The reflexive
transitive closure of � is written ∗

�.
We then formalize the intuition that the term [[M]] � K can be obtained by

contracting βv redexes in the term [[M]](K).

Lemma 6. For all atoms A, Ψ(A) ∗� Ψ(A). For all terms M and continuations
K1 and K2, if K1

∗
� K2 and K1 is an atom, then [[M]]K1

∗
� [[M]] � K2.

222 Z. Dargaye and X. Leroy

A1 � A2 A1 is an atom M � N

(λ0. M) A1 � N{A2}{ }

xi � xi κi � κi

M � N

λn. M � λn. N

M � N

μn. M � μn. N

M � N M1 � N1 . . . Mn � Nn

M(M1, . . . ,Mn) � N(N1, . . . , Nn)

M1 � N1 M2 � N2

(let M1 in M2) � (let N1 in N2)

M1 � N1 . . . Mn � Nn

C(M1, . . . ,Mn) � C(N1, . . . , Nn)

M � N π1 � π′
1 . . . πn � π′

n

(match M with π1 . . . πn) � (match M with π′
1 . . . π

′
n)

M � N

Cn →M � Cn → N

Fig. 3. Definition of the parallel βv reduction �

Proof. By structural induction over A and M .

We then show that the � relation preserves semantics, in the following sense:

Lemma 7. If M ⇒ v and M � N , then there exists a value w such that N ⇒ w
and v � w.

Proof. By induction on the derivation of M ⇒ v. We use the following substi-
tution lemma: if M1 � M2, �N � �Q and �P � �R where �N and �P are lists of
values, then M1{ �N}{ �P} � M2{ �Q}{ �R}.

Combining these results, we obtain the correctness of the optimizing CPS trans-
formation.

Theorem 2. If M ⇒ v in the source language, there exists a value w such that
Ψ(v) ∗

� w and [[M]] � λ0. κ0 ⇒ w in the target language. Moreover, if v is a
first-order data structure, then [[M]] � λ0. κ0 ⇒ v in the target language.

Proof. By Theorem 1, we know that [[M]](λ0. κ0) ⇒ Ψ(v). Lemma 6 shows that
[[M]](λ0. κ0) ∗

� [[M]] � λ0. κ0. Applying Lemma 7 repeatedly, we obtain the
desired value w. If, moreover, v is a first-order data structure, then Ψ(v) = v,
and v

∗
� w implies w = v by definition of the � relation.

6 The Coq Development

The Coq mechanization of the results presented here is mostly standard. The
CPS transformations, as well as the substitution and lifting operations, are pre-
sented as structural recursive functions. An advantage of this style is that Coq’s
extraction mechanism can generate executable Caml code directly from these

Mechanized Verification of CPS Transformations 223

functional specifications — there is no need to manually implement these func-
tions in a programming language. Coq puts strong syntactic restrictions on re-
cursive functions to ensure that they always terminate. As presented in Sect. 4
and 5, our transformations violate these restrictions; we had to locally expand
the transformations of values and lists at point of use in the transformations
of general terms. The operational semantics for the languages are presented as
inductive predicates where each constructor corresponds exactly to one inference
rule in Fig. 1 and 2.

Concerning the integration of the CPS transformations into the mini-ML to
Cminor compiler that we are developing and verifying, only the optimizing CPS
transformation of Sect. 5 is actually used in the compiler. The naive transforma-
tion of Sect. 4 appears only as an intermediate step in its proof of correctness.

In the compiler chain, CPS transformation comes after an uncurrying opti-
mization (described in [10]) and before closure conversion. The output language
of the uncurrying pass, and the input language of the closure conversion pass,
are identical to the source language of the CPS transformations as defined in
Sect. 3. However, the correctness proofs of these passes are conducted against
a big-step semantics for this language that uses environments and closures in-
stead of simultaneous substitutions. To resolve these mismatches between the
CPS transformation and the surrounding passes, we also formalized and proved
correct a translation from the CPS target language (with two kinds of de Bruijn
indices) back to the CPS source language (with a single kind of indices), as well
as a semantic equivalence result between substitution-based and environment-
based semantics.

The whole development took about 4 person.months and represents approxi-
mately 9000 lines of Coq, decomposed as follows:

Specifications Proofs

Languages and their semantics (Sect. 3) 624 lines —
Substitutions and their properties 447 lines 1 685 lines
Non-optimizing CPS transformation (Sect. 4) 609 lines 1 676 lines
Parallel βv reductions (Sect. 5) 413 lines 689 lines
Optimizing CPS transformation (Sect. 5) 113 lines 237 lines
Connecting uncurrying with CPS transformation 303 lines 516 lines
Connecting CPS transformation with closure conversion 644 lines 803 lines

Among the specifications, only 300 lines correspond to definitions of exe-
cutable functions which will be integrated into the compiler itself after extrac-
tion.

As usual with mechanizations using de Bruijn indices, the definitions of sub-
stitution and lifting plus the proofs of their properties take up a large part of
our development. Finding the correct statements of these properties is now well
understood in the case of elementary substitutions, but required some trial and
error in the case of simultaneous substitutions. The theory of the λσ-calculus [1]
helped us find the correct statements before attempting to prove them. Their
proofs are large but mostly routine. We were able to partially automate these
proofs using special-purpose tactics defined within Coq’s ltac language.

224 Z. Dargaye and X. Leroy

7 Conclusions

The work presented in this paper shows that an optimizing CPS transformation
defined for a realistic core functional language can be, with some effort, me-
chanically proved correct using a proof assistant. Our mechanization uses only
elementary techniques (no higher-order abstract syntax, no nominal logic) and
should therefore be adaptable to most proof assistants. We used several non-
standard technical devices: de Bruijn notation with two kinds of indices; proving
the CPS transformation against big-step operational semantics instead of small-
step semantics; and proving the optimizing transformation by reduction to the
non-optimizing one. These devices do not significantly reduce the overall size of
the proof, but enable us to decompose it into mostly-independent sub-proofs of
more manageable size. For instance, using two kinds of indices requires an addi-
tional transformation and a separate correctness proof for it, but minimizes the
amount of index management performed during CPS transformation and keeps
its correctness proof simple.

A natural extension of this work is to mechanically verify the correctness of
transformations to A-normal forms [12] and monadic normal forms [23], two
intermediate representations that share many of the features of CPS. We have
not attempted to do so, but believe that the techniques presented here could be
effective in these other settings.

Although the intended use for our mini-ML compiler is to compile strongly
normalizing programs, it would be interesting to try to prove the correctness
of CPS transformations for diverging programs using the co-inductive big-step
semantics of [17].

Another direction for further work is to investigate the usability of Urban’s
Isabelle/HOL implementation of nominal logic [25] for proving the correctness
of CPS transformations.

References

1. Abadi, M., Cardelli, L., Curien, P.-L., Lévy, J.-J.: Explicit substitutions. Journal
of Functional Programming 1(4), 375–416 (1991)

2. Appel, A.W.: Compiling with continuations. Cambridge University Press, Cam-
bridge (1992)

3. Aydemir, B.E., Bohannon, A., Fairbairn, M., Foster, J.N., Pierce, B.C., Sewell, P.,
Vytiniotis, D., Washburn, G., Weirich, S., Zdancewic, S.: Mechanized metatheory
for the masses: The POPLmark challenge. In: Hurd, J., Melham, T. (eds.) TPHOLs
2005. LNCS, vol. 3603, pp. 50–65. Springer, Heidelberg (2005)

4. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development –
Coq’Art: The Calculus of Inductive Constructions. In: EATCS Texts in Theoretical
Computer Science, Springer, Heidelberg (2004)

5. Blazy, S., Dargaye, Z., Leroy, X.: Formal verification of a C compiler front-end.
In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp.
460–475. Springer, Heidelberg (2006)

6. Chlipala, A.: A certified type-preserving compiler from lambda calculus to assembly
language. In: Programming Language Design and Implementation 2007, pp. 54–65.
ACM Press, New York (2007)

Mechanized Verification of CPS Transformations 225

7. Coq development team. The Coq proof assistant. Software and documentation
(1989–2007), available at http://coq.inria.fr/

8. Danvy, O., Nielsen, L.R.: A first-order one-pass CPS transformation. Theoretical
Computer Science 308(1-3), 239–257 (2003)

9. Danvy, O., Nielsen, L.R.: CPS transformation of beta-redexes. Information Pro-
cessing Letters 94(5), 217–224 (2005)

10. Dargaye, Z.: Décurryfication certifiée. In: Journées Francophones des Langages
Applicatifs (JFLA 2007), INRIA (2007)

11. de Bruijn, N.G.: Lambda-calculus notation with nameless dummies, a tool for
automatic formula manipulation, with application to the Church-Rosser theorem.
Indag. Math. 34(5), 381–392 (1972)

12. Flanagan, C., Sabry, A., Duba, B., Felleisen, M.: The essence of compiling with
continuations. In: Programming Language Design and Implementation 1993, pp.
237–247. ACM Press, New York (1993)

13. Kennedy, A.: Compiling with continuations, continued. In: International Confer-
ence on Functional Programming, ACM Press, New York (2007)

14. Klein, G., Nipkow, T.: A machine-checked model for a Java-like language, vir-
tual machine and compiler. ACM Transactions on Programming Languages and
Systems 28(4), 619–695 (2006)

15. Kranz, D., Adams, N., Kelsey, R., Rees, J., Hudak, P., Philbin, J.: ORBIT: an
optimizing compiler for Scheme. In: SIGPLAN 1986. symposium on Compiler Con-
struction, pp. 219–233. ACM Press, New York (1986)

16. Leinenbach, D., Paul, W., Petrova, E.: Towards the formal verification of a C0
compiler: Code generation and implementation correctness. In: SEFM 2005. Int.
Conf. on Software Engineering and Formal Methods, pp. 2–11. IEEE Computer
Society Press, Los Alamitos (2005)

17. Leroy, X.: Coinductive big-step operational semantics. In: Sestoft, P. (ed.) ESOP
2006 and ETAPS 2006. LNCS, vol. 3924, pp. 54–68. Springer, Heidelberg (2006)

18. Leroy, X.: Formal certification of a compiler back-end, or: programming a compiler
with a proof assistant. In: 33rd symposium Principles of Programming Languages,
pp. 42–54. ACM Press, New York (2006)

19. Letouzey, P.: A new extraction for Coq. In: Geuvers, H., Wiedijk, F. (eds.) TYPES
2002. LNCS, vol. 2646, pp. 200–219. Springer, Heidelberg (2003)

20. Minamide, Y., Okuma, K.: Verifying CPS transformations in Isabelle/HOL. In:
MERLIN 2003. Proc. workshop on Mechanized reasoning about languages with
variable binding, pp. 1–8. ACM Press, New York (2003)

21. Moore, J.S.: Piton: a mechanically verified assembly-language. Kluwer Academic
Publishers, Dordrecht (1996)

22. Plotkin, G.D.: Call-by-name, call-by-value and the lambda-calculus. Theoretical
Computer Science 1(2), 125–159 (1975)

23. Sabry, A., Wadler, P.: A reflection on call-by-value. ACM Transactions on Pro-
gramming Languages and Systems 19(6), 916–941 (1997)

24. Tian, Y.H.: Mechanically verifying correctness of CPS compilation. In: CATS 2006.
Proceedings of the 12th Computing: The Australasian Theory Symposium, pp. 41–
51. Australian Computer Society (2006)

25. Urban, C.: Nominal techniques in Isabelle/HOL. Journal of Automated Reasoning
(to appear, 2007)

Operational and Epistemic Approaches to

Protocol Analysis: Bridging the Gap

Francien Dechesne1, MohammadReza Mousavi1,2, and Simona Orzan1

1 Department of Computer Science, Eindhoven University of Technology,
P.O. Box 513, NL-5600MB, Eindhoven, The Netherlands
2 Department of Computer Science, Reykjav́ık University,

Kringlan 1, IS-103, Reykjav́ık, Iceland

Abstract. Operational models of protocols, on one hand, are readable
and conveniently match their implementation, at a certain abstraction
level. Epistemic models, on the other hand, are appropriate for specifying
knowledge-related properties such as anonymity. These two approaches
to specification and analysis have so far developed in parallel and one
has either to define ad hoc correctness criteria for the operational model
or use complicated epistemic models to specify the operational behavior.
We work towards bridging this gap by proposing a combined framework
which allows modeling the behavior of a protocol in a process language
with an operational semantics and supports reasoning about properties
expressed in a rich logic with temporal and epistemic operators.

1 Introduction

Knowledge-related aspects are currently being recognized as very relevant when
expressing and analyzing correctness requirements of complex distributed algo-
rithms and communication protocols, from the fundamental ones like consensus
in a network, to applications like information flow control and security protocols
(secrecy, anonymity, fair exchange). Many approaches based on epistemic logics
have been developed for the analysis of such protocols: BAN logic [8], the theory
of function views [20], interpreted systems [14,16,25] etc.

They allow for natural and effective representations of subtle effects of com-
munication acts such as classified information leaking to attackers or participants
gaining the common knowledge that the protocol they were running meets its
goal. But on the other hand, modeling protocols using epistemic-logic-based ap-
proaches requires a high degree of expertise and verification of functional prop-
erties is often very complex. The information updates generating the transitions
between epistemic states are especially tedious to specify, because logics are
geared to expressing properties rather than operational steps of a protocol.

The operational behavior of protocols is, however, easily and conveniently
specified in languages such as process algebras [7,22,2] and message sequence
charts [9]. Functional requirements such as liveness and safety are then easily
verified by model checking applied on the underlying transition systems. Unfor-
tunately, these standard and successful verification schemes use temporal logics

N. Dershowitz and A. Voronkov (Eds.): LPAR 2007, LNAI 4790, pp. 226–241, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Operational and Epistemic Approaches to Protocol Analysis 227

that are not well-suited for expressing knowledge-related properties, therefore
complex specialized solutions need to be sought in order to make process algebras
suitable for the analysis of epistemic-flavored properties like anonymity [26,11].
See [20,13] for a more detailed comparison of epistemic-based vs. process-based
protocol verification.

In this paper, we propose a framework that allows one to benefit the best
of the two worlds, i.e., one can specify the behavior of a protocol in a process
language and verify properties expressed in a logic with both temporal and epis-
temic operators. To achieve this, the key idea is to introduce explicit identities in
our process language PAi and allow every action to be annotated with a visibility
range — i.e., a set of identities that may observe it and a “public appearance” —
i.e., an alternative action that is observed by the identities outside the visibility
range. We give an operational semantics for PAi in terms of annotated labeled
transition systems (ALTSs), which are LTSs with, for every identity, an extra
indistinguishability relation on states. These relations model the uncertainties of
the identities (typically principals in a protocol) about the current state, similar
to the way uncertainties are represented in standard possible-world semantics
for epistemic logics [14]. Thanks to the combination of transitions and indis-
tinguishability relations, ALTSs naturally support verification of logic formulae
containing both temporal and epistemic operators. We introduce a rich logic,
Eμ (epistemic μ-calculus with past) and give it an interpretation on ALTSs.

Due to the explicit use of identities, PAi allows a precise specification of the
information hiding behavior within protocols, and it is therefore more expressive
and flexible than traditional process algebras. It is also more intuitive and more
formal than epistemic logics, when it comes to behavior modeling. Also Eμ
is more expressive than the usual temporal logics used in traditional protocol
verification. The resulting model checking framework PAi+Eμ soundly extends
the traditional process-based and epistemic model checking settings.

Related Work. The fact that the two verification approaches, process alge-
braic and epistemic, are complementary and that they should ideally be com-
bined has already been recognized in [20], where the aim is, just as here, to
provide a framework in which both protocol specification and correctness crite-
ria can be specified succinctly and intuitively (and the authors indeed put the
two approaches in sharp contrast). They introduce the notion of function view
to represent partial information and uses it to precisely formalize several subtle
information hiding properties. Since the focus of that theory is proper formal-
ization of requirements, we believe that it is complementary to ours and that it
could possibly be used in our PAi models, for defining suitable visibility ranges.

BAN-logic [8], designed for the analysis of authentication in security proto-
cols, is very popular, but it is a known problem that a clear semantics, linking
the high-level BAN-specification to runs of the protocol, is still missing. Also
in other interesting recent work concerning Dynamic Epistemic Logic [15,3,19]
with an operational flavor, just as in tool-supported temporal epistemic ap-
proaches [25,18], where existing temporal specification languages are used, but
the embedding of the epistemic aspects remains (for a large part) informal. We

228 F. Dechesne, M.R. Mousavi, and S. Orzan

start from the other side - a process specification language with a formal seman-
tics, and work towards properly integrating epistemic aspects.

Interpreted Systems [14,25,16] are close to the operational semantics of our
process language. In fact, it is possible to translate ALTSs to ISs. Our key
improvement is the introduction of a process specification language with a formal
semantics, which enables the modeling of systems at a reasonable abstraction
level. In [16], interpreted systems are used to model different complex notions of
(probabilistic) anonymity, using also an epistemic logic. Our approach is related
to and complements that one, by providing a way of verifying, on process-based
specifications, anonymity notions as defined by [16].

The concept of indistinguishability used here bears resemblances to the data
independence technique in [6]. We consider runs of a protocol indistinguishable
if they appear equal to a principal (as defined by the visibility range of actions).
It is worthwhile to extend our framework along the lines of [6], by allowing the
visibility range of actions to be dynamically updated.

Concurrently with our work, a rich language C3 [5] and a powerful logic
CPL [21] have been developed for analyzing cryptographic protocols. The aim
there is integrating a wide range of features, from deontic and spatial operators
to probabilities, in one unified setting. C3+CPL is therefore very expressive, but
complex and seems difficult to implement, while our basic language with an easy
to grasp operational semantics can immediately lead to a practical verification
toolset. In fact, a prototype implementation already exists [1]. Furthermore,
there is a fundamental difference between our underlying logics: that of [21] is a
state-based logic (à la LTL) and ours is action-based (à la modal μ-calculus).

Overview. Section 2 introduces our generic process language for specifying
protocols and a transition-system semantics for it. Section 3 defines our tempo-
ral epistemic logic Eμ and the interpretation of Eμ formulas on the transition
systems. Then we show that this construction does indeed bridge the gap be-
tween process-based and epistemic-logic-based approaches to protocol analysis,
by proving that its projections on the two worlds are consistent with established
definitions in the two worlds separately (Section 4). Section 5 shows an example
and Section 6 concludes the paper and presents directions for future research.

2 PAi : Syntax and Operational Semantics

In this section, we present the syntax and the operational semantics of a simple
modeling language which we call process algebra with identities (PAi). PAi
has generic features, that can be adapted to match constructs of any classical
operational modeling language (such as CCS [22], CSP [7] or Spi-Calculus [2]).
It mostly resembles Milner’s CCS, but we deviate from CCS in a few ways.
Apart from adding identities, we use sequential composition instead of action
prefixing (and thus, we also introduce a termination predicate), since this is
very handy in writing protocol specifications. Also, we do not hide the result of
a communication automatically and leave this, if at all desired, to the renaming

Operational and Epistemic Approaches to Protocol Analysis 229

function since the communicated message can be of relevance in the correctness
specification of the protocol.

PAi : Syntax. Let Act be a finite set of action names which will be ranged
over by a, b, a0, ?a, !a, . . ., and let Id be a finite set of identities typically denoted
by by i, j, . . . i1, i2, We designate an action τ ∈ Act to denote the internal
(silent) action; in addition to its common process-algebraic meaning, an internal
action here represents a message that offers no new information to the observer
principal. Question mark and exclamation mark (preceding actions) represent
the receiving and the sending parts of a communication, respectively, and an
action without such marks is the outcome of the communication.

Proc ::= 0 | D | Proc;Proc | Proc+ Proc | Proc||Proc
D ::= (J)α

0 denotes inaction (the process that has terminated). d = (J)α ∈ D denotes a
decorated action and has the following intuitive meaning: action α ∈ Act is taken
and is visible to principals i ∈ J ⊆ Id, while principals j /∈ J observe ρ(α) being
taken, where ρ : Act → Act is a global renaming function, which assigns to every
action its “public appearance”. The renaming function ρ should be defined by the
specifier of a protocol but we assume that ρ(τ) is always defined to be τ . For any
other action a, if ρ(a) = τ , then (J)a becomes unobservable to the principals
not in J. The combination of identity annotations on actions and the action
renaming provides different views on the behavior of the system, according to
different principals. Modeling passive observation of a system by hiding parts of
it to specific principals is already done in the literature [26], but we will generate
the views for all principals simultaneously. This enables talking about properties
such as “i knows that j knows that k has communicated message a”. Proc; Proc
denotes sequential composition, Proc + Proc denotes nondeterministic choice,
and Proc ||Proc denotes parallel composition.

Example 1. Take P = (1)a ; (1, 2)d + (1)b + (1)c, with the renaming function
ρ(a) = ρ(b) = ρ(c) = dum where dum is a dummy basic action and over the
identity set Id = {1, 2}. P denotes the process that executes one of the actions
a,b,c, but only principal 1 is aware of the exact action taking place. 1 is the
principal making a choice between actions a, b and c, and 2 is an observer who
only notices that a choice has been made, but not what the outcome was. This is
a process-style formalization of the private communication from epistemic mod-
eling, where a party learns something while other parties are watching and learn
that the party learned something, but not precisely what. After the first step,
the process terminates or, if the first step was a, continues with the execution of
d. Since principal 2 is allowed to observe the execution of d, she may now con-
clude that the first step must have been a, although 2 was not actually allowed
to observe the a. This is exactly the type of information leaks that we aim at
capturing with our verification framework.

PAi : Operational Semantics. We introduce the notion of Annotated La-
beled Transition Systems (ALTS) as labeled transition systems extended with

230 F. Dechesne, M.R. Mousavi, and S. Orzan

(0)
(0, π)� (a)

(d, π)
d⇒ (0, π � d)

(s0)
(x0, π)

d⇒ (y0, π
′)

(x0;x1, π)
d⇒ (y0;x1, π

′)

(s1)
(x0, π)� (x1, π)

d⇒ (y1, π
′)

(x0;x1, π)
d⇒ (y1, π

′)
(s2)

(x0, π)� (x1, π
′)�

(x0;x1, π
′′)�

(n0)
(x0, π)

d⇒ (y0, π
′)

(x0 + x1, π)
d⇒ (y0, π

′)
(n2)

(x0, π)�
(x0 + x1, π

′)� (p0)
(x0, π)

d⇒ (y0, π
′)

(x0 || x1, π)
d⇒ (y0 || x1, π

′)

(p2)
(x0, π)� (x1, π

′)�
(x0 ||x1, π

′′)� (p3)
(x0, π)

(J)?a⇒ (y0, π
′) (x1, π)

(J′)!a⇒ (y1, π
′′)

(x0 ||x1, π)
(J∪J′)a⇒ (y0 || y1, π � (J ∪ J′)a)

(= refl)

π
i
= π

(= ρ0)
π

i
= π′ a = b i ∈ J ∩ J′
π � (J)a

i
= π′ � (J′)b

(= ρ1)
π

i
= π′ ρ(a) = ρ(b) i /∈ J′ ∪ J
π � (J)a

i
= π′ � (J′)b

(= ρ2)
π

i
= π′ a = ρ(b) i ∈ J \ J′
π � (J)a

i
= π′ � (J′)b

(= τ0)
π

i
= π′ i /∈ J ρ(a) = τ

π � (J)a
i
= π′ (= τ2)

π
i
= π′

π � (J)τ
i
= π′

(strip)
(x, π)

(J)a⇒ (y, π′)
(x, π)

a→ (y, π′)
(I)

π0
i
= π1

(x0, π0)
i· · · (x1, π1)

Fig. 1. SOS of PAi

annotations that denote when two states are deemed indistinguishable from the
viewpoint of a principal, based on the actions taken so far. This is determined
by the information that a principal receives in the course of protocol execution,
which in turn is determined by the visibility annotations.

Definition 1 (ALTS). An ALTS is a 5-tuple 〈St, → , �, I, s0〉, where St is the
set of operational states, → ⊆ St ×Act × St is the transition relation, � ⊆ St
is the termination predicate, I ⊆ St×Id×St is the indistinguishability relation
and s0 is the initial state.

For readability, we denote statements (s, l, s′) ∈ → , s ∈ � and (s, i, s′) ∈ I by

s
l→ s′, s� and s

i· · · s′, respectively, for each s, s′ ∈ St, l ∈ Act and i ∈ Id.
The transition relation → has exactly the same role and meaning as in the
standard notion of LTS. Formula s� means that in state s it is possible to
terminate. Expression s0

i· · · s1 denotes that the principal with identity i cannot
distinguish s0 from s1 since both s0 and s1 are reachable through paths that
look identical as far as as principal i can observe and distinguish. It is desirable
for

i· · · to be an equivalence relation for each i ∈ Id since this leads to a natural
representation of knowledge (i.e., S5 Kripke models in modal logic, see [14]).

Operational and Epistemic Approaches to Protocol Analysis 231

In Figure 1, we associate ALTS’s to PAi processes by means of a semantics in
the SOS style of [24]. The operational state of PAi is a pair (p, π) where p ∈ Proc
is a PAi process and π is a finite sequence of decorated actions recording the
perception of the process gathered so far. First we define auxiliary relations
d⇒ ⊆ St × St and i=⊆ D∗ × D∗ for each decorated action d and identity i.

Transition relation d⇒ defines transitions among operational states labeled with
decorated action d and i= defines when two traces are deemed indistinguishable
by principal i. Note that each process p in the state (p, π) has one past trace
π and possibly many futures. That is why, for example, in the deduction (p3)
both parallel arguments x0 and x1 are assumed to start from the same history
π, which is the common history of x0 ||x1. In the deduction rule (strip), we
strip off the extra information on the labels (concerning the visibility range) and
apply encapsulation (leaving out individual send and receive actions) and obtain
the transition relation → . (We could have used an explicit restriction operator
but decided not to do so to keep the presentation simple.) Deduction rule (I)
lifts the concept of indistinguishability from traces to operational states. We
omitted symmetric rules (n1), (n3), (p1), (p4), (= ρ3), (= τ1), and (= τ3).
Termination of a process is orthogonal to its past history, so we use different
meta-variables for the traces in the premises and the conclusion of rules (s2),
(n2), and (p2). The transition relation ⇒ and indistinguishability relation · · ·
are the sets of all closed statements provable using the deduction rules (plus their
symmetric versions) from Figure 1. The semantics of a process p is defined by the
ALTS with pairs of processes and decorated traces as states, → as transition
relation, � as termination relation, · · · as indistinguishability relation, and (p, [])
as the initial state, where [] denotes the empty sequence of decorated actions.

The following lemma states that
i· · · is an equivalence relation.We intentionally

did not add deduction rules to enforce symmetry and transitivity of i= explicitly
in order to preserve the inductive structure of our SOS specification.

Lemma 1. Relation
i· · · is an equivalence relation.

3 An Epistemic Mu-Calculus

We introduce an epistemic mu-calculus with past (Eμ) which combines temporal,
epistemic, and fixed point constructs. We give our logic an interpretation on the
operational model introduced in Section 2.

Syntax. The syntax of Eμ is given by the following grammar:

φ ::= � | X | φ ∧ φ | ¬φ | 〈a〉φ | 〈a〉φ | Kiφ | νX.φ(X)

(if X occurs only positively in φ),

where a ranges over the set of actions (a ∈ Act). Then 〈a〉φ stands for “after
some execution of a, φ holds”; 〈a〉φ has the same intuition as 〈a〉φ, except that
it refers to the past, i.e., there is a state in which φ holds and from which it is
possible to take an a-step to the current state. Kiφ should be read as “principal

232 F. Dechesne, M.R. Mousavi, and S. Orzan

i knows that φ holds”. The greatest fixed point operator νX.φ(X) is used to
define recursive concepts. It intuitively means that the current state is in the
largest set X of states that satisfy φ(X). (Here X is a variable ranging over
propositional formulas, which can be identified by the sets of states in which
such a formula is true. This is made formal by introducing valuations, but we
leave this correspondence informal here.) For convenience, we define and use the
following abbreviations for commonly used logical formulae:

[a]φ i.e., ¬〈a〉¬φ and intuitively means that after all a-transitions, φ holds.
μX.φ(X) (with X occurring positively in φ) is the least fixed point operator,

which is defined by ¬νX.¬φ(¬X) (X also occurs positively in ¬φ). The
current state is in the smallest set of states satisfying φ(X).

〈�〉φ (similarly, 〈�〉φ) stands for
∨

a∈Act〈a〉φ (
∨

a∈Act 〈a〉φ), which is by itself
an abbreviation for a finite number of disjunctions. Intuitively, it means
that after (before) some transition φ holds.

�a (similarly, a�) is an abbreviation for μX.〈a〉� ∨ 〈x〉.X (or μX.〈a〉� ∨
〈x〉.X). So, it is possible to reach a state in the future where an a-
transition is possible (or go back to a state in the past that results
from an a-transition).

[�∗]φ (similarly, [�∗]φ) is an abbreviation for μX.φ∨ [�]X (or μX.φ∨ [�]φ). The
intuition behind this abbreviation is that all future paths will (paths in
the past) lead to a state, in which there is a state satisfying φ. (〈�∗〉φ
and 〈�∗〉φ are defined accordingly.)

CJφ stands for νX.(
∧

i∈J Ki(X∧φ)) [14], meaning: “it is common knowledge
among the principals in the set J that φ holds”.

Common knowledge is a very powerful construction, expressing that agents in
J not only know that φ holds, but also that all agents in J know that φ holds,
and that all agents in J know that all agents in J know that φ holds, and so on.
This property has so far not been amenable to specification and verification with
standard operational techniques, while it is in fact very interesting, particularly
for protocols where trust is an issue. Common knowledge can express, for in-
stance, that participants in a multiparty fair exchange protocol trust each other
and the protocol they are running. Let Eμ-forms denote the set of Eμ formulas.

Interpreting Eµ Formulas on ALTSs. We now define what it means for a
formula φ ∈ Eμ-forms to be satisfied in the ALTS A.

Definition 2 (satisfaction). Let A = 〈S, → , �, I, s0〉 be an ALTS. The satis-
faction relation |= for formulas φ ∈ Eμ-forms is defined inductively as follows:

A, s |= � iff true
A, s |= φ1 ∧ φ2 iff A, s |= φ1 and A, s |= φ2

A, s |= ¬φ iff A, s |= φ is not true

A, s |= 〈a〉φ iff there is an s′ ∈ S s.t. s
a→ s′ and A, s′ |= φ

A, s |= 〈a〉φ iff there is an s′ ∈ S s.t. s′ a→ s and A, s′ |= φ

A, s |= Kiφ iff for all reachable s′ ∈ S s.t. s
i· · · s′ : A, s′ |= φ

A, s |= νX.φ(X) iff s ∈ ⋃{S′ ⊆ S|∀s′ ∈ S′.A, s′ |= φ(X := S′)}

A satisfies a formula φ, denoted A |= φ, if s0 |= φ.

Operational and Epistemic Approaches to Protocol Analysis 233

The most noticeable of the rules above is the one for Kiφ. It expresses the
fact that i knows φ if φ holds in all states considered possible by i when residing
in s, that is in all states belonging to the

i· · · equivalence class of s. The semantic
rules in the previous section constructed this relation based on what i was al-
lowed to observe from the run of the protocol. The intention behind the formula
Kiφ is not to check what i learned in terms of explicit information the principal
received (e.g., as contents of some message), but what i learned through obser-
vation. Observation (partial observation) of what actually happens, can reduce
a principal’s uncertainties and thereby ‘leak’ information. Particularly, if princi-
ples are familiar with the protocol, they may derive from certain actions taking
place, that the previous action must have been a particular one, even if they did
not know it before. This is the case in the example depicted in Figure 2, where
principal 2 learns from observation of action d, that the choice made before must
have been a. More exactly, sequences of actions which are not properly protected
by the visibility restrictions ρ may lead to a refinement of the

i· · · class which is
sufficient for i to distinguish between a state where agent’s j secret key is 100
and a state where agent j’s secret key is 200, even if i never participated in a
direct communication over j’s key. This process of learning by the refinement of
the indistinguishability relations along the traces is captured in the definition of
A, s |= Kiφ. Our logic satisfies the standard axioms for a logic of knowledge:

Theorem 1. The so-called S5 axioms (cf. [14, p.59]) hold in Eμ:

K : Kiφ ∧ Ki(φ → ψ) → Kiψ 4 : Kiφ → KiKiφ (positive introspection)
T : Kiφ → φ (reflexivity) 5 : ¬Kiφ → Ki¬Kiφ (negative introspection)

The definition of satisfaction provides a model checking algorithm, that will be
decidable on the finite trees generated by the semantics of our PAi . Since the
Eμ satisfaction relation on ALTSs rests on classically accepted definitions for
similar but less expressive models, we expect that it should be possible to reuse
and extend existing efficient model checking tools.

An interesting and non-trivial question is to find a behavioral equivalence that
is characterized by Eμ. We expect the answer to be some notion of bisimilarity
that considers both a→ and

i· · · as transition relations. Due to the presence of
past temporal operators, we may have to resort to some notion of bisimilarity
that takes backward steps also into account (a notion of forward-backward or
history-preserving bisimilarity).

4 Bridging the Gap: Relation to Existing Theories

In this section we show that the framework introduced in this paper is a conser-
vative extension of the traditional process theoretic modeling on the one hand,
and epistemic modeling on the other hand. To this end, we prove that the satis-
faction relation defined in Section 3 preserves the standard satisfaction relations
of μ (μ-calculus with past) formulae on labeled transition systems and of E

234 F. Dechesne, M.R. Mousavi, and S. Orzan

1, 2

1, 2 1, 2

1, 2

1, 2

22

2

a

b

c

d

1, 2

1, 2 1, 2

1, 2

1, 2

22

2

a

b

c

d

PAi

EµALTS

PA

LTS µ

|=

|=µKS E|=E

Fig. 2. Left picture: An ALTS A (rightmost), together with its projections: ’the
temporal part’ lts(A) (leftmost) and ’the epistemic part’ em(A) (center). In lts(A),
the points are states, the arrows are transitions. In em(A), points are possible worlds
and lines are indistinguishability relations labeled with identities of agents. In (A),
the points are states and possible worlds simultaneously. Both temporal and epistemic
relations are present. The epistemic valuation in a state is given by the actions executed
from the initial state to that state. In the initial state, combined temporal epistemic
formulae hold like 〈a〉(K1a

� ∧¬K2a
�) — expressing that after an a-action, it is known

to principal 1 that action a has been executed, but 2 doesn’t know that. However, 2
knows that one of the actions a,b,c has been executed (〈a〉(K2(a

� ∨ b� ∨ c�))). More
interestingly, after step d is executed, 2 has learned that a must have been the first
step: 〈a〉〈d〉K2a

�. Modeling this phenomenon of agents learning facts that were never
explicitly told to them is exactly the power of epistemic logic approaches, that we took
over in the combined framework. Right picture: Projecting into process-theoretic
domain and epistemic domain. A dashed arrow x ��� y means that x is an extension of
y. The arrow x→ y means y is the semantic model of x. The links between ALTS, LTS,
KS, Eμ, μ, E are discussed in this paper. The connection with the process languages
PAi and PA (a pure process theoretic formalism) is explained in [12].

(epistemic logic) formulae on Kripke structures. In Figure 2, the left picture il-
lustrates the three semantic models discussed in this section: the existing LTS
and KS, and the newly introduced ALTS. The right picture gives an overview
of the connections between the various notions.

Projecting into the Process-Theoretic Domain. A Labeled Transition
System (LTS) is a standard semantic domain for process-theoretic formalisms.
Formally, an LTS over a set of labels L is a tuple 〈St, → , �, s0〉, where St is the
set of operational states, → ⊆ St× L × St is the transition relation, � ⊆ St is
the termination predicate and s0 is the initial state. It typically represents the
behavior of a reactive system in terms of states and transitions. Then require-
ments formulated in a temporal logic are matched against this behavior in the
process of model checking.

A very general logical language to reason about processes is the μ-calculus
with past (μ) [23], which is obtained by leaving out the knowledge construct
Kiφ from the syntax of our logic presented in Section 3. That a state s in the
LTS T = 〈S, → , �, s0〉 satisfies a μ formula φ (denoted T, s |=μ φ) is defined
inductively as follows:

Operational and Epistemic Approaches to Protocol Analysis 235

T, s |=µ � iff true
T, s |=µ ¬φ iff T, s �|=µ φ
T, s |=µ φ1 ∧ φ2 iff T, s |=µ φ1 and s |=µ φ2

T, s |=µ 〈a〉φ iff exists s′ ∈ S, s.t. s a→ s′ and T, s′ |=µ φ

T, s |=µ 〈a〉φ iff exists s′ ∈ S, s.t. s′ a→ s and T, s′ |=µ φ
T, s |=µ νX.φ(X) iff s ∈ ⋃{S′ ⊆ S|∀s′ ∈ S′.T, s′ |=µ φ(X := S′)}

We prove that the ALTS + Eμ model checking framework properly extends the
LTS + μ model checking framework, in the sense that whatever was possible
in the latter, is still possible and has the same meaning in the former. This is
witnessed by the fact that LTS + μ can be immediately obtained by simply
stripping the ALTS from the I relations and the Eμ logic from the epistemic
operator Ki. The following theorem formalizes this.

Theorem 2. Consider a PAi process p and the ALTS A = 〈St, → , �, I, s0〉
obtained as semantics of (p, []) by following the SOS rules in Figure 1. Let (q, π)
be a state in A, reachable from (p, []) (i.e. in the transitive closure of → from
s0 = (p, [])). Let us define lts(A) = (St, → , �, s0). Then, for each μ formula φ,
A, (q, π) |= φ iff lts(A), q |=μ φ.

This means that for purely temporal aspects of correctness, one can safely ignore
the epistemic aspects of our semantics and our logic.

Projecting into the Epistemic Domain. Epistemic logics are mainly con-
cerned with expressing subtle properties of communication acts, related to the
knowledge, beliefs and intentions of communicating parties. In standard epis-
temic logic (following [17]), epistemic properties are validated in static rich
snapshots of communications (epistemic models), that don’t express the tem-
poral evolution of the system. The language of epistemic logic with common
knowledge defined by:

φ ::= p | ¬φ | φ1 ∧ φ2 | Kiφ | CJφ

Here the p comes from a given set of propositional variables Prop. These propo-
sitions represent the atomic facts the agents may know about. The subscript i
ranges over a given set of agents I, and J over subsets of I. The standard read-
ing of the epistemic modalities Ki and CJ is the same as ours in the previous
section: “i knows that. . . ” and “it is common knowledge among the agents in J
that. . . ”, respectively.

An epistemic (S5-)model is a Kripke structure 〈W, {Ri|i ∈ I}, V 〉, where W
is a nonempty set of possible worlds, Ri is an equivalence relation on W for
each i ∈ I, and V : Prop → P(W) is a valuation function assigning to each
propositional variable the set of worlds in which it holds. Given an epistemic
model M and world s ∈ W , satisfaction (|=E) is defined recursively as follows:

M, s |=E p iff s ∈ V (p)
M, s |=E ¬φ iff it is not true that M, s |=E φ
M, s |=E φ1 ∧ φ2 iff M, s |=E φ1 and M, s |=E φ2

M, s |=E Kiφ iff for all M, s′ ∈ W, if sRis
′ then M, s′ |=E φ

M, s |=E CJφ iff for all M, s′ ∈ W, if s(∪i∈JRi)
∗s′ then M, s′ |=E φ

236 F. Dechesne, M.R. Mousavi, and S. Orzan

To isolate ‘the epistemic part’ of our framework, we make suitable choices for
the set of propositions, and the set of agents. In the context of our PAi -processes
we associate with every action a ∈ Act a proposition a (which can be read as “a
has been executed sometime before”), and we let Prop := {a|a ∈ Act} ∪ {
}.
Furthermore, we let I be our set of identities Id. We call the resulting logic E.

We can then say that our modeling and verification framework is also con-
servative when it comes to purely epistemic aspects. Namely, if we restrict the
ALTS associated with a PAi process to the I relations, we obtain an epistemic
model where purely epistemic formulas hold exactly when they hold in the origi-
nal ALTS, according to the Eμ satisfaction relation. Let us define an embedding
E : E-forms → Eμ-forms of formulas into Eμ formulas, by taking E(a) = a� and
extending from there:

E(�) = � E(φ1 ∧ φ2) = E(φ1) ∧ E(φ2)
E(a) = a� E(Kiφ) = KiE(φ)
E(¬φ) = ¬E(φ) E(CJφ) = νX.(

∧
i∈J Ki(X ∧ φ)).

The following theorem formally expresses the conservativeness of Eμ w.r.t. E.

Theorem 3. Consider a PAi process p over the set of actions Act. Let A =
〈St, → , �, I, s0〉 be the ALTS obtained as semantics of (p, []) by following the
SOS rules in Figure 1. Let us define its associated epistemic model as em(A) =

〈St, { i· · · |i ∈ Id}, V 〉, with propositions from Prop, V (a) = {s ∈ St|A, s |= E(a)}
and V (
) = St. Then for any E formula φ and any possible world s ∈ St,
A, s |= E(φ) iff em(A), s |=E φ.

5 An Example Protocol: Dining Cryptographers

In order to illustrate the relative advantages of the combined framework com-
pared to using exclusively the operational approach or the epistemic one, we
discuss the Dining Cryptographers protocol [10], which has already been inde-
pendently and extensively analyzed using both operational [26,4] and epistemic
approaches [20,16,25]. The story, a metaphor for anonymous broadcast, is about
three cryptographers having dinner together. The bill is paid anonymously by
one of them, or by the National Security Agency (NSA). They respect each
other’s right to anonymity, but they wish to find out whether the payer was
NSA or not. To this end, they come up with the following protocol: each neigh-
boring pair of cryptographers generates a shared bit, by flipping a coin; then
each cryptographer computes the exclusive or (XOR) of the two bits she sees,
then announces the result — or the flipped result, if she was herself the payer.
The XOR of the three publicly announced results indicates whether the payer
was an insider or NSA.

Model. A model of this protocol in our process language is shown in Fig-
ure 3. Inspired by the input construction in the algebraic specification language
μCRL, we use

∑
x:{x1...xn} P (x) as an abbreviation for P (x1) + . . . + P (xn),

where {x1 . . . xn} is a finite set and P (xi) denotes the process expression P (x)
in which xi has been substituted for x.

Operational and Epistemic Approaches to Protocol Analysis 237

Crypt(i) =
∑

b:Bool ((i)?pay(i, b);CryptF lip(i, b))
CryptF lip(i, b) =

∑
c:Bool ((i)flip(i, c);CryptShare(i, b, c))

CryptShare(i, b, c) =
∑

d:Bool (((i)!share(i mod 3 + 1, c) || (i)?share(i, d)) ;
CryptBcast(i, b, c, d))

CryptBcast(i, b, c, d) = ((i)!bcast(i, b⊕ c⊕ d) ; (i)!bcast(i, b⊕ c⊕ d))
||∑x,y:Bool(((i)?bcast(i + 1 mod 3 + 1, x)

|| (i)?bcast(i mod 3 + 1, y)) ;
nsa(i,¬(b⊕ c⊕ d⊕ x⊕ y)))

Master = (M)!pay(1,�); (M)!pay(2,⊥); (M)!pay(3,⊥)
+ (M)!pay(1,⊥); (M)!pay(2,�); (M)!pay(3,⊥)
+ (M)!pay(1,⊥); (M)!pay(2,⊥); (M)!pay(3,�)
+ (M)!pay(1,⊥); (M)!pay(2,⊥); (M)!pay(3,⊥)

Fig. 3. A PAi model of The Dining Cryptographers protocol. ⊕ denotes exclusive or.

The model is rather close to the CSP description presented in [26], the only sig-
nificant difference being that the actions are annotated with identities from the
set Id = {1, 2, 3, M}. Note that the parameters used in the basic actions and pro-
cess definitions are just generic names for the concrete instances resulting from
instantiating them. For example, ?pay(i, b) is not defined in our process language
but rather it stands for a number of instances such as ?pay(1,
), ?pay(i,⊥) each
of which are basic actions (obtained by globally replacing i and b with a mem-
ber of Id and {⊥,
} in the process definition each time). The behavior of the
ith cryptographer is specified by the process Crypt(i) and the behavior of the
whole DC system as a parallel composition of Crypt(i)’s and the Master pro-
cess, DC3 = Crypt(1) ||Crypt(2) ||Crypt(3) ||Master. A cryptographer process
executes a series of actions corresponding to the three big steps of the protocol:
decide whether to pay or not, flip the coins together with the neighbors, and
announce the result of XOR-ing the two coins and her own paying bit. The first
step is modeled as a statement pay(i, b), which is in fact a communication step
with the Master. The second step is modeled by the processes CryptF lip(i) and
CryptShare(i). In other existing models [26,4], the shared coins are represented
by separate processes, but in order to keep the specification simple, we merge
the behavior of the ith coin with the behavior of the ith cryptographer. There-
fore, process Crypt(i) will execute a flip action and then share the result with
the right-hand neighbor, by executing an action !share which will synchronize
with the ?share from the next cryptographer in the ring. CryptBcast models
the last phase, announcing the result of one’s computation (!bcast), receiving
the results from all the others (?bcast) and concluding for itself that NSA paid
or not (nsa(i,
), nsa(i,⊥)).

The renaming function ρ specifies how much of a cryptographers’ actions
is visible for observing parties. For any i ∈ {1, 2, 3} and b ∈ {
,⊥}, we de-
fine ρ(pay(i, b)) = pay(i), ρ(bcast(i, b)) = bcast(i, b), ρ(share(i, c)) = share(i),
ρ(flip(i, b)) = flip(i) and ρ(nsa(i, b)) = nsa(i, b), where pay(1), bcast(1,
), . . .
are basic actions.

238 F. Dechesne, M.R. Mousavi, and S. Orzan

pay(1,
) pay(1,⊥)

pay(3,
)

pay(2,
) pay(2,⊥)

pay(3,⊥)

pay(2,
) pay(2,⊥)

pay(3,
)pay(3,
)pay(3,
)

pay(3,⊥)pay(3,⊥)pay(3,⊥)

2,3

2,3

2,3

1,31,3 3

1,2
1,2 1,2 1,2

1,3 1,3

1,31,3 3

3

2,3

2,3

2,3

Fig. 4. A small fragment from the ALTS generated for the DC specification. For read-

ability, we omitted some
i· · · relations generated by reflexivity and transitivity.

Analysis. Figure 4 shows the top part of the ALTS generated by the rules in
Figure 1 from the process specification in Figure 3. We check relevant functional
and epistemic properties of this protocol by matching Eμ formulas against this
ALTS, as dictated by the satisfaction relation |= (Definition 2).

First of all, we can check functional correctness, by asking for instance that
in all executions where one of the cryptographers paid, the action nsa(1,
)
is eventually observable, meaning that the first cryptographer draws the right
conclusion that the payer was an insider. This requirement is a purely temporal
formula, for each i ∈ {1, 2, 3}: [pay(i,
)]

∧
j∈{1,2,3}[�∗]nsa(j,⊥).

Better yet, we can also check the powerful epistemic statement that “every-
body knows that the payer is an insider” eventually becomes common knowledge
among the three cryptographers. This is expressed as: for every i ∈ {1, 2, 3}, it
holds that [pay(i,
)][�∗]C{1,2,3}(

∧
j∈{1,2,3} nsa(j,⊥)�).

Anonymity, the main goal of the protocol, is not expressible as a purely tempo-
ral property, but it is conveniently expressible as a temporal epistemic property.
The anonymity of cryptographer i (holding in the initial state of our model) is
expressed by the formula [pay(i,
)]

∧
j∈{1,2,3}\{i} ¬〈�∗〉Kj(pay(i,
)�). All these

properties are satisfied by our PAi model, according to the satisfaction relation
|= defined in Section 3.

Comparison to Other DC Models. PAi allows a simple and operational
modeling, just as intuitive as any other process language, see also for instance
a CSP model [26] and a pi-calculus model [4] of the Dining Cryptographers. All
these models are definitely closer to the protocol description than logic mod-
els [18,25] and moreover, they are supported by a semantics which formally links
the description of a protocol to its actual behavior model.

On the other hand, epistemic logic models allow expressing and checking
anonymity as epistemic formulae, which is much more natural than the equiv-
alence checking method employed in the process theoretic approach. More pre-
cisely, operational approach to verification of anonymity requires writing down

Operational and Epistemic Approaches to Protocol Analysis 239

new descriptions for each anonymity property that has to be checked, because
these properties are dependent on the point of view of the observer. In the ALTS
that our specification generates, all points of view are simultaneously present,
thus a direct and natural (epistemic) verification is possible.

6 Conclusion

Motivated by protocols and properties where much importance is given to the
participating entities and not only to the actual evolution of the system — like
certain security protocols, information flow — we presented a simple process
language where the concept of identity is explicitly present. We gave it an oper-
ational semantics in terms of an extended form of labeled transition systems and
defined a satisfaction relation for properties expressed in a rich logic combining
temporal and epistemic operators. The result is a specification and verification
framework that combines the best parts of two complementary approaches to
protocol analysis: process algebras and epistemic logics.

Our framework is particularly suitable for modeling and verification of pro-
tocols on top of authenticated secret channels, ensured for instance by a Public
Key Infrastructure. In these protocols, the security threats typically do not come
from an external intruder controlling the communication channels, but from the
participants themselves. Examples are protocols for fair exchange, voting, auc-
tions, anonymity. In security protocols with cryptography or active attackers,
some behavioral choices are determined by the current knowledge of the princi-
pals. In particular, a principal can distinguish more traces by gaining access to
keys. To properly accommodate this, our framework should be extended, possi-
bly by allowing dynamic update of indistinguishability relation in the course of
protocol execution. Note however that the current framework is just as powerful
in modeling cryptography aspects as any other (traditional) process algebra. So,
for these cases, more research is needed in order to find the best way of integrat-
ing the elegance of representing knowledge by indistinguishability relations with
the ease of specifying the protocol operationally.

Future Work. First of all, we will build tool support for model checking Eμ
properties on ALTSs. Ideally, this can be achieved by embedding the new frame-
work in an existing verification tool-set. The starting point will be our already
existing Maude prototype [1]. Then we wish to experiment with applying this
technique to protocols from the categories mentioned above. On a more theoret-
ical direction, a question is whether it is possible to extend the sequent-based
compositional proof system developed for the SOS + Hennessy-Milner Logic [27]
in order to cope with Eμ formulas, as well. Finally, this framework can support
a direct comparison of the operational and epistemic definitions of various prop-
erties. For instance, anonymity is defined operationally as (trace) equivalence
between certain processes, while epistemically it is simply a negative knowledge
formula. The issue of which of these definitions is stronger, if any, is not clear
yet and deserves further investigation.

240 F. Dechesne, M.R. Mousavi, and S. Orzan

Acknowledgments. We are grateful to Luca Aceto, Dave Clarke, Jan van
Eijck, Michael Huth and Michel Reniers for comments on earlier versions of this
work.

References

1. A Maude implementation of PAi. http://www.win.tue.nl/∼mousavi/pai.htm
2. Abadi, M., Gordon, A.D.: A calculus for cryptographic protocols: The spi calculus.

Information and Computation 148(1), 1–70 (1999)
3. Baltag, A.: Logics for insecure communication. In: Proc. TARK 2001, pp. 111–121

(2001)
4. Bhargava, M., Palamidessi, C.: Probabilistic anonymity. In: Abadi, M., de Al-

faro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 171–185. Springer, Heidelberg
(2005)

5. Borgström, J., Kramer, S., Nestmann, U.: Calculus of cryptographic communica-
tion. In: Proc. FCS-ARSPA 2006 (2006)

6. Broadfoot, P.J.: Data Independence in the Model Checking of Security Protocols.
PhD thesis, Oxford University (2001)

7. Brookes, D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating sequential
processes. Journal of the ACM 31(3), 560–599 (1984)

8. Burrows, M., Abadi, M., Needham, R.: A logic of authentication. In: Practical
Cryptography for Data Internetworks, IEEE Computer Society Press, Los Alamitos
(1996)

9. Caleiroa, C., Viganò, L., Basin, D.: On the semantics of Alice & Bob specifications
of security protocols. TCS 367(1-2), 88–122 (2006)

10. Chaum, D.: The dining cryptographers problem: Unconditional sender and recipi-
ent untraceability. Journal of Cryptology 1, 65–75 (1988)

11. Chothia, T., Orzan, S.M., Pang, J., Dashti, M.T.: A framework for automatically
checking anonymity with mCRL. In: Proc. TGC 2006, LNCS (2007)

12. Dechesne, F., Mousavi, M., Orzan, S.M.: Operational and epistemic approaches to
protocol analysis: Bridging the gap. Tech. Rep. CS 07-15, TU Eindhoven (2007)

13. van Eijck, J., Orzan, S.M.: Epistemic verification of anonymity. In: Proc. VODCA
2006. ENTCS, vol. 168 (2006)

14. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge.
MIT Press, Cambridge (1995)

15. Gerbrandy, J., Groeneveld, W.: Reasoning about information change. Journal of
Logic Language and Information 6, 147–169 (1997)

16. Halpern, J.Y., O’Neill, K.R.: Anonymity and information hiding in multiagent
systems. Journal of Computer Security, 483–514 (2005)

17. Hintikka, J.: Knowledge and Belief. Cornell University Press (1962)
18. van der Hoek, W., Wooldridge, M.: Model checking knowledge and time. In:

Bošnački, D., Leue, S. (eds.) Model Checking Software. LNCS, vol. 2318, pp. 95–
111. Springer, Heidelberg (2002)

19. Hommersom, A., Meyer, J.-J., de Vink, E.P.: Update semantics of security proto-
cols. Synthese 142, 229–267 (2004)

20. Hughes, D., Shmatikov, V.: Information hiding, anonymity and privacy: A modular
approach. Journal of Computer Security 12(1), 3–36 (2004)

21. Kramer, S.: Logical concepts in cryptography. Cryptology ePrint Archive, Report
2006/262 (2006), http://eprint.iacr.org/2006/262

http://www.win.tue.nl/~mousavi/pai.htm
http://eprint.iacr.org/2006/262

Operational and Epistemic Approaches to Protocol Analysis 241

22. Milner, R.: A Calculus of Communication Systems. LNCS, vol. 92. Springer, Hei-
delberg (1980)

23. Nielsen, M.: Reasoning about the past. In: Brim, L., Gruska, J., Zlatuška, J. (eds.)
MFCS 1998. LNCS, vol. 1450, pp. 117–128. Springer, Heidelberg (1998)

24. Plotkin, G.D.: A structural approach to operational semantics. Journal of Logic
and Algebraic Programming 60, 17–139 (2004)

25. Raimondi, F., Lomuscio, A.: Automatic verification of deontic interpreted systems
by model checking via OBDD’s. Journal of Applied Logic (in Press, 2006)

26. Schneider, S., Sidiropoulos, A.: CSP and anonymity. In: Martella, G., Kurth, H.,
Montolivo, E., Bertino, E. (eds.) ESORICS 1996. LNCS, vol. 1146, pp. 198–218.
Springer, Heidelberg (1996)

27. Simpson, A.K.: Sequent calculi for process verification: Hennessy-Milner logic for
an arbitrary GSOS. Journal of Logic and Algebraic Programming, 60–61, 287–322

Protocol Verification Via Rigid/Flexible

Resolution

Stépphanie Delaune2, Hai Lin1, and Christopher Lynch1

1 Clarkson University, Potsdam, NY 13699-5815, USA
2 LORIA, CNRS & INRIA project Cassis, Nancy, France

Abstract. We propose a decision procedure, i.e. an inference system
for clauses containing rigid and flexible variables. Rigid variables are
only allowed to have one instantiation, whereas flexible variables are
allowed as many instantiations as desired. We assume a set of clauses
containing only rigid variables together with a set of clauses containing
only flexible variables. When the flexible clauses fall into a particular
class, we propose an inference system based on ordered resolution that
is sound and complete and for which the inference procedure will halt.

An interest in this form of problem is for cryptographic protocol veri-
fication for a bounded number of protocol instances. Our class allows us
to obtain a generic decidability result for a large class of cryptographic
protocols that may use for instance CBC (Cipher Block Chaining) en-
cryption and blind signature.

1 Introduction

In refutational theorem proving, we must determine if a set of clauses is unsat-
isfiable. Clauses are implicitly universally quantified, so we allow an unbounded
number of renamed copies of each clause. Each copy represents a different in-
stance of the original clause. In proving rigid unsatisfiability [1], we ask whether
a set of clauses is unsatisfiable, allowing only one instance of each clause. For
example, the set of clauses

{I(a), I(b), ¬I(x) ∨ I(f(x)), ¬I(f(a)) ∨ ¬I(f(b))}
is unsatisfiable but is not rigidly unsatisfiable, because proving unsatisfiability
requires two instances of the third clause.

Rigid theorem proving has been used in tableau style theorem provers, but
not often in saturation and resolution-based theorem proving. It is generally
used to prove unsatisfiability of a set of clauses, by repeatedly solving the rigid
satisfiability problem, and continually adding new renamed copies of each clause,
because a set of formulas is unsatisfiable if and only if there is a finite number
of copies of each clause which make it rigidly unsatisfiable.

Here we give a new use for rigid theorem proving. For example, in crypto-
graphic analysis, we get a reasonable confidence in the protocol security if we

N. Dershowitz and A. Voronkov (Eds.): LPAR 2007, LNAI 4790, pp. 242–256, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Protocol Verification Via Rigid/Flexible Resolution 243

show that, say after any 2 or 3 sessions of the protocols there is no attack.
Since the problem is well-known to be undecidable for an unbounded number of
protocol instances, many papers study the security problem under this assump-
tion [4,5,15].

However, the problem is more complicated than this. We need rigid clauses
to restrict the number of times an action is performed. But simultaneously,
we may also want to model certain properties. For example, in cryptographic
protocol analysis, the intruder has the ability to construct and deconstruct mes-
sages, to encrypt messages and to decrypt messages if the key is known. It is
not realistic to bound the number of times that these properties are applied.
Therefore, when describing processes, it makes sense to use rigid variables to
model actions which are performed a bounded number of times, and flexible
variables to model properties which it makes no sense to bound. Therefore, in
this paper we introduce the idea of rigid theorem proving modulo a flexible the-
ory. We will use unary predicates to model the state of the world. Actions can
be relatively complicated, whereas properties should be simple, according to the
theory we are working in.

Unsatisfiability is an undecidable property for first order logic, but rigid un-
satisfiability is Σp

2 -complete, while for Horn clauses, rigid unsatisfiability is NP-
complete [12]. In this paper, we consider Horn clauses, since that is a natural way
to model actions. Our intended application is cryptographic protocol analysis,
and Horn clauses are sufficient to model many interesting properties.

We show that rigid/flexible Horn clauses unsatisfiability is decidable for a
large class of rigid theories (including those that model cryptographic protocols)
and a simple class of flexible theories. The flexible theories we consider model
the standard Dolev-Yao model [10] for cryptographic protocol analysis, but also
more complicated theories, such as the prefix theory and blind signature theory.
The prefix theory related to Cipher Block Chaining (CBC) is important since it
is a common encryption mode. It allows an attacker to get from an encrypted
message the encryption of any of its prefixes. The blind signature scheme is
employed in the design of several E-voting protocols (e.g. [11]). It allows an agent
(e.g. a voter) to have a message (e.g. his vote) signed blindly by an authority.
This scheme offers an intruder new attacks opportunities.

Ordered Resolution is a powerful inference system for first order logic. So,
in this paper, we define a modification of Ordered Resolution, called Protocol
Resolution. The main result of this paper is the definition of the rigid/flexible
unsatisfiability problem, the decidability of a resolution inference system for a
useful class of problems, and its application to cryptographic protocol analysis.
After the preliminaries (see Section 2), we define how we model protocols in
Section 3. Next we define the security problem we want to solve. We give our in-
ference system (Section 5), followed by a termination argument (Section 6) and
a completeness argument (Section 7). Then we discuss related and future work.
Missing proofs and lemmas can be found at http://people.clarkson.edu/˜
linh/SHC07.pdf

244 S. Delaune, H. Lin, and C. Lynch

2 Preliminaries

2.1 Term Algebra

Let F be a finite set of function symbols with arity and X be an infinite set
of variables. The set of terms on F and X is denoted T (F ,X) and T (F) for
ground terms. We note vars(t) the set of variables occurring in t ∈ T (F ,X). We
distinguish two kinds of variables, the rigid ones denoted by X, Y, . . ., and the
non-rigid ones also called flexible that we denote by x, y, Rigid variables are
only allowed to have one instantiation, whereas non-rigid variables are allowed
as many instantiations as desired. A substitution σ is a mapping from a finite
subset of X called its domain and written dom(σ) to T (F ,X). Substitutions
are extended to endomorphisms of T (F ,X) as usual. If t is a term then tσ
obtained by applying σ to t is defined as usual. A substitution σ is grounding
for t if tσ is ground. If M and N are terms then a unifier of M and N is a
substitution σ such that Mσ = Nσ. It is well-known that unifiable terms have a
a most general unifier (mgu), i.e. a substitution σ such that σ ≤ τ (there exists ρ
such that σρ = τ) for every other unifier τ of s and t.

2.2 Clauses

Let P be a finite set of unary predicate symbols. We assume given a well-founded
and total precedence ordering on P , denoted by >. Atoms A are of the form I(t)
where I ∈ P and t is a term. Literals L are either positive literals +A (or simply
A) or negative literals −A where A is an atom. A clause is a finite set of literals.
We denote by At(C) the set of atoms that appear in a clause C. If C1 and C2

are clauses, C1 ∨ C2 denotes C1 ∪ C2 and we denote by � the empty clause. A
Horn clause is a clause that contains at most one positive literal that is called
the head. For Horn clauses we use the alternative notation A1, . . . , An ⇒ A0 to
denote −A1 ∨ . . .∨−An ∨A0. A clause with no head is called a goal. A clause is
a non-rigid or flexible clause (resp. rigid) if it only involves flexible (resp. rigid)
variables. A constrained Horn clause, which is of the form Γ ⇒ A0 �C�, is a
Horn clause together with a constraint. The constraint C is a set of equations
between terms in T (F ,X). The constraint is omitted when C is empty.

A partial ordered interpretation J w.r.t. ≺ is a set of ground literals such that
A ∈ J iff −A �∈ J , and if +A ∈ J (resp. −A ∈ J) and B ≺ A then +B ∈ J
or −B ∈ J . A ground clause C is false in J if, for every literal ±A ∈ C,
the opposite literal ∓A belongs to J . A clause C is unsatisfiable in the partial
interpretation J if there exists a substitution θ grounding for C such that Cθ is
false in J . Let Cr be a set of rigid Horn clauses and Cf be a set of flexible Horn
clauses which contains only flexible variables. We say that Cr is unsatisfiable
modulo Cf if there exists a substitution θ grounding for Cr such that Crθ ∪ Cf is
unsatisfiable.

Example 1. Consider the following set of Horn clauses:

C := { ⇒ I(a); ⇒ I(b); I(x) ⇒ I(f(x)); I(f(a)), I(f(b)) ⇒ ⊥}

Protocol Verification Via Rigid/Flexible Resolution 245

If the clause I(x) ⇒ I(f(x)) is flexible then C is unsatisfiable whereas it is
satisfiable if the clause is assumed to be rigid.

2.3 Ordered Resolution

We consider a liftable1 ordering ≺, total on ground atoms. This property is
crucial for the completeness of ordered resolution. Let A1, A2 and B be three
atoms, C1 and C2 be Horn clauses and σ = mgu(A1, A2).
The resolution rule is defined by:

C1
def= Γ1 ⇒ A1 Γ2, A2 ⇒ B

def= C2

Γ1σ, Γ2σ ⇒ Bσ

Ordered resolution (w.r.t. ≺) requires that A1σ is maximal in Γ1σ, Γ2σ ⇒ Bσ,
i.e. there is no atom A ∈ At(Γ1σ, Γ2σ ⇒ Bσ) such that A1σ ≺ A. The clause
Γ1σ, Γ2σ ⇒ Bσ is called the resolvent of C1 and C2. In the remainder of the
paper, we will consider the embedding ordering �emb.

t �′emb s if one of the following is true:

– t = s
– s is of the form f(s1, . . . , sn) and there exists some 1 ≤ i ≤ n s.t. t �′emb si.
– t is of the form f(t1, . . . , tn), s is of the form f(s1, . . . , sn) and for all 1 ≤

i ≤ n: ti �′emb si.

For instance, f(x, z) �emb f(g(x, y), z). We assume the embedding ordering is
extended to a total ordering. It is extended to atoms as follows: P (t) �emb P ′(t′)
if and only if t �emb t′. It can also be extended to clauses by considering clauses
as multi-sets of atoms.

A set S of (flexible) clauses is saturated by ordered resolution w.r.t. ≺emb if
for every resolvent C obtained by ordered resolution from S and for every partial
ordered interpretation J , if C is unsatisfiable in J then S is unsatisfiable in J .

3 Modeling Protocols

The aim of this section is to introduce the class of clauses we consider. We also
explain how protocols can be modeled using these clauses.

3.1 Intruder Clauses

The intruder is able to analyze messages that pass over the network. For exam-
ple, if he sees an encrypted message and he knows the decryption key, he can
decrypt it. This can be modeled by I({x}y), I(y) ⇒ I(x). Intuitively, the predi-
cate I represents the knowledge of the intruder and I(m) means that the intruder

1 An order ≺ is said liftable if for any two terms u, v and for any substitutions θ,
u ≺ v implies uθ ≺ vθ.

246 S. Delaune, H. Lin, and C. Lynch

knows the message m. Other examples of clauses, very useful and classical to
model the intruder capabilities are given below:

CDY :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

I(x), I(y) ⇒ I({x}y) symmetric encryption
I({x}y), I(y) ⇒ I(x) symmetric decryption

I(x), I(y) ⇒ I(〈x, y〉) pairing
I(〈x, y〉) ⇒ I(x) first projection
I(〈x, y〉) ⇒ I(y) second projection

I(x), I(y) ⇒ I(sgn(x, y)) signing
I(sgn(x, y)), I(y) ⇒ I(x) verifying the signature

Note that each of these clauses contains at most one function symbol. That
is why we introduce the following definition.

Definition 1 (Intruder clause). Let P be a set of unary predicate symbols.
An intruder clause on P is a flexible Horn clause having a positive literal and is
of the form

±P0(f(x1, . . . , xn)) ∨ ∨m
j=1 ±Pj(xij).

where

– xij ∈ {x1, . . . , xn} for every j such that 1 ≤ j ≤ m, and
– Pj ∈ P for every j such that 0 ≤ j ≤ m.

If the atom of the form P0(f(x1, · · · , xn)) occurs positively then the intruder
clause is called a constructor clause. Otherwise it is called a destructor clause.

Such kind of clauses do not allow us to model some cryptographic primitives
which are useful. This is our main motivation to extend this class by adding
some special clauses.

3.2 Extending the Intruder Power

We want to deal with some clauses that do not satisfy the conditions given in
Definition 1. The intruder clauses CDY given in Section 3.1 represents the classical
Dolev-Yao intruder [10], i.e. assuming perfect cryptography. In particular, it is as-
sumed that an attacker can not learn anything from an encrypted message {m}k

except if he knows the decryption key. This assumption is too strong in some
situations. Depending on the implementation of the cryptographic primitives,
the attacker may be able to deduce more messages.

Prefix and suffix properties. The prefix property is the ability of an intruder
to get from an encrypted message the encryption of any of its prefixes: from a
message {〈x, y〉}z, he can deduce the message {x}z. This can be easily encoded
in our formalism by the clause:

Cpre := I({〈x1, x2〉}y2) ⇒ I({x1}y2).

This property strongly depends on the encryption algorithm. A relatively good
method of encrypting several blocks of data is Cipher Block Chaining (CBC). In

Protocol Verification Via Rigid/Flexible Resolution 247

such a system, the encryption of message block sequence P1P2 · · ·Pn
2 with the

key K is C0C1 · · ·Cn where C0 = I (initialization block) and Ci = {Ci−1 ⊕ Pi}K .
Hence, if C0C1 · · · · · ·Cn = {P1P2 · · ·Pn}K then C0C1C2 · · ·Ci = {P1P2 · · ·Pi}K ,
that is to say an intruder can get {x}z from {〈x, y〉}z if the length of x is a multiple
of the block length used by the cryptographic algorithm. This property can be used
by an intruder to mount some attacks on several well-known protocols [6] (e.g.
Denning-Sacco protocol [8], Needham-Schroeder symmetric key protocol [16]). In
[14], S. Kremer and M. Ryan notice that one can also reuse any postfix Ci+1 · · ·Cn

of a cipher C0C1C2 · · ·Cn as a valid cipher. This can also be modeled by a Horn
clause:

Csuf := I({〈x1, x2〉}y2) ⇒ I({x2}y2).

Blind signature. Digital signatures are often used in cryptographic protocols. A
particular class of signature scheme is the blind signature scheme which is often
used in electronic voting protocols (e.g. the protocol due to Fujioka et al. [11]).
The idea of the protocol is that the voter first sends his vote hidden with a
blinding factor r: bld(v, r). This is used to ensure that the value of his vote will
not be revealed to anyone even the administrator who has to sign his vote. Then
the administrator signs this message without knowing exactly the message he is
signing and he sends back the result, i.e. sgn(bld(v, r), ska) to the voter. Now
the voter can unblind the message to obtain sgn(v, ska), i.e. the signature of
his vote. This property of blind signature can be modeled in Horn clauses by
considering the following clauses:

Cbld :=
{

I(x), I(y) ⇒ I(bld(x, y))
I(bld(x, y)), I(y) ⇒ I(x)

Csgn := I(sgn(bld(x1, x2), y2), I(x2) ⇒ I(sgn(x1, y2)))

Note that the two clauses in Cbld are intruder clauses whereas the last one is not.
This is our main motivation to be able to deal with more complex clauses than
the ones we have introduced previously.

Definition 2 (special clause). Let P be a finite set of unary predicate sym-
bols. A special clause on P is a flexible Horn clause of the form
P0(f0(g(x1, . . . , xp), y2, . . . , yq)), P1(xi1), . . . , Pm(xim)⇒ Pm+1(f0(xi0 , y2, . . . , yq))

where

– f0 �= g,
– xij ∈ {x1, . . . , xp} for every j such that 0 ≤ j ≤ m, and
– Pj ∈ P for every j such that 0 ≤ j ≤ m + 1.

Such a clause is said to be a j-special clause when xi0 = xj.

Example 2. The Horn clauses Cpre and Csgn are 1-special clauses whereas Csuf is
a 2-special clause.

2 P1P2P3 · · ·Pn should be written 〈. . . 〈〈P1, P2〉, P3〉, · · · , Pn〉.

248 S. Delaune, H. Lin, and C. Lynch

3.3 Protocol Clauses

As a running example we consider the Needham-Schroeder symmetric key proto-
col [16]. However, note that our definition of a protocol clause (see Definition 3)
is general enough to deal with many other protocols. This protocol aims at es-
tablishing a fresh shared symmetric key Kab and mutually authenticating the
participants: in every session, the value of Kab has to be known only by the par-
ticipants playing the roles of A, B and S in that session. Messages 1 to 3 perform
the distribution of the fresh shared symmetric key Kab and messages 4 and 5
are for mutual authentication of A and B. The fields Na and Nb are nonces, i.e.
random numbers, generated by A and B respectively. In the first message, A
tells the server that he wants to communicate with B. The server replies with
a message (message 2) which contains the nonce Na, a fresh session Kab and a
ciphertext, namely {Kab, A}Kbs

, that A has to forward to B. This is done in the
third step. Finally, B challenges A by sending him a nonce Nb encrypted with
the session key Kab and A answers to this challenge.

1. A → S : A, B, Na

2. S → A : {Na, B, Kab, {Kab, A}Kbs
}Kas

3. A → B : {Kab, A}Kbs

4. B → A : {Nb}Kab

5. A → B : {succ(Nb)}Kab

The operator succ represents the increment operation. Note that the clauses
I(x) ⇒ I(succ(x)) and I(succ(x)) ⇒ I(x) allow us to model the fact that the
attacker is able to increment or decrement an integer. Such clauses are intruder
clauses. In our setting, we can model the role of A played by a with the agent b
as follows:

Role A :=

⎧
⎪⎪⎨
⎪⎪⎩

⇒ I1(〈〈a, b〉, na〉)
I2({〈〈〈na, b〉, X2〉, X3〉}Ks(a)) ⇒ I3(X3)

I2({〈〈〈na, b〉, X2〉, X3〉}Ks(a)), I4({X5}X2) ⇒ I5({succ(X5)}X2)

These rigid clauses represent an instance of role A. The role is executed by
agent a who wants to communicate with b. Every variable is rigid and different
clauses can share rigid variables. In such rules subscripts are used to ensure
that messages sent at some step cannot be used to trigger a rule that has to
be executed before. Hence, if we consider a single session of the protocol, a
message m sent at the jth step of the protocol would be denoted by Ij(m).
Moreover, in the third clause, we repeat the atom I2({〈〈〈na, b〉, X2〉, X3〉}Ks(a))
on the left hand side. This is useless in this particular situation. However, in
some protocols, this can be used to ensure condition 1 of Definition 3.

Then to check whether the secrecy of a message m is preserved we add a Horn
clause. For instance if we want to check the secrecy of the nonce na, we add the
goal I5(na) ⇒ to the set of rigid Horn clauses modeling the protocol. Moreover,
we can give some initial knowledge to the intruder by adding some clauses such
as I0(a), I0(b), . . . All these clauses are protocol clauses.

Protocol Verification Via Rigid/Flexible Resolution 249

Definition 3 (Protocol clause). A protocol clause is a rigid Horn clause that
is either a goal clause or is of the form P1(u1), . . . , Pn(un) ⇒ P0(u0) where

1. vars(u0) ⊆ vars({u1, . . . , un}), and
2. P0 ≥ Pi for every i such that 1 ≤ i ≤ n.

4 Security Problem

Definition 4 (intruder theory). Let I be an unary predicate symbol. Let CI

be a finite set of intruder clauses built on I and CS be a special clause built
on I such that CI ∪{CS} is saturated by ordered resolution. The intruder theory,
denoted IP(CI ∪ {CS}), associated to CI ∪ {CS} and built on P is the set of
clauses which contains P1(u1), . . . , Pn(un) ⇒ P0(u0) if and only if

– P0, . . . , Pn ∈ P and P0 ≥ Pi for each i such that 1 ≤ i ≤ n, and
– I(u1), . . . , I(un) ⇒ I(u0) ∈ CI ∪ {CS , I(x) ⇒ I(x)}

The intruder knowledge always increases. Hence, if he knows message m at step k,
he also knows m at step k + 1. This is why we add the clause Ii(x) ⇒ Ij(x) with
i ≤ j to our intruder theory. We also assume that the operations available to the
attacker are the same at each step.

It is easy to establish the following lemma which states that an intruder theory
generated from a finite set of clauses that is saturated w.r.t. ≺ is also saturated
w.r.t. ≺. This will allow us to not consider resolution steps between two flexible
clauses in our resolution inference systems presented in Section 5.

Lemma 1. Let CI be a finite set of intruder clauses built on I and CS be a
special clause built on I such that CI ∪ {CS} is saturated by ordered resolution
w.r.t. ≺. We have that IP (CI ∪{CS}) is saturated by ordered resolution w.r.t. ≺.

Example 3. CDY ∪{Cpre}, CDY ∪{Csuf} and CDY ∪Cbld ∪{Csgn} are sets of clauses
which are saturated by ordered resolution w.r.t. ≺emb. Hence, they can be used
to define an intruder theory.

In this paper we are interested in the so-called insecurity problem.
Insecurity problem

Input: A finite set CP of protocol clauses built on P , a finite set CI of intruder
clauses built on I and CS be a special clause built on I such that CI ∪ {CS}
is saturated by ordered resolution. Let I = IP(CI ∪ {CS}).

Output: Is CP unsatisfiable modulo I? In other words, does there exist a sub-
stitution θ grounding for CP such that I ∪ CP θ is unsatisfiable?

Attack on the Needham Shroeder symmetric key protocol with CBC. Beyond other
existing attacks, O. Pereira and J.-J. Quisquater [17] presented the following
flaw, based on the prefix property.

i.1 a → s : a, b, na
i.2 s → a : {na, b, kab, {kab, a}kbs

}kas

ii.3 I(b) → a : {na, b}kas

ii.4 a → I(b) : {n′a}na

ii.5 I(b) → a : {succ(n′a)}na

250 S. Delaune, H. Lin, and C. Lynch

In a first session i, the attacker can listen to {na, b, kab, {kab, a}kbs
}kas and then,

using the prefix property, he can compute {na, b}kas . This message can be sent
at step 3 to the agent a who plays the role B in the session ii. Thus a can be
fooled into accepting the publicly known nonce na as a secret key shared with b.

Such an attack can be retrieved in our formalism by considering one instance
of the role B played by the agent a with b. This corresponds to the following
two rigid clauses

I3({〈X, b〉}Ks(a)) ⇒ I4({n′a}X) and I5({succ(n′a)}X) ⇒ I6(end)

where end is a special constant used to model the fact that the agent a has
executed his session until the end. We assume that the attacker has listened
to a previous session between the two honest participants a and b, and has
the following knowledge: I0(a), I0(b), I0(na), I0({na, b, kab, {kab, a}Ks(b)}Ks(a)).
Since a is playing a session with an honest agent b, if a executes his session until
the end with b, the session key he received, represented by X , has to remain
secret. Hence, we consider the following protocol clause in order to model the
security property: I6(end), I6(X) ⇒ ⊥. We can easily show that the set of
rigid clauses described above is unsatisfiable modulo IQ(CDY ∪ {Cpre, I(x) ⇒
I(succ(x))}) where Q = {I0, . . . , I6}.

The remainder of the paper is devoted to a proof that the insecurity problem is
decidable. As a corollary, the insecurity problem in presence of a bounded number
of sessions is decidable for the prefix intruder theory, for the suffix intruder theory
and also for the blind signature intruder theory. Note that the conditions on what
we have called a protocol clause are not restrictive w.r.t. our application. Hence,
we can deal with a large class of cryptographic protocols. We first introduce and
motivate our resolution method that is sound (Section 5). Then we establish
termination (Section 6) and completeness (Section 7).

5 Inference Systems

First we present an inference system, IRor, which is a natural candidate to solve
our problem (see Section 5.1). It is clearly sound and complete, but does not
terminate (see Section 5.2). In Section 5.3 we provide our inference system,
denoted by IPr, that allows us to solve the insecurity problem.

5.1 Constrained Rigid Ordered Resolution IRor

This inference system contains two kinds of inference rules. One allowing us to
perform a resolution step between rigid clauses and two others allowing us to
perform resolution steps between a rigid clause and a flexible one. Note that
since we have assumed that our intruder theory is saturated w.r.t. ≺, we do not
have to consider any resolution step between two intruder clauses.
Resolution involving two rigid clauses.

S ∪ {Γ1 ⇒ A1 ; Γ2, A2 ⇒ B} �C�
(RRc)

S ∪ {Γ1 ⇒ A1 ; Γ2, A2 ⇒ B ; Γ1, Γ2 ⇒ B} �C, A1 = A2�

Protocol Verification Via Rigid/Flexible Resolution 251

Resolution involving a flexible clause.

S ∪ {Γ2, A2 ⇒ B} �C�
(FRc)

S ∪ {Γ2, A2 ⇒ B ; Γ1, Γ2 ⇒ B} �C, A1 = A2�

(i) Γ1 ⇒ A1 is a fresh renaming of a clause in IP(CI ∪{CS}), (ii) A1σ is strictly
maximal in (Γ1 ⇒ A1)σ where σ is the mgu of C, A1 = A2.

S ∪ {Γ1 ⇒ A1} �C�
(RFc)

S ∪ {Γ1 ⇒ A1 ; Γ1, Γ2 ⇒ B} �C, A1 = A2�

(i) Γ2, A2 ⇒ B is a fresh renaming of a clause in IP(CI ∪ {CS}), (ii) A2σ is
maximal in (Γ2, A2 ⇒ B)σ where σ is the mgu of C, A1 = A2.

Definition 5 (constrained rigid global derivation). A constrained rigid
global derivation modulo an intruder theory I is a sequence
S1 �C1� �⇒ . . . �⇒ Sn �Cn� where each Si is a set of rigid clauses and each Ci

is a set of constraints. Moreover Si+1 �Ci+1� is obtained from Si �Ci� by apply-
ing an inference rule of IRor.

5.2 Difficulties with Termination

The first problem with termination is because we can perform a resolution
step between a literal I(X) of a rigid clause and an intruder clause such as
I(〈x1, x2〉) ⇒ I(x1). We obtain a new rigid literal I(X1) on which we can apply
exactly the same inference rule. Hence a first solution consists in removing the
possibility to perform a resolution step between a flexible clause and a rigid one
when this allows us to introduce new rigid variables. This can be done by adding
some side conditions on the rules (RF) and (FR). We retrieve termination but
we lose completeness as illustrated by the example below:

Example 4. Consider the intruder theory made up of the rule CDY ∪ {Cpre} and
the following set of rigid clauses:

CP :=
{ ⇒ I(a) I(X) ⇒ I({X}h(〈a,b〉))

⇒ I(b) I({a}h(X)) ⇒

This set is unsatisfiable: consider the following substitution θ = {X �→ 〈a, b〉}.
However, we are not able to derive the empty clause with the inference system
IRor if we forbid resolution steps that introduce new rigid variables (e.g. the
one with I(X) ⇒ I({X}h(〈a,b〉) and Cpre). To retrieve completeness we have to
introduce new inference rules that we have called instantiation rules.

5.3 Our Resolution Method: Protocol Resolution

By taking into account all these considerations, we obtain the inference sys-
tem IPr described below.

252 S. Delaune, H. Lin, and C. Lynch

Resolution involving two rigid clauses.

S ∪ {Γ1 ⇒ A1 ; Γ2, A2 ⇒ B}
(RRp)

(S ∪ {Γ1 ⇒ A1 ; Γ2, A2 ⇒ B ; Γ1, Γ2 ⇒ B})σ

where σ = mgu(A1, A2).

S ∪ {Γ1 ⇒ P (f0(X, t2, . . . , tq)) ; Γ2, P (f0(t′1, . . . , t
′
q)) ⇒ B}

(RRp − Inst1)
(S ∪ {Γ1 ⇒ P (f0(X, t′2, . . . , tq)) ; Γ2, P (f0(t′1, . . . , t

′
q)) ⇒ B})σ

where σ is the mgu of {ti = t′i | 2 ≤ i ≤ q}.

S ∪ {Γ1 ⇒ P (f0(X, t2, . . . , tq)) ; Γ2, P (t) ⇒ B}
(RRp − Inst2)

(S ∪ {Γ1 ⇒ P (f0(X, t2, . . . , tq)) ; Γ2, P (t) ⇒ B})σ

where σ = mgu(t, t′) and t′ �emb ti for some i ∈ {2, . . . , q}.

Resolution involving a flexible clause.

S ∪ {Γ2, A2 ⇒ B}
(FRp)

(S ∪ {Γ2, A2 ⇒ B ; Γ1, Γ2 ⇒ B})σ

where (i) Γ1 ⇒ A1 is a fresh renaming of a clause in IP (CI ∪ {CS}), (ii) σ =
mgu(A1, A2), (iii) A1σ is strictly maximal in (Γ1 ⇒ A1)σ, and (iv) A2 is of the
form P (t) with t �∈ X .

S ∪ {Γ1 ⇒ A1}
(RFp)

(S ∪ {Γ1 ⇒ A1 ; Γ1, Γ2 ⇒ B})σ

where (i) Γ2, A2 ⇒ B is a fresh renaming of a clause in IP(CI ∪ {CS}), (ii)
σ = mgu(A1, A2), (iii) A2σ is maximal in (Γ2, A2 ⇒ B)σ, and (iv) A1 is of the
form P (t) with t �∈ X . Moreover, if Γ2, A2 ⇒ B is a special clause, we require
that t is not of the form f0(t1, . . . , tq) with t1 ∈ X .

Definition 6 (rigid global derivation). A rigid global derivation modulo an
intruder theory I is a sequence S1 �⇒ . . . �⇒ Sn where each Si is a set of rigid
clauses. Moreover Si+1 is obtained from Si by applying an inference rule of IPr.

By inspection of each inference rule, it is easy to establish the following result.

Proposition 1 (soundness). Let CP a finite set of protocol clauses built on P
and IP(CI ∪ {CS}) be the intruder theory associated to the finite set of intruder
clauses CI and the special clause CS. Let S0 = CP and consider a rigid global
derivation S0 �⇒ S1 . . . �⇒ Sn modulo IP(CI ∪ {CS}). If � ∈ Si for some i ≤ n
then CP is unsatisfiable modulo IP(CI ∪ {CS}).

Protocol Verification Via Rigid/Flexible Resolution 253

6 Termination

Proposition 2 (termination). Let CP be a finite set of protocol clauses built
on P and IP(CI ∪ {CS}) be the intruder theory associated to the finite set of
intruder clauses CI and the special clause CS. Every rigid global derivation
w.r.t. IPr issued from CP has a finite length.

7 Completeness

In this section, we will show that the Protocol Resolution inference system IPr

is complete. We will consider an unsatisfiable set of protocol clauses CP , meaning
that there exists a substitution θ such that CP θ is unsatisfiable modulo a given
intruder theory IP(CI ∪{CS}). We will prove that if we cannot derive the empty
clause from CP using IPr then there must be a smaller substitution σ witnessing
the fact that CP is unsatisfiable modulo IP(CI ∪ {CS}). If this notion of smaller
is well-founded, this allows us to conclude the completeness of IPr.
First of all, we show that our inference system can only produce protocol clauses.

Lemma 2. Let CP be a finite set of protocol clauses built on P and IP(CI∪{CS})
be the intruder theory associated to the finite set of intruder clauses CI and the
special clause CS . Let C′P be such that CP �⇒ C′P and C ∈ C′P . Then C is a
protocol clause.

The standard definition of a set of clauses S to be saturated is that all inferences
applied to S are redundant. We define θ-pre-saturated, for some substitution θ,
to mean that all inferences consistent with θ are redundant.

Definition 7. Let S be a set of protocol clauses. A clause C is redundant in S
if there are some clauses C1, . . . , Cn in S s.t. Ci �emb C for all i ≤ n and
C1, . . . , Cn |= C. S is saturated if for every S′ s.t. S �⇒ S′ and for every C′ ∈ S′,
we have that C′ is redundant in S.

Definition 8. Let S be a set of protocol clauses and θ be a ground substitution.
An inference is said to be θ-consistent if σ ≤ θ, where σ is the mgu of the
inference. The set S is said to be θ-pre-saturated if for every set S′ such that
S �⇒ S′ by a θ-consistent inference, for every C′ ∈ S′, C′ is redundant in S.
A rigid global derivation is a θ-derivation if all the inferences involved in the
derivation are θ-consistent.

If the θ instance of a set of protocol clauses CP is unsatisfiable modulo an intruder
theory IP(CI ∪ {CS}), then the θ instance of a derived set of clauses is also
unsatisfiable modulo IP (CI ∪ {CS}).

Lemma 3. Let CP be a set of protocol clauses and IP(CI ∪{CS}) be an intruder
theory. Let θ be a grounding substitution w.r.t. CP witnessing the fact that CP

is unsatisfiable modulo IP(CI ∪ {CS}) and consider CP �⇒ C′P a θ-consistent
inference. Then C′P is unsatisfiable modulo IP(CI ∪ {CS}) and θ is a witness of
this fact.

254 S. Delaune, H. Lin, and C. Lynch

For the completeness proof, we will need to define an ordering on variables, given
a substitution, and we also define an ordering on substitutions.

Definition 9. Let θ and θ′ be substitutions for a set of variables V . A variable
X is called θ-maximal if there is no Y such that Xθ ≺ Y θ. We define θ ≺ θ′ if
(i) For all x in V , xθ ≺ xθ′ or xθ = xθ′. (ii) There is at least one variable y in
V s.t. yθ ≺ yθ′.

Suppose that CP is a set of rigid clauses, such that CP is unsatisfiable modulo
IP(CI ∪{CS}), and CP is presaturated under θ. In the full paper we give a series
of lemmas to specify in which positions a maximal variable X can appear in a
shortest proof of the unsatisfiability of CP modulo IP(CI ∪ {CS}). A maximal
variable can appear in a quite restricted number of places. Given that the number
of places is restricted, it will be easy to show that the value of Xθ can be
changed and unsatisfiability modulo IP(CI ∪{CS}) will be preserved. The series
of lemmas culminates in the following lemma which shows that, given the above
conditions, when the empty clause is not in CP , it is possible to replace θ by
a smaller substitution σ, such that CP σ is still unsatisfiable. The proof of the
lemma is based on the fact that the substitutions in IRor are stored in constraints.
If we have a proof of unsatisfiability, then the constraints in the proof can be
changed, so that the value of Xθ is smaller, resulting in a new substitution σ,
and we now have a proof of unsatisfiability of CP σ. The proof system for the
new proof will be slightly different, and one that we might not want to use in
practice. But it will be a sound inference system, and that is all we need to prove
unsatisfiability.

Lemma 4. Suppose that CP is unsatisfiable modulo IP (CI∪{CS}) and let θ be a
substitution witnessing this fact. Assume that the empty clause does not exist in
the θ-pre-saturation of CP using protocol resolution modulo IP (CI ∪{CS}). Then
there exists a smaller substitution σ witnessing the fact that CP is unsatisfiable
modulo IP (CI ∪ {CS}).

The previous lemma is the crucial lemma to prove completeness. We showed
that when the empty clause is not generated, then we can find a smaller sub-
stitution which preserves unsatisfiability. But since the ordering is well-founded,
we cannot continually find smaller substitutions, which means that there must
be some substitution for which our inference rules will deduce the empty clause.

Theorem 1 (completeness). Let CP be a finite set of protocol clauses built
on P and IP(CI ∪ {CS}) be the intruder theory associated to the finite set of
intruder clauses CI and the special clause CS. Let S0 = CP . If there exists a
substitution θ grounding for CP witnessing the fact that CP is unsatisfiable modulo
IP(CI ∪ {CS}) then there exists a rigid global derivation S0 �⇒ S1 . . . �⇒ Sn such
that � ∈ Sn.

Protocol Verification Via Rigid/Flexible Resolution 255

8 Conclusion

We have defined the problem of rigid theorem proving modulo a flexible theory.
We showed how to use that framework to model cryptographic protocol insecu-
rity problems. Then we gave a resolution-based decision procedure for solving
such problems in some interesting protocol theories.

Recently several procedures for deciding trace-based security properties have
been proposed for a bounded [4,5,15] or unbounded number of sessions [3,7].
Several years ago, most of the work relied on the so called perfect cryptography
assumption: one cannot learn anything from an encrypted message except if one
knows the decryption key. Many papers relax this assumption in order to be
closer to the implementation and to model more sophisticated cryptographic
primitives. Among the works cited above, the closest to ours are [7,13] since
they used a formalism based on Horn clauses. However, they only used flexible
clauses. In [7], this allows them to deal with the insecurity problem in presence
of an unbounded number of sessions but for a class of protocols more restrictive
than ours (single blind copying). In [13] they only use flexible Horn clauses to
deal with a bounded number sessions and hence they have to perform some
approximation. Our generic result allows us to deal with a class of intruder
theories similar to the one described in [2] and also to retrieve the decidability
result about the prefix property that has been obtained in [4]. Both of these
results [4,2] have been obtained in a completely different formalism.

Future work is to extend our idea to other interesting cryptographic protocol
theories. In particular, we would like to add equality to our inference system to
handle properties of cryptographic algorithms. We also plan to implement our
idea. There are several possible ways to implement it. We could implement it
exactly along the lines of this paper, as a nondeterministic procedure. It is also
possible to save the constraints with each clause, and to only allow the empty
clause if the constraint is satisfiable. The advantage of this method is that it
could use a standard deterministic resolution-style inference procedure. Finally,
we plan to implement it as an extension of the method given in [9], where rigid
theorem proving problems are solved by encoding proofs as SAT problems.

References

1. Andrews, P.: Theorem proving via general matings. Journal of the ACM 28(2),
193–214 (1981)

2. Bernat, V., Comon-Lundh, H.: Normal proofs in intruder theories. In: ASIAN 2006.
Proc. of 11th Asian Computing Science Conference, Tokyo, Japan. LNCS, Springer,
Heidelberg (2006)

3. Blanchet, B.: An efficient cryptographic protocol verifier based on prolog rules.
In: CSFW 2001. Proc. of 14th Computer Security Foundations Workshop, Cape
Breton (Canada), pp. 82–96. IEEE Computer Society Press, Los Alamitos (2001)

4. Chevalier, Y., Küsters, R., Rusinowitch, M., Turuani, M.: An NP decision proce-
dure for protocol insecurity with XOR. In: LICS 2003. Proc. of 18th Annual IEEE
Symposium on Logic in Computer Science, Ottawa (Canada), pp. 261–270. IEEE
Computer Society Press, Los Alamitos (2003)

256 S. Delaune, H. Lin, and C. Lynch

5. Comon-Lundh, H., Shmatikov, V.: Intruder deductions, constraint solving and in-
security decision in presence of exclusive or. In: LICS 2003. Proc. of 18th Annual
IEEE Symposium on Logic in Computer Science, Ottawa (Canada), pp. 271–280.
IEEE Computer Society Press, Los Alamitos (2003)

6. Cortier, V., Delaune, S., Lafourcade, P.: A survey of algebraic properties used in
cryptographic protocols. Journal of Computer Security 14(1), 1–43 (2006)

7. Cortier, V., Rusinowitch, M., Zalinescu, E.: A resolution strategy for verifying
cryptographic protocols with cbc encryption and blind signatures. In: PPDP 2005.
Proc. of 7th ACM-SIGPLAN International Conference on Principles and Practice
of Declarative Programming, Lisboa (Portugal), pp. 12–22. ACM Press, New York
(2005)

8. Denning, D.E., Sacco, G.M.: Timestamps in key distribution protocols. Communi-
cations of the ACM 24(8), 533–536 (1981)

9. Deshane, T., Hu, W., Jablonski, P., Lin, H., Lynch, C., McGregor, R.E.: Encoding
first order proofs in sat. In: Pfenning, F. (ed.) CADE 2007. LNCS, vol. 4603, pp.
476–491. Springer, Heidelberg (2007)

10. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Transactions in
Information Theory 2(29), 198–208 (1983)

11. Fujioka, A., Okamoto, T., Ohta, K.: A practical secret voting scheme for large scale
elections. In: Zheng, Y., Seberry, J. (eds.) AUSCRYPT 1992. LNCS, vol. 718, pp.
244–251. Springer, Heidelberg (1993)

12. Goubault, J.: The complexity of resource-bounded first-order classical logic. In:
Enjalbert, P., Mayr, E.W., Wagner, K.W. (eds.) STACS 94. LNCS, vol. 775, pp.
59–70. Springer, Heidelberg (1994)

13. Jacquemard, F., Rusinowitch, M., Vigneron, L.: Tree automata with equality con-
straints modulo equational theories. In: Furbach, U., Shankar, N. (eds.) IJCAR
2006. LNCS (LNAI), vol. 4130, pp. 557–571. Springer, Heidelberg (2006)

14. Kremer, S., Ryan, M.: Analysing the vulnerability of protocols to produce known-
pair and chosen-text attacks. In: SecCo 2004. Proc. 2nd International Workshop
on Security Issues in Coordination Models, Languages and Systems, London, UK.
ENTCS, Elsevier Science Publishers, Amsterdam (2005)

15. Millen, J., Shmatikov, V.: Symbolic protocol analysis with an abelian group opera-
tor or Diffie-Hellman exponentiation. Journal of Computer Security 13(3), 515–564
(2005)

16. Needham, R., Schroeder, M.: Using encryption for authentification in large net-
works of computers. Communications of the ACM 21(12), 993–999 (1978)

17. Pereira, O., Quisquater, J.-J.: On the perfect encryption assumption. In: WITS
2000. Proc. of 1st Workshop on Issues in the Theory of Security, Geneva (Switzer-
land), pp. 42–45 (2000)

Preferential Description Logics

Laura Giordano1, Valentina Gliozzi2, Nicola Olivetti3, and Gian Luca Pozzato2

1 Dip. di Informatica - Univ. Piemonte O. “A. Avogadro”
laura@mfn.unipmn.it

2 Dip. di Informatica - Università di Torino
{gliozzi,pozzato}@di.unito.it

3 LSIS-UMR CNRS 6168 Univ. “P. Cézanne”
nicola.olivetti@univ-cezanne.fr

Abstract. We extend the Description Logic ALC with a “typicality”
operator T that allows us to reason about the prototypical properties
and inheritance with exceptions. The resulting logic is called ALC + T.
The typicality operator is intended to select the “most normal” or “most
typical” instances of a concept. In our framework, knowledge bases may
then contain, in addition to ordinary ABoxes and TBoxes, subsumption
relations of the form “T(C) is subsumed by P”, expressing that typical
C-members have the property P . The semantics of a typicality opera-
tor is defined by a set of postulates that are strongly related to Kraus-
Lehmann-Magidor axioms of preferential logic P. We first show that T
enjoys a simple semantics provided by ordinary structures equipped by
a preference relation. This allows us to obtain a modal interpretation of
the typicality operator. Using such a modal interpretation, we present a
tableau calculus for deciding satisfiability of ALC + T knowledge bases.
Our calculus gives a nondeterministic-exponential time decision proce-
dure for satisfiability of ALC + T. We then extend ALC + T knowl-
edge bases by a nonmonotonic completion that allows inferring defeasible
properties of specific concept instances1.

1 Introduction

The family of description logics (DLs) is one of the most important formalisms
of knowledge representation. DLs are reminiscent of the early semantic networks
and of frame-based systems. They offer two key advantages: a well-defined se-
mantics based on first-order logic and a good trade-off between expressivity and
complexity. DLs have been successfully implemented by a range of systems and
they are at the base of languages for the semantic web such as OWL. A DL
knowledge base (KB) comprises two components: (i) the TBox, containing the
definition of concepts (and possibly roles), and a specification of inclusions re-
lations among them, and (ii) the ABox containing instances of concepts and

1 This research has been partially supported by “Progetto Lagrange - Fondazione
CRT” and by the project “MIUR PRIN05: Specification and verification of agent
interaction protocols”.

N. Dershowitz and A. Voronkov (Eds.): LPAR 2007, LNAI 4790, pp. 257–272, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

258 L. Giordano et al.

roles, in other words, properties and relations of individuals. Since the very ob-
jective of the TBox is to build a taxonomy of concepts, the need of representing
prototypical properties and of reasoning about defeasible inheritance of such
properties easily arises. The traditional approach is to handle defeasible inheri-
tance by integrating some kind of nonmonotonic reasoning mechanism. This has
led to study nonmonotonic extensions of DLs [1,2,3,5,6,7,12]. However, finding
a suitable nonmonotonic extension for inheritance reasoning with exceptions is
far from obvious. Let us put forward some desiderata for such an extension:

1. The (nonmonotonic) extension must have a clear semantics and should be
based on the same semantics as the underlying monotonic DL.

2. The extension should allow to specify prototypical properties in a natural
and direct way.

3. The extension must be decidable, if so is the underlying monotonic DL and,
possibly, computationally effective.

The nonmonotonic extensions proposed in the literature do not seem to fully
satisfy all the above desiderata.

[1] proposes the extension of DL with Reiter’s default logic. However, the same
authors have pointed out that this integration may lead to both semantical and
computational difficulties. Indeed, the unsatisfactory treatment of open defaults
via Skolemization may lead to an undecidable default consequence relation. For
this reason, [1] proposes a restricted semantics for open default theories, in which
default rules are only applied to individuals explicitly mentioned in the ABox.
Furthermore, Reiter’s default logic does not provide a direct way of modeling
inheritance with exceptions. This has motivated the study of extensions of DLs
with prioritized defaults [12,2].

A more general approach is undertaken in [6], where it is proposed an exten-
sion of DL with two epistemic operators. This extension allows one to encode
Reiter’s default logic as well as to express epistemic concepts and procedural
rules. However, this extension has a rather complicated modal semantics, so
that the integration with the existing systems requires significant changes to the
standard semantics of DLs.

In [3] the authors propose an extension of DL with circumscription. One of
motivating applications of circumscription is indeed to express prototypical prop-
erties with exceptions, and this is done by introducing “abnormality” predicates,
whose extension is minimized. The authors provide decidability and complexity
results based on theoretical analysis. However, they do not provide a calculus
for their logic. Moreover, the use of circumscription to model inheritance with
exceptions is not that straightforward, as we remark below.

In this work, we propose a novel approach to defeasible inheritance reason-
ing based on the typicality operator T. The intended meaning is that, for any
concept C, T(C) singles out the instances of C that are considered as “typi-
cal” or “normal”. Thus assertions as “normally students do not pay taxes”, or
“typically users do not have access to confidential files” [3] are represented by
T(Student) � ¬TaxPayer and T(User) � ¬∃hasAccess .ConfidentialFile .

Preferential Description Logics 259

Before entering in the technical details, let us sketch how we intend to use the
typicality operator and what kind of inferential services we expect to profit. We
assume that a KB comprises, in addition to the standard TBox and ABox, a set
of assertions of the type T(C) � D where D is a concept not mentioning T. The
reasoning system should be able to infer or propagate prototypical properties
of the concepts specified in the TBox, then to ascribe defeasible properties to
individuals. For instance, let the KB contain:

T(Student) � ¬TaxPayer
T(Student � Worker) � TaxPayer
T(Student � Worker � ∃HasChild .�) � ¬TaxPayer
T(Unemployed) � ¬TaxPayer

corresponding to the assertions: normally a student does not pay taxes, normally
a working student pays taxes, but normally a working student having children
does not pay taxes (because he is discharged by the government) etc...Observe
that, if the same properties were expressed by ordinary inclusions, such as
Student � ¬TaxPayer etc...we would simply get that there are not work-
ing students and so on, thus the KB would collapse. This collapse is avoided
as we do not assume that T is monotonic, that is to say C � D does not
imply T(C) � T(D). To continue with the example, if the TBox contains
PersonWithNoIncome ≡ Student �Unemployed , then the system should be able
to infer T(PersonWithNoIncome) � ¬TaxPayer . Suppose next that the ABox
contains alternatively the following facts about john:

1. student(john)
2. student(john), worker (john)
3. student(john), worker (john), ∃HasChild .�(john)

Then the reasoning system should be able to infer the expected (defeasible)
conclusion about john in each case: 1. ¬TaxPayer (john), 2. TaxPayer (john),
3. ¬TaxPayer (john). Observe that setting up a similar specification of the KB
by using default logic or circumscription is not that simple: with default logic
[1,2,5,6,7,12], one has to specify a priority on default application (or one has to
find a smart encoding of defaults giving priority to more specific information);
with circumscription [3], one has to introduce abnormality predicates, and then
establish which predicates are minimized, fixed, or variable, and finally for the
minimized ones what is their priority wrt minimization (a total or a partial or-
der). As a further step, the system should be able to infer (defeasible) properties
also of individuals implicitly introduced by existential restrictions, for instance,
if the ABox further contains ∃HasChild .Student(jack), it should conclude (de-
feasibly) ∃HasChild .¬TaxPayer (jack).

Given the nonmonotonic character of the T operator, there is a difficulty with
handling irrelevant information, for instance, given the KB as above, one should
be able to infer as well:

T(Student � SportLover) � ¬TaxPayer
T(Student � Worker � SportLover) � TaxPayer

260 L. Giordano et al.

as SportLover is irrelevant with respect to being a TaxPayer or not. For the
same reason, the conclusion about john being a TaxPayer or not should not be
influenced by the addition of SportLover (john) to the ABox. We refer to this
problem as the problem of Irrelevance.

In this paper we lay down the base of an extension of DL with a typicality
operator. Our starting point is a monotonic extension of the basic ALC with
the T operator. The operator is supposed to satisfy a set of postulates that are
essentially a reformulation of Kraus, Lehmann, and Magidor (KLM) axioms of
preferential logic, namely the assertion T(C) � P is equivalent to the conditional
assertion C |∼ P of KLM preferential logic P. It turns out that the semantics of
the typicality operator can be equivalently specified by considering a preference
relation (a strict partial order) on individuals: the typical members of a concept
C are just the most preferred individuals, or “most normal”, of C according to
the preference relation. The preference relation is the only additional ingredient
that we need in our semantics. We assume that “most normal” members of a
concept C always exist, whenever the concept C is non-empty. This assump-
tion corresponds to the Smoothness Condition of KLM logics, or the well-known
Limit Assumption in conditional logics. Taking advantage of this semantic set-
ting, we can give a modal interpretation to the typicality operator: the modal
operator � has intuitively the same properties as in Gödel-Löb modal logic G
of arithmetic provability. We then define a tableau system for this extension
based on this modal interpretation, thereby obtaining a decision procedure and
un upper complexity bound (NEXPTIME). In future research we will further
consider whether this bound is optimal or not.

These are the main results of the paper, however the monotonic extension is
not enough to perform inheritance reasoning of the kind described above: (i) we
need a way of inferring defeasible properties of individuals, (ii) we need a way
of handling Irrelevance.

In the paper we deal with (i) by defining a completion of an ABox: the idea
is that each individual is assumed to be a typical member of the most spe-
cific concept to which it belongs. Such a completion allows to perform infer-
ences as the ones 1.,2.,3. above. The paper outlines how we intend to cope with
typicality of all instances and with Irrelevance. In particular, dealing with Ir-
relevance (ii) requires a nonmonotonic mechanism. The idea is to complete a
KB with a set of default rules. The default rules are not used to express de-
feasible properties of concepts (as in default extension of DLs), but to propa-
gate defeasible properties of a concept to its subsumed concepts, e.g. to infer
T(Student �SportLover) � ¬TaxPayer from T(Student) � ¬TaxPayer . Thus in
our approach the nonmonotonic mechanism is only needed to handle Irrelevance,
whose treatment by means of default rules will be the object of future work.

2 The Logic ALC + T: The Typicality Operator T

We consider an alphabet of concept names C, of role names R, and of individuals
O. The language L of the logic ALC + T is defined by distinguishing concepts

Preferential Description Logics 261

and extended concepts as follows: (Concepts) A ∈ C and � are concepts of L;
if C, D ∈ L and R ∈ R, then C � D, C � D,¬C, ∀R.C, ∃R.C are concepts of L.
(Extended concepts) if C is a concept, then C and T(C) are extended concepts,
and all the boolean combinations of extended concepts are extended concepts
of L. A knowledge base is a pair (TBox,ABox). TBox contains subsumptions
C � D, where C ∈ L is either a concept or an extended concept T(C′), and
D ∈ L is a concept. ABox contains expressions of the form C(a) and aRb where
C ∈ L is an extended concept, R ∈ R, and a, b ∈ O.

In order to provide a semantics to the operator T, we extend the definition
of a model used in “standard” terminological logic ALC:

Definition 1 (Semantics of T with selection function). A model is any
structure 〈Δ, I, fT〉, where: Δ is the domain; I is the extension function that
maps each extended concept C to CI ⊆ Δ, and each role R to a RI ⊆ ΔI ×ΔI .
I is defined in the usual way (as for ALC) and, in addition, (T(C))I = fT(CI).
fT : Pow(Δ) → Pow(Δ) is a function satisfying the following properties:

(fT − 1) fT(S) ⊆ S (fT − 2) if S �= ∅, then also fT(S) �= ∅
(fT − 3) if fT(S) ⊆ R, then fT(S) = fT(S ∩ R) (fT − 4) fT(

⋃
Si) ⊆

⋃
fT(Si)

(fT − 5)
⋂

fT(Si) ⊆ fT(
⋃

Si)

Intuitively, given the extension of some concept C, fT selects the typical instances
of C. (fT − 1) requests that typical elements of S belong to S. (fT − 2) requests
that if there are elements in S, then there are also typical such elements. The next
properties constraint the behavior of fT wrt ∩ and ∪ in such a way that they do
not entail monotonicity. According to (fT−3), if the typical elements of S are in
R, then they coincide with the typical elements of S ∩R, thus expressing a weak
form of monotonicity (namely cautious monotonicity). (fT − 4) corresponds to
one direction of the equivalence fT(

⋃
Si) =

⋃
fT(Si), so that it does not entail

monotonicity. Similar considerations apply to the equation fT(
⋂

Si) =
⋂

fT(Si),
of which only the inclusion

⋂
fT(Si) ⊆ fT(

⋂
Si) is derivable. (fT−5) is a further

constraint on the behavior of fT wrt arbitrary unions and intersections; it would
be derivable if fT were monotonic. We can prove the following proposition:

Proposition 1. fT(S ∪ R) ∩ S ⊆ fT(S)

We can give an alternative semantics for T based on a preference relation. The
idea is that there is a global preference relation among individuals and that
the typical members of a concept C, i.e. selected by fT(CI), are the minimal
elements of C wrt this preference relation. Observe that this notion is global,
that is to say, it does not compare individuals wrt a specific concept (something
like y is more typical than x wrt concept C). In this framework, an object x ∈ Δ
is a typical instance of some concept C, if x ∈ CI and there is no C-element in
Δ more typical than x. The typicality preference relation is partial since it is not
always possible to establish which object is more typical than which other. The
following definition is needed before we provide the Representation Theorem.

262 L. Giordano et al.

Definition 2. Given a relation <, which is a strict partial order (i.e. an ir-
reflexive and transitive relation) over a domain Δ, for all S ⊆ Δ, we define
Min<(S) = {x : x ∈ S and � ∃y ∈ S s.t. y < x}. We say that < satisfies the
Smoothness Condition iff for all S ⊆ Δ, for all x ∈ S, either x ∈ Min<(S) or
∃y ∈ Min<(S) such that y < x.

We are now ready to prove the Representation Theorem below, showing that
given a model with a selection function, we can define on the same domain a
preference relation < such that, for all S ⊆ Δ, fT(S) = Min<(S). Notice that, as
a difference wrt related results (Theorem 3 in [11]), the relation is defined on the
same domain Δ of fT. On the other hand, if < is a preference relation satisfying
the Smoothness Condition, then the operator defined as fT(S) = Min<(S)
satisfies the postulates of Definition 1.

Theorem 1 (Representation Theorem). Given any model 〈Δ, I, fT〉, fT

satisfies postulates (fT − 1) to (fT − 5) above iff it is possible to define on Δ
a strict partial order <, satisfying the Smoothness Condition, such that for all
S ⊆ Δ, fT(S) = Min<(S).

Proof. (“Only if ” direction) Given fT satisfying postulates (fT−1) to (fT−5),
we define < as follows: for all x, y ∈ Δ, we let x < y if ∀S ⊆ Δ, if y ∈ fT(S)
then x �∈ S, and ∃R ⊆ Δ such that S ⊂ R and x ∈ fT(R). We prove that:

1. < is irreflexive. Easily follows by the definition of <.
2. < is transitive. Let (a) x < y and (b) y < z. Let z ∈ fT(S) for some S, then

by definition of <, y �∈ S, and ∃R s.t. S ⊂ R and y ∈ fT(R). Furthermore,
x �∈ R and ∃Q : R ⊂ Q and x ∈ fT(Q). From this we can conclude that
x �∈ S (otherwise x ∈ R), and S ⊂ Q, hence x < z.

3. fT(S) ⊆ Min<(S). Let x ∈ fT(S). Suppose x �∈ Min<(S), i.e. for some
y ∈ S, y < x. By definition of <, y �∈ S, contradiction, hence x ∈ Min<(S).

4. Min<(S) ⊆ fT(S). Let x ∈ Min<(S). Then x ∈ S, i.e. S �= ∅. By (fT − 2),
fT(S) �= ∅. Suppose x �∈ fT(S). Consider

⋃
Ri for all Ri ⊆ Δ s.t. x ∈ fT(Ri).

By (fT − 5), we have x ∈ fT(
⋃

Ri).
Consider now fT(

⋃
Ri ∪ S). We can easily show that fT(

⋃
Ri ∪ S) �⊆ ⋃

Ri

(otherwise, by (fT − 3) fT(
⋃

Ri ∪ S) = fT(
⋃

Ri), and by Proposition 1,
fT(

⋃
Ri) ∩ S ⊆ fT(S), which contradicts the fact that x ∈ fT(

⋃
Ri) but

x �∈ fT(S)). Consider hence y ∈ fT(
⋃

Ri ∪ S) s.t. y �∈ ⋃
Ri. By definition of

<, y < x. Furthermore, by (fT−1) y ∈ S (since y ∈ ⋃
Ri∪S and y �∈ ⋃

Ri).
It follows that x �∈ Min<(S), contradiction, hence Min<(S) ⊆ fT(S).

5. < satisfies the Smoothness Condition. Let S �= ∅ and x ∈ S. If x ∈ fT(S)
then by point 3 we have x ∈ Min<(S). If x �∈ fT(S) we can reason as for
point 4 to conclude that there is y ∈ fT(

⋃
Ri ∪ S) s.t. y �∈ ⋃

Ri (hence
y ∈ S), and y < x. By Proposition 1, we have y ∈ fT(S), hence by point 3
we conclude y ∈ Min<(S).

The points above allow us to conclude.
(“If ” direction) Given a strict partial order < satisfying the Smoothness Con-
dition, we can define fT : Pow(Δ) → Pow(Δ) by letting fT(S) = Min<(S). It

Preferential Description Logics 263

can be easily shown that fT satisfies postulates (fT − 1) to (fT − 5). The proof
is omitted due to space limitations. �

Having the above Representation System, from now on, we will refer to the
following semantics for ALC + T:

Definition 3 (Semantics of ALC+T). A model M is any structure 〈Δ, <, I〉,
where Δ and I are defined as in Definition 1, and < is a strict partial order over
Δ satisfying the Smoothness Condition (see Definition 2 above). As a difference
wrt Definition 1, the semantics of the T operator is: (T(C))I = Min<(CI). For
concepts (built from operators of ALC), CI is defined in the usual way.

Definition 4 (Model satisfying a Knowledge Base). Consider a model M,
as defined in Definition 3. We extend I so that it assigns to each individual a of
O an element aI of the domain Δ. Given a KB (TBox,ABox), we say that:

– M satisfies TBox if for all inclusions C � D in TBox, and all elements
x ∈ Δ, if x ∈ CI then x ∈ DI .

– M satisfies ABox if: (i) for all C(a) in ABox, we have that aI ∈ CI , (ii)
for all aRb in ABox, we have that (aI , bI) ∈ RI .

M satisfies a knowledge base if it satisfies both its TBox and its ABox.

Notice that the meaning of T can be split into two parts: for any object x of
the domain Δ, x ∈ (T(C))I just in case (i) x ∈ CI , and (ii) there is no y ∈ CI

such that y < x. In order to isolate the second part of the meaning of T (for
the purpose of the calculus that we will present in section 3) we introduce a new
modality � whose interpretation in M is defined as follows.

Definition 5. (�C)I = {x ∈ Δ | for every y ∈ Δ, if y < x then y ∈ CI}
The basic idea is simply to interpret the preference relation < as an accessibility
relation. By the Smoothness Condition, it turns out that the modality � has the
properties of Gödel-Löb modal logic of provability G. The Smoothness Condi-
tion ensures that typical elements of CI exist whenever CI �= ∅, by preventing
infinitely descending chains of elements. This condition therefore corresponds to
the finite-chain condition on the accessibility relation (as in G). A similar cor-
respondence has been presented in [9,8] to interpret the preference relation in
KLM logics. The following relation between T and � holds:

Proposition 2. For all x ∈ Δ, we have x ∈ (T(C))I iff x ∈ CI and x ∈ (�¬C)I

Since we only use � to capture the meaning of T, in the following we will always
use � followed by a negated concept, as in �¬C.

We can establish the following equation between our typicality operator and
the nonmonotonic (conditional) inference operator |∼ (describing what can be
typically derived from a given premise) by letting C |∼ D iff T(C) � D. It can
be easily shown that there is a correspondence between the properties of T and
the properties of |∼ in the system P described in [11].

264 L. Giordano et al.

3 Reasoning

In this section we present a tableau calculus for deciding the satisfiability of
a knowledge base. Given a KB (TBox,ABox), any concrete reasoning system
should provide the usual reasoning services, namely satisfiability of the KB, con-
cept satisfiability, subsumption, and instance checking. It is well known that the
latter three services are reducible to the satisfiability of a KB.

We introduce a labelled tableau calculus for our logic ALC+T, which enriches
the labelled tableau calculus for ALC presented in [4]. The calculus is called
TALC+T and it is based on the notion of constraint system. We consider a set
of variables drawn from a denumerable set V . TALC+T makes use of labels,
which are denoted with x, y, z, Labels represent objects. An object is either
a variable or an individual of the ABox, that is to say an element of O ∪ V .

A constraint is a syntactic entity of the form x
R−→ y or x : C, where R is a

role and C is either an extended concept or has the form �¬D or ¬�¬D, where
D is a concept. As we will define in Definition 6, the ABox of an ALC + T-
knowledge base can be translated into a set of constraints by replacing every
membership assertion C(a) with the constraint a : C and every role aRb with
the constraint a

R−→ b. A tableau is a tree whose nodes are pairs 〈S | U〉, where:

– S contains constraints (or labelled formulas) of the form x : C or x
R−→ y;

– U contains formulas of the form C � DL, representing subsumption relations
C � D of the TBox. L is a list of labels. As we will discuss later, this list is
used in order to ensure the termination of the tableau calculus.

A node 〈S | U〉 is also called a constraint system. A branch is a sequence of nodes
〈S1 | U1〉, 〈S2 | U2〉, . . . , 〈Sn | Un〉 . . ., where each node 〈Si | Ui〉 is obtained by
its immediate predecessor 〈Si−1 | Ui−1〉 by applying a rule of TALC+T, having
〈Si−1 | Ui−1〉 as the premise and 〈Si | Ui〉 as one of its conclusions. A branch is
closed if one of its nodes is an instance of (Clash), otherwise it is open. We say
that a tableau is closed if all its branches are closed.

Given a KB, we define its corresponding constraint system as follows:

Definition 6 (Corresponding constraint system). Given an ALC + T-
knowledge base (TBox,ABox), we define its corresponding constraint system
〈S | U〉 as follows: S = {a : C | C(a) ∈ ABox} ∪ {a R−→ b | aRb ∈ ABox}
and U = {C � D∅ | C � D ∈ TBox}.

Definition 7 (Model satisfying a constraint system). Let M be a model as
defined in Definition 4. We define a function α which assigns to each variable of
V an element of Δ, and assigns every individual a ∈ O to aI ∈ Δ. M satisfies
x : C under α if α(x) ∈ CI and x

R−→ y under α if (α(x), α(y)) ∈ RI . A
constraint system 〈S | U〉 is satisfiable if there is a model M and a function α
such that M satisfies under α every constraint in S and that, for all C � D ∈ U
and for all x occurring in S, we have that if α(x) ∈ CI then α(x) ∈ DI .

Preferential Description Logics 265

(Clash)〈S, x : C, x : ¬C | U〉

〈S, x : C, x : �¬C | U〉 〈S, x : ¬�¬C | U〉〈S, x : ¬C | U〉

〈S, x : ∀R.C, x
R

−→ y, y : C | U〉

〈S, x : ∀R.C, x
R

−→ y | U〉

(�−)
〈S, y : C, y : �¬C,SM

x→y
| U〉

〈S, x : ¬�¬C | U〉

〈S, x : ∃R.C | U〉

(Unfold)
〈S, x : ¬C � D | U,C � DL,x〉

〈S | U,C � DL〉

(∃+)(∀+)

〈S, x : ¬∀R.C | U〉
(∃−)(∀−)

〈S, x : ¬∃R.C, x
R

−→ y, y : ¬C | U〉

〈S, x : ¬∃R.C, x
R

−→ y | U〉

〈S, x : ¬¬C | U〉
(¬)

〈S, x : C | U〉

(T+)
〈S, x : T(C) | U〉

(T−)
〈S, x : ¬T(C) | U〉

〈S, x : ∃R.C, x
R

−→ y, y : C | U〉

〈S, x : ¬∀R.C, x
R

−→ y, y : ¬C | U〉

if � ∃z ≺ x s.t. z ≡S,x:∃R.C x and
� ∃u s.t. x

R
−→ u ∈ S and u : C ∈ S

� ∃u s.t. x
R

−→ u ∈ S and u : ¬C ∈ S

if � ∃z ≺ x s.t. z ≡S,x:¬∀R.C x and

if y : ¬C �∈ S

if y : C �∈ S

if x occurs in S and x �∈ L
y new

y new

y new

Fig. 1. The calculus T ALC+T. To save space, we omit the standard rules for � and �.

Proposition 3. Given an ALC + T-knowledge base, it is satisfiable if and only
if its corresponding constraint system is satisfiable.

Therefore, in order to check the satisfiability of (TBox,ABox), we build its cor-
responding constraint system 〈S | U〉, and then we use TALC+T to check the
satisfiability of 〈S | U〉. In order to check a constraint system 〈S | U〉 for satis-
fiability, our calculus TALC+T adopts the usual technique of applying the rules
until either a contradiction is generated (Clash) or a model satisfying 〈S | U〉
can be obtained from the resulting constraint system.

In order to take into account the TBox, we use a technique of unfolding,
similar to the one described in [4]. Given a node 〈S | U〉, for each subsumption
C � DL ∈ U and for each label x that appears in the tableau, we add to S the
constraint x : ¬C �D. As mentioned above, each formula C � D is equipped by
the list L of labels in which it has been unfolded in the current branch. This is
needed in order to avoid multiple unfolding of the same subsumption by using
the same label, generating non-termination in a proof search.

Before introducing the rules of TALC+T we need some more definitions. First,
as in [4], we assume that labels are introduced in a tableau according to an
ordering ≺, that is to say if y is introduced in the tableau, then x ≺ y for all
labels x that are already in the tableau.

Given a tableau node 〈S | U〉 and an object x, we define σ(〈S | U〉, x) = {C |
x : C ∈ S}. Furthermore, we say that two labels x and y are S-equivalent, written
x ≡S y, if they label the same set of concepts, i.e. σ(〈S | U〉, x) = σ(〈S | U〉, y).
Intuitively, S-equivalent labels can represent the same element in the model built
by the rules of TALC+T. Last, we define SM

x→y = {y : C, y : �¬C | x : �¬C ∈ S}.
The rules of TALC+T are presented in Figure 1. Rules (∃+), (∀−), and (�−) are

called dynamic since they introduce a new variable in their conclusions. The other
rules are called static. We do not need any extra rule for the positive occurrences

266 L. Giordano et al.

of the � operator, since these are taken into account by the computation of SM
x→y.

The side conditions on the rules (∃+) and (∀−) are introduced in order to ensure
a terminating proof search, by implementing the standard blocking technique de-
scribed below. The rules of TALC+T are applied with the following standard strat-
egy: 1. apply a rule to a variable x ∈ V only if no rule is applicable to a variable
y ∈ V such that y ≺ x; 2. apply dynamic rules ((�−) first) only if no static rule is
applicable. This strategy ensures that the variables are considered one at a time
according to the ordering ≺. Consider an application of a dynamic rule to a vari-
able x of a constraint system 〈S | U〉. For all 〈S′ | U ′〉 obtained from 〈S | U〉 by
a sequence of rule applications, it can be easily shown that (i) no rule can be ap-
plied in 〈S′ | U ′〉 to a variable y s.t. y ≺ x and (ii) σ(〈S | U〉, x) = σ(〈S′ | U ′〉, x).
The calculus so obtained is sound and complete wrt to the semantics described in
Definition 7 (we omit the proof to save space).

Theorem 2 (Soundness and Completeness of TALC+T). Given a con-
straint system 〈S | U〉, it is unsatisfiable iff it has a closed tableau.

Let us conclude this section by analyzing termination and complexity of TALC+T.
In general, non-termination in labelled tableau calculi can be caused by two
different reasons: 1. some rules copy their principal formula in the conclusion(s),
and can thus be reapplied over the same formula without any control; 2. dynamic
rules may generate infinitely-many labels, creating infinite branches.

Concerning the first source of non-termination (point 1), the only rules copy-
ing their principal formulas in their conclusions are (∀+), (∃−), (Unfold), (∀−),
and (∃+). However, the side conditions on these rules avoid multiple applications
on the same formula. Indeed, (Unfold) can be applied to a constraint system
〈S | U, C � DL〉 by using the label x only if it has not yet been applied to x in
the current branch (i.e. x does not belong to L). Concerning (∀+), the rule can
be applied to 〈S, x : ∀R.C, x

R−→ y | U〉 only if y : C does not belong to S. When
y : C is introduced in the branch, the rule will not further apply to x : ∀R.C.
The same for (∃−), (∃+), and (∀−).

Concerning the second source of non-termination (point 2), we can prove that
we only need to adopt the standard loop-checking machinery known as blocking,
which ensures that the rules (∃+) and (∀−) do not introduce infinitely-many
labels on a branch. Thanks to the properties of �, no other additional machin-
ery is required to ensure termination. Indeed, we can show that the interplay
between rules (T−) and (�−) does not generate branches containing infinitely-
many labels. Let us discuss the termination in more detail.

Without the side conditions on the rules (∃+) and (∀−), the calculus TALC+T

does not ensure a terminating proof search. Indeed, given a constraint system
〈S | U〉, it could be the case that (∃+) is applied to a constraint x : ∃R.C ∈ S,
introducing a new label y and the constraints x

R−→ y and y : C. If an inclusion
T(∃R.C) � D belongs to U , then (Unfold) can be applied by using y, thus
generating a branch containing y : ¬T(∃R.C), to which (T−) can be applied
introducing y : ¬�¬(∃R.C). An application of (�−) introduces a new variable
z and the constraint z : ∃R.C, to which (∃+) can be applied generating a new

Preferential Description Logics 267

label u. (Unfold) can then be re-applied on T(∃R.C) � D by using u, incurring
a loop. In order to prevent this source of non termination, we adopt the standard
technique of blocking: the side condition of the (∃+) rule says that this rule can
be applied to a node 〈S, x : ∃R.C | U〉 only if there is no z occurring in S such
that z ≺ x and z ≡S,x:∃R.C x. In other words, if there is an “older” label z
which is equivalent to x wrt S, x : ∃R.C, then (∃+) is not applicable, since the
condition and the strategy imply that the (∃+) rule has already been applied to
z. In this case, we say that x is blocked by z. The same for (∀−).

As mentioned, another possible source of infinite branches could be deter-
mined by the interplay between rules (T−) and (�−). This cannot occur, i.e.
the interplay between these two rules does not generate branches containing
infinitely-many labels. Intuitively, the application of (�−) to x : ¬�¬C adds
y : �¬C to the conclusion, so that (T−) can no longer consistently introduce
y : ¬�¬C. This is due to the properties of � (no infinite descending chains of <
are allowed). More in detail, if (Unfold) is applied to T(C) � D by using x, an
application of (T−) introduces a branch containing x : ¬�¬C; when a new label
y is generated by an application of (�−) on x : ¬�¬C, we have that y : �¬C is
added to the current constraint system. If (Unfold) and (T−) are also applied to
T(C) � D on the new label y, then the conclusion where y : ¬�¬C is introduced
is closed, by the presence of y : �¬C. By this fact, we do not need to introduce
any loop-checking machinery on the application of (�−).

Theorem 3 (Termination of TALC+T). Let 〈S | U〉 be a constraint system,
then any tableau generated by TALC+T is finite.

Since the calculus TALC+T is sound and complete (Theorem 2), and since an
ALC + T-knowledge base is satisfiable iff its corresponding constraint system is
satisfiable (Proposition 3), from Theorem 3 above it immediately follows that:

Theorem 4 (Decidability). Checking whether a given ALC + T-knowledge
base is satisfiable is a decidable problem.

Let us conclude this section with a complexity analysis of the calculus TALC+T:

Theorem 5 (Complexity). Given an ALC + T-knowledge base, checking
whether it is satisfiable can be solved in nondeterministic exponential time.

Proof. We first show that the number of labels generated on a branch is at most
exponential in the size of KB. Let n be the size of a KB. Given a constraint system
〈S | U〉, the number of extended concepts appearing in 〈S | U〉, including also
all the ones appearing as a subformula of other concepts, is O(n). As there are
at most O(n) concepts, there are at most O(2n) variables labelling distinct sets
of concepts. Hence, there are O(2n) non-blocked variables in S.
Let m be the maximum number of direct successors of each variable x ∈ S,
obtained by applying dynamic rules. m is bound by the number of ∃R.C concepts
(O(n)) plus the number of ¬∀R.C concepts (O(n)) plus the number of ¬�¬C
concepts (O(n)). Therefore, there are at most O(2n × m) variables in S, where

268 L. Giordano et al.

m ≤ 3n. The number of individuals in the ABox is bound by n too, and each
individual has at most m direct successors. The number of labels in S is then
bound by O((2n + n) × m), and hence by O(22n).

For a given label x, the concepts labelled by x introduced in the branch
(namely, all the possible subconcepts of the initial constraint system, as well
as all boxed subconcepts) are O(n). According to the standard strategy, after
all static rules have been applied to a label x in phase 1, no other concepts
labelled by x can be introduced later on a branch. Hence, the labelled concepts
introduced on the branch is O(n) for each label, and the number of all labelled
concepts on the branch is O(n × 22n). Therefore, a branch can contain at most
an exponential number of applications of tableau rules.

The satisfiability of a KB can thus be solved by defining a procedure which
nondeterministically generates an open branch of exponential size (in the size of
KB). The problem is in NEXPTIME. �

4 Reasoning About Typicality

Logic ALC +T allows one to reason monotonically about typicality. In ALC+T
we can consistently express, for instance, the fact that three different concepts,
as student, working student and working student with children, have a different
status as taxpayers.

What about the typical properties of an individual john that we know being
a working student, and having children? Of course, if we know that john is a
typical instance of the concept Student �Worker �∃HasChild .�, i.e. if the ABox
contains the assertion (∗) T(Student �Working �∃HasChild .�)(john), then, in
ALC + T, we can conclude that ¬TaxPayer(john). However, in absence of (*),
we cannot derive ¬TaxPayer(john).

In general, we would like to infer that individuals have the properties which
are typical of the most specific concept to which they belong. To this purpose,
we define a completion of the knowledge base which adds to the ABox, for each
individual a occurring in the ABox, the assertion that a is a typical instance of
the most specific concept C to which it belongs. Although in general ABoxes
can contain typicality assertions about individuals, in practice we assume that
typicality assertions are automatically generated by the system by means of the
completion, and are not inserted by the user. From now on, we therefore assume
that the initial ABox of a KB does not contain any typicality assertion.

Definition 8 (Completion of a Knowledge Base). The KB (TBox,ABox’)
is the completion of the KB (TBox,ABox), if ABox’ is obtained from ABox by
adding to it, for all individual names a in the ABox, the assertion T(C1 � . . . �
Cj)(a), where C1, . . . , Cj are all the concepts Ci such that: (1) Ci is a subconcept
of any concept occurring in (TBox,ABox); (2) Ci does not contain T; (3) a is
an instance of Ci, i.e. Ci(a) is derivable in ALC from (TBox,ABox).

For instance, assuming that Student(john), Worker(john) and ∃HasChild .
�(john) are the only assertions concerning john derivable from the KB, the

Preferential Description Logics 269

completion above would add T(Student �Worker � ∃HasChild .�)(john) to the
ABox, as Student �Worker �∃HasChild .� is the most specific concept of which
john is an instance. From this, we can conclude in ALC + T that john does not
pay taxes.

The completion adds T(C1 � . . .�Cj)(a) by considering each Ci(a) derivable
in ALC from the KB, rather than considering only Ci(a) in the ABox. This is
needed, for instance, to infer that john does not pay taxes from the KB containing
Professor � ∀HasChild .Student, Professor(paul), and HasChild(paul , john).

As a matter of fact, if we had in the ABox the information that john is
a TaxPayer , this would not cause an inconsistent completion of the KB. In-
deed, in such a case, Student � Worker � ∃HasChild .� � TaxPayer would be
the most specific concept of which john is an instance, so that the assertion
T(Student � Worker � ∃HasChild .� � TaxPayer)(john) would be added in the
completion of the KB. This does not allow to infer that ¬TaxPayer(john). Hence,
no inconsistency arises. However, it could be the case that the KB obtained
by the completion is inconsistent, even if the initial KB is consistent. For in-
stance, the KB containing T(C) � ∀R.E, T(D) � ∀R.¬E, C(a), D(b), R(a, c),
and R(b, c) is consistent, whereas its completion, including also T(C)(a) and
T(D)(b), is not. In this case, we keep the initial KB unaltered, instead of the
one obtained by the completion.

Notice that the completion of the ABox only introduces O(n) new formulas
a : T(C1 � . . . � Cj), one for each named individual a in the ABox. Further-
more, the size of each formula T(C1 � . . . � Cj) is O(n2) as C1, . . . , Cj are all
distinct subformulas of the initial formula (O(n)), and each Ci has size O(n).
Hence, after the completion construction, the size of the KB is polynomial in n.
Moreover, for each individual a (O(n)) and for each concept C (O(n)), we have
to check whether C(a) is derivable in ALC from the KB, which is a problem in
EXPTIME. Hence, the completion construction requires exponential time and
produces a KB of size polynomial in the size of the original one:

Theorem 6. The problem of deciding satisfiability of the knowledge base after
completion is in NEXPTIME in the size of the original KB.

As mentioned, given a consistent KB, its completion could be inconsistent. In
this case, we choose to keep the original KB. As an alternative, we could consider
all maximal consistent KBs (extensions) that can be generated by adding, for all
individuals, the relative most-specific concept assumptions. We could then per-
form either a skeptical or a credulous reasoning with respect to such extensions.

Preferential logic allows to deal with some forms of inheritance among con-
cepts, by the property of cautious monotonicity (which comes from the semantic
property (fT − 3)): if T(C) � D and T(C) � E, then T(C � D) � E. Coming
back to the example above, if we knew that all students typically have a teacher,
i.e. T(Student) � ∃HasTeacher .�, and that john is a student and has a teacher
(Student(john) and ∃HasTeacher .�(john) are in the ABox) then, by the com-
pletion construction above, we would get T(Student � ∃HasTeacher .�)(john),
and, by cautious monotonicity, we would conclude that john does not pay taxes.

270 L. Giordano et al.

5 Extensions

We consider this work as a first step. We plan to extend our approach in the
following directions.

Inheritance with exceptions. Once the completion of a KB has been defined
as above, the problem of inferring the typical properties of an individual is
reduced to the problem of inferring the properties of the most specific concept
to which it belongs. This can be done by reasoning on the typical properties of
concepts in the TBox. Although Preferential Description Logic allows to capture
- through cautious monotonicity - some form of inheritance of typical properties
among concepts, there are cases in which cautious monotonicity is not strong
enough to derive the intended conclusions. For instance, if we know that jack
is a student who is a sport lover, we cannot conclude that jack is not a tax
payer, as we do not have the property that typical students (or all students)
are sport lovers, and hence cautious monotonicity is not applicable. Here we are
faced with the problem of Irrelevance. Since the property of being a sport lover
is irrelevant with respect to the property of paying taxes, we would like to infer
that also T(Student � SportLover) � ¬TaxPayer , and therefore that jack is not
a tax payer. In order to allow this form of inheritance among concepts, we can
introduce a default rule of the following type:

T(Student) � ¬TaxPayer : T(Student � SportLover) �� TaxPayer
(IRR)

T(Student � SportLover) � ¬TaxPayer

By the default rule above, if typical students are not tax payers, and it is con-
sistent to assume that typical students who are sport lovers are not tax payers,
then we could conclude that typical sport lover students are not tax payers. With
this rule, the typical properties of a more general concept C are considered one
by one, and are inherited by a more specific concept (C � D) if it is consistent
to do so. In order to deal with default rules like this one, we need to integrate
our calculus with a standard mechanism to reason about defaults.

Reasoning on the typicality of all instances. The completion of a knowledge base,
as defined above, only applies to individuals explicitly named in the ABox. How-
ever, we would like to reason on the typical properties of all individuals. Assume,
for instance, that the ABox contains the assertions: ∃HasChild .Worker (bill) and
∀HasChild .Student(bill). Thus, bill has a child who is a student and is working.
We want to be able to infer that bill has a child who is a tax payer. To this purpose,
we need to assume that the bill’s child is a typical working student.

To reason about the typicality of all individuals, we would need to assume that
all individuals generated during the tableau construction are typical instances
of the most specific concept to which they belong. To this purpose, we could
think of applying the completion construction of Definition 8 to all generated
individuals. The completion construction would be applied only when all relevant
formulas y : C1, . . . , y : Cj with label y have already been introduced in the
branch. According to the strategy described in section 3, the completion should
be performed only after the application of the rules to all x s.t. x ≺ y.

Preferential Description Logics 271

Extension to other DLs. We want to study the extension of our approach to more
expressive description logics. For instance, we plan to extend ALCNR consid-
ered in [4] with our typicality operator T, and consider which is the complexity
corresponding to this extension. Finally, we want to study the extension of the
language of concepts by allowing arbitrary occurrences of the operator T.

6 Conclusions

We have proposed an extension of ALC for reasoning about typicality in Descrip-
tion Logic framework. The resulting logic is called ALC + T. We have proposed
a calculus for deciding the satisfiability of a general knowledge base in ALC +T.
The calculus, called TALC+T, is analytic, terminating, and allows us to decide
the satisfiability of a knowledge base in ALC + T in nondeterministic exponen-
tial time. The calculus is reminiscent of the tableaux calculi for KLM logics
presented in [9,8]. We have then shown how to complete the ABox by means of
typicality assumptions, in order to infer prototypical properties of the individ-
uals explicitly mentioned in the ABox. We have argued how to apply a similar
completion also to individuals implicitly mentioned in the ABox, in order to infer
their properties. Finally, we have sketched how to reason about the inheritance
of typical properties from more general to more specific concepts handling with
irrelevant information, by using appropriate default rules.

KLM logics are related to probabilistic reasoning. A probabilistic extension of
DLs has been proposed in [10]. In particular, the notion of conditional constraint
in [10] allows typicality assertions to be expressed (with a specified probability).
We plan to compare in details this probabilistic approach to ours elsewhere.

References

1. Baader, F., Hollunder, B.: Embedding defaults into terminological knowledge rep-
resentation formalisms. J. Autom. Reasoning 14(1), 149–180 (1995)

2. Baader, F., Hollunder, B.: Priorities on defaults with prerequisites, and their ap-
plication in treating specificity in terminological default logic. J. Autom. Reason-
ing 15(1), 41–68 (1995)

3. Bonatti, P.A., Lutz, C., Wolter, F.: Description logics with circumscription. In:
Proc. of KR, pp. 400–410 (2006)

4. Buchheit, M., Donini, F.M., Schaerf, A.: Decidable reasoning in terminological
knowledge representation systems. J. Artif. Int. Research (JAIR) 1, 109–138 (1993)

5. Donini, F.M., Lenzerini, M., Nardi, D., Nutt, W., Schaerf, A.: An epistemic oper-
ator for description logics. Artif. Intell. 100(1-2), 225–274 (1998)

6. Donini, F.M., Nardi, D., Rosati, R.: Description logics of minimal knowledge and
negation as failure. ACM Trans. Comput. Log. 3(2), 177–225 (2002)

7. Eiter, T., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer set
programming with description logics for the semantic web. In: Proc. of KR, pp.
141–151 (2004)

8. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Analytic Tableaux Calculi
for KLM Rational Logic R. In: Fisher, M., van der Hoek, W., Konev, B., Lisitsa,
A. (eds.) JELIA 2006. LNCS (LNAI), vol. 4160, pp. 190–202. Springer, Heidelberg
(2006)

272 L. Giordano et al.

9. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Analytic Tableaux for KLM
Preferential and Cumulative Logics. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR
2005. LNCS (LNAI), vol. 3835, pp. 666–681. Springer, Heidelberg (2005)

10. Giugno, R., Lukasiewicz, T.: P-SHOQ(D): A Probabilistic Extension of SHOQ(D)
for Probabilistic Ontologies in the Semantic Web. In: Flesca, S., Greco, S., Leone,
N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp. 86–97. Springer,
Heidelberg (2002)

11. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential mod-
els and cumulative logics. Artificial Intelligence 44(1-2), 167–207 (1990)

12. Straccia, U.: Default inheritance reasoning in hybrid kl-one-style logics. In: Proc.
of IJCAI, pp. 676–681 (1993)

On Two Extensions of Abstract Categorial

Grammars

Philippe de Groote1, Sarah Maarek2, and Ryo Yoshinaka1

1 LORIA & INRIA-Lorraine
Philippe.de.Groote@loria.fr,

Ryo.Yoshinaka@loria.fr
2 LORIA & Université Nancy 2

Sarah.Maarek@loria.fr

1 Introduction

The abstract categorial grammars (ACGs, for short) are a type-theoretic gram-
matical formalism intended for the description of natural languages [1]. It is
based on the implicative fragment of multiplicative linear logic, which results in
a rather simple framework.

From a language-theoretic standpoint, however, this simplicity is not syn-
onymous of a weak expressive power [2,4]. In particular, the string languages
generated by the second-order ACGs, whose parsing is known to be polynomial,
corresponds to the class of mildly context sensitive languages [7,11]. Neverthe-
less, in [5], we have argued that it would be interesting to increase the intentional
expressive power of the formalism by providing high level constructs.

From a formal point of view, to provide ACGs with new constructs consists
in extending the type system of the formalism. In the present paper, we study
two such type-theoretic extensions of the ACGs. They consist in providing the
ACG type system with Cartesian product and dependent product, respectively.
We prove that both extensions result in Turing-complete formalisms that allow
any recursively enumerable language to be specified.

The paper is organized as follows. In the next section, we remind the reader
of the definition of an abstract categorial grammar. In section 3, we study ACGs
with Cartesian product. In section 4, we study ACGs with dependent product.

2 Abstract Categorial Grammars

Let A be a set of atomic types. The set TA of linear implicative types built upon
A is inductively defined by the following rules:

TA ::= A | (TA −◦ TA)

A higher-order linear signature is defined to be a triple Σ = 〈A, C, τ〉, where:

1. A is a finite set of atomic types;
2. C is a finite set of constants;

N. Dershowitz and A. Voronkov (Eds.): LPAR 2007, LNAI 4790, pp. 273–287, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

274 P. de Groote, S. Maarek, and R. Yoshinaka

3. τ is a mapping from C to TA.

A higher-order linear signature will also be called a vocabulary. In the sequel, we
will write AΣ , CΣ , and τΣ to designate the three components of a signature Σ,
and we will write TΣ for TAΣ .

The set of untyped λ-terms is defined as usual, and one takes the relation of
βη-conversion as the notion of equality between λ-terms. Then, given a signature
Σ, the set of well-typed linear λ-terms ΛΣ is the set of λ-terms that may be
assigned a linear implicative types by the following typing rules.

−Σ c : τΣ(c) (cons)

x : α −Σ x : α (var)

Γ, x : α −Σ t : β
x �∈ dom(Γ) (abs)

Γ −Σ (λx. t) : (α −◦ β)

Γ −Σ t : (α −◦ β) Δ −Σ u : α
dom(Γ) ∩ dom(Δ) = ∅ (app)

Γ, Δ −Σ (t u) : β

In the above rules, as usual, Γ and Δ range over typing environments, i.e., finite
sets of declarations of the form ‘x : α’ such that each variable is declared at most
once. ‘Γ, Δ’ stands for Γ ∪ Δ, and ‘Γ, x : α’ for Γ ∪ {x : α}. Finally, dom(Γ)
denotes the set of variable declared in Γ .

Given two signatures Σ and Ξ, a lexicon L from Σ to Ξ (in notation, L :
Σ → Ξ) is defined to be a pair L = 〈η, θ〉 such that:

1. η is a mapping from AΣ into TΞ ;
2. θ is a mapping from CΣ into ΛΞ ;
3. for every c ∈ CΣ , the following typing judgement is derivable:

−Ξ θ(c) : η̂(τΣ(c)),

where η̂ : TΣ → TΞ is the unique homomorphic extension of η.1

As stated in Condition 3 of the above definition, there exists a unique type
homomorphism η̂ : TΣ → TΞ that extends η. Similarly, there exists a unique λ-
term homomorphism θ̂ : ΛΣ → ΛΞ that extends θ.2 In the sequel, L will denote
both η̂ and θ̂, the intended meaning being clear from the context. In addition,
when Γ denotes a typing environment ‘x1 : α1, . . . , xn : αn’, we will write L (Γ)
for ‘x1 : L (α1), . . . , xn : L (αn)’. Using these notations, we have that Condition
3 induces the following property:

if Γ −Σ t : α then L (Γ) −Ξ L (t) : L (α).

We now give the main definition of this section. An abstract categorial gram-
mar is a quadruple G = 〈Σ, Ξ, L , s〉 where:
1 That is η̂(a) = η(a) and η̂(α−◦ β) = η̂(α)−◦ η̂(β).
2 That is θ̂(c) = θ(c), θ̂(x) = x, θ̂(λx. t) = λx. θ̂(t), and θ̂(t u) = θ̂(t) θ̂(u).

On Two Extensions of Abstract Categorial Grammars 275

1. Σ and Ξ are two higher-order linear signatures, which are called the abstract
vocabulary and the object vocabulary, respectively;

2. L : Σ → Ξ is a lexicon from the abstract vocabulary to the object vocabu-
lary;

3. s ∈ TΣ is a type of the abstract vocabulary, which is called the distinguished
type of the grammar.

The intuition behind this definition is that the abstract vocabulary is used
to express the parse structures of the grammar while the object vocabulary
corresponds somehow to the terminal symbols of the grammar. This explains that
an ACG generates two languages: an abstract language and an object language.
The abstract language is the set of closed linear λ-terms that are built on the
abstract vocabulary, and whose type is the distinguished type:

A(G) = {t ∈ ΛΣ | −Σ t : s is derivable}
On the other hand, the object language is defined to be the image of the abstract
language by the lexicon:

O(G) = {t ∈ ΛΞ | ∃u ∈ A(G). t = L (u)}
Then, given some term t ∈ ΛΞ , the membership problem for G consists in
deciding whether t belongs to O(G), i.e., whether there exists u ∈ A(G) such
that L (u) = t. The decidability of this problem is open. What is known, is that
it is equivalent to the decidability of the multiplicative exponential fragment
of linear logic [4,12]. It is also known that, for second-order ACGs (i.e., ACGs
whose abstract constants are at most second-order) membership is decidable in
polynomial time [11,7].

3 Abstract Categorial Grammars with Cartesian Product

Feature structures, which are akin to records, are one of the main primitives of
unification based grammatical formalisms such as HPSG. Records themselves
are intensively used in Ranta’s GF [10]. This explains our motivation in defining
an extension of the ACGs where a notion of record would be available. From a
theoretical point of view this amounts to extend the ACG typing system with a
Cartesian product.

3.1 Definition

From the perspective of linear logic, the Cartesian product corresponds to the
additive conjunction. Consequently, the set of types must be extended as follows:

TA ::= A | (TA −◦ TA) | (TA & TA)

Then the set of untyped λ-terms must be extended with a pair constructor
together with its two projection operators:

T ::= c | x | λx. T | (T T) | 〈T, T 〉 | (π1 T) | (π2 T)

276 P. de Groote, S. Maarek, and R. Yoshinaka

The notion of equality between λ-terms must be adapted accordingly by taking
into account the following additional reduction rules:

π1 〈t, u〉 → t (left projection)
π2 〈t, u〉 → u (right projection)

〈π1 t, π2 t〉 → t (surjective pairing)

Finally, the three following rules are added to the typing system:

Γ −Σ t : α Γ −Σ u : β
(pair)

Γ −Σ 〈t, u〉 : α & β

Γ −Σ t : α & β
(left proj.)

Γ −Σ π1 t : α

Γ −Σ t : α & β
(right proj.)

Γ −Σ π2 t : β

Then, the very definitions of a lexicon and of an abstract categorial grammar
may be kept unchanged.

3.2 Turing Completeness

As we already mentioned, membership for purely implicative ACGs is equiva-
lent to provability in multiplicative exponential linear logic (the decidability of
which is still open). Analogously, one may expect that membership for ACGs
with Cartesian product is equivalent to provability in multiplicative additive ex-
ponential linear logic (which is known to be undecidable [9]). This is indeed the
case, as shown in this section.

Given any recursively enumerable set of integers, we will construct an ACG
whose object language is this given set. As well known, k-counter machines
compute arbitrary recursive functions [8]. A k-counter machine is a quadruple
M = 〈Q, δ, q0, qf 〉 where Q is a finite set of states, δ is a finite set of transition
rules, q0 ∈ Q is the initial state and qf ∈ Q is the final state. A machine has k
counters in each of which one natural number is stored. Each transition rule in
δ has one of the following forms:

〈q Inc i r〉, 〈q Dec i r〉, 〈q Zero? i r〉

for some i ∈ {1, . . . , k} and q, r ∈ Q. An instantaneous description (ID) is an
element of Q × N

k, where N is the set of natural numbers 0, 1, 2, When the
machine is in the state q and the increment rule 〈q Inc i r〉 is applied, then the
machine increments the ith counter by 1 and it enters the state r. The decrement
rule 〈q Dec i r〉 is applied to the machine only when it is in the state q and more-
over the entry of the ith counter is not zero. In that case,the machine decrements
the ith counter by 1 and it goes to the state r. The zero-testrule 〈q Zero? i r〉

On Two Extensions of Abstract Categorial Grammars 277

is applied to the machine only when it is in the state q and moreover the entry
of the ith counter is exactly zero. In that case, the machine moves to the state r.
For two IDs X, Y ∈ Q×N

k, we write X → Y when the transition from X to Y is
possible. We say that M accepts m ∈ N

k if and only if 〈q0, m〉 ∗−→ 〈qf , 0k〉, where
∗−→ is the reflexive transitive closure of −→ and 0k is short for the sequence of 0s
of length k. The following theorem is an alternative presentation of Lambek’s
result [8].

Theorem 1. For any recursive n-ary function φ, there is a k-counter machine
M with some k > n such that

φ(m1, . . . , mn) = m0 iff M accepts 〈m0, m1, . . . , mn, 0k−n−1〉.

Our encoding of k-counter machines by ACGs is given in a way similar to Lincoln
et al.’s technique for showing the undecidability of the multiplicative additive
exponential linear logic [9]. They have introduced a variant of two-counter ma-
chines, which they call and-branching two-counter machines without zero-test
(2-ACMs, for short), and shown that 2-ACMs simulate standard two-counter
machines. An and-branching k-counter machine without zero-test (k-ACM, for
short) is also a quadruple M = 〈Q, δ, q0, qf 〉, where δ has no zero-test rules.
Instead, it has fork rules of the form 〈q Fork r1 r2〉 with q, r1, r2 ∈ Q, which
allow us to simulate zero-test rules. An ID of a k-ACM is a finite sequence of el-
ements of Q×N

k. The fork rule 〈q Fork r1 r2〉 allows the machine to move from
X1〈q, m〉X2 to X1〈r1, m〉〈r2, m〉X2, where m ∈ N

k and X1, X2 ∈ (Q × N
k)∗.

Only fork rules increase the number of elements of an ID of the machine.
The transition by an increment or decrement rule is defined in the same way
as standard k-counter machines. A sequence of the form 〈qf , 0k〉 . . . 〈qf , 0k〉 is
called an accepting ID. One says that M accepts from an ID X if and only if
X
∗−→ 〈qf , 0k〉 . . . 〈qf , 0k〉. One also says that M accepts m ∈ N

k if and only if M
accepts from 〈q0, m〉.

Lincoln et al.’s proof for that a 2-ACM simulates an arbitrary standard two-
counter machine is also applied to k-counter machines. It is easy to modify a
k-counter machine so that it has no transition rule going out from the final state
while keeping the acceptable k-tuples of natural numbers. Then a zero-test rule
〈q Zero? i r〉 is simulated by the following rules of a k-ACM:

〈q Fork r si〉, 〈si Dec j si〉 for all j �= i, 〈si Fork qf qf 〉

where si is a new state not in the original set of states.

Lemma 1. Any k-counter machine is simulated by a k-ACM.

Now, to any k-ACM M = 〈Q, δ, q0, qf 〉, we associate the following ACG GM =
〈ΣM , ΣN, L , s〉:

278 P. de Groote, S. Maarek, and R. Yoshinaka

ΣM

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s : type,
ai : type for all i ∈ {1, . . . , k},
q : type for all q ∈ Q,

cf : qf ,
cρ : αρ for all ρ ∈ δ,

where αρ =

⎧
⎪⎨
⎪⎩

(ai −◦ r) −◦ q for ρ = 〈q Inc i r〉,
r −◦ (ai −◦ q) for ρ = 〈q Dec i r〉,
(r1 & r2) −◦ q for ρ = 〈q Fork r1 r2〉,

d0 : q0 −◦ s,
di : (ai −◦ s) −◦ s.

ΣN

⎧
⎨
⎩

o : type,
0 : o,
S : o −◦ o,

L

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s := (ok −◦ o) −◦ o,
ai := o −◦ o for all i ∈ {1, . . . , k},
q := o −◦ o for all q ∈ Q,

cf := λz. z,

cρ :=

⎧⎪⎨
⎪⎩

λx. x (λz. z) for ρ = 〈q Inc i r〉,
λxyz. x (y z) for ρ = 〈q Dec i r〉,
λx. π1 x for ρ = 〈p Fork q r〉,

d0 := λxy. x (y 0k),
di := λxy. x (λz. z) (λz1 . . . zk. y z1 . . . zi−1(S zi)zi+1 . . . zk).

We now prove that λy. y (Sm1 0) . . . (Smk 0) belongs to the object language of
GM if and only if M accepts 〈m1, . . . , mk〉, for any k natural numbers m1, . . . , mk.
The proof consists of four technical lemmas, the first two of which establish the
if part of the property. For notational convenience, to each m = 〈m1, . . . , mk〉 ∈
N
k, we assign the typing environment

Γm = x1,1 : a1, . . . , x1,m1 : a1, . . . , xk,1 : ak, . . . , xk,mk
: ak.

Lemma 2. If M accepts from an ID X, then for each element 〈q, m〉 of X,
there is t such that Γm −ΣM t : q and t does not contain di for any i.

Proof. By induction on the length of the transition from X to an accepting ID
〈qf , 0k〉 . . . 〈qf , 0k〉. The constant cf of type qf satisfies the lemma for the zero
step transition.

Case 1. Suppose that ρ = 〈q Inc i r〉 ∈ δ induces the first step of the tran-
sition as

X1 〈q, m〉X2 → X1 〈r, m′〉X2
∗−→ 〈qf , 0k〉 . . . 〈qf , 0k〉

where m′ is obtained by incrementing the ith element of m = m1, . . . , mk by
1. We have Γm′ = Γm, xi,mi+1 : ai and Γm, xi,mi+1 : ai −ΣM t : r for some t

On Two Extensions of Abstract Categorial Grammars 279

by induction hypothesis. ΣM contains the constant cρ of type (ai −◦ r)−◦ q. We
have

Γm −ΣM cρ (λxi,mi+1. t) : q.

Case 2. Suppose that ρ = 〈q Dec i r〉 ∈ δ induces the first step of the
transition as

X1 〈q, m〉X2 → X1 〈r, m′〉X2
∗−→ 〈qf , 0k〉 . . . 〈qf , 0k〉

where m′ is obtained by decrementing the ith element of m = m1, . . . , mk by
1. That is, mi > 0. We have Γm = Γm′ , xi,mi : ai and Γm′ −ΣM t : r for some t
by induction hypothesis. ΣM contains the constant cρ of type r −◦ (ai −◦ q). We
have

Γm −ΣM cρ t xi,mi : q.

Case 3. Suppose that ρ = 〈q Fork r1 r2〉 ∈ δ induces the first step of the
transition as

X1 〈q, m〉X2 → X1 〈r1, m〉 〈r2, m〉X2
∗−→ 〈qf , 0k〉 . . . 〈qf , 0k〉.

By induction hypothesis, there are ti for i = 1, 2 such that Γm −ΣM ti : ri. ΣM

contains the constant cρ of type (r1 & r2) −◦ q. We have

Γm −ΣM cρ 〈t1, t2〉 : q. ��
Lemma 3. If M accepts 〈m1, . . . , mk〉, then there is t such that −ΣM t : s and
L (t) = λy. y (Sm1 0) . . . (Smk 0).

Proof. By Lemma 2, there exists t′ such that Γm −ΣM t′ : q0 where m =
〈m1, . . . , mk〉. Let

t = dk (λxk,mk
. . . . dk (λxk,1. . . . d1 (λx1,m1 d1 (λx1,1. d0 t′) . . .) . . .) . . .).

Then −ΣM t : s. It is easy to check that for any subterm t′′ of t of the form

t′′ = di (λxi,j d1 (λx1,1. d0 t′) . . .)

where 1 ≤ i ≤ k and 1 ≤ j ≤ mi, we have

L (t′′) = λy. u[z:=y (Sm1 0) . . . (Smi−1 0) (Sj 0) 0k−i]

for some u that contains no constants. The fact −ΣN
L (t) : (ok−◦o)−◦o implies

that L (t) β-reduces to λy. y (Sm1 0) . . . (Smk 0). ��
Lemma 4. Let m ∈ N

k and q ∈ Q. If we have Γm −ΣM t : q for some t, then
M accepts from 〈q, m〉. Moreover, t does not contain di for any i.

Proof. Suppose that Γm −ΣM t : q. We assume that t is β-normal. We prove
this lemma by induction on the number of occurrences of constants in t.

Case 0. t = cf and q = qf . Then the typing environment Γm must be empty,
i.e., m = 0k. Indeed M accepts from 〈qf , 0k〉.

280 P. de Groote, S. Maarek, and R. Yoshinaka

Case 1. t = cρ t′ with ρ = 〈q Inc i r〉 ∈ δ and t′ such that Γm −ΣM t′ :
ai−◦r. Then Γm, xi,mi+1 : ai −ΣM t′ xi,m+1 : r. Hence, by induction hypothesis,
M accepts from 〈r, m′〉 where m′ is obtained by incrementing the ith element
mi of m by 1. Since 〈q, m〉 → 〈r, m′〉, M also accepts from 〈q, m〉.

Case 2. t = cρ t′ t′′ with ρ = 〈q Dec i r〉 ∈ δ, Γ1 −ΣM t′ : r and Γ2 −ΣM t′′ :
ai for some partition Γ1 and Γ2 of the typing environment Γm. Now, the only
possibility for Γ2 and t′′ is Γ2 = xi,j : ai and t′′ = xi,j for some j ∈ {1, . . . , mi}.
Hence, mi ≥ 1 and Γ1 = Γm − {xi,j : ai}. By applying induction hypothesis
to Γ1 −ΣM t′ : r, we get that M accepts from 〈r, m′〉 where m′ is obtained
by decrementing the ith element mi of m by 1. Since 〈q, m〉 → 〈r, m′〉, M also
accepts from 〈q, m〉.

Case 3. t = cρt
′ with ρ = 〈q Fork r1 r2〉 ∈ δ. The type of cρ is (r1 &

r2) −◦ q. Consequently, t′ = 〈t1, t2〉 for some t1 and t2 such that Γm −ΣM ti :
ri for each i = 1, 2. By induction hypothesis, M accepts from both 〈r1, m〉
and 〈r2, m〉, which implies that M also accepts from 〈q, m〉, because 〈q, m〉 →
〈r1, m〉 〈r2, m〉. ��

Lemma 5. For any t ∈ A(GM), we have L (t) = λy. y (Sm1 0) . . . (Smk 0) for
some m1, . . . , mk ∈ N and moreover M accepts 〈m1, . . . , mk〉.

Proof. By −ΣM t : s, t has the form

t = di1 (λx′1. . . . din (λx′n. d0 t′) . . .)

for some i1, . . . , in ∈ {1, . . . , k} and t′ such that Γ −ΣM t′ : q0 for Γ =
{ x′j : aij | 1 ≤ j ≤ n }. Let mi be the number of occurrences of di in
t and m = 〈m1, . . . , mk〉. By renaming variables, we can assume Γ = Γm.
By Lemma 4, t′ does not contain any di. It is not hard to see that L (t) =
λy. y (Sm1 0) . . . (Smk 0). Moreover Lemma 4 implies that M accepts m. ��

Finally, we obtain the expected property as a direct consequence of Lemmas 1,
3 and 5.

Proposition 1. For any k-counter machine M , one can effectively construct
an ACG with Cartesian product GM such that

M accepts 〈m1, . . . , mk〉 iff λy. y (Sm1 0) . . . (Smk 0) ∈ O(GM).

Corollary 1. For any recursive function φ, there exists an ACG with Cartesian
product Gφ such that

φ(a1, . . . , an) = b iff λy. y (Sb 0) (Sa1 0) . . . (San 0) ∈ O(Gφ).

Proof. By Theorem 1 and Proposition 1. It is easy to modify the definition of
GM so that counters not used for representing the arguments and values of the
function φ are completely suppressed in the object language. ��

On Two Extensions of Abstract Categorial Grammars 281

4 Abstract Categorial Grammars with Dependent
Product

Dependent product allows ones to specify types that depend upon terms. In a
grammatical setting (where types corresponds to syntactic categories), depen-
dent products are useful in defining generic syntactic categories (for instance,
NP for noun phrase) that can be instantiated according to the value of some
feature (for instance, (NP f) for feminine noun phrase, (NP m) for masculine
noun phrase, etc.)

4.1 Definition

In the presence of dependent products, types may depend upon terms. Conse-
quently, it is no longer the case that the notion of well-formed types may be
specified only by means of context-free rules. In the same way terms are as-
signed types, types will be assigned kinds. Consequently, we first introduce the
raw syntax of three forms of expressions, namely, the kinds (K), the types (T),
and the terms (T).

K ::= type | (T)K

T ::= a | (λx. T) | (T T) | (T −◦ T) | (Πx : T) T

T ::= c | x | (λ◦x. T) | (λx. T) | (T T)

where a ranges over atomic types, and c over constants. In addition to atomic
types, linear functional types, and dependent products, we have two other type
constructs: the abstraction of a λ-variable over a type, and the application of a
type to a λ-term. At the level of the λ-terms, we now distinguish between two
forms of λ-abstractions: a linear λ-abstraction (λ◦x. T), and a non-linear one
(λx. T).

Let a range over atomic types, c over constants, A over kinds, and α over
types. A raw signature is then defined as a sequence of declarations either of
the form ‘a:A’ or of the form ‘c:α’. Let Σ be such a raw signature, we define
two partial functions. The first one, κΣ , assigns kinds to atomic types. It is
inductively defined as follows:

κ()(a) is undefined

κΣ;a1:A(a) =
{

A if a = a1

κΣ(a) otherwise

κΣ; c:α(a) = κΣ(a)

Similarly, τΣ , assigns types to λ-term constants:

τ()(c) is undefined

τΣ; a:A(c) = τΣ(c)

τΣ; c1:α(c) =
{

α if c = c1

τΣ(c) otherwise

282 P. de Groote, S. Maarek, and R. Yoshinaka

We now give the type system of the calculus. It relies on four forms of judge-
ments:

sig (Σ) −Σ A : kind Γ −Σ α : A Γ ; Δ −Σ t : α

where A, α, and t range over kinds, types, and λ-terms, respectively. Σ is a given
signature. Γ and Δ range over typing environments, which are now defined to
be sequences of declarations of the form ‘x : α’.

These four forms of judgements may be paraphrased as follows:

1. Σ is a well-formed signature.
2. Given the signature Σ, A is a well-formed kind.
3. Given the signature Σ, α is a type of kind A according to the non-linear

typing environment Γ .
4. Given the signature Σ, t is a term of type α according to the non-linear

typing environment Γ and the linear typing environment Δ.

Finally, the rules of the typing system are as follows.

Well-formed signatures:

sig ()

sig (Σ) −Σ A : kind

sig (Σ; a : A)

sig (Σ) −Σ α : type

sig (Σ; c : α)

In the above rules, the introduced symbols (a and c) must be fresh with respect
to Σ.

Well-formed kinds:

−Σ type : kind

−Σ α : type −Σ A : kind

−Σ (α) A : kind

Well-kinded types:

−Σ a : κΣ(a) (type const.)

−Σ α : type Γ −Σ β : A
(type weak.)

Γ, x : α −Σ β : A

On Two Extensions of Abstract Categorial Grammars 283

Γ, x : α −Σ β : A
(type abs.)

Γ −Σ λx. β : (α) A

Γ −Σ α : (β) A Γ ; −Σ t : β
(type app.)

Γ −Σ α t : A

Γ −Σ α : type Γ −Σ β : type
(lin. fun.)

Γ −Σ α −◦ β : type

Γ −Σ α : type Γ, x : α −Σ β : type
(dep. prod.)

Γ −Σ (Πx : α) β : type

In Rule (type weak.), x must be fresh with respect to Γ .

Well-typed terms:

; −Σ c : τΣ(c) (const.)

Γ −Σ α : type
(lin. var.)

Γ ; x : α −Σ x : α

Γ −Σ α : type
(var.)

Γ, x : α; −Σ x : α

Γ −Σ α : type Γ ; Δ −Σ t : β
(weak.)

Γ, x : α; Δ −Σ t : β

Γ ; Δ1, x : α, y : β, Δ2 −Σ t : γ
(perm.)

Γ ; Δ1, y : β, x : α, Δ2 −Σ t : γ

Γ ; Δ, x : α −Σ t : β
(lin. abs.)

Γ ; Δ −Σ λ◦x. t : α −◦ β

Γ ; Δ1 −Σ t : α −◦ β Γ ; Δ2 −Σ u : α
(lin. app.)

Γ ; Δ1, Δ2 −Σ t u : β

Γ, x : α; Δ −Σ t : β
(abs.)

Γ ; Δ −Σ λx. t : (Πx : α) β

Γ ; Δ −Σ t : (Πx : α)β Γ ; −Σ u : α
(app.)

Γ ; Δ −Σ t u : β[x:=u]

Γ ; Δ −Σ t : α Γ −Σ β : type α =βη β
(type conv.)

Γ ; Δ −Σ t : β

284 P. de Groote, S. Maarek, and R. Yoshinaka

In Rules (lin. var.) and (var.), x must be fresh with respect to Γ . In Rule (weak.),
x must be fresh with respect to both Γ and Δ. Moreover, t must be either a
λ-variable, or a constant. In Rule (abs.), x cannot occur free in Δ.

Let Σ be a signature. We will write AΣ for the set of atomic types declared
in Σ. Similarly, we will write CΣ for the set of λ-term constants declared in Σ.
Finally, given a well-formed signature Σ, we will write KΣ , TΣ, and ΛΣ for
the corresponding sets of well-formed kinds, well-kinded types, and well-typed
terms, respectively.

In order to define a notion of ACG with dependent product, it remains to
adapt the definition of a lexicon. Let Σ and Ξ be two well-formed signatures. A
lexicon L from Σ to Ξ is a pair 〈η, θ〉 such that:

1. η is a mapping from AΣ into TΞ ;
2. θ is a mapping form CΣ into ΛΞ ;
3. for every c ∈ CΣ , the following typing judgement is derivable:

−Ξ θ(c) : η̂(τΣ(c)),

where η̂ : TΣ → TΞ is the unique homomorphic extension of η;
4. for every a ∈ AΣ , the following kinding judgement is derivable:

−Ξ η(a) : η̃(κΣ(a)),

where η̃ : KΣ → KΞ is defined by η̃(type)=type and η̃((α)A)=(η̂(α))η̃(A).

4.2 Turing Completeness

The λ-calculus we have defined in the previous section contains the Edinburgh
logical framework [6] as a subsystem.3 We may therefore expect ACGs with
dependent product to be Turing-complete. In order to show it is indeed the
case, we explain how to encode any general phrase structure grammar as an
ACG with dependent product.

We first remind the reader of some basic definitions. A phrase structure gram-
mar is a quadruple G = 〈V, T, R, S〉, where V is a finite set of symbols, T ⊆ V
is a finite set of terminal symbols, S ∈ V is the start symbol and R is a finite
set of production rules of the form α → β for α, β ∈ V ∗. One writes α ⇒ β if
α = γ1α

′γ2, β = γ1β
′γ2 and α′ → β′ ∈ R for some γ1, γ2 ∈ V ∗. As usual, ∗⇒ is

the reflexive, transitive closure of ⇒. The language generated by G is defined as
L(G) = {α ∈ T ∗ |S ∗⇒ α}.

To any alphabet T , we associate a signature ΣT . This signature has one atomic
type o and its set of constants is T , the elements of which are assigned the type
o−◦o. Then, every string a1 . . . an ∈ T ∗ may be encoded as λ◦z. a1 (. . . (an z) . . .).
Let us write /a1 . . . an/ to denote this last term. We have, in particular, that the
empty string ε is represented by the linear identity function, i.e., /ε/ = λ◦z. z.
We also have that concatenation is represented by functional composition, and
we will write t + u for λ◦z. t (u z).
3 Actually, the notion of dependent type we use is slightly weaker.

On Two Extensions of Abstract Categorial Grammars 285

Now, to any phrase structure grammar G = 〈V, T, R, S〉, we associate the
ACG GG = 〈ΣG, ΣT , L , s〉 that is defined as follows.

ΣG

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

o, s : type,
σ : (o −◦ o)type,
τ : (o −◦ o)type,
A : o −◦ o for all A ∈ V,
cS : σ(/S/),

cα→β : (Πx, y ∈ o −◦ o)(σ(x + /α/ + y) −◦ σ(x + /β/ + y))
for all α → β ∈ R,

dε : τ(/ε/),
da : (Πx ∈ o −◦ o)(τ(x) −◦ τ(/a/ + x)) for all a ∈ T,
e : (Πx ∈ o −◦ o)(σ(x) −◦ τ(x) −◦ s),

ΣT

{
o : type,
a : o −◦ o for all a ∈ T,

L

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

o := o,
s := o −◦ o,
τ := λx. o −◦ o,
σ := λx. o −◦ o,
A := λ◦z. z for all A ∈ V,
cS := /ε/,

cα→β := λxy. λ◦z. z for all α → β ∈ R,
dε := /ε/,
da := λx. λ◦y. /a/ + y for all a ∈ T,
e := λx. λ◦yz. y + z.

The signature ΣG consists of two independent parts that are connected through
the constant e. We will establish the two following properties:

1. for every α ∈ V ∗, S
∗⇒ α if and only if there exists uα such that ; −ΣG uα :

σ(/α/);
2. for every α ∈ V ∗, α ∈ T ∗ if and only if there exists tα such that ; −ΣG tα :

τ(/α/).

This implies that α ∈ L(G) if and only if ; −ΣG uα : σ(/α/) and ; −ΣG tα :
τ(/α/) for some uα and tα.

Lemma 6. For any α ∈ V ∗, if S
∗⇒ α, then there is t such that ; −ΣG t : σ(/α/)

and L (t) �β /ε/.

Proof. Induction on the length of the derivation. For α = S, t = cS satisfies
the lemma. Suppose that S

∗⇒ γ1αγ2 ⇒ γ1βγ2 and α → β ∈ R. By induction
hypothesis, we have t′ such that ; −ΣG t′ : σ(/γ1αγ2/) and L (t′) �β /ε/.
Let t = cα→β/γ1//γ2/t′. Then we have ; −ΣG t : σ(/γ1βγ2/) and L (t) �β

L (t′) �β /ε/. ��
Lemma 7. For every α ∈ T ∗, there is t such that ; −ΣG t : τ(/α/) and
L (t) �β /α/.

286 P. de Groote, S. Maarek, and R. Yoshinaka

Proof. Induction on the length of α. For α = ε, t = dε satisfies the lemma. For
α �= ε, let α = aα′ with a ∈ T and α′ ∈ T ∗. By induction hypothesis, we have
t′ such that ; −ΣG t′ : τ(/α′/) and L (t′) �β /α′/. Let t = da/α′/t′. Then we
have ; −ΣG t : τ(/α/) and L (t) �β /a/ + L (t′) �β /α/. ��
Lemma 8. For every α ∈ L(G), we have /α/ ∈ O(GG).

Proof. For any α ∈ L(G), we have t1 and t2 such that ; −ΣG t1 : σ(/α/),
L (t1) �β /ε/, ; −ΣG t2 : τ(/α/) and L (t2) �β /α/ by Lemmas 6 and 7. Thus
we have ; −ΣG e/α/t1t2 : s and L (e/α/t1t2) �β /α/. ��
Lemma 9. For any β ∈ V ∗, if ; −ΣG t : σ(/β/), then S

∗⇒ β and L (t) �β /ε/.

Proof. Suppose that ; −ΣG t : σ(/β/). We assume that t is β-normal. We prove
this lemma by induction on t. If t = cS , then β = S and the lemma holds
clearly. Otherwise, t must have the form t = cα′→β′/γ1//γ2/t′ with β = γ1β

′γ2

for some t′ such that ; −ΣG t′ : σ(/γ1α
′γ2/). By induction hypothesis, we have

S
∗⇒ γ1α

′γ2 and L (t′) �β /ε/. The fact that ΣG has the constant cα′→β′

implies that α′ → β′ ∈ R. We have S
∗⇒ γ1α

′γ2 ⇒ γ1β
′γ2 = β and L (t) �β

L (t′) �β /ε/. ��
Lemma 10. For any β ∈ V ∗, if ; −ΣG t : τ(/β/), then β ∈ T ∗ and L (t) �β

/β/.

Proof. Suppose that ; −ΣG t : τ(/β/). We assume that t is β-normal. We prove
this lemma by induction on t. If t = dε, then β = ε and the lemma holds clearly.
Otherwise, t must have the form t = da/α/t′ for some a ∈ T , α ∈ V ∗ and t′ such
that β = aα and ; −ΣG t′ : τ(/α/). By induction hypothesis, we have L (t′) �β

/α/, α ∈ T ∗ and thus aα ∈ T ∗. Besides L (t) �β /a/ + L (t′) �β /aα/. ��
Lemma 11. /α/ ∈ O(GG) implies α ∈ L(G).

Proof. Suppose that t ∈ A(GG). t must have the form t = e/α/t1t2 with ; −ΣG

t1 : σ(/α/) and ; −ΣG t2 : τ(/α/) for some α ∈ V ∗. We have S
∗⇒ α and

L (t1) �β /ε/ by Lemma 9. α ∈ T ∗ and L (t2) �β /α/ by Lemma 10. Therefore,
α ∈ L(G) and L (t) �β /α/ ∈ O(G). ��
As a consequence of Lemmas 8 and 11 we obtain the main result of this section.

Proposition 2. For any phrase structure grammar, one can find an ACG with
dependent product that generates exactly the same language.

5 Conclusions

This work shows that quite simple extensions of the abstract categorial gram-
mars immediately result in undecidable formalisms. This is not quite surprising
as it is not even known whether membership is decidable or not for the original
ACGs. On the other hand, from a practical point of view, there is a need for
powerful constructs such as feature structures, records, or generic types. Conse-
quently, future work must consist in trying to identify fragments of the extended
formalism proposed in [5] that offer a good compromise between intentional
expressive power and tractability.

On Two Extensions of Abstract Categorial Grammars 287

References

1. de Groote, Ph.: Towards abstract categorial grammars. In: Association for Com-
putational Linguistics, 39th Annual Meeting and 10th Conference of the European
Chapter, Proceedings of the Conference, pp. 148–155 (2001)

2. de Groote, Ph.: Tree-Adjoining Grammars as Abstract Categorial Grammars. In:
TAG+6, Proceedings of the sixth International Workshop on Tree Adjoining Gram-
mars and Related Frameworks, pp. 145–150 (2001)

3. de Groote, Ph., Guillaume, B., Salvati, S.: Vector Addition Tree Automata. In:
LICS 2004. 19th IEEE Symposium on Logic in Computer Science, pp. 64–73. IEEE
Computer Society, Los Alamitos (2004)

4. de Groote, Ph., Pogodalla, S.: On the Expressive Power of Abstract Categorial
Grammars: Representing Context-Free Formalisms. Journal of Logic, Language
and Information 13(4), 421–438 (2004)

5. de Groote, P., Maarek, S.: Type-theoretic Extensions of Abstract Categorial Gram-
mars. In: Proceedings of the Workshop on New Directions in Type-theoretic Gram-
mars. ESSLLI (2007)

6. Harper, R., Honsel, F., Plotkin, G.: A framework for defining logics. In: Proceedings
of the second annual IEEE symposium on logic in computer science, pp. 194–204.
IEEE Computer Society Press, Los Alamitos (1987)

7. Kanazawa, M.: Parsing and Generation as Datalog Queries. In: Association for
Computational Linguistics, 45th Annual Meeting, Proceedings of the Conference
(to appear, 2007)

8. Lambek, J.: How to program an infinite abacus. Canadian Mathematical Bulletin 4,
279–293 (1961)

9. Lincoln, P., Mitchell, J.C., Scedrov, A., Shankar, N.: Decision Problems for Propo-
sitional Linear Logic. Annals of Pure and Applied Logic 56(1-3), 239–311 (1992)

10. Ranta, A.: Grammatical Framework: A Type-Theoretical Grammar Formalism.
Journal of Functional Programming 14(2), 145–189 (2004)

11. Salvati, S.: Problèmes de filtrage et problèmes d’analyse pour les grammaires
catégorielles abstraites. Thèse de Doctorat. Institut National Polytechnique de Lor-
raine (2005)

12. Yoshinaka, R., Kanazawa, M.: The Complexity and Generative Capacity of Lex-
icalized Abstract Categorial Grammars. In: Blache, P., Stabler, E.P., Busquets,
J.V., Moot, R. (eds.) LACL 2005. LNCS (LNAI), vol. 3492, pp. 330–346. Springer,
Heidelberg (2005)

Why Would You Trust B?

Éric Jaeger1,2 and Catherine Dubois3

1 LIP6, Université Paris 6, 4 place Jussieu, 75252 Paris Cedex 05, France
2 LTI, Direction centrale de la sécurité des systèmes d’information, 51 boulevard de

La Tour-Maubourg, 75700 Paris 07 SP, France
3 CEDRIC, École nationale supérieure d’informatique pour l’industrie et l’entreprise,

18 allée Jean Rostand, 91025 Evry Cedex, France

Abstract. The use of formal methods provides confidence in the cor-
rectness of developments. Yet one may argue about the actual level of
confidence obtained when the method itself – or its implementation – is
not formally checked. We address this question for the B, a widely used
formal method that allows for the derivation of correct programs from
specifications. Through a deep embedding of the B logic in Coq, we check
the B theory but also implement B tools. Both aspects are illustrated
by the description of a proved prover for the B logic.

Keywords: Confidence, Formal Methods, Prover, Deep embedding.

A clear benefit of formal methods is to increase the confidence in the correctness
of developments. However, one may argue about the actual level of confidence
obtained, when the method or its implementation are not themselves formally
checked. This question is legitimate for safety, as one may accidentally derive
invalid results. It is even more relevant when security is a concern, as any flaw
can be deliberately exploited by a malicious developer to obfuscate undesirable
behaviours of a system while still getting a certification.

B [1] is a popular formal method that allows for the derivation of correct
programs from specifications. Several industrial implementations are available
(e.g. AtelierB, B Toolkit), and it is widely used in the industry for projects where
safety or security is mandatory. So the B is a good candidate for addressing our
concern: when the prover says that a development is right, who says that the
prover is right? To answer this question, one has to check the theory as well as
the prover w.r.t. this theory (or, alternatively, to provide a proof checker). Those
are the objectives of BiCoq, a deep embedding of the B logic in Coq [2].

BiCoq benefits from the support of Coq to study the theory of B, and to check
the validity of standard definitions and results. BiCoq also allows us, through an
implementation strategy, to develop formally checked B tools. This strategy is
illustrated in this paper by the development of a prover engine for the B logic,
that can be extracted and used independently of Coq. Coq is therefore our notary
public, witnessing the validity of the results associated to the B theory, as well
as the correctness of tools implementing those results – ultimately increasing
confidence in B developments. The approach, combining a deep embedding and

N. Dershowitz and A. Voronkov (Eds.): LPAR 2007, LNAI 4790, pp. 288–302, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Why Would You Trust B? 289

an implementation technique, can be extended to address further elements of
the B, beyond its logic, or to safely enrich it, as illustrated in this paper.

This paper is divided into 9 sections. Sections 1, 2 and 3 briefly introduce
B, Coq and the notion of embedding. The B logic and its formalisation in Coq
are presented in Sec. 4. Section 5 describes various results proved using BiCoq.
Section 6 focuses on the implementation strategy, and presents its application
to the development of a set of extractible proof tactics for a B prover. Section 7
discusses further uses of BiCoq, and mentions some existing extensions. Finally,
Sect. 8 concludes and identifies further activities.

1 A Short Introduction to B

In a nutshell, the B method defines a first-order predicate logic completed with
elements of set theory, a Generalised Substitution Language (GSL) and a method-
ology of development. An abstract B machine is a module combining a state,
properties and operations (described as substitutions) to read or alter the state.

The logic is used to express preconditions, invariants, etc. and to conduct
proofs. The GSL allows for definitions of substitutions that can be abstract,
declarative and non-deterministic (that is, specifications) as well as concrete,
imperative and deterministic (that is, programs). The following example uses
the non-deterministic substitution ANY (a “magic” operator finding a value
which satisfies a property) to specify the square root of a natural number n:

Example 1. ANY xWHERE x∗x ≤n< (x+1)∗(x+1) THEN
√

(n) :=xEND

Regarding the methodology, a machine MC refines an abstract machine MA

if one cannot distinguish MC from MA by valid operation calls – this notion
being independent of the internal representations, as illustrated by the following
example of a system returning the maximum of a set of stored values:

Example 2. The state of MA is a (non implementable) set of natural numbers; the
state of MC is a natural number. Yet MC , having the expected behaviour, refines MA.

MACHINEMA

VARIABLES S
INVARIANT S⊆N

INITIALISATION S :=∅
OPERATIONS

store(n) �
PRE n∈N THEN S :=S∪{n} END

m←get �
PRE S 	=∅THENm :=max(S) END

END

REFINEMENTMC

VARIABLES s
INVARIANT s=max(S∪{0})
INITIALISATION s :=0
OPERATIONS

store(n) �
IF s<nTHEN s :=nEND

m←get �
BEGINm :=sEND

END

Refinement being transitive, it is possible to go progressively from the specifi-
cation to the implementation. By discharging at each step the proof obligations
defined by the B methodology, a program can be proved to be a correct and
complete implementation of a specification. This methodology, combined with

290 É. Jaeger and C. Dubois

the numerous native notions provided by the set theory and the existence of
toolkits, make the B a popular formal method, widely used in the industry.

Note that the B logic is not genuinely typed and allows for manipulation of
free variables. A special mechanism, called type-checking (but thereafter referred
to as wf-checking), filters ill-formed (potentially paradoxal) terms; it is only
mentioned in this paper, deserving a dedicated analysis.

The rest of the paper only deals with the B logic (its inference rules).

2 A Short Introduction to Coq

Coq is a proof assistant based on a type theory. It offers a higher-order logical
framework that allows for the construction and verification of proofs, as well
as the development and analysis of functional programs in an ML-like language
with pattern-matching. It is possible in Coq to define values and types, including
dependent types (that is, types that explicitly depend on values); types of sort
Set represent sets of computational values, while types of sort Prop represent
logical propositions. When defining an inductive type (that is, a least fixpoint),
associated structural induction principles are automatically generated.

For the intent of this paper, it is sufficient to see Coq as allowing for the
manipulation of inductive sets of terms. For example, let’s consider the standard
representation of natural numbers:

Example 3. Inductive N :Set :=0:N | S :N→N

It defines a type N which is the smallest set of terms stable by application of the
constructors 0 and S. N is exactly made of the terms 0 and Sn(0) for any finite
n; being well-founded, structural induction on N is possible.

Coq also allows for the declaration of inductive logical properties, e.g.:

Example 4. Inductive ev :N→Prop := ev0 :ev 0 | ev2 :∀(n :N), ev n→ev (S(S n))

It defines a family of logical types: ev 0 is a type inhabited by the term (ev0),
ev 2 is another type inhabited by (ev2 0 ev0), and ev 1 is an empty type. The
standard interpretation is that ev0 is a proof of the proposition ev 0 and that
there is no proof of ev 1, that is we have ¬(ev 1).

An intuitive interpretation of our two examples is that N is a set of terms,
and ev a predicate marking some of them, defining a subset of N.

3 Deep Embedding and Related Works

Embedding in a proof assistant consists in mechanizing a guest logic by encoding
its syntax and semantic into a host logic ([3,4,5]). In a shallow embedding,
the encoding is partially based on a direct translation of the guest logic into
constructs of the host logic. In a deep embedding the syntax and the semantic
are formalised as datatypes. At a fundamental level, taking the view presented
in Sec. 2, the deep embedding of a logic is simply a definition of the set of

Why Would You Trust B? 291

all sequents (the terms) and a predicate marking those that are provable (the
inference rules of the guest logic being encoded as constructors of this predicate).

Shallow embeddings of B in higher-order logics have been proposed in sev-
eral papers (cf. [6,7]) formalising the GSL in PVS, Coq or Isabelle/HOL. Such
embeddings are not dealing with the B logic, and by using directly the host
logic to express B notions, they introduce a form of interpretation. If the objec-
tive is to have an accurate formalisation of the guest system, the definition of a
valid interpretation is difficult – e.g. B functions are relations, possibly partial or
undecidable, and translating accurately this concept in Coq is a tricky exercise.

BiCoq aims at such an accurate formalisation, to pinpoint any problem of the
theory with the objective to increase confidence in the developments when safety
or security is a concern; in addition, we also have an implementation objective. In
such cases, a deep embedding is fully justified – see for example the development
of a sound and complete theorem prover for first-order logic verified in Isabelle
proposed in [8].

A deep embedding of the B logic in Coq is described in [9] (using notations
with names), to validate the base rules used by the prover of Atelier-B – yet
not checking standard B results, and without implementation goal. As far as
the implementation of a trusted B prover is concerned, we can also mention the
encoding of the B logic as a rewriting system proposed in [10].

Deep embeddings have also the advantage to clearly separate the host and the
guest logics: in Bicoq, excluded middle, provable in B, is not promoted to Coq.
This improves readibility, and allows one to study meta-theoretical questions
such as consistency. Furthermore, the host logic consistency is not endangered.

4 Formalising the B Logic in Coq

In this section, we present our embedding of the B logic in the Coq system;
the embedding uses a De Bruijn representation that avoids ambiguities and
constitutes an efficient solution w.r.t. the implementation objective (see [11,12]).
Deviations between B and its formalisation are described and justified.

Notation. B definitions use upper case letters with standard notations. BiCoq uses
lower case letters, and mixes B and Coq notations; standard notations are used for Coq
(e.g. ∀ is the universal quantification) while dotted notations are used for the embedded
B (e.g. ∀̇ is the universal quantification constructor).

Notation. [T] denotes the type of the lists whose elements have type T .

4.1 Syntax

Given a set of identifiers (I), the B logic syntax defines predicates (P), expres-
sions (E), sets (S) and variables (V) as follows:

P := P∧P | P⇒P | ¬P | ∀ V · P | E=E | E∈E | [V :=E]P
E := V | S | E �→E | ↓ S | [V :=E]E
S := BIG | ↑ S | S×S | {V |P}
V := I | V, V

292 É. Jaeger and C. Dubois

In this syntax, [V :=E]T represents the (elementary) substitution, V1, V2 a list of
variables, E1 �→E2 a pair of expressions,↓and↑the choice and powerset operators,
and BIG a constant set. The comprehension set operator, while syntactically
defined by {V |P}, is rejected at wf-checking if not of the form {V |V ∈ S∧P},
with V a variable not free in S

Definition. Other connectors are defined from the previous ones, P⇔Q is defined as
P⇒Q ∧Q⇒P , P∨Q as ¬P⇒Q, and ∃ V ·P as ¬∀ V ·¬P .

The first design choice of BiCoq is to use a pure nameless De Bruijn notation (see
[11,13]), where variables are represented by indexes giving the position of their
binder – here the universal quantifier and the comprehension set. When an index
exceeds the number of parent binders, it is said to be dangling and represents
a free variable, whose name is provided by a scope (left implicit in this paper),
so that any syntactically correct term is semantically valid, and there is no need
for well-formedness condition1. In this representation, proofs of side conditions
related to name clashing are replaced by computations on indexes, but the index
representing a variable is not constant in a term.

The B syntax is formalised in Coq by two mutually inductive types with the
following constructors, I being the set of indexes (that is, N\{0}) and J an infinite
set of names with a decidable equality:

P := P∧̇P | P⇒̇P | ¬̇P | ∀̇ P | E=̇E | E∈̇E

E := χ̇I | E ˙�→E | ↓̇E | Ω̇ | ↑̇E | E×̇E | {E|̇P} | ω̇J

P represents B predicates, while E merges B expressions, sets and variables.
Using a De Bruijn representation, binders ∀̇ and {|̇} have no attached names

and only bind (implicitly) a single variable. Binding over list of variables can be
eliminated without loss of expressivity, as illustrated by the following example:

Example 5. {V |V ∈S1×S2∧∃V1 ·(V1∈S1∧∃V2 ·(V2∈S2∧V1 �→V2=V∧P))} represents
{V1, V2 | V1, V2∈S1×S2∧P} 2

The constructor {|̇} is further modified to be parameterised by an expression,
to keep in the syntax definition only wf-checkable terms. Indeed, only compre-
hension sets of the form {V | V ∈E ∧ P}, with V not free in E, are valid. The
BiCoq representation of this set is {e|̇p}; to reflect the non-freeness condition,
{e|̇p} only binds variables in its predicate parameter p. By these design choices,
we bridge the gap between syntactically correct terms and wf-checkable ones,
while being conservative.

Ω̇ represents the constant set BIG, χ̇ unary (De Bruijn) variables. The con-
structor ω̇ is without B equivalent, and provides elements of Ω̇ (cf. Par. 4.3).

Notation. χ̇i denotes the application of constructor χ̇ to i : I and ω̇j of constructor
ω̇ to j :J. By abuse of notation the variable χ̇i is also denoted simply by i.

1 An alternative approach to avoid well-formedness conditions is described in [14].
2 This second representation, while standard in B, appears to be an illegal binding

over the expression x �→y rather than over the variable x, y, but the same notations
are used for both in [1] and such confusions are frequent.

Why Would You Trust B? 293

Finally, the elementary substitution is not considered in BiCoq as a syntactical
construct but is replaced by functions on terms – substitution being introduced
earlier in B only to be used in the description of inference rules. Note however
that the full GSL of B can still be formalised by additional terms constructors
(the explicit substitution approach, see [15,16]).

Notation. p1⇔̇p2 is defined as p1⇒̇p2∧̇p2⇒̇p1, p1∨̇p2 as ¬̇p1⇒̇p2, and ∃̇p as ¬̇∀̇ ¬̇p.

Notation. T denotes the type of terms, that is the union of P and E.

4.2 Dealing with the De Bruijn Notation

De Bruijn notation is an elegant solution to avoid complex name management,
and it has numerous merits. But it also has a big drawback, being an unusual
representation for human readers:

Example 6. If x ∈ y is the interpretation of the term 1∈̇2, the interpretation of the
term ∀̇(1∈̇2) is ∀t·t∈x; because of the binder, the scope has shifted (so 2 now represents
x), and (likely) the semantic has been distorted.

In this paragraph, we illustrate some of the consequences of using a De Bruijn
notation, as well as how to mask such consequences from the users.

Induction. When defining type T, Coq automatically generates the associated
structural induction principle. As illustrated in Ex. 6, it is however not seman-
tically adequate, because it does not reflect De Bruijn indexes scoping. A more
interesting principle is derived in BiCoq by using the syntactical depth function
D of a term as a well-founded measure:

∀ (P :T→Prop), (∀ (t :T), (∀ (t′ :T),D(t′)<D(t)→ P t′)→ P t)→ ∀ (t :T), P t

With this principle, for the term ∀̇(1∈̇3) (that is, ∀t·t∈y) we can choose to use
an induction hypothesis on 1∈̇2 (that is, x∈y) instead of 1∈̇3 (that is, x∈z).

Non-Freeness. The B notation V \T means that the variable V does not appear
free in T . Non-freeness is defined in BiCoq as a type �̇ :I→T→Prop (a relation
between I, representing the variables, and T), with the following rules3:

i�̇Ω̇ i�̇ω̇k

i1 	= i2

i1�̇i2

(i+1)�̇p

i�̇∀̇ p
i�̇e (i+1)�̇p

i�̇{e|̇p}

The two first rules are axioms, the associated constructors are atomic and do
not interact with variables. The rules for ∀̇ and {|̇} reflect the fact that the
associated constructors are binders and therefore shift the scope.

3 The rules for the other constructors are trivial and can be obtained by straightfor-
ward extension, e.g. here i�̇p and i�̇q allow to derive i�̇p⇒̇q.

294 É. Jaeger and C. Dubois

Binding, Instantiation and Substitution. It is possible to define functions
to simulate B binding (that is the use of ∀ or {}, representing λ-abstraction).
These functions constitute a built-in user interface to produce De Bruijn terms
while using the usual representation, making De Bruijn indexes and their man-
agement invisible to the user (see also [17] for a similar approach):

Usual rep. ∀ V1 ·V1∈{V2 | V2∈E∧V1=V2}

��

��

Pretty-printingFunctional rep. ↑∀(i1 ·i1∈̇↑{}(i2 :e·i1=̇i2))

Computation ��
Internal rep. ∀̇ (1 ∈̇{e|̇2=̇1})

The binding functions are defined by:
↑∀(i·p) := ∀̇Bind i 1 p ↑{}(i :e·p) :={e|̇Bind i 1 p} ↑∃(i·p) := ∃̇Bind i 1 p

Bind(i1 i2 :I)(t :T) :T :=match t with

| Ω̇ | ω̇j′ ⇒ t
| χ̇i′ ⇒ t if i′<i2, or else χ̇i2 if i′ = i1, or else χ̇i′+1

| ∀̇ p′ ⇒ ∀̇ (Bind (i1+1) (i2+1) p′)
| {e′ |̇p′} ⇒ {Bind i1 i2 e

′ |̇Bind (i1+1) (i2+1) p′}
| . . . ⇒ . . . (straightforward extension)

On the same principles, the definition of instantiation functions (for elimination
of ∀ or {}, representing β-reduction and denoted by ↓∀(p← e) : P→E→ P and
↓{}(e1← e2) :E→E→P) is straightforward – being partial, these functions just
require in Coq an additional proof parameter (omitted in this paper) that the
term is of the expected form. Finally, it is also possible to define a substitution
function4:

〈i :=e〉t :I→E→T→T :=match t with

| Ω̇ | ω̇j′ ⇒ t
| χ̇i′ ⇒ if i′ = i then e else t

| ∀̇ p′ ⇒ ∀̇ 〈i+1:=Lift(e)〉p′
| {e′ |̇p′} ⇒ {〈i :=e〉e′|̇〈i+1:=Lift(e)〉p′}
| . . . ⇒ . . . (straightforward extension)

where Lift, not detailed in this paper, increments dangling De Bruijn indexes.
Remember that substitution is introduced early in B as a syntactical construct,
but only to be used in inference rules. We consider that such rules are better
represented using the resulting term (that is, the reduction of the application of
the substitution).

Once these functions are defined, numerous lemmas are proved, such as the
(in)famous ones describing all possible interactions between lifting, binding, in-
stantiation and substitution. The following results are then derived, proving
4 Substitution and instantiation may seem similar in usual notation, but their differ-

ences are emphasised when using De Bruijn notation.

Why Would You Trust B? 295

the irrelevance of α-renaming or describing relationships between instantiation,
binding and substitution (with = the Coq term structural equality):

i2�̇p→ ↑∀(i1 ·p)=↑∀(i2 ·〈i1 := i2〉p) i2�̇p→ ↑{}(i1 :e·p)=↑{}(i2 :e·〈i1 := i2〉p)
↓∀(↑∀(i·p)← i)=p ↓{}(↑{}(i :e·p)← i)= i∈̇e ∧̇ p
↓∀(↑∀(i·p)←e)= 〈i :=e〉p

4.3 Inference Rules

Having formalised the B syntax and defined some functions and properties on
terms, the next step is to encode the B inference rules. Thanks to the use of the
functional representation described in the previous paragraph, BiCoq rules look
very much like the standard B rules. The translation is therefore straightforward,
merely a syntactical one, and the risk of error is very limited.

In our formalisation sets of hypothesis are represented by lists, with mem-
bership (∈) and inclusion (⊆) as well as the pointwise extension of non-freeness
(�̇). The B inference rules are formalised as constructors of an inductive type
�̇ : [P]→P→Prop, that is g �̇ p is the Coq type of all B proofs of p under the
assumptions g. Such a type may be inhabited (i.e. p is provable assuming g) or
empty (i.e. there is no proof of p under the assumptions of g).

The B rules and their encoding as constructors are detailed in Tab. 1, uni-
versal quantifications being omitted (the types are g, g1, g2 : [P]; p, p1, p2 : P;
e, e1, e2, e3, e4 : E, i, i1, i2 : I and j, j1, j2 : J). For most of them, translation
is straightforward, only taking care to use functional substitution and binding
where appropriate. On the other hand, the use of the functional representation
imposes to keep the syntactical side conditions, except for the comprehension
set rule, where such condition is embedded in the syntax; new rules have to be
derived to benefit of the internal De Bruijn representation.

Only the last two B inference rules deserve discussion. The first one of these
indicates that the constant set BIG is infinite, using the infinite B predicate
defined by a fixpoint; unfolding this definition to produce a translation is possi-
ble, but not practical. Therefore, this rule is replaced in BiCoq by two different
rules allowing to exhibit an infinity of elements of BIG, J being itself infinite.

The last rule, defining the semantics of pairs and products, is more interesting.
A straightforward translation of this rule indeed leads to the impossibility to
prove, in BiCoq, the following theorems from [1]:

� (E �→F)=(E′ �→F ′)⇒ E=E′ ∧ F =F ′

� S ∈↑U ∧ T ∈↑V ⇒ (S × T) ∈↑(U × V)

The proof of the first result provided in [1] is flawed, due to a confusion between
pairs of expressions and lists of variables (as pointed out in [18]), both using the
same notation – and cannot be corrected in the absence of a form of destructor
for pairs. On the other hand, the proof of the monotonicity of cartesian product
w.r.t. inclusion is not detailed in [1], being considered trivial. However, using the
listed rules, one may derive predicates of the form V ∈S×T but without being
able to constraint V to be a pair to apply the last rule (a classical problem of

296 É. Jaeger and C. Dubois

Table 1. Encoding of the B inference rules

B inference rules BiCoq formalisation

P � P None, derived from [∈]

P appears in Γ

Γ � P p∈g → g �̇ p [∈]

Γ ′ includes Γ Γ � P
Γ ′ � P g1 �̇ p→ g1⊆g2 → g2 �̇ p [⊆]

Γ � P Γ, P � Q
Γ � Q None, derived from [¬n] [¬p] [⊆] [∈]

Γ � P ⇒ Q

Γ,P � Q
Γ,P � Q
Γ � P ⇒ Q

g �̇ p1⇒̇p2 → g, p1 �̇ p2

g, p1 �̇ p2 → g �̇ p1⇒̇p2

Γ � P Γ � Q
Γ � P ∧Q g �̇ p1 → g �̇ p2 → g �̇ p1∧̇p2 [∧i]

Γ � P ∧Q
Γ � P

Γ � P ∧Q
Γ � Q

g �̇ p1∧̇p2 → g �̇ p1

g �̇ p1∧̇p2 → g �̇ p2

Γ,Q � P Γ,Q � ¬P
Γ � ¬Q g, p2 �̇ p1 → g, p2 �̇ ¬̇p1 → g �̇ ¬̇p2 [¬p]

Γ,¬Q � P Γ,¬Q � ¬P
Γ � Q g, ¬̇p2 �̇ p1 → g, ¬̇p2 �̇ ¬̇p1 → g �̇ p2 [¬n]

Γ � E = E
g �̇ e=̇e

Γ � P V \Γ
Γ � ∀ V · P i�̇g → g �̇ p→ g �̇ ↑∀(i·p) [∀i]

Γ � ∀ V · P
Γ � [V := E]P

g �̇ ↑∀(i·p)→ g �̇ 〈i :=e〉p
V \S

� E∈{V |V∈S∧P}⇔E∈S∧[V :=E]P
�̇ e1∈̇↑{}(i :e2 ·p)⇔̇e1∈̇e2∧̇〈i :=e1〉p

Γ � E = F Γ � [V :=E]P

Γ � [V :=F]P
g �̇ e1=̇e2 → g �̇ 〈i :=e1〉p→ g �̇ 〈i :=e2〉p

V \S
� ∃ V · (V ∈S)⇒↓S∈S i�̇e→ g �̇ ↑∃(i·i∈̇e)⇒̇↓̇e∈̇e

V \S,T
� S∈↑T ⇔ ∀ V · (V ∈S ⇒ V ∈T)

i�̇e1 → i�̇e2 → g �̇ e1∈̇↑̇e2⇔̇↑∀(i·i∈̇e1⇒̇i∈̇e2)
V \S,T

�
„ ∀ V ·(V ∈S⇒V ∈T)
∧∀ V ·(V ∈T⇒V ∈S)

«
⇔S=T

g �̇ e1∈̇↑̇e2 → g �̇ e2∈̇↑̇e1 → g �̇ e1=̇e2

� infinite(BIG)
g �̇ ω̇j∈̇Ω̇
j1 	= j2 → g �̇ ¬̇(ω̇j1=̇ω̇j2)

� (E �→F)∈(S×T)⇔ (E∈S)∧(F∈T)

g �̇ e1 ˙�→e2=̇e3 ˙�→e4 → g �̇ e1=̇e3
g �̇ e1 ˙�→e2=̇e3 ˙�→e4 → g �̇ e2=̇e4
i1�̇e∈̇(e1×̇e2)→ i2�̇e∈̇(e1×̇e2)→ i1 	= i2 →
g �̇↑∃(i1 ·i1∈̇e1∧̇↑∃(i2 ·i2∈̇e2∧̇e=̇i1 ˙�→i2))⇔̇e∈̇(e1×̇e2)

the untyped λ-calculus). Basically, injectivity and surjectivity rules are lacking;
these observations, probably well known of the B gurus but not documented to
our knowledge, have led us to replace this B rule by three new rules in order
to be able to prove the expected theorems. Again, this process illustrates our
conservative approach.

Why Would You Trust B? 297

5 Proofs in BiCoq

5.1 Standard B Proofs

Using the definition of �̇ , we formally prove in BiCoq all propositional calculus
and predicate calculus results of [1], using the functional representation and
following the proposed proof structure, e.g.:

i1�̇g→ i1�̇p→g �̇ 〈i2 := i1〉p→g �̇ ↑∀(i2 ·p), that is
Γ � [V2 :=V1]P V1\Γ,P

Γ � ∀ V2 ·P
To assist the proof construction BiCoq provides Coq tactics written in the Coq
tactic language [19]. For example, the propositional calculus procedure described
in [1], proposing a strategy based on propositional calculus theorems, is provided
as a Coq tactic. More technical Coq tactics are also available in BiCoq, e.g. to
obtain proved fresh variables.

An alternative form of theorems is also derived, using the internal De Bruijn
representation; e.g. the ∀̇-introduction rule (to be compared with [∀i]) is:

i�̇g → i�̇∀̇ p→ g �̇ Inst i 1 p→ g �̇ ∀̇ p
These last results are of course rather technical, not benefiting from the func-
tional representation. Yet they have some interest, for technical lemmas or as
derived rules in which only semantical side conditions remain (computations over
De Bruijn indexes dealing with the syntactical ones).

5.2 Mixing BiCoq and Coq Logics

As it is standard in such a deep embedding (e.g. see [9]), BiCoq provides also
results expressing relations between host and guest logics:

(g �̇ p ∨ g �̇ q)→g �̇ p∨̇q g �̇ p⇒̇g→ (g �̇ p→ g �̇ p)
(g �̇ p ∧ g �̇ q)↔g �̇ p∧̇q (∀ (y :I), g �̇ 〈x :=y〉p)↔g �̇ ↑∀(x·p)

Asymmetrical results mark the differences between the classical B logic and the
constructive Coq logic – e.g. a reciprocal of the first rule, combined with the
excluded middle, would prove that for any predicate p either �̇ p or �̇ ¬̇p, which
of course is not the case. This emphasises the fact that both logics are well
separated, the B logic being embedded has an external theory.

By providing the best of both worlds, these results constitute efficient proof
tactics. For example, the last theorem does not reflect non-freeness side condi-
tions from B to the Coq logic (Coq taking care of such conditions automatically).

6 Developing a Proved B Toolkit

In this section, we detail how BiCoq is used as a framework for the development
of formally checked B toolkits. Coq offers mechanisms to extract programs from
constructive proofs (i.e. software from logical definitions and theorems), but a
different approach is chosen here. Indeed, BiCoq includes code (in the form of

298 É. Jaeger and C. Dubois

functions using the ML-like internal language of Coq) which is proved correct.
This code is extractible by a pure syntactical process, e.g. in Objective Caml,
using the extraction mechanism of Coq. By doing so, we obtain proved B tools
whose code is small, readable and efficient – and independent of Coq.

Notation. B represents the booleans, � being true and ⊥ being false.

Notation. Hat notations are used for boolean functions (e.g. ∧̂ is the boolean and).

6.1 Implementing Decidable Properties

For P and f respectively a predicate and a boolean function over a type S, we
note (P �f) when f decides P , i.e. when the following property is proved:

∀(s :S), (f(s)=�→ P (s)) ∧ (f(s)=⊥→ ¬P (s))

By defining folding as the extension of predicates and functions to lists, we prove
that if f decides P , then the folding of f decides the folding of P :
Foldp(P) :=fun(L : [S])⇒ ∀(s :S), s∈L→P (s)
Foldf (f) :=fun(L : [S])⇒ if empty(L) then� else f(head(L))∧̂Foldf (f)(tail(L))
(P � f)→ (Foldp(P)�Foldf(f))

Example 7 (Non-freeness). Non-freeness is defined in B as a logical proposition and
represented by the inductive type �̇ in BiCoq. Our implementation strategy consists
in developing a program �̂ : I→ T → B and to prove that (�̇ � �̂). Hence �̂ and
its extension (checking that a variable does not occur free in a list of hypotheses) are
proved correct and can be extracted.

In BiCoq this approach is systematic; all typed equalities are implemented and
proved correct (e.g. term equality), as well as non-freeness, list membership,
inclusion, etc. to constitute our formally checked B toolkit.

6.2 A Proved Prover for the B Logic

In this paragraph we focus on the definition of an extractible prover to conduct
first-order B proofs for standard B developments.

BiCoq includes programs, named B tactics in the following, to simulate the
application of B inference rules or theorems. By providing such a dedicated
piece of code for each of the inference rules listed in Tab. 1, and by proving
them correct, we got a correct and complete prover (that is, any standard B
result can be derived using this prover).

To this end, a type for sequents is defined as the product [P]×P; for g : [P] and
p : P we denote g � p the associated pair. While g �̇ p is the type of B proofs of
p under the assumptions g, that can be inhabited or not, g � p is a syntactical
construct extending T. To interpret a sequent, we use the translation Trans�
that for a pair g�p returns the type g �̇ p (and its extension derived by Foldp).

A B tactic is a function T B :�→ [�] that, provided a goal g � p, returns
a list of subgoals [g1 � p1, . . . , gn � pn] which together are sufficient to prove

Why Would You Trust B? 299

g � p; if a B tactic concludes (proves the goal) this list is empty. The following
(elementary) examples give the definition of the B tactics associated respectively
to the inference rules [∈] and [∧i]:

Example 8. T∈(s) := let (g�p :=s) in if p∈̂g then [] else [s]

Example 9. T∧i(s) := let (g�p :=s) in match p with p1∧̇p2 ⇒ [g�p1, g�p2] | ⇒ [s]

The implementation strategy described in Par. 6.1 is now particularly relevant,
as T∈ uses the boolean function ∈̂ instead of the logical proposition ∈.

Following the same principles, numerous (much more complex) B tactics are
provided in BiCoq, implementing theorems or strategies, such as the decision
procedure for propositional calculus described in [1]. For each B tactic TB, the
correctness is ensured by a proof of the following property:

∀ (s :�),Trans�(TB(s))→ Trans�(s), that is
g1 � p1 . . . gn � pn

g � p

Thanks to the functions defined in Par. 4.2, management of the De Bruijn in-
dexes can be hidden from the users of the B tactics. With the programs already
provided in BiCoq (such as non-freeness, binding, etc.), these B tactics consti-
tute the core of a proved prover. This prover still lacks automation and HMI, and
should be coupled with other tools, for example a B parser using the platform
BRILLANT [20].

7 Higher-Order Considerations and Extensions

While the B logic is first-order, various definitions and proofs in [1] are con-
ducted in a higher-order meta-logic: results in propositional calculus are proved
by induction over terms, and refinement is defined by quantification over pred-
icates before being transformed into an equivalent first-order definition. Using
the higher-order framework provided by Coq, BiCoq can clearly be extended to
integrate and to formally check such concepts.

New results can also be derived; for example, using the proof depth function
D� : �̇→I, we obtain a depth induction principle on B proof trees e.g. for results
about proof rewriting. Other results, proved in higher-order logic, are applicable
in first-order B logic, and implemented as B tactics for standard B proofs. This
is the case for the following congruence results.

Predicate Substitution. We extend the B logic syntax with a new predicate
variable constructor π̇K : P (K being an infinite set of names with a decidable
equality), without adding any inference rules in order not to enrich the BiCoq
logic5. Only limited modifications of BiCoq are required to deal with this new
constructor, e.g. non-freeness with the additional rule ∀ (i :I)(k :K), i�̇π̇k.

Predicate variables play a role similar to the one of the variables – they are
placeholders that can be replaced by a predicate using the substitution function

5 However, some new (propositional) sequents became provable, such as π̇k �̇ π̇k.

300 É. Jaeger and C. Dubois

〈k :≡ p1〉p2 : K → P → P → P, not detailed in this paper, that mimicks the
expression substitution function (see Par. 4.2). Thanks to this extension, we can
prove the following congruence rules for ⇔̇ and implement associated B tactics
that can be used e.g. to unfold a definition in a term, even under binders:

g �̇ p1⇔̇p2→g �̇ 〈j :≡p1〉p⇔̇〈j :≡p2〉p g �̇ p1⇔̇p2→g �̇ 〈j :≡p1〉e=̇〈j :≡p2〉e

Example 10. x=̇0, y∈̇N �̇ y≤ x⇔̇y=̇0, therefore we immediately derive (in one step)
x=̇0, y∈̇N �̇ ↑∀(v ·v∈̇↑{}(t :N·t≤y∧̇y≤x))⇔̇↑∀(v ·v∈̇↑{}(t :N·t≤y∧̇y=̇0))

Note that predicate substitution and expression substitution mechanically forbid
the capture of variables in the substituted subterm, by lifting dangling De Bruijn
indexes when crossing a binder. That is, in Ex. 10, if v or t appear free in the
substituted subterm, they escape capture during substitution.

Predicate Grafting. Other congruence results can be derived for grafting of
predicates, a modified substitution (not lifting the substituted subterm) allowing
for the capture of variables:

〈k�p〉t :K→P→T→T :=match t with

| Ω̇ | ω̇j′ | χ̇i′ ⇒ t
| π̇k′ ⇒ if k′ =k then p else t

| ∀̇ p′ ⇒ ∀̇ 〈k�p〉p′
| {e′ |̇p′} ⇒ {〈k�p〉e′ |̇〈k�p〉p′}
| . . . ⇒ . . . (straightforward extension)

The associated congruence results and proofs are technical, and not detailed in
this paper. We just provide for illustration a simplified version of these results:

�̇ p1⇔̇p2 → g �̇ 〈j�p1〉p⇔̇〈j�p2〉p �̇ p1⇔̇p2 → g �̇ 〈j�p1〉e=̇〈j�p2〉e

Example 11. g �̇ 〈k�¬̇¬̇p〉q⇔̇〈j�p〉q, that is the elimination of double negations in a
subterm (even if dangling De Bruijn indexes of p are bound in q)

Remark. Results such as the ones in Exs. 10 or 11 are provable in B, on a case-
by-case basis, with a first-order proof depending on the structure of the term
in which substitution or grafting is done. It is therefore conceivable to develop
a specific (and likely complex) B tactic automatically building for such goals
a proof using the B inference rules. On the contrary, the proposed extensions
provide a new approach through results derived from a higher-order proof; the
associated B tactics are therefore simpler, and produce generic (and shorter)
proofs by using not only the B inference rules but also induction on T.

8 Conclusion

Through an accurate deep embedding of the B logic in Coq, we identify shortfalls
or confusions in [1] and propose amendments in order to be able to validate stan-
dard results – improving the confidence in the method and in the developments

Why Would You Trust B? 301

conducted with it. We describe a strategy to further benefit from this deep em-
bedding by implementing verified B tools, extractible to be used independently
of Coq. The approach is illustrated by the development of B tactics that consti-
tute a complete and correct prover – usable to conduct proofs (provided further
automation), or to check proofs produced by other tools. The objective, again,
is to have better confidence in the developments conducted in B.

We also explain how, benefiting from the higher-order features of Coq, new
results for B can be derived, and present an extension to derive congruence
theorems related to equivalence, implemented in our prover.

All the results presented in this paper are mechanically checked; BiCoq cur-
rently represents about 550 definitions (i.e. types, properties, functions), 750
theorems and proofs in Coq – and about 6 man.months of development. It has
now to be extended with the following definitions and results:

– Generation by the prover of B proof terms checkable by Coq.
– Use of a locally nameless De Bruijn representation with named free variables

to derive unified congruence results (merging substitution and grafting).
– Fixpoint constructs, with application to the definition of natural numbers in

the B style; on the innovative side, we expect to derive inductive B tactics,
not available in current B implementations.

– GSL definition – either through a shallow embedding (an approach similar to
the one presented in [6], but in BiCoq) or through a deep embedding (with
higher-order and first-order refinement definitions, and proof of equivalence).

We would like to emphasise the simplicity and the efficiency of the deep em-
bedding approach, when having both validation and implementation objectives.
In a relatively short amount of time, it was possible to describe the B logic, to
check its standard results, and to implement a proved prover for this logic.

Acknowledgements. We thank Pr. Hardin for reviewing earlier versions of
this paper.

References

1. Abrial, J.R.: The B-Book - Assigning Programs to Meanings. Cambridge University
Press, Cambridge (1996)

2. The Coq development team: The Coq proof assistant reference manual. LogiCal
Project (2004)

3. Gordon, M.J.C.: Mechanizing programming logics in higher-order logic. In:
Birtwistle, G.M., Subrahmanyam, P.A. (eds.) Current Trends in Hardware Verifica-
tion and Automatic Theorem Proving (Proceedings of the Workshop on Hardware
Verification), Banff, Canada, pp. 387–439. Springer, Berlin (1988)

4. Boulton, R.J., Gordon, A., Gordon, M.J.C., Harrison, J., Herbert, J., Tassel, J.V.:
Experience with embedding hardware description languages in hol. In: Stavridou,
V., Melham, T.F., Boute, R.T. (eds.) TPCD. IFIP Transactions, North-Holland,
vol. A-10, pp. 129–156 (1992)

302 É. Jaeger and C. Dubois

5. Azurat, A., Prasetya, I.: A survey on embedding programming logics in a theorem
prover. Technical Report UU-CS-2002-007, Institute of Information and Comput-
ing Sciences, Utrecht University (2002)

6. Bodeveix, J.P., Filali, M., Muñoz, C.: A formalization of the B-method in Coq
and PVS. In: Woodcock, J.C.P., Davies, J., Wing, J.M. (eds.) FM 1999. LNCS,
vol. 1709, pp. 33–49. Springer, Heidelberg (1999)

7. Chartier, P.: Formalisation of B in Isabelle/HOL. In: Bert, D. (ed.) B 1998. LNCS,
vol. 1393, pp. 66–82. Springer, Heidelberg (1998)

8. Ridge, T., Margetson, J.: A mechanically verified, sound and complete theorem
prover for first order logic. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS,
vol. 3603, pp. 294–309. Springer, Heidelberg (2005)

9. Berkani, K., Dubois, C., Faivre, A., Falampin, J.: Validation des règles de base de
l’Atelier B. Technique et Science Informatiques 23(7), 855–878 (2004)

10. Cirstea, H., Kirchner, C.: Using rewriting and strategies for describing the B
predicate prover. In: Kirchner, C., Kirchner, H. (eds.) CADE-15. LNCS (LNAI),
vol. 1421, pp. 25–36. Springer, Heidelberg (1998)

11. de Bruijn, N.G.: Lambda calculus notation with nameless dummies, a tool for
automatic formula manipulation, with application to the church-rosser theorem.
Indagationes Mathematicae (Proceedings), pp. 381–392 (1972)

12. Liang, C., Nadathur, G.: Tradeoffs in the intensional representation of lambda
terms. In: Tison, S. (ed.) RTA 2002. LNCS, vol. 2378, pp. 192–206. Springer, Hei-
delberg (2002)

13. Aydemir, B., Charguéraud, A., Pierce, B.C., Weirich, S.: Engineering aspects of
formal metatheory, Manuscript (2007)

14. Bird, R., Paterson, R.: De Bruijn notation as a nested datatype. Journal of Func-
tional Programming 9, 77–91 (1999)

15. Abadi, M., Cardelli, L., Curien, P.L., Lévy, J.J.: Explicit substitutions. Journal of
Functional Programming 1, 375–416 (1991)

16. Curien, P.L., Hardin, T., Lévy, J.J.: Confluence properties of weak and strong
calculi of explicit substitutions. Journal of the ACM 43, 362–397 (1996)

17. Gordon, A.D.: A mechanisation of name-carrying syntax up to alpha-conversion.
In: Joyce, J.J., Seger, C.-J.H. (eds.) HUG 1993. LNCS, vol. 780, pp. 413–425.
Springer, Heidelberg (1994)

18. Mussat, L.: Private Communication (2005)
19. Delahaye, D.: A tactic language for the system Coq. In: Parigot, M., Voronkov,

A. (eds.) LPAR 2000. LNCS (LNAI), vol. 1955, pp. 85–95. Springer, Heidelberg
(2000)

20. Colin, S., Petit, D., Rocheteau, J., Marcano, R., Mariano, G., Poirriez, V.: BRIL-
LANT: An open source and XML-based platform for rigourous software develop-
ment. In: SEFM (Software Engineering and Formal Methods), Koblenz, Germany,
AGKI (Artificial Intelligence Research Koblenz), IEEE Computer Society Press,
Los Alamitos (2005) selectivity : 40/120

How Many Legs Do I Have?
Non-Simple Roles in Number Restrictions Revisited

Yevgeny Kazakov, Ulrike Sattler, and Evgeny Zolin

School of Computer Science, The University of Manchester, UK
{ykazakov,sattler,ezolin}@manchester.ac.uk

Abstract. The Description Logics underpinning OWL impose a well-known syn-
tactic restriction in order to preserve decidability: they do not allow to use non-
simple roles—that is, transitive roles or their super-roles—in number restrictions.
When modeling composite objects, for example in bio-medical ontologies, this
restriction can pose problems.X

Therefore, we take a closer look at the problem of counting over non-simple
roles. On the one hand, we sharpen the known undecidability results and demon-
strate that: (i) for DLs with inverse roles, counting over non-simple roles leads
to undecidability even when there is only one role in the language; (ii) for DLs
without inverses, two transitive and an arbitrary role are sufficient for undecid-
ability. On the other hand, we demonstrate that counting over non-simple roles
does not compromise decidability in the absence of inverse roles provided that
certain restrictions on role inclusion axioms are satisfied.

1 Introduction

Recently, Description Logics (DLs) [1] have attracted increasing attention, partially due
to their usage as logical underpinning of ontology languages such as OIL, DAML+OIL,
and OWL1 [5]. All these languages are based on DLs of the SHQ family, which are de-
cidable fragments of first order logic and close relatives of modal logics. In DLs, unary
predicates/propositional variables are usually called concepts, binary predicates/modal
parameters are called roles and, in a nutshell, SHQ extends ALC (a notational variant
of multi-modal K) with transitivity and role inclusion axioms and with number restric-
tions: these are concepts of the form (� n R.C) for n a non-negative integer, R a role,
and C a possibly complex concept. Number restrictions are heavily used to define con-
cepts, e.g., the following expression makes use of standard DL notation to define the
concept Human as featherless bipeds:

Human = Mammal�∀hasPart.¬Feather� (� 2 hasPart.Leg)� (� 2 hasPart.Leg)

We find numerous more convincing yet less readable such applications of number re-
strictions in bio-informatics and medical applications, e.g., they are used to restrict the
number of certain components of proteins [8].

1 OWL comes in three flavours, OWL Lite, OWL DL, and OWL Full. Here, we are only con-
cerned with the first two.

N. Dershowitz and A. Voronkov (Eds.): LPAR 2007, LNAI 4790, pp. 303–317, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

304 Y. Kazakov, U. Sattler, and E. Zolin

Other heavily used features are the above mentioned transitivity and role inclusion
axioms. They allow to express, e.g., that hasPart must be interpreted as a transitive re-
lation (which is closely related to the modal logic K4) and that hasComponent implies
hasPart.

Now ontology design and maintenance is a non-trivial task, especially since ontolo-
gies can be quite large: e.g., SNOMED and the National Cancer Institute ontology have
over 300,000 resp. 17,000 defined concepts. In order to check for consistency and com-
pute the (implicit) concept hierarchy w.r.t. the subsumption relationship, ontology ed-
itors make use of DL reasoners2 which implement decision procedures for concept
satisfiability and subsumption w.r.t. DL axioms. For this to be possible, i.e., for these
reasoning problems to be decidable for SHQ, their designer had to impose a syntactic
restriction: in number restrictions, one can neither use transitive roles nor super-roles of
transitive roles, i.e., number restrictions can only be used on simple roles. For example,
if we want to make use of our definition of Human, we have to either refrain from mak-
ing hasPart a transitive role or use, e.g., a (non-transitive) subrole such as hasComp
of hasPart in its number restrictions. Both options are sub-optimal since they result
in the loss of other, useful consequences. For the first option, e.g., we could add the
following definition of HumanBird without causing a (useful) inconsistency:

HumanBird = Human � ∃hasPart.(Wing � ∃hasPart.Feather).
For the second option, e.g., we could add the following definition of 3LHuman with-

out causing an inconsistency (please note that here we use twice the sub-role hasComp
of hasPart and only once hasPart):

3LHuman = Human� ∃hasComp.(Leg � Left) � ∃hasComp.(Leg � Right� ¬Left)
� ∃hasPart.(Leg � ¬Right � ¬Left).

In [6], it is shown that satisfiability of concepts in SHQ (even in its sublogic SHN)
is undecidable if non-simple roles (i.e., transitive roles or their super-roles) are used in
number restrictions. In this paper, we explore this area more thoroughly with the goal
of finding a more expressive but still decidable DL where we can use non-simple roles
in number restrictions. Our contributions are two-fold: on the one hand, we sharpen the
above undecidability result and demonstrate that: (i) for DLs such as SHIN (which
extends SHN with inverse roles), counting over non-simple roles leads to undecidabil-
ity even with only one role in the language; (ii) for DLs without inverses such as SHN ,
two transitive and a third role are sufficient for undecidability. On the other hand, we
demonstrate that, in the absence of inverse roles, counting over non-simple roles does
not compromise decidability provided that they satisfy certain other restrictions regard-
ing role inclusion axioms. Roughly speaking, as long as any two transitive roles are
either completely unrelated w.r.t. inclusion or one of them implies the other, we can
use them in number restrictions without losing decidability. We believe that the latter
result will turn out to be useful in practice since it allows, for example, to capture a
transitive role hasPart alongside other, possibly transitive roles such as hasComp or
hasSegment and to use them all in number restrictions—as long as any two of these
transitive roles are related by a (bi)-implication.

2 See http://www.cs.man.ac.uk/∼sattler/reasoners.html for a list.

http://www.cs.man.ac.uk/~sattler/reasoners.html

How Many Legs Do I Have? Non-Simple Roles in Number Restrictions Revisited 305

2 Preliminaries and Known Results

The vocabulary of a DL consists of disjoint infinite sets of concept names CN, role
names RN, and individual names IN. A role is an expression of the form r or r−, where
r is a role name. For convenience, we introduce a syntactic operator defined on roles:
Inv(R) := r−, if R is a role name r; and Inv(R) := r, if R = r− for some role name r.
Finally, we use Card(M) for the cardinality of a set M .

Definition 1 (RBox). An RBox R is a finite collection of transitivity axioms of the form
Tr(R) and role inclusion axioms of the form R � S, where R, S are roles.

An interpretation I = (ΔI , ·I) consists of a non-empty set ΔI , its domain, and
an interpretation function ·I that maps each role name r ∈ RN to a binary relation
rI ⊆ ΔI × ΔI ; I is finite if the domain of I is finite. We define (r−)I := {〈x, y〉 |
〈y, x〉 ∈ rI}. We define whether I satisfies an axiom α, written I |= α as follows:
I |= Tr(R) iff RI is transitive, and I |= R � S iff RI ⊆ SI . An interpretation satis-
fying all axioms in R is called a model of R. An RBox R entails an axiom α, written
R |= α, if all models of R satisfy α.

The deductive closure [R] of R is the minimal set that contains R and axioms
R � R, for all roles R in R, and that is closed under the following rules:

R � S S � T

R � T

R � S

Inv(R) � Inv(S)
T � S � T Tr(T)

Tr(S)
Tr(T)

Tr(Inv(T))

We write R
 α as an alternative notation for α ∈ [R], where α is an RBox axiom.

Definition 2. The set of concepts in DL ALCIQ is defined by the grammar:

C ::= ⊥ | A | ¬C | C � D | ∃R.C | � n S.C,

where A ∈ CN, C, D ∈ C, R and S are roles, and n is a non-negative integer.
The interpretation function ·I maps, additionally, each concept name C ∈ CN to a

subset CI ⊆ ΔI , and ·I is extended to complex concepts inductively as follows:

⊥I = ∅, (¬C)I = ΔI \ CI , (C � D)I = CI ∩ DI ,
(∃R.C)I = { e ∈ ΔI | there exists d ∈ CI such that 〈e, d〉 ∈ RI},

(� n S.C)I = { e ∈ ΔI | Card({d ∈ CI | 〈e, d〉 ∈ SI}) � n}.
For C and D ALCIQ concepts, C � D is a general concept inclusion (GCI), and

a finite set of GCIs is called a TBox. An interpretation I satisfies a GCI C � D if
CI ⊆ DI . An interpretation is a model of a TBox if it satisfies all its axioms. If a
interpretation I is a model of an RBox R and a TBox T , then we say that I is a model
of 〈R, T 〉, or 〈R, T 〉 is satisfiable. A concept C is satisfiable w.r.t. 〈R, T 〉 if there
exists a model I of 〈R, T 〉 such that CI = ∅.

As usual, the concept expressions �, C1�C2, ∀R.C and � n S.C are assumed to be
abbreviations for ¬⊥, ¬(¬C1�¬C2), ¬(∃R.¬C) and ¬(� (n − 1)S.¬C) respectively.
Concepts of ALCIQ that do not use number restrictions (�n R.C), or inverse roles, or
both, will be called ALCI-, ALCQ-, and ALC concepts, resp. The letter N in the name
of a DL indicates that this DL supports only number restrictions of the form (� n R.�).

306 Y. Kazakov, U. Sattler, and E. Zolin

Please note that, so far, we have introduced RBoxes and ALCIQ TBoxes separately,
i.e., we did not put them into a single logic, which is slightly unusual. Recall that in [6]
a role S is called simple w.r.t. R if there is no transitive subrole of S in R. Traditionally,
the DL that allows for

– an RBox without inverse roles and an ALCQ TBox where all roles in number
restrictions are simple is called SHQ, and

– an RBox and an ALCIQ TBox where all roles in number restrictions are simple is
called SHIQ.

For SHIQ and related DLs, roles in number restrictions are restricted to simple ones
to ensure decidability of concept satisfiability w.r.t. a TBox and an RBox: in SHN (and
hence SHIQ), non-simple roles in number restrictions lead to the undecidability of the
satisfiability problem [6]. Our aim is to find conditions under which we can relax or
even get rid of this restriction to simple roles in number restrictions while preserving
decidability. This aim can be achieved by extending the notion of a simple role in such a
way that it covers, besides roles that are usually called simple, also some transitive roles
or their super-roles. In this paper, we focus on a sub-problem, namely, we are looking
for conditions on an RBox under which one can use all its roles in number restrictions
and still have a decidable logic. Therefore, we introduce the following notion.

Definition 3. Let L be a logic between ALC and ALCIQ and R an RBox. The prob-
lem of L(R)-satisfiability is to determine, given an L-concept C and an L-TBox T ,
whether C is satisfiable w.r.t. 〈R, T 〉. We say that an RBox R is L-safe (or safe for L)
if L(R)-satisfiability is decidable, and L-unsafe otherwise.

Any RBox is ALCI-safe because (i) neither ALCI nor SHI support number restric-
tions, and (ii) since a concept C and a TBox T are ALCI(R)-satisfiable iff C is satis-
fiable w.r.t. 〈R, T 〉, we have that ALCI(R) satisfiability can be viewed as the standard
SHI satisfiability problem which is known to be decidable [6]. With a similar argu-
ment, any RBox R without transitivity axioms is ALCIQ-safe because (i) all roles are
simple in this case, and (ii) ALCIQ(R)-satisfiability can be viewed as the standard
SHIQ satisfiability problem which is known to be decidable [6]. There are numerous
other restrictions on the syntax that could possibly lead to decidability, for example to
use only number restrictions of the form (� 1 R).

At the same time, we know from [6] that the following RBox Star4 (with eight roles,
of which four are transitive) is ALCN -unsafe:

Star4 = { si � tij , rj � tij , Tr(tij) | 0 � i, j � 1 }.
In what follows, we show that

– there is a large class of RBoxes involving role inclusions and transitivity axioms
that are ALCQ-safe (Theorem 4),

– there exists an ALCIN -unsafe RBox with only one transitive role (Theorem 2),
– there exist ALCN -unsafe RBoxes involving only three roles (Theorem 1).

Many proofs in this paper are rather sketchy or completely omitted; all the details
however can be found in the accompanying technical report [7].

How Many Legs Do I Have? Non-Simple Roles in Number Restrictions Revisited 307

R∨

⊕ ⊕

�
���

�
���

�

s0 s1

t R⊕
∨

⊕ ⊕

�
���

�
���

⊕

s0 s1

t R∧ ⊕ ⊕�
���

�
���
�

t0 t1

s

R⊕
∧ ⊕ ⊕�

���
�
���
⊕

Fig. 1. The first three RBoxes are unsafe (Theorem 1) and for the last one the problem is open

3 Undecidability Results

Here we show that three roles are sufficient for building an unsafe RBox for ALCQ,
whereas for ALCIQ, even one role is sufficient for that. In order to provide a geomet-
ric intuition for our results, we depict RBoxes (without inverse roles) as directed graphs
whose nodes are non-transitive (�) and transitive (⊕) roles and arrows represent im-
plications between roles. Our plan is as follows. First, in Theorem 1 we show that the
RBoxes R∨, R⊕∨ , and R∧ shown in Fig. 1 are ALCQ-unsafe; we give only a sketch
of the proof to illustrate the idea. Our conjecture is that the fourth RBox R⊕∧ in Fig. 1
is ALCQ-safe. Next, we formulate a more general result (Theorem 2) that the RBoxes
depictured in Fig. 3 are also ALCQ-unsafe (its fully detailed proof is given in the ac-
companying technical report [7]). Finally, in Theorem 3 we demonstrate that the RBox
{Tr(r)} is ALCIQ-unsafe. We obtain the undecidability results by reduction from the
undecidable domino problem (see, e.g., [3]).

Definition 4 (Domino). A domino system is a triple D = 〈D, H, V 〉, where D =
{d1, . . . , dn} is a finite set of tile types and H, V ⊆ D × D are horizontal and vertical
matching relations. We say that D tiles N×N if there exists a D-tiling, i.e., a mapping
τ : N×N → D such that, for all i, j ∈ N, the following compatibility conditions hold:
〈τ(i, j), τ(i+1, j)〉 ∈ H and 〈τ(i, j), τ(i, j+1)〉 ∈ V . The domino problem is to check,
given a domino system D, whether D tiles N×N.

Our proofs follow the usual pattern: in order to show L-unsafety of some RBox R, we
first build an L-TBox Tgrid that, together with R “encodes”, the N×N grid. Then, given
a domino system D, we build (efficiently) an ALC-TBox TD that “tiles” the grid and
“ensures” the compatibility conditions. Finally, we prove that D tiles N×N iff some
concept (usually a concept name) C is satisfiable w.r.t. R∪ Tgrid ∪ TD . We give fine-
grained formulations of results by indicating, as a subscript to the name of a logic, the
maximal number n occurring in number restrictions (� n R.C) in the proof.

Theorem 1. The RBoxes R∧, R∨, and R⊕∨ shown in Fig. 1 are unsafe for ALCN ;
more precisely, they are unsafe for ALCN 9 and ALCQ1.

Proof (sketch for R∧). We use 16 concept names Aij , 0 � i, j � 3, place them on an
N×N grid (by repeating a [0, 3]×[0, 3] pattern periodically) and link them with t0- and
t1-edges as shown in Fig. 2a. We will refer to edges in this grid as 〈A, r, B〉, where
A, B ∈ {Aij | 0 � i, j � 3} and r ∈ {t0, t1}. Having this picture in mind, we add the
following axioms (a)–(c), (d) to an ALCQ-TBox T Qgrid and axioms (a)–(c), (d’) to an
ALCN -TBox T Ngrid, where i, j, k, � ∈ {0, 1, 2, 3} and we denote i ⊕ j := (i+j)mod 4.

308 Y. Kazakov, U. Sattler, and E. Zolin

00©��
��

10©�� 20©��
��

30©�� 00©��
��

10©��
01©�� 11©��

��
21©�� 31©��

��
01©�� 11©��

��
02©��
��

12©�� 22©��
��

32©�� 02©��
��

12©��
03©�� 13©��

��
23©�� 33©��

��
03©�� 13©��

��
00©��
��

10©�� 20©��
��

30©�� 00©��
��

10©��(a) (b)

· · ·
· · ·

· · · Legend:
�
�

t0
t1

(c)

◦ ◦ ◦ ◦
◦ ◦ ◦
◦ ◦
◦

��
�
�

�
�

�

�
�

�
�

�

(d)

◦ ◦ ◦ ◦

◦ ◦ ◦

◦ ◦

◦

◦

◦

◦

◦

◦

���
�
��

� � �

�

�

�
�

�

�

�

�

�
a00 a10 a20 a30

a01

a02

a03

a11

a12

a21

c11 c21

c12

b10

b01

Fig. 2. A grid for Theorem 1: (a) A detailed view of the grid. (b) A grid at a glance. (c) Accessi-
bility relation for R (and similarly for S). (d) A pre-grid for ALCN .

(a) Aij � Ak� � ⊥, for all 〈i, j〉 = 〈k, �〉, i.e., concepts Aij are pairwise disjoint;
(b) A � ∃r.B for each edge 〈A, r, B〉, where r ∈ {t0, t1};
(c) A � � 1 s.B for each double edge 〈A, t0, B〉 and 〈A, t1, B〉;
(d) Aij � � 1 s.Ai⊕1,j⊕1 for all 0 � i, j � 3;

(d’) Aij � � 9 s for all 0 � i, j � 3 such that i+j is even.

For instance, we have axioms A10 � ∃t0.A11 from (b), A11 � � 1 s.A12 from (c),
A32 � � 1 s.A03 from (d) in T Qgrid, and A13 � � 9 s from (d’) in T Ngrid.

Next, given a domino system D = 〈D, H, V 〉 with D = {d1, . . . , dn}, we introduce
fresh concept names D1, . . . , Dn and add the following ALC-axioms to a TBox TD:

(e) � � D1 � . . . � Dn;
(f) Dk � D� � ⊥, for all 1 � k < � � n;
(g) A � Dk � ∀r.

(
B → ⊔

�: 〈dk,d�〉∈H D�

)
for each horizontal edge 〈A, r, B〉;

(h) A � Dk � ∀r.
(
B → ⊔

�: 〈dk,d�〉∈V D�

)
for each vertical edge 〈A, r, B〉.

Now, for X ∈ {Q,N}, we set KXD := R∧ ∪T Xgrid ∪TD and prove the following lemma.

Lemma 1.1 (For R∧). The concept A00 is satisfiable w.r.t. KXD iff D tiles N×N.

(⇐) Given a tiling τ : N×N → D, we build a model I as follows: set ΔI := N×N,
interpret concepts Aij exactly as in Fig. 2a; roles t0, t1 as the transitive closures of
the relations depicted by arrows in Fig. 2a; let sI := tI0 ∪ tI1 ; and set 〈i, j〉 ∈ DIk iff
τ(i, j) = dk. Then A00 = ∅, as 〈0, 0〉 ∈ AI00.

It remains to check that I |= KXD . Clearly, I |= R∧; here it is important that R∧ has
no transitivity axiom for s, as the relation sI is not transitive. To show that I |= T Xgrid,
one needs the following observation: any element in I has at most 9 s-successors, which
belong to 9 pairwise disjoint sets AIij . Finally, it is straightforward to show that I |= TD .

(⇒) Suppose that I |= KXD and AI00 is nonempty, say a00 ∈ AI00. Then we show that
there exist (not necessarily distinct) elements aij ∈ ΔI , for all i, j ∈ N, that are linked
with t0- and t1-edges as in Fig. 2a. After that, we “read-off” a D-tiling of N×N.

Since I satisfies axiom (b), we can find in I a “pre-grid” with the root a00, i.e., el-
ements aij , bij , cij linked with t0- and t1-edges as shown in Fig. 2d. Axioms (c) allow
to “glue” double edges, i.e., entail that b10 = a10 and b01 = a01. Now, with the help of

How Many Legs Do I Have? Non-Simple Roles in Number Restrictions Revisited 309

Rn
∧ : Rn

∨: Rn
∧∨:

⊕�
��
�

�
��
�
�
��
�

�
��
�
�
��
�

�
��
⊕

t0 t1 t2 tn

s1 s2 sn

⊕

�
��
�
�
��
�

�
��

�
�
��
�

�
��
�
�
��
⊕

t1 t2 tn

s0 s1 s2 sn

⊕�
��
�

�
��

�
�
��
�

�
��
�
�
��
⊕

t0 t1 tn

s0 s1 sn

Fig. 3. The chain RBoxesRn
∧ ,Rn

∨,Rn
∧∨, for n � 1, are ALCN -unsafe

axioms (d), we “glue” cells, i.e., infer that c11 = a11, c12 = a12, and c21 = a21. Thus,
using axioms from T Qgrid, we have found in I a structure depicted in Fig. 2c. In T Ngrid, ax-
iom (d’) applied to the element a00, together with the fact that all AIij are disjoint, entail
all the above equalities and hence ensure the existence of the same structure Fig. 2c in I.
After that, we repeat the same argument, starting at the root aij with i + j = 2, then
with j + i = 4 and so on.

Once we have built all the elements aij , for i, j ∈ N we define τ : N×N → D by
setting τ(i, j) := dk iff aij ∈ DIk . By (e) and (f), τ is well-defined and total; and the
compatibility conditions easily follow from (g) and (h). Thus τ is indeed a D-tiling
of N×N. This completes the proof of Lemma 1.1 and hence of Theorem 1. �

In order to generalise Theorem 1, we introduce the following RBoxes, depicted in
Fig. 3, where n � 1 (observe that R1

∧ and R1
∨ correspond to R∧ and R∨, resp.):

Rn
∧ := {Tr(t0), Tr(tn) } ∪ {tk−1 � sk, sk � tk | 1 � k � n },

Rn
∨ := {Tr(s0), Tr(sn) } ∪ { sk−1 � tk, tk � sk | 1 � k � n },

Rn∧∨ := {Tr(t0), Tr(sn) } ∪ { sk−1 � tk, t� � s� | 1 � k � n, 0 � � � n }.
Theorem 2. The RBoxes Rn∧ , Rn∨, Rn∧∨, with n � 1, are ALCN -unsafe.

Theorem 3. The RBox R := {Tr(r)} is unsafe for ALCIN (more precisely, for
ALCIN 8 and ALCIQ1), even for TBoxes that involve a single role name r.

Proof. By reduction from the undecidable domino problem for Z×Z, which is formu-
lated analogously to Def. 4. Take 16 concept names Aij , 0 � i, j � 3. Place them on the
Z×Z grid (by repeating a [0, 3]×[0, 3] pattern periodically) and link them with r-edges
in accordance with Fig. 4a. Now, having this picture in mind (we refer to its edges as
〈A, r, B〉, where A, B are concept names), we add the following axioms (a)–(c) to an
ALCIQ-TBox T Qgrid and axioms (a) and (d) to an ALCIN -TBox T Ngrid:

(a) All 16 concept names Aij , 0 � i, j � 3, are pairwise disjoint;
(b) A � ∃r.B and B � ∃r−.A, for each edge 〈A, r, B〉;
(c) Aij � � 1 r.Ak� and Ak� � � 1 r−.Aij , for all even i, j and odd k, �;
(d) Aij � � 8 r and Ak� � � 8 r−, for all even i, j and odd k, �.

Given a domino system D, we build a ALC-TBox TD: axioms (e) and (f) are the
same as in the proof of Theorem 1, whereas (g) is the following (and (h) is analogous):

(g) A � Dk � ∀r.
(
B → ⊔

�: 〈dk,d�〉∈H D�

)
for each right-going edge 〈A, r, B〉;

A � D� � ∀r.
(
B → ⊔

k: 〈dk,d�〉∈H Dk

)
for each left-going edge 〈A, r, B〉.

Finally, for each X ∈ {Q,N}, we set KXD := R + T Xgrid + TD . It remains to prove.

310 Y. Kazakov, U. Sattler, and E. Zolin

00©�� 10©�� 20©�� 30©�� 00©�� 10©��
01©�	 11©�	 21©�	 31©�	 01©�	 11©�	
02©�� 12©�� 22©�� 32©�� 02©�� 12©��
03©�	 13©�	 23©�	 33©�	 03©�	 13©�	
00©�� 10©�� 20©�� 30©�� 00©�� 10©��

(a) (b)

(c)

(d)

◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦
◦ ◦

◦◦
�
�
�
�

�
�
�

�
�

� � � �
	 	 	
� �a

′
22
a22

a00

�

◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦
◦ ◦

◦ ◦
◦ ◦◦
◦

◦

�
�
�
�

�
�
�
�

�
�
�
�

� � � �
	 	 	 	
� � � �

a00

�

◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦

�
�
�
�

�
�
�
�

�
�
�
�

� � � �
	 	 	 	
� � � �

a00

◦◦ ◦ ◦◦
◦ ◦ ◦
◦◦ ◦ ◦◦

�
�
�

�
�
�

	 	 	
� � �a00

◦ ◦ ◦
◦ ◦ ◦
◦ ◦ ◦

�
�
�

�
�
�

	 	 	
� � �a00

◦ ◦ ◦
◦ ◦ ◦
◦ ◦ ◦

◦◦◦
◦
◦
◦

◦

◦

◦◦

�
�
�

�
�
�

	 	 	
� � �

�
�
�

�
�
�

	 	
� �a00� �

◦
◦
◦

◦ ◦

◦
◦◦ ◦◦◦

� ��
	�
�

�
�

�

	

a00

�
◦
◦
◦

◦ ◦

◦
◦◦
◦◦

�
�
�

�
�

� � �
	 	

�
	

a00

�
◦
◦
◦

◦ ◦

◦
◦◦
◦

�
�
�

�
�
�

� � �
	 	 	

a00

Fig. 4. (a) A grid for Theorem 3 (coloured for decoration only, as we have only 1 role). (b) A pre-
grid forALCIQ. (c) Building a horisontal axis inALCIN . (d) Building new cells inALCIN .

Lemma 3.1. The concept A0 is satisfiable w.r.t. KXD iff D tiles Z×Z.

The ‘⇐’ part is proved as in Theorem 1. To prove ‘⇒’, suppose that I |= KXD and
a00 ∈ AI00. Then we show that in I there are (not necessarily distinct) elements aij ,
i, j ∈ Z, linked via r-edges as shown in Fig. 4a, and then build a D-tiling of Z×Z. The
steps of building elements aij are illustrated in Fig. 4(b–d); we omit the details, which
can be found in the technical report [7]. �

4 Internalization of RBoxes in TBoxes Using Extended Roles

In order to study safety of RBoxes for different DLs, it is somewhat inconvenient to
work separately with RBoxes and TBoxes. Therefore, in this section, we demonstrate
how RBoxes can be internalized into TBoxes, provided additional role constructors—
role unions and transitive closure operator—can be used. We also demonstrate that it is
sufficient to focus only on TBoxes of some simple form. The results of this section can
be applied to any logic L between ALC and ALCIQ.

Definition 5. We say that an L-TBox T is in a simple form if all axioms in T have the
following forms, where A(i), B(j) are concept names, m, n integers, and S a role:

�
Ai �

�¬Bj � ⊥ (1)

A � �n S.B (2)

A � �m S.B (3)

Lemma 1 (Simplification of L-TBoxes). Given an L-TBox T , one can construct in
polynomial time an L-TBox Tsf in simple form such that, for every RBox R, 〈T ,R〉 is
(finitely) satisfiable iff 〈R, Tsf〉 is (finitely) satisfiable.

Definition 6. The set of extended roles R�,+ is defined by the following grammar:

R�,+ ::= R | ρ1 � ρ2 | ρ+, where R is a role and ρ(i) ∈ R�,+.

The additional role constructors are interpreted as follows: (ρ1 � ρ2)I = ρI1 ∪ ρI2 ,
(ρ+)I = (ρI)+, where (·) ∪ (·) and (·)+ are usual operators of union and transitive

How Many Legs Do I Have? Non-Simple Roles in Number Restrictions Revisited 311

closure on binary relations. Concepts of L(�, +) are defined as for L except that ex-
tended roles can be used in place of roles.

Our goal is to demonstrate that every RBox can be internalized in a simple L-TBox
producing an L(�, +)-TBox of a certain simple form:

Definition 7 (Simple L(�, +)-TBox). We say that an L(�, +)-TBox T is simple if
every axiom from T is either of the form (1), (2), or:

A � �m (
⊔

u+
i � v).B (4)

where A(i), B(j) are concept names, m, n integers, and ui and v are disjunctions of
roles: ui, v =

⊔
Ri. For a simple TBox T , we denote by K(T) the number of axioms

of type (4) in T , by N(T) and M(T) the sum of all numbers n, resp. m, over all axioms
of type (2), resp. (4), by C(T) the number of concept names in T .

Definition 8 (R-extension). Given an RBox R, an extension of a role S in R (or the
R-extension of S, for short) is an extended role R(S) ∈ R�,+ defined as follows:

– If S is transitive in R then R(S) := (
⊔

Si)+, where {Si} is the set of all subroles
of S in R (including S itself);

– If S is not transitive, then R(S) :=
⊔R(Ti) �

⊔
Sj , where {Ti} is exactly the set

of all maximal transitive subroles of S, and {Sj} is the set of all subroles of S.

Definition 9 (Internalization of an RBox in an L-TBox).
Let R be an RBox and T be a simple L-TBox. The internalization of R in T is a simple
L(�, +)-TBox R(T) := {R(α) | α ∈ T }, where:

– R(α) := α if α is of the form (1) or (2), and
– R(α) := A � �m (R(S)).B if α = A � �m S.B is of the form (3).

Lemma 2. Let R be an RBox and T a simple L-TBox. Then 〈R, T 〉 is satisfiable iff
R(T) is satisfiable.

5 Decidability Results

As we have demonstrated in Theorem 3, an RBox consisting of just one transitivity
axiom is already unsafe for ALCIN . Hence, there is a little room left for non-trivial
safe RBoxes for ALCIN . In contrast, the undecidability results in Section 3 for ALCN
require a certain interaction between several transitive roles. This poses a question about
safety of those RBoxes that do not fit such a pattern. In this section, we investigate this
question and define a relatively large class of so-called admissible RBoxes that, as we
will prove, are safe forALCQ. Since we focus on ALCQ, within this section we assume
that there are no inverse roles in RBoxes.

Definition 10. For a TBox T , RBox R, or an axiom α, let RN(T), RN(T), RN(α)
denote the set of role names that occur in T , R, α, respectively.

An RBox R is strongly admissible if, for every two transitive roles T1, T2 ∈ RN(R),
we have R
 T1 � T2 or R
 T2 � T1. An RBox R is admissible if R =

⋃Ri where
(1) each Ri is strongly admissible and (2) RN(Ri) ∩ RN(Rj) = ∅ for all i = j.

In the remainder of this section, we prove the following Theorem:

312 Y. Kazakov, U. Sattler, and E. Zolin

Theorem 4. Every admissible RBox is ALCQ-safe.

Note 1. For R = {Tr(r)}, this result corresponds to the decidability of the graded vari-
ant of the modal logic K4 (called GrK4), which has already been addressed in [4].
However, we found that the proof in that paper is incorrect (see [7] for details). There-
fore, here we re-establish decidability of GrK4 as a special case of Theorem 4.

First of all, we demonstrate that, for the purpose of proving safety, it is sufficient to
focus only on strongly admissible RBoxes.

Lemma 3 (Modularity). Let R1 andR2 be RBoxes with RN(R1) ∩ RN(R2) = ∅ and
L is between ALC and ALCIQ. Then R1 ∪R2 is L-safe iff R1 and R2 are L-safe.

Proof. The ‘⇒’ part of the lemma is obvious. The ‘⇐’ part of the lemma follows from
the results about fusions of DLs from [2]. See [7] for details. �

Corollary 1. Let L be a logic between ALC andALCIQ. Then every admissible RBox
is L-safe provided every strongly admissible RBox is L-safe.

In order to prove that every strongly admissible RBox R is safe, it is sufficient to show
that the problem of satisfiability of a pair 〈R, T 〉, with T an L-TBox, is decidable.
Indeed, a concept C is satisfiable w.r.t. T and R iff the pair 〈R, T ∪ {� � ∃R.C}〉
is satisfiable, where R is a fresh role. To this end, we first simplify the TBox T using
Proposition 1 and then internalize RBox R using Definition 9, which will result in some
L(�, +)-TBox of a restricted form, which we call admissible. We then demonstrate that
satisfiability of admissible L(�, +)-TBoxes is decidable.

In what follows, for convenience, we often identify an extended role u =
⊔

Ri with
the set

⋃{Ri}. Using this convention, we can write r ∈ u or u ⊆ u′ for disjunction of
roles u and u′, as well as uI for sets of roles u.

Definition 11. A simple L(�, +) TBox T is admissible if (i) all axioms of form (4) are
of the forms (5) and (6) below, and (ii) for every two axioms A1 � �m1 (u+

1 � v1).B1

and A2 � �m2 (u+
2 � v2).B2 of form (6), we have that either u1 ⊆ u2, or u2 ⊆ u1.

A � � m (v).B (5)

A � � m (u+ � v).B (6)

In other words, a simple L(�, +)-TBox is admissible if in every axiom of form (4) there
is at most one occurrence of a transitively closed disjunction of roles.

Lemma 4. Let T be a simple L-TBox and R a strongly admissible RBox. Then R(T)
is a simple admissible L(�, +)-TBox.

The condition (ii) from Definition 11 can be alternatively formulated as follows:

Proposition 1. Let T be a simple admissible L(�, +)-TBox. Then all roles in T can
be ordered as r1, . . . , rn in such a way that for every axiom A � � m (u+ � v).B of
type (6) and every 1 � i � j � n, we have that rj ∈ u implies ri ∈ u.

How Many Legs Do I Have? Non-Simple Roles in Number Restrictions Revisited 313

x

y

z

A

y′

B

x′

y0

yiN

y(i+1)N

yjN

y(j+1)N

y(M+K+1)N

A

y′

B

x′
j

δIα,i � 1

δIα,j � 1

yiN

yiN+1

yiN+j

y(i+1)N

pre(y(i+1)N)

A

yiN

yiN+1

yiN+j

y(i+1)N

pre(y(i+1)N)

A

B

(a) (b) (c) (d)

Fig. 5. Looping long chains in a model back

We prove that satisfiability of simple admissibleL(�, +)-TBoxes is decidable by demon-
strating the finite model property (FMP) for such TBoxes. The key property that will
guarantee FMP is that, in every model of a simple admissible TBox, it is possible to
“loop back” every sufficiently long chain of elements connected via roles. This idea is
reminiscent to blocking conditions in tableau decision procedures for modal and descrip-
tion logics [6]. The next lemma states that every model of a simple L(�, +) TBox can
be reduced to a model with bounded branching degree by removing edges that are not
“required” by axioms of type (2).

Definition 12. Let I = (ΔI , ·I) be an L-interpretation. A branching degree of an
element x ∈ ΔI in I is deg(I, x) = Card{y | 〈x, y〉 ∈ rI for some r}. A branching
degree of I is deg(I) = max{deg(I, x) | x ∈ ΔI}.

Lemma 5. Any satisfiable simple L(�, +)-TBox T has a model I with deg(I)�N(T).

Let I = (ΔI , ·I) be an interpretation. For each axiom α of type (6) in T , we introduce
a function δIα(x, y) defined on elements of ΔI as follows:

δIα(x, y) =

⎧
⎨
⎩

Card{x′ | x′ ∈ BI , 〈x, x′〉 ∈ (u+)I , 〈y, x′〉 /∈ (u+)I}
if there exists y′ ∈ AI with 〈y′, y〉 ∈ (u+)I

0 otherwise

In other words, if y has a u+ predecessor in which A holds, δIα(x, y) equals to the
number of elements in which B holds and that are reachable via u+ from x but not
from y (see Fig. 5a). The value of δIα(x, y) intuitively indicates the number of new u+

successors of y that might appear and potentially violate the axiom α (at the points,
where A holds), if x becomes reachable from y via u+.

Definition 13. Let I = (ΔI , ·I) be an interpretation. For an element x ∈ ΔI , let
CNI(x) := {A ∈ CN | x ∈ AI} denote the set of concept names that hold at x in I.

Given a simple admissible L(�, +)-TBox T , an interpretation I = (ΔI , ·I), and
x, y, z ∈ ΔI , we say that x can foster z for y in I (w.r.t. T) if (i) CNI(z) = CNI(x),

314 Y. Kazakov, U. Sattler, and E. Zolin

(ii) 〈y, x〉 ∈ rI for no atomic role r, and (iii) for every axiom α of type (6) in T , if
〈y, z〉 ∈ rI for some role r ∈ uα = u, then δIα(x, y) = 0.

Lemma 6 (Model Transformation). Let I = (ΔI , ·I) be a model of a simple admis-
sible L(�, +)-TBox T and x, y, z elements of ΔI such that x can foster z for y in
I w.r.t. T . Let J = swap(I, x, y, z) be obtained from I by setting AJ := AI and,
rJ := rI \ {〈y, z〉} ∪ {〈y, x〉} if 〈y, z〉 ∈ rI , and rJ := rI otherwise, for every
concept name A and role name r. Then J is a model of T .

Our main lemma states that, in every model of simple admissible L(�, +)-TBox T ,
every sufficiently long chain x0, . . . , xp of elements connected with roles contains two
elements xi and xj with i < j such that xi can foster xj for the predecessor xj−1 of xj
w.r.t. T . Thus, every sufficiently long chain can be “looped back” using the transforma-
tion described in Lemma 6.

Lemma 7 (Main Lemma). Let T be a simple admissible L(�, +)-TBox and I =
(ΔI , ·I) a model for T with deg(I) � N . Let r1, . . . , rn be all the role names in T
enumerated according to Proposition 1, k an integer with 1 � k � n, and x0, . . . , xp a
sequence of distinct elements in ΔI such that, for every i � 1, there exists � � k such
that 〈xi−1, xi〉 ∈ rI� . Then there exist i and j with 1 � i < j � p such that xi can foster
xj for xj−1, provided that p � pk := ((M + K + 1)N · 2C + 1)k, where M = M(T),
K = K(T), and C = C(T) as defined in Definition 7.

Before proving Lemma 7, we demonstrate the following auxiliary property. For conve-
nience, if x is an element of the sequence x0, . . . , xp, i.e., x = xi for some i, then its
predecessor in this sequence will be denoted by pre(x) := xi−1.

Lemma 8 (Auxiliary Lemma). Let a TBox T , a model I, and a sequence x0, . . . , xp
be as in Lemma 7. Let y0, . . . , yq be a sub-sequence in x1, . . . , xp such that (i) q�(M+
K + 1)N , (ii) CNI(y0) = · · · = CNI(yq), (iii) 〈pre(yi), yi〉 /∈ rI� for all 0 � i � q
and � < k. Then for some 0 � i < j � q, yi can foster yj for pre(yj).

Proof. Let Uk be the set of axioms α = (A � � m (u+ � v).B) ∈ T of type (6)
such that rk ∈ u. Take any axiom α ∈ Uk and consider a sequence of values δIα,i :=
δIα(yiN , y(i+1)N) for 0 � i � M + K (see Fig. 5b). We claim that at most m + 1 of
values δIα,i are positive.

Indeed, for the first i with δIα,i � 1, by definition of δIα(x, y), there exists y′ ∈ AI with
〈y′, y(i+1)N 〉 ∈ (u+)I . For all subsequent j > i with djα � 1, there exists an element
x′j such that 〈yjN , x′j〉 ∈ (u+)I , but 〈y(j+1)N , x′j〉 /∈ (u+)I . In particular, all such xj
are distinct for different j. Note that since rk ∈ u, by Proposition 1, r� ∈ u for all ��k.
Hence 〈y′, x′j〉 ∈ (u+)I . Since I is a model of α, the number of such different j can be
at most m.

Hence, the number of different i such that, for some α ∈ Uk, δIα,i � 1, is at most∑
α∈Uk

(mα + 1)�M + K . Since q � (M +K +1)N , there exists at least one i such
that δIα,i = 0 for all α ∈ Uk. For every α ∈ Uk, there are two cases possible: either
(1) there exists no y′ ∈ AI such that 〈y′, y(i+1)N 〉 ∈ (u+)I (see Fig. 5c), or (2) such a

How Many Legs Do I Have? Non-Simple Roles in Number Restrictions Revisited 315

y′ exists, but there exists no x′ ∈ BI with 〈yiN , x′〉 ∈ (u+)I (see Fig. 5d). Hence, in
particular, δIα(yiN+j , pre(y(i+1)N)) = 0 for all j < N and all α ∈ Uk.

Since deg(I) � N and 〈pre(y(i+1)N), y(i+1)N 〉 ∈ rI� for � � k, there exists j < N
such that 〈pre(y(i+1)N), yiN+j〉 /∈ rI , for every r. Since, by condition (iii), we have
〈pre(y(i+1)N), y(i+1)N 〉 /∈ rIl for each � < k, we have δIα(yiN+j , pre(y(i+1)N)) = 0
for each axiom α of type (6) such that 〈pre(y(i+1)N), y(i+1)N 〉 ∈ rI� and r� ∈ u.
Indeed, those are exactly α ∈ Uk, because r� ∈ u implies rk ∈ u for every � � k by
Proposition 1. Hence, by Definition 13, yiN+j can foster y(i+1)N for pre(y(i+1)N). �
Proof (of Lemma 7). We prove the lemma by induction on k, using Lemma 8 both in
induction base and induction step. Denote L := (M + K + 1)N for short.

Induction base: For k = 1, we have a sequence of elements x0, . . . , xp ∈ ΔI with
p � p1 := L · 2C + 1 such that 〈xi−1, xi〉 ∈ rI1 , for all 1 � i � p. We claim that there
exists a subsequence y0, . . . , yq in x1, . . . , xp with q � L such that CNI(y0) = · · · =
CNI(yq). Indeed, otherwise, since the number of different values of CNI(x) is bounded
by 2C , and the number of elements x in x1, . . . , xp with the same value of CNI(x) is
at most L, the total number of elements in x1, . . . , xp cannot exceed L · 2C , which
contradicts to p � p1. Now, Lemma 8 can be applied to the sequence y0, . . . , yq, since
there are no roles r� with � < k = 1. By Lemma 8 there exist elements yi and yj in this
sequence with 0 � i < j � q, such that yi can foster yj for pre(yj).

Induction Step: Assume that the lemma holds for k − 1. Two cases are possible:
(A) There exists a sub-sequence of consecutive elements xi, xi+1, . . . , xi+pk−1 with

pk−1 = (L · 2C + 1)k−1 and for each j with 1 � j � pk−1, there exists � � k − 1 such
that 〈xi+j−1, xi+j〉 ∈ rI� . In this case the lemma holds by the induction hypothesis.

(B) Otherwise, in every sequence xipk−1 , xipk−1+1 . . . , x(i+1)pk−1 of consecutive
elements with 0 � i � p1 − 1 = L · 2C , there exists an element x′i = xipk−1+j ,
with 1 � j � pk−1, such that 〈pre(x′i), x′i〉 /∈ rI� for all � � k − 1. By applying a
combinatorial argument as in the induction base, from the sequence x′0, . . . , x

′
p1−1 of

p1 = L · 2C distinct elements one can select a subsequence y0, . . . , yq with q � L such
that CNI(y0) = · · · = CNI(yq). Hence the claim of the lemma follows from Lemma 8
applied to the sequence y0, . . . , yq. �
Theorem 5. An admissible ALCQ(�, +)-TBox T is satisfiable iff T has a finite model.

Proof. The “if” direction is trivial. To prove the “only if” part, we use the following
argument: given any model I of T , we build a finite model J of T by “looping back”
all sufficiently long paths from some element x0 using Lemma 6 and Lemma 7 until
none of them left, and then removing elements that became disconnected from x0 after
this transformation. For a detailed proof, see the technical report [7]. �
Now it is time to harvest our decidability results (see [7] for all proofs).

Theorem 6. Let T be anALCQ-TBox andR a strongly admissible RBox. Then 〈R, T 〉
is satisfiable iff it has a finite model.

Corollary 2 (Theorem 4). Every admissible RBox is safe for ALCQ.

Corollary 3. Every satisfiable GrK4-formula has a finite model.

316 Y. Kazakov, U. Sattler, and E. Zolin

6 Extending RBoxes

In Section 5 we have described a rather large class of ALCQ-safe RBoxes. However, so
far, only few RBoxes were shown to be unsafe for ALCN and ALCIN in Section 3. In
this section we are concerned with a question whether every RBox “containing” any of
the patterns described in Section 3 is necessarily unsafe? Or, in general, what happens
to the (un)safety of an RBox when the RBox are extended?

It is clear that adding axioms may turn a safe RBox into unsafe and vice versa:
an ALCN -safe RBox {Tr(r)} can be extended to an ALCN -unsafe RBox R∧ from
Theorem 1; adding to R∧ an inclusion between its incomparable transitive roles yields
an ALCN -safe RBox by Theorem 4. So it is not sufficient for an RBox R′ to be unsafe
if it contains some unsafe RBox R. The question now is: what additional property
an extension R′ of R should fulfill so that unsafety of R can be transferred to R′.
In this section we demonstrate that it is sufficient to require that R′ is semantically
conservative over R.

Definition 14. Let R and R′ be two RBoxes. We say that R′ is semantically conserva-
tive over R (notation: R � R′), if every model I of R can be expanded to a model I ′
of R′ by interpreting new role names from RN(R′) \ RN(R). If, additionally, we have
[R] ⊆ [R′], then R′ is called a semantic conservative extension of R.

Example 1. Consider RBoxes depicted in Fig. 6. We have Rc � R′c. Indeed, given any
model I |= Rc, we define I ′ by setting RI

′
:= RI , SI

′
:= SI , and T I

′
:= RI ∩ SI .

Then I ′ |= R′c; in particular, T I
′

is transitive as the intersection of transitive relations.

At the same time, Ra � R′a, since one can easily construct two non-transitive relations
on some set that have no transitive relations between them. Furthermore, Rb � R′b;
indeed, take ΔI = {0, 1, 2} and set RI := {〈0, 1〉}, SI := {〈1, 2〉}, and QI :=
RI ∪ SI . Then we cannot interpret the transitive role T to satisfy R′b.
Theorem 7 (Preservation of Unsafety under Conservative Extensions of RBoxes).
If R′ is a conservative extension of R and R is L-unsafe, then R′ is L-unsafe.

Let F := {R⊕∨}∪{Rn
∧ ,Rn

∨,Rn
∧∨ | n� 1} be the family of RBoxes (see. Fig. 3) that we

have shown to be ALCQ-unsafe in Sect. 3. As a consequence of Theorems 2, 3, and 7,
we obtain the following result:

Corollary 4. (1) Any R′ that is a conservative extension of {Tr(r)} is ALCIQ-unsafe;
(2) Any R′ that is a conservative extension of some RBox R ∈ F is ALCQ-unsafe.

Ra �� R′
a

�

�

�

�

⊕
�

�

�

R

Q

R

T

Q

Rb �� R′
b

⊕ ⊕

�

�
���

�
���

R S

Q

⊕ ⊕
⊕
�

��� 		

�
R S

Q

T

but: Rc � R′
c

⊕ ⊕

�
�
���

�
���

R S

Q

⊕ ⊕
⊕
�

		
 ���

�

R S

Q

T

Fig. 6. For i ∈ {a, b}, we haveRi � R′
i and Ri �� R′

i; whereasRc � R′
c

How Many Legs Do I Have? Non-Simple Roles in Number Restrictions Revisited 317

It turns out, surprisingly, that properties (1) and (2) in Corollary 4 can be checked in
polynomial in the size of R′ (see [7] for details). We conjecture that Corollary 4 de-
scribes all RBoxes (modulo role renaming) that are unsafe for ALCIQ and ALCQ.

7 Conclusions and Future Work

Driven by applications, we have looked more closely at the effect of non-simple roles
in number restrictions on the decidability of standard DL reasoning problems. We have
shown that, in the absence of inverse roles, the restriction imposed by SHQ to non-
simple roles in number restrictions can be relaxed substantially and that, in the presence
of inverse roles, this restriction turns out to be crucial for decidability.

These results raise numerous further questions. Firstly, given a DL L, can we for-
mulate necessary and sufficient conditions for an RBox to be L-safe? Secondly, for an
interesting class of L-safe RBoxes R, what is the computational complexity of decid-
ing L(R)-satisfiability? And can these decision procedures be implemented and used
in practice? Thirdly, in the approach taken here, we allow all roles to occur in number
restrictions. Given an L-unsafe RBox R, can we extend the notion of simple roles to
regain decidability of L(R)? And how applicable would this be in practice? Finally, in
the presence of inverse roles, can we restrict the usage of inverse roles in TBoxes so as
to re-gain decidability? For example, would disallowing number restrictions on inverse
roles whilst allowing number restrictions on transitive role names help? For the list of
other interesting open problems, see the accompanying technical report [7].

References

1. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.): The De-
scription Logic Handbook. Cambridge University Press, Cambridge (2003)

2. Baader, F., Lutz, C., Sturm, H., Wolter, F.: Fusions of Description Logics and Abstract De-
scription Systems. Journal of Artificial Intelligence Research (JAIR) 16, 1–58 (2002)

3. Börger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem. Perspectives in Mathe-
matical Logic. Springer, Heidelberg (1997)

4. Cerrato, C.: Decidability by Filtration for Graded Modal Logics (Graded Modalities V). Studia
Logica 53, 61–74 (1994)

5. Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From SHIQ and RDF to OWL: The
making of a web ontology language. Journal of Web Semantics 1(1), 7–26 (2003)

6. Horrocks, I., Sattler, U., Tobies, S.: Practical reasoning for very expressive description logics.
Logic Journal of the IGPL 8(3), 239–263 (2000)

7. Kazakov, Y., Sattler, U., Zolin, E.: Is Your RBox Safe? Technical report. The University of
Manchester (2007), available at http://www.cs.man.ac.uk/∼ezolin/pub/

8. Wolstencroft, K., Brass, A., Horrocks, I., Lord, P., Sattler, U., Turi, D., Stevens, R.: A Little
Semantic Web goes a long way in biology. In: Gil, Y., Motta, E., Benjamins, V.R., Musen,
M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 786–800. Springer, Heidelberg (2005)

http://www.cs.man.ac.uk/~ezolin/pub/

On Finite Satisfiability of the Guarded Fragment with
Equivalence or Transitive Guards�

Emanuel Kieroński1 and Lidia Tendera2

1 Institute of Computer Science, University of Wrocław
2 Institute of Mathematics and Informatics, Opole University

Abstract. The guarded fragment of first-order logic, GF, enjoys the finite model
property, so the satisfiability and the finite satisfiability problems coincide.

We are concerned with two extensions of the two-variable guarded fragment
that do not possess the finite model property, namely, GF2 with equivalence and
GF2 with transitive guards. We prove that in both cases every finitely satisfiable
formula has a model of at most double exponential size w.r.t. its length.

To obtain the result we invent a strategy of building finite models that are
formed from a number of multidimensional grids placed over a cylindrical sur-
face. The construction yields a 2NEXPTIME-upper bound on the complexity of
the finite satisfiability problem for these fragments. For the case with equivalence
guards we improve the bound to 2EXPTIME.

1 Introduction

In this paper we assume that a first-order signature contains only relational symbols
and, possibly, equality.

The guarded fragment, GF, of first-order logic is defined as the least set of formulas
such that: (i) every atomic formula belongs to GF; (ii) GF is closed under logical
connectives ¬,∨,∧,→; and (iii) quantifiers are appropriately relativized by atoms, i.e.
if ϕ(x,y) is a formula of GF and α(x,y) is an atomic formula containing all the free
variables of ϕ, then the formulas

∀y(α(x,y) → ϕ(x,y)) and ∃y(α(x,y) ∧ ϕ(x,y))

belong to GF. The atom α(x,y) is called the guard of the quantifier. Equalities are also
allowed as guards.

The guarded fragment was introduced by Andréka et al., [1], who showed that modal
logic can be embedded in GF and they also argued convincingly that GF inherits the nice
properties of modal logic. The nice behavior of GF was confirmed by Grädel, [4], who
proved that GF enjoys the finite model property and that the satisfiability problem for
GF is complete for double exponential time and complete for exponential time, when
the number of variables is bounded.

GF was later generalized to the loosely guarded fragment, [19], and to the clique
guarded fragment, [5], where all quantifiers were relativized by more general formulas,

� Supported by Polish Ministry of Science and Higher Education research project nr N206 022
31/3660 2006/2009.

N. Dershowitz and A. Voronkov (Eds.): LPAR 2007, LNAI 4790, pp. 318–332, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

On Finite Satisfiability of the Guarded Fragment 319

preserving the idea of quantification only over elements that were close together in the
model. Most of the properties of GF can be generalized to those fragments. In particular,
I. Hodkinson [8] showed that they all enjoy the finite model property (see also [9] for a
simpler and nicer proof of the result).

For modal or description logics, a restriction of the underlying class of structures is
very natural. We are particularly interested in classes with some transitive or equiva-
lence relations that correspond e.g. to Kripke structures for multi-modal variants of the
logics K4 and S5. The results for these cases can be phrased either for satisfiability of
extensions of GF, or of GF itself over restricted classes of structures.

In this paper we are concerned with two extensions of GF2, i.e. the two-variable
guarded fragment with equivalence guards, GF2+EG, and the two-variable guarded
fragment with transitive guards, GF2+TG. In GF2+EG (GF2+TG) some binary
relation symbols are required to be interpreted as equivalences (transitive relations), but
these special symbols are allowed to appear only in guards. These fragments capture
many expressive modal and description logics. Both are decidable for satisfiability:
GF2+EG is NEXPTIME-complete, [12], GF2+TG – 2EXPTIME-complete, [16], and
both contain infinity axioms, i.e. formulas that possess only infinite models.

The lack of the finite model property for the above mentioned fragments naturally
leads to the question, whether their finite satisfiability problems are decidable. This
question is particularly important, if one would like to use these formalism for auto-
matic reasoners in practical applications, where the structures investigated are essen-
tially finite.

In [18] it is shown that the finite satisfiability problem for GF with one transitive
relation is decidable in double exponential time, thus it is of the same complexity as
the (unrestricted) satisfiability problem. For the case of GF2+EG, a NEXPTIME lower
bound is implied by GF with one equivalence relation, that enjoys the finite (exponen-
tial) model property and is NEXPTIME-complete for satisfiability, [12].

In this paper we show that every finitely satisfiable GF2+EG-formula and every
finitely satisfiable GF2+TG-formula has a model of at most double exponential size.
In the case of GF2+EG our small models are constructed as multidimensional grids,
in which the number of dimensions equals the number of equivalence relations. Models
for GF2+TG are built from a number of such grids placed over a cylindrical surface
and connected in a special way.

The results give also a trivial, double exponential, bound on the size of a single
equivalence class in a finite model of a GF2+EG-formula. We argue that this bound
is essentially optimal, which contrasts with the general case, where it can be shown
that every satisfiable GF2+EG-sentence has a (possibly infinite) model with at most
exponential equivalence classes.

The constructions yield 2NEXPTIME-upper bounds on the complexity of the finite
satisfiability problem for these fragments. For the case with equivalence guards we
improve the bound to 2EXPTIME. We also note that in GF2+TG transitive relations
can be enforced in a simple way to be symmetric and reflexive, see Lemma 2 in [12].
Thus, the upper bound for GF2+TG gives also the upper bound for a combined variant
GF2+EG +TG, in which some symbols appearing only in guards have to be inter-
preted as equivalences and some other as transitive relations.

320 E. Kieroński and L. Tendera

It is perhaps worth mentioning that there is another interesting extension of the
guarded fragment, namely GF with fixpoints, that has been shown decidable for sat-
isfiability, [7], and of the same complexity as pure GF. However, decidability of the
finite satisfiability problem for this fragment is only partially answered by Bojańczyk
in [2], where decidability of the finite satisfiability problem for the modal μ-calculus
with backwards modalities is shown.

We also remark that recently, [15], tight exponential complexity bounds for GF2 with
counting quantifiers for both satisfiability and finite satisfiability have been established.

2 Preliminaries

For a fragment L of first-order logic we denote by Lk the restriction of the logic to
k variables. Since in this paper we are concerned with extensions of GF2, we as-
sume without loss of generality that signatures contain only unary and binary relation
symbols.

We fix a signature σ. An atomic k-type is a maximal consistent set of atomic or
negated atomic formulas over σ in k variables. Let α be the set of all atomic 1-types,
and β the set of all atomic 2-types over σ.

Let A be a σ-structure with universe A, and let a, b ∈ A, a �= b. We denote by α(a)
the unique atomic 1-type realized in A by the element a, and by β(a, b) – the unique
atomic 2-type realized in A by the pair (a, b). We note that the notation α(a) and β(a, b)
does not explicitly show from which structure the elements a and b are taken, but, in
this paper, the structure will always be clear from the context.

2.1 Simple Observations on FO2 Models

Since equivalence classes in models of GF2+EG formulas behave similarly to whole
models of FO2 formulas, we start with some simple definitions and lemmas for FO2.

Let M = 3|β|3 be fixed for the rest of this paper. Note that the value of M is
exponential in |σ|.
Definition 1 (Scott normal form). We say that an FO2-formula ϕ is in normal form if
ϕ = ∀x∀yψ0(x, y) ∧ ∧

i ∀x∃yψi(x, y), where ψi are quantifier-free.

Definition 2. (i) An exact counting type is a function θ : α → N. We say that a
structure A has an exact counting type θ if for every t ∈ α, θ(t) is the number of
realizations of t in A.

(ii) Let n > 0. An n-counting type is a function θ : α → {0, 1, . . . , n}. We say that
a structure A has an n-counting type θ if for every t ∈ α, θ(t) is the number of
realizations of t in A, if this number is less than n, and θ(t) = n otherwise.

We say that a counting type θ′ safely extends a counting type θ if for every t ∈ α,
θ′(t) = θ(t) if θ(t) = 0 or θ(t) = 1, and θ′(t) ≥ θ(t) otherwise.

The following lemma establishes two useful properties of counting types and the
relevance of M . Part (ii) is a simple application of the ”small substructures lemma”
from [13]. The proof is omitted due to space limits.

On Finite Satisfiability of the Guarded Fragment 321

Lemma 1. (i) Let ϕ be an FO2-formula in normal form, A |= ϕ and let θ be the exact
counting type of A. Then for every exact counting type θ′ safely extending θ, there
exists a model A′ |= ϕ whose exact counting type is θ′.

(ii) Let ϕ be an FO2-formula in normal form, A |= ϕ, θ be the M -counting type of A.
Then, there exists a model A′ |= ϕ whose exact counting type is θ.

2.2 Normal Forms

Let S1, S2, . . . , Sk denote the special binary relation symbols of σ, i.e. those that are
required to be interpreted as equivalence or transitive relations, and R1, R2, . . . – the re-
maining binary symbols in σ. A σ-structure is special, if all the special relation symbols
are interpreted in the required way.

When the special relation symbols are allowed to appear in guards only, it is useful
to consider the following normal form for GF2-formulas.

Definition 3. We say that a GF2-formula ϕ with special guards is in normal form if it
is a conjunction of formulas of the following form:

(i) ∃x(p(x) ∧ ψ(x)),
(ii) ∀x∀y(Sixy → ψ(x, y)),

(iii) ∀x∀y(q(x, y) → ψ(x, y)),
(iv) ∀x(p(x) → ∃y(q(x, y) ∧ ψ(x, y))),
(v) ∀x(p(x) → ∃y(Sixy ∧ Siyx ∧ ψ(x, y))),

(vi) ∀x(p(x) → ∃y(Sixy ∧ ¬Siyx ∧ ψ(x, y))),
(vii) ∀x(p(x) → ∃y(Siyx ∧ ¬Sixy ∧ ψ(x, y))),

where each ψ is quantifier-free and does not contain special relation symbols, p(x)
is atomic, q(x, y) is an atom Ri(x, y) or Ri(y, x). We denote by ϕsym the fragment
of ϕ consisting of all the conjuncts of types (i), (ii), (iii), (iv) and (v), and by ϕeq the
fragment of ϕ consisting of all the conjuncts of types (i), (ii), (iii) and (v). For a given i,
we denote by ϕSi

eq the fragment of ϕeq consisting of those conjuncts of type (ii) and (v),
which have Si in their guards, and all conjuncts of type (iii). Additionally, let ϕuniv be
the conjunction of all implications q(x, y) → ψ(x, y) from formulas of type (iii).

The (finite) satisfiability problem for GF2-formulas with special guards over special
structures can be reduced to the (finite) satisfiability problem for disjunctions of expo-
nential number of linear size GF2-formulas in normal form over special structures. See
for example [18] for a proof of a similar result.

We note that if the special relation symbols are required to be interpreted as equiv-
alence relations, then in the normal form we do not need to consider conjuncts of the
forms (vi) and (vii) and the conjuncts of the form (v) may be simplified to ∀x(p(x) →
∃y(Sixy ∧ ψ(x, y))).

We remark that, although in conjuncts of the forms (v)-(vii) the special symbols
appear not only as simple guards, the normal form is more useful than the standard one
where, instead of conjuncts of the forms (v)-(vii), we have just the form: ∀x(p(x) →
∃y(Sixy ∧ ψ(x, y))).

In next sections we use Eis to denote the special relations symbols that are to be
interpreted as equivalence relations, and Tis to denote the transitive relation symbols.

322 E. Kieroński and L. Tendera

3 Equivalence Guards

In this section we show that every finitely satisfiable GF2+EG-formula has a model of
a bounded size.

If we restrict the number of equivalence symbols to one, then the finite satisfiability
coincides with satisfiability, since, [13], even whole FO2 with one equivalence relation
has the finite (exponential) model property. However, in the presence of two equivalence
symbols, there are satisfiable GF2+EG formulas whose all models are infinite [13].

3.1 Example

Let us now observe, that finite models for GF2+EG have different properties from in-
finite models. In the following example we show how to construct a family of finitely
satisfiable formulas {ϕn} with only two equivalence relation symbols, such that ev-
ery finite model of ϕn contains at least one equivalence class of size at least doubly
exponential in n, and |ϕn| is polynomial in n. This is in contrast to the (unrestricted)
satisfiability: in [12] it was observed that every satisfiable GF2+EG-formula ϕ has a
model, in which all equivalence classes have size at most exponential in |ϕ|. The follow-
ing example is a refinement of the example from [18], where several transitive relations
were used.

Example 1. Let us assume that E1 and E2 have to be interpreted as equivalence rela-
tions. We construct a finitely satisfiable formula ϕn, such that its every model contains
some number of full binary trees of depth 2n, whose every leaf requires a root in its
E2-class. Trees will have to be disjoint, so there will always be 22n

leaves per one root,
which will guarantee the existence of at least one large E2-class.

Except E1 and E2, we use only a number of unary relation symbols. Symbols
P0, . . . , Pn−1 encode in each element a number from {0, . . . 2n−1} which is the depth
of the element in the tree (the number of the level to which the element belongs). Let
us denote by Li the i-th level, i.e. the set of elements a, with the encoded number i.
Symbol R indicates roots, symbol L is used to distinguish left sons from right sons.
The formula ϕn consists of conjuncts stating:

• There exists an element satisfying R.
• Every element satisfying R belongs to L0.
• For each element a from L2i there exist two elements in L2i+1 connected to a by

E1. One of them satisfies L, the other ¬L.
• For each element a from L2i+1 (for 2i + 1 < 2n − 1) there exist two elements in
L2i+2 connected to a by E2. One of them satisfies L, the other ¬L.

• If two distinct elements belong to a levelL2i for some i, then they are not connected
by E1.

• If two distinct elements belong to a level L2i+1 (for 2i + 1 < 2n − 1), then they
are not connected by E2.

• Every element in L2n−1 is connected by E2 to an element satisfying R.

It is not difficult to formulate the above sentences in GF2+EG, and to see, that each
A |= ϕn has a desired large E2-class.

On Finite Satisfiability of the Guarded Fragment 323

3.2 System of Linear Inequalities

Let ϕ be a GF2+EG-formula in normal form over a signature σ, where E1, E2, . . . , Ek
are the equivalence relation symbols.

We say that an n-counting type θ is admissible for ϕ and Ei, if there exists a structure
E whose exact counting type is θ and

E |= ϕEi
eq ∧ ∀xyEixy ∧

∧
j �=i

∀xy(x �= y → ¬Ejxy).

Let Θ = (ΘE1 , ΘE2 , . . . , ΘEk) be a tuple of sets of M -counting types. We say that
an atomic type t ∈ α appears in ΘEi if there exists θ ∈ ΘEi such that θ(t) > 0. We
say that t appears in Θ if t appears in ΘEi for some i. We say that t ∈ α is royal for
Ei-classes, if t appears in ΘEi and, for every θ ∈ ΘEi , we have θ(t) ≤ 1.

Let α0 ⊆ α and let ρ = ρ1,ρ2, . . . ,ρk be a sequence of subsets of α0. Let
Θ(ϕ,α0,ρ) = (ΘE1 , ΘE2 , . . . , ΘEk) be the tuple of maximal sets of M -counting
types such that: (i) α0 is the set of one-types appearing in Θ(ϕ,α0,ρ), (ii) ρi is the
set of royal types for Ei-classes, and (iii) every element of ΘEi is admissible for ϕ and
Ei.

The set α0 corresponds to the set of one-types realized in a structure in which ele-
ments of ρi are royal for Ei-classes. Elements of ΘEi correspond to M -counting types
of restrictions of the structure to equivalence classes of Ei.

With Θ(ϕ,α0,ρ) we associate a system of linear inequalities ΓΘ. For each i and
each θ ∈ ΘEi we use a variable XEi

θ , whose purpose is to count the number of Ei-
classes with type θ, and, for each t ∈ α0, we use a variable Y Ei

t to count the lower
bound of the number of elements of type t in Ei-classes.

For every t ∈ α0 and every i, we put to ΓΘ the following (in)equalities:

•
Y Ei
t =

∑

θ∈ΘEi

θ(t) · XEi

θ , (E0)

• if t ∈ ρi, then we write:

Y Ei
t ≥ 1, (E1a)

• if t �∈ ρi, then we write: ∑
θ∈ΘEi ,θ(t)>1

XEi

θ ≥ 1, (E1b)

• if t ∈ ρi, then, for every j �= i, we write:

Y Ei
t ≥ Y

Ej

t . (E2)

Please note that if t is royal for Ei-classes then the number Y Ei
t is exact, and if t is

royal for both Ei-classes and Ej -classes (i �= j) then we write two inequalities of the

form (E2) that give Y Ei
t = Y

Ej

t .
Moreover, we add to ΓΘ the following inequalities:

324 E. Kieroński and L. Tendera

• for every conjunct δ of the form (i), δ = ∃x(p(x) ∧ ψ(x)),we write

∑
t∈α0,t|=p(x)∧ψ(x)

Y E1
t > 0, (E3)

• for every conjunct δ of the form (iv), δ = ∀x(p(x) → ∃y(q(x, y) ∧ ψ(x, y))), for
every t ∈ α0 such that t |= p(x), we write:

∑
t′∈α0,t→δt′

Y E1
t′ > 0, (E4)

where t → δt′, if for some s(x, y) ∈ β such that t(x) ⊆ s(x, y), t′(y) ⊆ s(x, y),
we have ¬Eixy ∈ s(x, y), for all i, and s(x, y) |= ϕuniv ∧ q(x, y) ∧ ψ(x, y).

Observe that the number of inequalities is at most exponential and the number of
variables is at most doubly exponential in the size of the signature.

3.3 Model Construction

Lemma 2. Let ϕ be a GF2+EG-formula ϕ in normal form. Then, ϕ is finitely satisfi-
able if and only if there exist α0, ρ = ρ1, . . . ,ρk, with ρi ⊆ α0, such that the system
ΓΘ constructed for Θ(ϕ,α0,ρ) has a nonnegative integer solution.

Proof. (⇒) Let A be a finite model of ϕ. Let α0 be the set of 1-types realized in A. Let
A/Ei be the set of equivalence classes of Ei in A. Let ΘEi be the set of all M -counting
types of the structures A�K , for K ∈ A/Ei. Let ρi be the set of all royal types for
Ei-classes.

Let θ ∈ ΘEi be the M -counting type of A � K for some K . Observe that A � K is
a model of the FO2-formula ϕEi

eq ∧ ∀xyEixy. It can be simply modified to a model of
ϕEi
eq ∧∀xyEixy∧ ∧

j �=i
∀xy(x �= y → ¬Ejxy), by replacing in every atomic 2-type atoms

Ejxy by ¬Ejxy and atoms Ejyx by ¬Ejyx. The last formula can be easily rewritten
to FO2 normal form. Now we apply part (ii) of Lemma 1, obtaining the desired exact
counting type of the model. So, θ is admissible for ϕ and Ei.

It is not difficult to see that XEi

θ = rEi

θ , where rEi

θ is the number of those Ei-classes
in A, whose M -counting types equal θ, and Y Ei

t =
∑

θ∈ΘEi θ(t) · rEi

θ is a nonnegative
integer solution of ΓΘ .

(⇐) Let the system ΓΘ constructed for Θ(ϕ,α0,ρ) = (ΘE1 , . . . ΘEk) with appropri-
ate α0 and ρ has a nonnegative integer solution: XEi

θ = rEi

θ and Y Ei
t = rEi

t .
First, we show how to build a model A |= ϕeq . Then, a model A′ |= ϕ, will be

obtained by taking an appropriate number of copies of A and setting the 2-types in a
simple way.

For every t ∈ α0, let nt = max
i

{rEi
t }. Observe that by (E0) and (E1a) or (E1b),

nt > 0. The structure A is constructed from some number of copies of the base set of
elements. The base set consists of exactly nt realizations of type t, for every t ∈ α0. Let
{a0, . . . al−1} be the elements of the base set. We put copies of elements from the base

On Finite Satisfiability of the Guarded Fragment 325

set into the nodes of a k-dimensional grid (recall that k is the number of equivalence
relation symbols): at location (x1, . . . , xk), for 0 ≤ xi < l, we put an element whose
1-type equals the 1-type of as, where s = (x1 + . . . + xk) mod l. Note that the set of
elements located on each line of the grid is exactly a copy of the base set. In Fig. 1 we
picture the desired arrangement of elements for l = 5 and k = 2.

a4 — a0 — a1 — a2 — a3

| | | | |
a3 — a4 — a0 — a1 — a2

| | | | |
a2 — a3 — a4 — a0 — a1

| | | | |
a1 — a2 — a3 — a4 — a0

| | | | |
a0 — a1 — a2 — a3 — a4

Fig. 1. Arrangement of elements on the two-dimensional grid

To settle properly the 2-types of elements in A we first observe that for every i, the
base set can be divided into

∑
θ∈ΘEi

rEi

θ disjoint parts, so that for each part P there exists

an exact counting type θ′, safely extending some θ ∈ ΘEi , such that the number of
elements of every atomic 1-type t in P equals θ′(t). The desired division is obtained as
follows. We create rEi

θ parts for every θ ∈ ΘEi . To each of this parts we put exactly θ(t)
elements of type t, for every t ∈ α0. Note, that, because of the choice of the numbers
nt, we have enough copies of elements of every type t. After this step we may have
some elements remaining. Observe, that due to inequalities of the form (E2), none of
the types of the remaining elements is royal for Ei. All the remaining elements of type
t are joined to a part which contains at least two elements of t. Note that such a part
exists due to inequalities of the form (E1b).

Now, horizontal lines of the grid are divided as above to form equivalence classes
of E1, vertical lines – to form classes of E2, lines going in the third dimension – to
form classes of E3, and so on. To define the structure on each of the classes we use
the fact that each variable XEi

θ in the system corresponds to an M -counting type θEi

admissible for ϕ and Ei and, (if necessary) part (i) of Lemma 1. We complete the
definition of A by setting all 2-types for pairs of elements not belonging to the same
class to binary-free types, i.e. 2-types containing ¬Rxy and ¬Ryx for every binary R
(including equivalence symbols).

To construct A′ we take three sets of copies of A, each consisting of h elements,
where h is the number of conjuncts of ϕ of the form (iv); we can suppose h > 0. This
step is reminiscent of the construction of the small model for FO2 [6].

Let A′ = A×{0, 1, . . . , h−1}×{0, 1, 2}. We set α((a, i, j)) = α(a) and β((a, i, j),
(b, i, j)) = β(a, b). Now we have to provide witnesses for all elements in A′ for
conjuncts of ϕ of the form (iv). This is done in a circular way: elements from A ×
{0, 1, . . . , h − 1} × {j} find witnesses in A × {0, 1, . . . , h − 1} × {j′}, where j′ =
j + 1 mod 3. Let us take for example an element (a, i, j). Let δ0, . . . , δh−1 be all con-
juncts of ϕ of the form (iv), δm = ∀x(p(x) → ∃y(q(x, y) ∧ ψ(x, y))). Let t = α(a).

326 E. Kieroński and L. Tendera

For 0 ≤ m < h we choose t′m ∈ α0, and sm ∈ β, whose existence is postulated by
inequality (E4). By an appropriate inequality of the form (E1a) or (E1b), t′m is real-
ized in A, say, by an element bm. We set β((a, i, j), (bm, m, j +1 mod 3)) := sm. This
circular scheme guarantees no conflict in setting 2-types, since a 2-type for a pair of
elements in A′ is defined at most once. We complete the structure by setting 2-types for
all remaining pairs of elements. Let ((a, i, j), (a′, i′, j′)) be such a pair. Let t = α(a),
t′ = α(b). Let s be the unique 2-type containing t(x), t(y) and negations of all binary
atoms. We set β((a, i, j), (a′, i′, j′)) := s. �

3.4 Size of Models and Complexity of Finite Satisfiability

We use the following lemma from [3], built on the classical result [14], to obtain an
upper bound on the size of the model constructed in part ⇐ of the proof of Lemma 2.

Lemma 3 (Calvanese). Let Γ be a system of m linear inequalities in n unknowns, and
let the coefficients and constants that appear in the inequalities be in {−a, . . . , a−1, a}.
If Γ admits a nonnegative integer solution, then it also admits one in which the values
assigned to the unknows are all bounded by (n + m) · (m · a)2m+1.

In our system ΓΘ the parameters a and m are at most exponential, and n – at most
doubly exponential in the size of the signature. For a given ϕ in normal form we may
consider the signature consisting only of relation symbols appearing in ϕ. Henceforth,
by Lemma 3, if ΓΘ has a solution, it has also one with values at most doubly exponential
in |ϕ|. Thus, in the proof of Lemma 2 we may choose a base set consisting of a double
exponential number of elements, obtaining finally a double exponential bound on the
size of the whole model. In the consequence, we can state the following theorem.

Theorem 1. Every finitely satisfiable GF2+EG-formula ϕ has a model of size at most
doubly exponential in |ϕ|.
The obtained bound on the size of finite models is essentially optimal – recall the for-
mula from Example 1, which has only models of at least double exponential size.

Theorem 1 immediately gives a 2NEXPTIME decision procedure for the finite sat-
isfiability problem for GF2+EG: guess a structure of at most double exponential size
and check, if it is a model for the input sentence. We show that we can do better.

Theorem 2. The finite satisfiability problem for GF2+EG is decidable in determinis-
tic double exponential time.

Proof. By Lemma 2, to check if a normal form GF2+EG-sentence ϕ has a finite model
it suffices to check if there exists Θ(ϕ,α0,ρ) such that ΓΘ has a nonnegative integer
solution.

To do this we enumerate all possible α0 and ρ, write the system ΓΘ for Θ =
Θ(ϕ,α0,ρ), check admissibility of each M -counting type in Θ and check if ΓΘ has a
nonnegative integer solution.

Observe that ΓΘ consists of inequalities of the form
∑
i cixi ≥ b, with b ≥ 0. So ΓΘ

has a nonnegative integer solution if and only if it has a nonnegative rational solution.

On Finite Satisfiability of the Guarded Fragment 327

(To get an integer solution, it suffices to take the rational solution and multiply it by the
product of all the denominators.)

Since linear programming is in PTIME, [10], we can check the existence of a non-
negative rational solution of ΓΘ in time doubly exponential w.r.t. |ϕ|.

All these gives a deterministic procedure working in double exponential time. �

We note that the best lower bound for the finite satisfiability problem for GF2+EG is
NEXPTIME. This bound is obtained for the fragment with one equivalence relation that
enjoys the finite model property [12].

4 Transitive Guards

In this section we show that every finitely satisfiable GF2+TG formula ϕ in normal
form has a model of size at most doubly exponential in |ϕ|. In the proof we essentially
use Theorem 1 and the model construction from the previous section for solutions of
systems of linear inequalities for appropriate tuples of M -counting types.

4.1 Basic Notions and Outline of the Construction

Let A be a finite model of ϕ. We construct a small model B |= ϕ. To follow the con-
struction it is not harmful to think that in A every pair of distinct elements is a member
of at most one transitive relation. The small model B will also have this property.

To construct B we first distinguish in A classes of elements forming T -cliques, for
every transitive T . If we remove from A nonsymmetric transitive connections then, in the
obtained structure A′, transitive relations behave like equivalence relations and transitive
cliques behave like equivalence classes. Obviously, A′ |= ϕsym. Then, for every M -
counting type θ of a T -class in A′, we apply the construction from the proof of part ⇐
of Lemma 2 to A′ and produce a bounded model of ϕsym containing at least a T -class
of M -counting type θ. This way, we obtain building blocks for the construction of B.

To be able to provide witnesses for conjuncts of the forms (vi) and (vii), we enrich
the counting types of classes of A with two subsets of 1-types, A and B, corresponding
to 1-types of elements located in A above, respectively below, elements of the class.
Additionally, we get out off A a finite bounded pattern for providing nonsymmetric
witnesses for each enriched counting type, called a graph of witnesses.

Finally, the model B is formed out of a number of the building blocks located on a
cylindrical surface and the nonsymmetric witnesses are provided in a regular manner
using the graphs of witnesses.

A T -clique in a structure C is a maximal set D of elements, such that ∀x, y ∈ D. C |=
x �= y → (Txy∧Tyx). Let C/T̂ be the set of all T -cliques in C. For a pair of T -cliques
D, D′ in C we write D <C

T D′ if for all a ∈ D, b ∈ D′, C |= Tab ∧ ¬Tba.

Definition 4. We say that a T -clique D ∈ A/T̂ has an enriched n-counting type θ̂ =
(θ,A,B) if:

(i) A�D has the n-counting type θ,
(ii) A = {t ∈ α : ∃a ∈ D, a′ ∈ A. α(a′) = t ∧ A |= T (a, a′) ∧ ¬T (a′, a)}

(iii) B = {t ∈ α : ∃a ∈ D, a′ ∈ A. α(a′) = t ∧ A |= T (a′, a) ∧ ¬T (a, a′)}

328 E. Kieroński and L. Tendera

Similarly to the previous section we are interested in enriched M -counting types for
M = 3|β|3. Let Θ̂T be the set of enriched M -counting types, and ΘT the set of M -
counting types, realized in A by T -cliques. In our new model B |= ϕ, for every enriched
M -counting type θ̂ = (θ,A,B) ∈ Θ̂T we will put a T -clique of type θ̂ = (θ,A′,B′),
such that A′ ⊆ A and B′ ⊆ B.

4.2 Structures for Symmetric Requirements

Lemma 4. For every transitive symbol T , for every θ̂ = (θ,A,B) ∈ Θ̂T there exists
C |= ϕsym, such that

(i) C contains a distinguished T -clique of M -counting type θ,
(ii) |C| is at most doubly exponential in |ϕ|,

(iii) all transitive symbols are interpreted as transitive and symmetric relations in C,
(iv) for every transitive T ′, and every M -counting type θ′ of a T ′-clique in C there

exists an enriched M -counting type θ̂′ = (θ′,A,B) ∈ Θ̂T ′
, for some A,B.

Proof. Note, that a model meeting requirements (i), (iii), (iv) exists: an example is Â –
a modification of A in which, in all 2-types, we substitute Txy∧¬Tyx or Tyx∧¬Txy
with ¬Txy ∧ ¬Tyx, for all transitive T .

Let α0 be the set of 1-types realized in Â, ΘT be the set of M -counting types
realized in Â by T -classes, ρi be the set of royal types for Ti-classes in Â, and ρ = ρ1,
ρ2, . . . , ρk. Let ΓΘ be the system of inequalities associated with Θ(ϕsym,α0,ρ). We
extend ΓΘ to Γ ′Θ by adding the inequality:

XT
θ > 0 (E5)

and the equality: ∑
(T,θ):θ �∈ΘT

XT
θ = 0. (E6)

Note, that Γ ′Θ has a nonnegative solution: the one corresponding to the model Â.
Now, using Lemma 3 and the construction from the proof of part ⇐ of Lemma 2, we
obtain C as desired. �

We apply Lemma 4 to every transitive T and θ̂ ∈ Θ̂T , obtaining structures CT
θ̂

. Addi-
tionally, we define a function enr on the cliques in these structures. If D is the distin-
guished T -clique in CT

θ̂
, then enr(D) = θ̂. In the other case let us assume that D is a

T ′-clique and let θ′ be the M -counting type of D. Choose any θ̂′ = (θ′,A,B) ∈ Θ̂T ′

as the value of enr(D). The purpose of enr(D) is to say, elements of which 1-types are
allowed to be connected to D by transitive relations from above and from below.

4.3 Graphs of Witnesses

In this subsection we define labeled multidigraphs which contain patterns for providing
nonsymmetric transitive witnesses. Nodes of these graphs are enriched M -types realized
in A. An edge from θ̂ to θ̂′, labeled with a triple of atomic types (t, t′, s), says that each

On Finite Satisfiability of the Guarded Fragment 329

element of 1-type t from a clique of type θ̂ should look for a witness of 1-type t′ in a
clique of type θ̂′, and that the element and its witness should be connected by the 2-type s.

We construct independently two graphs for each transitive symbol T . The first of
them says where to look for witnesses for formulas with guards of the form (vii)
∀x(p(x) → ∃y(Tyx ∧ ¬Txy ∧ ψ(x, y))), i.e. lower witnesses. The second – for for-
mulas of the form (vi) ∀x(p(x) → ∃y(Txy ∧ ¬Tyx ∧ ψ(x, y))), i.e. upper witnesses.

We show how to build a graph of lower witnesses for relation T , GT
<. A graph of up-

per witnesses, GT
>, can be constructed similarly. Formally, GT

< = (Θ̂T , E, lab), where
lab, is a labeling of edges lab : E → α×α×β. We will construct GT

< in steps, start-
ing with E = ∅. During the construction we define a partial function f : Θ̂T → A/T̂ ,
associating with each enriched M -counting type a T -clique in A. When the whole con-
struction is completed, f will be a total function. Additionally we use a marking of
vertices. Initially all vertices are unmarked.

1. Choose any unmarked vertex θ̂ from Θ̂T . Find a T -clique D in A such that the
enriched M -counting type of D is θ̂ and there is no T -clique D′ of type θ̂ in A,
such that D′ <A

T D. The existence of the desired clique D is implied by finiteness
of A. Set f(θ̂) = D.

2. Repeat the following steps as long as possible:
(a) Choose an unmarked θ̂ = (θ,A,B) ∈ Θ̂T for which f is defined, let D =

f(θ̂).
(b) For every conjunct of the form (vii): ∀x(p(x) → ∃y(Tyx∧¬Txy∧ψ(x, y))),

and every 1-type t appearing in θ, t = α(a) for some a ∈ D, such that t |=
p(x):

i. Find b ∈ A, such that A |= Tba ∧ ¬Tab ∧ ψ(a, b).
ii. Find c ∈ A, such that α(b) = α(c), A |= Tca ∧ ¬Tac and there is no d

such that α(d) = α(c) and A |= Tdc ∧ ¬Tcd. Again, such a c exists since
A is finite. Please note, that it is not necessary that A |= ψ(a, c).

iii. Let D′ be the T -clique of c, and θ̂′ be its enriched M -counting type.
Set f(θ̂′) = D′. Add to E an edge e from θ̂ to θ̂′, and set lab(e) =
(α(a), α(b), β(a, b)).

(c) Mark θ̂.
3. If there is an unmarked vertex in GT

< then go to 1.

We note two properties of graphs of lower witnesses, shared also by graphs of upper
witnesses.

Fact 1. GT
< is an acyclic graph.

Proof. Assume to the contrary, that there exists a cycle θ̂1, θ̂2, . . . , θ̂l, θ̂1. But then
f(θ̂2) <A

T f(θ̂1), f(θ̂3) <A
T f(θ̂2), f(θ̂1) <A

T f(θ̂l). Thus, from transitivity of T ,
f(θ̂1) <A

T f(θ̂1), which is impossible. �

Fact 2. Every path in GT
< has length at most |α|.

Proof. Let θ̂1, θ̂2, . . . , θ̂l form a path in GT
<. Assume that θ̂i = (θi,Ai,Bi). Our con-

struction implies that B1 ⊇ B2 ⊇ . . . ⊇ Bl. In fact, the choice of c in step 2(b)ii., as a

330 E. Kieroński and L. Tendera

farthest element of the required 1-type, guarantees, that the above set containments are
strict. Since B1 ⊆ α we have the desired bound on l. �

4.4 Model Construction

Universe. Let K = 2|α| + 1. Let m be the maximal degree of a vertex in all graphs
of lower and upper witnesses. Note that K and m are exponential in |σ|. We define the
universe of B to be

B = {0, . . . , K − 1} × {0, . . . , 3} × {1, . . . , m} ×
·⋃

T∈σ,θ̂∈Θ̂T

CT
θ̂

.

Thus, if we assume that σ consists only of symbols appearing in ϕ, |B| is at most doubly
exponential in |ϕ|. We can think that B consists of K rows and 4 columns, and that the
intersection of each row and each column contains m copies of each CT

θ̂
. In fact, we

glue row K − 1 to row 0 obtaining thus a cylindrical surface.
Initially, we impose appropriate structures on copies of CT

θ̂
. For a ∈ CT

θ̂
let us set

α(i, j, l, a) := α(a), and for a, b ∈ CT
θ̂

, set β((i, j, l, a), (i, j, l, b)) := β(a, b).

General scheme of providing witnesses. Now we provide, for all elements, witnesses
for all formulas with nonsymmetric transitive guards, i.e. formulas of the form (vi) and
(vii). This is done in a regular manner. Elements from row i find their lower witnesses
in the row i+1(mod K), and their upper witnesses in the row i−1(mod K). Elements
from column j look for their lower witnesses in column l(j) and for their upper wit-
nesses in column u(j), where l, u : {0, 1, 2, 3} → {0, 1, 2, 3} are defined as follows:
l(0) = l(2) = 0, l(1) = l(3) = 1, u(0) = u(3) = 3, u(1) = u(2) = 2. This strategy
guarantees two important properties. First, there will be no pair of elements a, b such
that a use b as a lower witness and b use a as an upper witness (since both ud and du
have no fixed points). Second, none of the cliques will be used as a source for both a
lower witness and an upper witness (since u and d have disjoint images).

Example of providing witnesses. Let us consider explicitly the case of, say, providing
lower T -witnesses for element (5, 1, 3, a), where a ∈ CT ′

θ̂′
. Let D be the T -clique of

a in CT
′

θ̂′
. Let θ̂ = enr(D). The outlined strategy says that lower witnesses should be

looked for in row 6, column 1. Let Fw = {F1, F2, . . . Fl} be the set of edges in GT
<

outgoing from the vertex θ̂. Note that l ≤ m. Let Fi goes to θ̂i, let lab(Fi) = (αi, α′i, β).
For each i ≤ m, such that αi = α(a), choose an element a′ in {6} × {1} × {i} × CT

θ̂i

of type α′i. Set β(a, a′) := β.
In a similar way we provide lower and upper witnesses for all elements in B.

Transitive closure. During the step of providing witnesses we defined 2-types contain-
ing nonsymmetric transitive connections between some pairs of elements. We say that
there exists a T -path from T -clique D′ to a T -clique D in B if there exists a sequence
of T -cliques D = D0, D1, . . . Dl−1, Dl = D′ such that for every pair Di, Di+1 we
defined a lower T -witness for an element from Di in Di+1 or an upper T -witness for
an element from Di+1 in Di.

On Finite Satisfiability of the Guarded Fragment 331

If there exists a T -path, for some transitive T , from D to D′, then we make D′ <B
T

D. For every a′ ∈ D′, a ∈ D, if the 2-type for a′ and a is not defined, then let t′ be the
1-type of a′ and t – the 1-type of a. We choose any 2-type s(x, y) realized in A, such
that s(x, y) |= Txy ∧ ¬Tyx ∧ t′(x) ∧ t(y), and set β(a′, a) := s.

The following claim shows that nothing bad can happen during this step. Part (i)
implies, that finding a required s(x, y) in A is always possible. Part (ii) says, that we
have not created a T -path from a T -clique D to the same clique D, i.e. we have not
formed a T -cycle. Part (iii) says, that setting 2-types can be done without conflicts.

Claim (OK).
(i) Assume that, after the step of providing nonsymmetric witnesses, there is a T -path

from D to D′ in B. Let a′ ∈ D′, a ∈ D, t′ = α(a′), t = α(a). Then there
exist elements c′, c ∈ A whose 1-types are t′ and t, respectively, such that A |=
Tc′c ∧ ¬Tcc′.

(ii) Let D0, D1, . . . , Dl be a T -path from D0 to Dl in B. Then l ≤ 2|α|, i.e. l < K .
(iii) If an element a ∈ B belongs to a T -clique D, b ∈ B belongs to a T -clique D′

and there is a T -path from D to D′, then there is no pair C, C′ of T ′-cliques with
T �= T ′, such that a ∈ C, b ∈ C′ and there is a T ′-path from C to C′, or a T ′-path
from C′ to C.

We skip the proof of this claim. We note only that in the proof of part (iii) we use the
fact that both uidj and diuj have no fixed points (for i, j > 0).

Remaining 2-types. For every pair of elements a, a′ ∈ B for which we have not
defined a 2-type yet, we set it to be the unique binary free type containing 1-types of a
and a′. This step completes the construction of the structure B.

4.5 Complexity

The construction from the previous section allows us to state the following theorems.

Theorem 3. Every finitely satisfiable GF2+TG formula ϕ has a model of size at most
doubly exponential in |ϕ|.
Theorem 4. The finite satisfiability problem for GF2+TG is decidable in 2NEXP-
TIME.

The best lower complexity bound we know is 2EXPTIME and can be obtained in the
presence of just one transitive symbol, exactly as in [11], where (unrestricted) satisfia-
bility problem for GF2+TG was concerned.

References

1. Andréka, H., van Benthem, J., Németi, I.: Modal Languages and Bounded Fragments of
Predicate Logic, ILLC Research Report, 1996. Journal ver.: J. Philos. Logic 27(3), 217–274
(1998)

2. Bojańczyk, M.: Two–way alternating automata and finite models. In: Widmayer, P., Triguero,
F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS,
vol. 2380, pp. 833–844. Springer, Heidelberg (2002)

332 E. Kieroński and L. Tendera

3. Calvanese, D.: Unrestricted and finite model reasoning in class-based representation for-
malisms, Ph.D. thesis, Dipartimento di Informatica e Sistemistica, Universitaa di Roma ”La
Sapienza” (1996)

4. Grädel, E.: On the Restraining Power of Guards. Journal of Symbolic Logic 64, 1719–1742
(1999)

5. Grädel, E.: Decision procedures for guarded logics. In: Ohsuga, S., Raś, Z.W. (eds.) ISMIS
2000. LNCS (LNAI), vol. 1932, pp. 31–51. Springer, Heidelberg (2000)

6. Grädel, E., Kolaitis, P., Vardi, M.: On the Decision Problem for Two-Variable First Order
Logic. Bulletin of Symbolic Logic 3(1), 53–96 (1997)

7. Grädel, E., Walukiewicz, I.: Guarded fixed point logic. In: Fourteenth Annual IEEE Sympo-
sium on Logic in Computer Science, pp. 45–54. IEEE Computer Society Press, Los Alamitos
(1999)

8. Hodkinson, I.: Loosely guarded fragment of first-order logic has the finite model property.
Studia Logica 70, 205–240 (2002)

9. Hodkinson, I., Otto, M.: Finite conformal hypergraph covers, with two applications. Bull.
Symbolic Logic 9, 387–405 (2003)

10. Khachiyan, L.G.: A polynomial algorithm in linear programming. Soviet Mathematics Dok-
lady 20, 191–194 (1979)

11. Kieroński, E.: The Two-Variable Guarded Fragment with Transitive Guards is 2EXPTIME-
Hard. In: Gordon, A.D. (ed.) ETAPS 2003 and FOSSACS 2003. LNCS, vol. 2620, pp. 299–
312. Springer, Heidelberg (2003)

12. Kieroński, E.: Results on the Guarded Fragment with Equivalence or Transitive Relations.
In: Ong, L. (ed.) CSL 2005. LNCS, vol. 3634, pp. 309–324. Springer, Heidelberg (2005)

13. Kieroński, E., Otto, M.: Small Substructures and Decidability Issues for First-Order Logic
with Two Variables. In: Proc. of 20-th IEEE Symp. on Logic in Computer Science (LICS),
pp. 448–457. IEEE Computer Society Press, Los Alamitos (2005)

14. Papadimitriou, Ch.: On the Complexity of Integer Programming. Journal of ACM 28(4),
765–786 (1981)

15. Pratt-Hartmann, I.: Complexity of the guarded two-variable fragment with counting quanti-
fiers. Journal of Logic and Computation 17(1), 133–155 (2007)

16. Szwast, W., Tendera, L.: On the decision problem for the guarded fragment with transitiv-
ity. In: Proc. 16th IEEE Symposium on Logic in Ccomputer Science, pp. 147–156. IEEE
Computer Society Press, Los Alamitos (2001)

17. Szwast, W., Tendera, L.: The Guarded Fragment with Transitive Guards. Annals of Pure and
Applied Logic 128, 227–276 (2004)

18. Szwast, W., Tendera, L.: On the Finite Satisfiability Problem For the Guarded Fragment with
Transitivity. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835, pp.
307–321. Springer, Heidelberg (2005)

19. van Benthem, J.: Dynamics bits and pieces. ILLC Research Report LP-97-01, University of
Amsterdam (1997)

Data Complexity in the EL Family of Description Logics

Adila Krisnadhi1 and Carsten Lutz2

1 Faculty of Computer Science, University of Indonesia
adila@cs.ui.ac.id

2 Institute for Theoretical Computer Science, TU Dresden, Germany
lutz@tcs.inf.tu-dresden.de

Abstract. We study the data complexity of instance checking and conjunctive
query answering in the EL family of description logics, with a particular em-
phasis on the boundary of tractability. We identify a large number of intractable
extensions of EL, but also show that in ELIf , the extension of EL with inverse
roles and global functionality, conjunctive query answering is tractable regarding
data complexity. In contrast, already instance checking in EL extended with only
inverse roles or global functionality is EXPTIME-complete regarding combined
complexity.

1 Introduction

In recent years, lightweight description logics (DLs) have experienced increased in-
terest because they admit highly efficient reasoning on large-scale ontologies. Most
prominently, this is witnessed by the ongoing research on the DL-Lite and EL families
of DLs (see also [12,16] for other examples). The main application of EL and its rel-
atives is as an ontology language [6,2,4]. In particular, the DL EL++ proposed in [2]
admits tractable reasoning while still providing sufficient expressive power to represent,
for example, life-science ontologies. In contrast, the DL-Lite family of DLs is specifi-
cally tailored towards applications with a massive amount of instance data [9,7,8,1]. In
such applications, instance checking and conjunctive query answering are the most rele-
vant reasoning services and should thus be computationally cheap, preferably tractable.
When determining the computational complexity of these tasks for a given DL, it is
often realistic to consider data complexity, where the size of the input is measured only
in terms of the ABox (which represents instance data), but not in terms of the TBox
(which corresponds to the schema) and the query, as the latter both tend to be small
compared to the former. This is in contrast to combined complexity, where also the size
of the TBox and query are taken into account.

The aim of this paper is to study the EL family of DLs in the light of data inten-
sive applications. To this end, we analyze the data complexity of instance checking and
conjunctive query answering in extensions of EL. For the DL-Lite family, such an inves-
tigation has been carried out e.g. in [8,1], with complexities ranging from LOGSPACE-
complete to coNP-complete. It follows from the results in [8] that we cannot expect
the data complexity to be below PTIME for members of the EL family (at least in the
presence of so-called general TBoxes, i.e., sets of GCIs). The reason is that, in a crucial
aspect, DL-Lite is even more lightweight than EL: in contrast to EL, DL-Lite does not

N. Dershowitz and A. Voronkov (Eds.): LPAR 2007, LNAI 4790, pp. 333–347, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

334 A. Krisnadhi and C. Lutz

Table 1. Syntax and semantics of relevant DL constructors

Name Syntax Semantics

top � ΔI

conjunction C �D CI ∩DI

existential restriction ∃r.C {x ∈ ΔI | ∃y ∈ ΔI : (x, y) ∈ rI ∧ y ∈ CI}
atomic negation ¬A ΔI \AI

disjunction C �D CI ∪DI

sink restriction ∀r.⊥ {x | ¬∃y : (x, y) ∈ rI}
value restriction ∀r.C {x | ∀y : (x, y) ∈ rI → y ∈ CI}
at-least restriction (� k r) {x | #{y ∈ ΔI | (x, y) ∈ rI} ≥ k}
at-most restriction (� k r) {x | #{y ∈ ΔI | (x, y) ∈ rI} ≤ k}
inverse roles ∃r−.C {x | ∃y : (y, x) ∈ rI ∧ y ∈ CI}
role negation ∃¬r.C {x | ∃y ∈ ΔI : (x, y) /∈ rI ∧ y ∈ CI}
role union ∃r ∪ s.C {x | ∃y ∈ ΔI : (x, y) ∈ rI ∪ sI ∧ y ∈ CI}
transitive closure ∃r+.C {x | ∃y ∈ ΔI : (x, y) ∈ (rI)+ ∧ y ∈ CI}

allow for qualified existential (neither universal) restrictions, and thus the interaction
between different domain elements is very limited. When analyzing the data complex-
ity of instance checking and conjunctive query answering in EL and its extensions, we
therefore concentrate on mapping out the boundary of tractability.

We consider a wide range of extensions of EL, and analyze the data complexity of the
mentioned tasks with acyclic TBoxes and with general TBoxes. When selecting exten-
sions of EL, we focus on DLs for which instance checking has been proved intractable
regarding combined complexity in [2]. We show that, in most of these extensions, in-
stance checking is also intractable regarding data complexity. The notable exceptions
are EL extended with globally functional roles and EL extended with inverse roles. It
is shown in [3] that instance checking in these DLs is EXPTIME-complete regarding
combined complexity. On the other hand, it follows from results in [12] that instance
checking is tractable regarding data complexity in ELIf , the extension of EL with both
globally functional and inverse roles. In this paper, we extend this result to conjunctive
query answering in ELIf , and show that this problem is still tractable regarding data
complexity.

2 Preliminaries

In DLs, concepts are inductively defined with the help of a set of constructors, starting
with a set NC of concept names and a set NR of role names. In EL, concepts are formed
using the three topmost constructors in Table 1. There and in general, we use r and s
to denote role names, A and B to denote concept names, and C, D to denote concepts.
The additional constructors shown in Table 1 give rise to extensions of EL. We use
canonical names to refer to such extensions, writing e.g. EL∀r.⊥ for EL extended with

Data Complexity in the EL Family of Description Logics 335

sink restrictions and ELC�D for EL extended with disjunction. Since we perform a
very fine grained analysis, EL(≤kr) means the extension of EL with (≤ k r) for some
fixed k ≥ 0 (but not for some fixed r).

In DLs, TBoxes are used to represent general knowledge about an application do-
main, and thus play the role of an ontology. We introduce two different forms of TBoxes.
An acyclic TBox T is a finite set of concept equations A

.= C such that the left-hand
sides are unique and there are no cycles, i.e., if {A0

.= C0, . . . , An−1
.= Cn−1} ⊆ T

then for some i ≤ n, Ai does not occur in Ci+1 where An := A0 and Cn := C0. A
general TBox is a finite set of concept inclusions C � D (often called GCIs). Every
concept equation A

.= C can be written as two inclusions A � C and C � A, and thus
general TBoxes subsume acyclic ones. ABoxes are used to represent instance data. Let
NI be a set of individual names. An ABox is a finite set of expressions A(a) and r(a, b),
where a and b are from NI (here and in what follows). Observe that we disallow complex
concepts in the ABox, as usual when studying data complexity.

The semantics of EL and its extensions is defined in terms of interpretations I =
(ΔI , ·I). The domain ΔI is a non-empty set and the interpretation function ·I maps
each concept name A ∈ NC to a subset AI of ΔI , each role name r ∈ NR to a binary
relation rI on ΔI , and each individual name a ∈ NI to a domain element aI ∈ ΔI .
The extension of ·I to complex concepts is inductively defined as shown in the third
column of Table 1, where #S denotes the cardinality of the set S. An interpretation
I satisfies an equation A

.= C iff AI = CI , an inclusion C � D iff CI ⊆ DI , an
assertion C(a) iff aI ∈ CI , and an assertion r(a, b) if (aI , bI) ∈ rI . It is a model of a
TBox T (ABox A) if it satsfies all equations/inclusions in T (assertions in A).

We will also consider ELkf , the extension of EL with k-functional roles, i.e., roles
for which every domain element can have at most k successors. In ELkf , there are no
additional concept constructors that may be used to build up complex concepts. Instead,
a new kind of expression � � (≤ k r) is allowed in the TBox. These expressions can
be understood as global at-most restrictions, in contrast to the local at-most restrictions
shown in Table 1. An interpretation I satisfies � � (≤ k r) if |{e | (d, e) ∈ rI}| ≤ k
for all d ∈ ΔI . Instead of 1-functional roles, we will speak of functional roles as usual.

The two main inference problems considered in this paper are instance checking and
conjunctive query entailment. An individual name a is an instance of a concept C w.r.t.
an ABox A and a TBox T (written A, T |= C(a)) iff aI ∈ CI in all models I of A
and T . The instance problem is to decide, given a, C, A and T , whether A, T |= C(a).

Conjunctive query entailment is the decision problem corresponding to conjunctive
query answering, which is a search problem. A conjunctive query is a set q of atoms
C(v) and r(u, v), where u, v are variables. We use Var(q) to denote the variables used
in q. If I is an interpretation and π is a mapping from Var(q) to ΔI , we write I |=π

C(v) if π(v) ∈ CI , I |=π r(u, v) if (π(u), π(v)) ∈ rI , I |=π q if I |=π α for all
α ∈ q, and I |= q if I |=π q for some π. Finally, A, T |= q means that for all models
I of the ABox A and the TBox T , we have I |= q. Now, conjunctive query entailment
is to decide given A, T , and q, whether A, T |= q.

It is not hard to see that, in EL, instance checking is a special case of conjunctive
query entailment, as every EL-concept C can be converted into a tree-shaped query.
Note that we do not partition the variables in a conjunctive query into answer variables

336 A. Krisnadhi and C. Lutz

and existentially quantified variables as usual. Since we are dealing with query entail-
ment instead of query answering, this distinction is meaningless. Also observe that we
do not allow individual names in conjunctive queries in place of variables. It is well-
known that individual names in the query can be simulated by concept names with only
a linear blowup of the input, see for example [10] for details.

The last preliminary worth mentioning is the unique name assumption (UNA), which
requires that for all a, b ∈ NI with a �= b, we have aI �= bI . Most of our results do
not depend on the UNA. Whenever they do, we will state explicitly whether the UNA
is adopted or not.

3 Lower Bounds

We show that, in almost all extensions of EL introduced in Section 2, instance checking
is co-NP-hard regarding data complexity. All our lower bounds assume only acyclic
TBoxes.

For the sake of completeness, we note that the case where there is no TBox is not
very interesting: because only concept names are admitted in the ABox, the additional
concept constructors can then only occur in the query (which is a concept in the case of
instance checking and a conjunctive query otherwise). In most cases (such as EL(¬) and
EL∀r.C), this means that no query which contains the additional constructor is entailed
by any ABox. Thus, there is a trivial reduction to query answering in basic EL. In other
cases such as ELC�D, it is easily shown that conjunctive query containment is tractable
regarding data complexity. A notable exception is ELkf , k ≥ 2, for which instance
checking is coNP-complete already without TBoxes (as is proved below).

3.1 Basic Cases

In [19], Schaerf proves that instance checking in EL¬A is co-NP-hard regarding data
complexity. He uses a reduction from a variant of SAT that he calls 2+2-SAT. Our
lower bounds for extensions of EL are obtained by variations of Schaerf’s reduction.
For this reason, we start with repeating the original reduction of Schaerf. Before we go
into detail, a remark on EL¬A is in order. In this extension of EL, the application of
negation is restricted to concept names. However, full negation can easily be recovered
using acyclic TBoxes: instead of writing ¬C, we may write ¬A and add a concept
equation A

.= C, with A a fresh concept name. Thus, we restrict the use of negation
even further, namely to concept names that do not occur on the left-hand side of any
concept equation in the (acyclic) TBox. As we shall see shortly, the TBoxes required
for our lower bound are actually of very simple form.

A 2+2 clause is of the form (p1 ∨ p2 ∨ ¬n1 ∨ ¬n2), where each of p1, p2, n1, n2 is
a propositional letter or a truth constant 1, 0. A 2+2 formula is a finite conjunction of
2+2 clauses. Now, 2+2-SAT is the problem of deciding whether a given 2+2 formula is
satisfiable. It is shown in [19] that 2+2-SAT is NP-complete.

Let ϕ = c0 ∧ · · · ∧ cn−1 be a 2+2-formula in m propositional letters q0, . . . , qm−1.
Let ci = pi,1 ∨ pi,2 ∨ ¬ni,1 ∨ ¬ni,2 for all i < n. We use f , the propositional letters
q0, . . . , qm−1, the truth constants 1, 0, and the clauses c0, . . . , cn−1 as individual names.

Data Complexity in the EL Family of Description Logics 337

Define the TBox T as {A .= ¬A} and the ABox Aϕ as follows, where c, p1, p2, n1,
and n2 are role names:

Aϕ := {A(1), A(0)} ∪
{c(f, c0), . . . , c(f, cn−1)} ∪⋃
i<n{p1(ci, pi,1), p2(ci, pi,2), n1(ci, ni,1), n2(ci, ni,2)}

It should be obvious that Aϕ is a straightforward representation of ϕ. Models of Aϕ

and T represent truth assignments for ϕ by way of setting qi to true if qi ∈ AI and

to false if qi ∈ A
I

. Since I is a model of T , this truth assignment is well-defined. Set
C := ∃c.(∃p1.A ∃p2.A ∃n1.A ∃n2.A). Intuitively, C expresses that ϕ is not
satisfied, i.e., there is a clause in which the two positive literals and the two negative
literals are all false. It is not hard to show the following.

Lemma 1 (Schaerf). Aϕ, T �|= C(f) iff ϕ is satisfiable.

Thus, instance checking in EL¬A w.r.t. acyclic TBoxes is co-NP-hard regarding data
complexity.

This reduction can easily be adapted to EL∀r.⊥. In all interpretations I, ∃r.� and
∀r.⊥ partition the domain ΔI and can thus be used to simulate the concept name A and
its negation ¬A in the original reduction. We can thus simply replace the TBox T with
T ′ := {A .= ∃r.�, A

.= ∀r.⊥}.

In some extensions of EL, we only find concepts that cover the domain, but not
necessarily partition it. An example is EL(≤kr), k ≥ 1, in which ∃r.� and (≤ k r)
provide a covering (for k = 0, observe that (≤ k r) is equivalent to ∀r.⊥). Interestingly,
this does not pose a problem for the reduction. In the case of EL(≤kr), we use the TBox
T := {A .= ∃r.�, A

.= (≤ k r)}, and the ABox Aϕ as well as the query concept C
remain unchanged. Let us show that

Lemma 2. Aϕ, T �|= C(f) iff ϕ is satisfiable.

Proof. “if”. This direction is as in the proof of Lemma 1. Let t be a truth assignment
satisfying ϕ. Define an interpretation I as follows:

ΔI := {f, c0, . . . , cn−1, q0, . . . , qm−1, 0, 1, d}
cI := {(f, c0), . . . , (f, cn−1)}
pIj := {(c0, p0,j), . . . , (cn−1, pn−1,j)}
nIj := {(c0, n0,j), . . . , (cn−1, nn−1,j)}
AI := {1} ∪ {qi | i < m and t(qi) = 1}
A
I

:= ΔI \ AI

rI := {(e, d) | e ∈ AI}
All individual names are interpreted as themselves. It is not hard to verify that I is a
model of Aϕ and T , and that f /∈ CI .

“only if”. Here we need to deal with the non-disjointness of ∃r.� and (≤ k r). Let I
be a model of Aϕ and T such that f /∈ CI . Define a truth assignment t by choosing
for each propositional letter qi, a truth value t(qi) such that t(qi) = 1 implies qIi ∈ A

338 A. Krisnadhi and C. Lutz

and t(qi) = 0 implies qIi ∈ A. Such a truth assignment exists since A and A cover
the domain. However, it is not necessarily unique since A and A need not be disjoint.
To show that t satisfies ϕ, assume that it does not. Then there is a clause ci = (pi,1 ∨
pi,2 ∨ ¬ni,1 ∨ ¬ni,2) that is not satisfied by t. By definition of t, pi,1, pi,2 ∈ A

I
and

ni,1, ni,2 ∈ AI . Thus cIi ∈ (∃p1.A ∃p2.A ∃n1.A ∃n2.A)I and we get f ∈ CI ,
which is a contradiction. ❏

The cases EL∀r.C and EL∃¬r.C can be treated similarly because a covering of the do-
main can be achieved by choosing the concepts ∃r.� and ∀r.X in the case of EL∀r.C ,
and ∃r.� and ∃¬r.� in the case of EL∃¬r.C . In the case, ELC�D, we use a TBox
T ′ := {V .= X � Y }. In all models of T ′, the extension of V is covered by the con-
cepts X and Y . Thus, we can use the above ABox Aϕ, add V (qi) for all i < m, and
use the TBox T := T ′ ∪ {A .= X, A

.= Y } and the same query concept C as above.

The case EL∃r+.C is quite similar. In all models of the TBox T ′ := {V .= ∃r+.C}, the
extension of V is covered by the concepts ∃r.C and ∃r.∃r+.C. Thus, we can use the
same ABox and query concept as for ELC�D, together with the TBox T := T ′∪{A .=
∃r.C, A

.= ∃r.∃r+.C}.

Theorem 1. For the following, instance checking w.r.t. acyclic TBoxes is co-NP-hard
regarding data complexity: EL¬A, EL∀r.⊥, EL∀r.C , EL∃¬r.C , ELC�D, EL∃r+.C , and
EL(≤kr) for all k ≥ 0.

For EL∀r.⊥, EL∀r.C , and ELC�D, co-NP-hardness of conjunctive query containment
w.r.t. general TBoxes has been established in [8]. It seems likely that the proofs (which
are not given in detail) actually apply to instance checking and acyclic TBoxes.

3.2 Cases that Depend on the UNA

The results in the previous subsection are independent of whether or not the UNA is
adopted. In the following, we consider some cases that depend on the (non-)UNA, start-
ing with EL(≥k r).

In EL(≥k r), k ≥ 2, it does not seem possible to find two concepts that a priori cover
the domain and can be used to represent truth values in truth assignments. However, if
we add slightly more structure to the ABox, such concepts can be found. We treat only
the case k = 3 explicitly, but it easily generalizes to other values of k as long as k ≥ 2.
Consider the following auxiliary ABox, also shown in Figure 1.

A = {r(a, b1), r(a, b2), r(a, b3), r(b1, b2), r(b2, b3), r(b1, b3)}.
Without the UNA, there are two cases for models of A: either two of b1, b2, b3 identify
the same domain element or they do not. In the first case, a satisfies ∃r4.�, where ∃r4

denotes the four-fold nesting of ∃r. In the second case, a satisfies (≥ 3 r). It follows
that we can reduce satisfiability of 2+2 formulas using a reduction very similar to the
one for EL(≤k r). The main differences are that (i) a copy of A is plugged in for each
qi, with a replaced by qi and (ii) we use the TBox T := {A .= ∃r4.�, A

.= (≥ 3 r)}.

Unlike the previous results, this lower bound clearly depends on the fact that the
UNA is not adopted. If the UNA is adopted, we can prove the same result using a

Data Complexity in the EL Family of Description Logics 339

a

r r r

b1 b3
r r

b2

r

Fig. 1. Auxiliary ABox A for EL(≥ 3 r) without UNA

different auxiliary ABox. Again, we only treat the case k = 3, which easily generalizes.
Let

A′ = {r(a, b1), r(a, b2), V (a), A(b1), A(b2)}
and consider the TBox T ′ = {V .= ∃r.B}. In every model I of A′ and T ′, there
is a d ∈ BI such that (aI , d) ∈ rI . We can distinguish two cases: if d = bi for
some i ∈ {1, 2}, then a satisfies ∃r.(A B). Otherwise, a satisfies (≥ 3 r). We can
now continue the reduction as in the previous cases. Start with the ABox Aϕ from the
reduction for EL¬A, add V (qi) for all i < m and a copy of A′ for each qi, with a
replaced by qi. Then use the TBox T = T ′ ∪ {A .= ∃r.(A B), A .= (≥ 3 r)} and the
original query concept C. Observe that this reduction does not work without the UNA.

Theorem 2. For EL(≥k r) with k ≥ 2, instance checking w.r.t. acyclic TBoxes is co-
NP-hard regarding data complexity, both with and without the UNA.

Another case that depends on the (non-)UNA is ELkf with k ≥ 2. We start with proving
coNP-hardness provided that the UNA is not adopted. For the case EL1f , we will prove
in Section 4 that instance checking (and even conjunctive query entailment) is tractable
regarding data complexity, with or without the UNA. For simplicity, we only treat the
case EL2f explicitly. It is easy to generalize our argument to larger values of k. Like in
EL(≥3r), in EL2f it does not seem possible to find two concepts that cover the domain
without providing additional structure via an ABox. Set

A′′ = {r(a, b1), r(a, b2), r(a, b3), r(b1, b2), A(b1), A(b2), B(b3)}}.

where r is 2-functional and thus at least two of b1, b2, b3 have to identify the same do-
main element. A graphical representation is given in Figure 2. Regarding models of A′′,
we can distinguish two cases: either b3 is identified with b1 or b2, then a satisfies ∃r.(A
B). Or b1 and b2 are identified, then a satisfies ∃r3.�, where ∃r3 denotes the three-fold
nesting of ∃r. It follows that we can reduce satisfiability of 2+2 formulas using a re-
duction very similar to that for EL(≥3r) above. Observe that we do not need a TBox at
all to make this work. We take the original ABox Aϕ defined for EL¬A, add a copy of
A′′ for each qi with a replaced by qi, and replace A(1) with {r(1, e), A(e), B(e)} and
A(0) with {r(0, e0), r(e0, e1), r(e1, e2)}. Thus, 1 satisfies ∃r.(A B) (representing
true) and 0 satisfies ∃r3.� (representing false). It remains to modify the query concept
to C′ := ∃c.(∃p1.∃r3.� ∃p2.∃r3.� ∃n1.∃r.(A B) ∃n2.∃r.(A B)).

340 A. Krisnadhi and C. Lutz

a

r r r

b1 b3
r b2

A A B

Fig. 2. Auxiliary ABox A′′ for EL2f without UNA

With the UNA and without TBoxes, instance checking in ELkf , k ≥ 2 is tractable
regarding data complexity. The same holds for conjunctive query answering. In a nut-
shell, a polytime algorithm is obtained by considering the input ABox as a (complete)
description of an interpretation and then checking all possible matches of the conjunc-
tive query. A special case that has to be taken into account are inconsistent ABoxes such
as those containing {r(a, b1), r(a, b2), r(a, b3)} for a 2-functional role r and with the
bi mutually distinct. Such inconsistencies are easily detected. If found, the algorithm
returns “yes” because an inconsistent ABox entails every consequence.

If we add acyclic TBoxes, instance checking in ELkf , k ≥ 2, becomes co-NP-hard
also with the UNA. We only treat the case k = 3, but our arguments generalize. As
in the case of EL2f without UNA, we have to give additional structure to the ABox.
Consider the TBox T ′′ = {V .= ∃r.B} and the ABox

A′′′ = {V (a), r(a, b1), r(a, b2), r(a, b3), s(a, b1), s′(a, b2), s′(a, b3)}.

with r a 3-functional role. Then a satisfies ∃r.B in all models I of A′′′ and T ′′. Because
of the UNA, we can distinguish two cases: either b1 satisfies B or one of b2, b3 does.
In the first case, a satisfies ∃s.B and in the second case, it satisfies ∃s′.B. We can then
continue the reduction as in the previous cases.

Theorem 3. For ELkf with k ≥ 2, instance checking is

– tractable w.r.t. the empty TBox and with UNA;
– co-NP-hard in the following cases: (i) w.r.t. the empty TBox and without UNA, and

(ii) w.r.t. acyclic TBoxes and with UNA.

4 Upper Bound

The only remaining extensions of EL introduced in Section 2 are EL∃r−.C and EL1f .
For both of them, instance checking w.r.t. general TBoxes is EXPTIME-complete re-
garding combined complexity [2]. In this section, we consider the union ELIf of
EL∃r−.C and EL1f , i.e., the extension of EL with both inverse roles and globally func-
tional roles. It follows from the results on Horn-SHIQ in [12] that instance checking
in ELIf w.r.t. general TBoxes is tractable regarding data complexity. A direct proof
can be found in [14]. Here, we show that even conjunctive query answering in ELIf is
tractable regarding data complexity.

Data Complexity in the EL Family of Description Logics 341

An inverse role is an expression r− with r a role name. The interpretation of an
inverse role is (r−)I = {(e, d) | (d, e) ∈ rI}. In ELIf , roles and also their inverses
can be declared functional using statements � � (≤ 1 r) in the TBox. For conveniently
dealing with inverse roles, we use the following convention: if r = s− (with s a role
name), then r− denotes s. Observe that w.l.o.g., we do not admit inverse roles in the
ABox and the query.

As a preliminary, we assume that TBoxes are in a normal form, i.e., all concept
inclusions are of one of the following forms, where A, A1, A2, and B are concept
names or � and r is a role name or an inverse role:

A � B, A � ∃r.B, � � (≤ 1 r)
A1 A2 � B, ∃r.A � B

Let T be a TBox. T can be converted into normal form T ′ in polytime, by introducing
additional concept names. See [2] for more details. Moreover, it is not too difficult to
see that for every ABox A and conjunctive query q not using any of the concept names
that occur in T ′ but not in T , we have A, T |= q iff A′, T ′ |= q.

Two other (standard) assumptions that we make w.l.o.g. is that (i) in all atoms C(v) in
a conjunctive query q, C is a concept name; and (ii) conjunctive queries are connected,
i.e., for all u, v ∈ Var(q), there are atoms r(u0, u1), . . . , r(un−1, un) ∈ q, n ≥ 0,
such that u = u0 and v = un. It is easy to achieve (i) by replacing C(v) with A(v)
and adding A

.= C to the TBox, with A a fresh concept name. Regarding (ii), it is
well-known that entailment of non-connected queries can easily (and polynomially) be
reduced to entailment of connected queries: if q is a non-connected query, then A, T |=
q iff A, T |= q′ for all connected components q′ of q; see e.g. [10].

Our algorithm for conjunctive query answering in ELIf is based on canonical mod-
els. To introduce canonical models, we need some preliminaries. Let T be a TBox and
Γ a finite set of concept names. We use NTC to denote the set of all concept names oc-
curring in T and “�T ” to denote subsumption w.r.t. T , i.e., C �T D iff CI ⊆ DI for
all models I of T . We write

subT (Γ) := {A ∈ NTC |
A′∈Γ

A′ �T A}

to denote the closure of Γ under subsuming concept names w.r.t. T . For the next def-
inition, the reader should intuitively assume that we want to make all elements of Γ
(jointly) true at a domain element in a model of T . If A ∈ Γ and A � ∃r.B ∈ T , then
we say that Γ has ∃r.B-obligation O, where

O = {B} ∪ {B′ ∈ NTC | ∃A′ ∈ Γ : ∃r−.A′ � B′ ∈ T } ∪ O′,

with O′ = ∅ if � � (≤ 1 r) /∈ T and O′ = {B′ ∈ NTC | ∃A′ ∈ Γ : A′ � ∃r.B′ ∈ T }
otherwise.

Let T be a TBox in normal form and A an ABox, for which we want to decide
conjunctive query entailment (for a yet unspecified query q). We use Ind(A) to denote
the set of individual names occurring in A. To define a canonical model for A and T ,
we have to require that A is admissible w.r.t. T . What admissibility means depends on

342 A. Krisnadhi and C. Lutz

whether or not we make the UNA: A is admissible w.r.t. T if (i) the UNA is made and
A is consistent w.r.t. T or (ii) the UNA is not made and (� � (≤ 1 r)) ∈ T implies that
there are no a, b, c ∈ Ind(A) with r(a, b), r(a, c) ∈ A and b �= c. As will be discussed
later, admissibility can be ensured by an easy (polytime) preprocessing step.

We define a sequence of interpretations I0, I1, . . . , and the canonical model for A
and T will then be the limit of this sequence. To facilitate the construction, it is helpful
to use domain elements that have an internal structure. An existential for T is a concept
∃r.A that occurs on the right-hand side of some inclusion in T . A path p for T is a
finite (possibly empty) sequence of existentials for T . We use ex(T) to denote the set
of all existentials for T , ex(T)∗ to denote the set of all paths for T , and ε to denote the
empty path. All interpretations Ii in the above sequence will satisfy

ΔIi ⊆ {〈a, p〉 | a ∈ Ind(A) and p ∈ ex∗(T)}
For convenience, we use a slightly non-standard representation of interpretations when
defining the sequence I0, I1, . . . and canonical interpretations: the function ·I maps
every element d ∈ ΔI to a set of concept names dI instead of every concept name A to
a set of elements AI . It is obvious how to translate back and forth between the standard
representation and this one, and we will switch freely in what follows.

To start the construction of the sequence I0, I1, . . . , define I0 as follows:

ΔI0 := {〈a, ε〉 | a ∈ Ind(A)}
rI0 := {(〈a, ε〉, 〈b, ε〉) | r(a, b) ∈ A}

〈a, ε〉I0 := {A ∈ NC | A, T |= A(a)}
aI0 := 〈a, ε〉

Now assume that Ii has already been defined. We want to construct Ii+1. If it exists,
select a 〈a, p〉 ∈ ΔIi and an α = ∃r.A ∈ ex(T) such that 〈a, p〉Ii has α-obligation O,
and (i) (� � (≤ 1 r)) /∈ T and 〈a, pα〉 /∈ ΔIi or (ii) there is no 〈b, p′〉 ∈ ΔIi with
(〈a, p〉, 〈b, p′〉) ∈ rIi . Then do the following:

– add 〈a, pα〉 to ΔIi ;
– if r is a role name, add (〈a, p〉, 〈a, pα〉) to rIi ;
– if r = s−, add (〈a, pα〉, 〈a, p〉) to sIi ;
– set 〈a, pα〉Ii := subT (O).

The resulting interpretation is Ii+1 (and Ii+1 = Ii if there are no 〈a, p〉 and α to be
selected). We assume that the selected 〈a, p〉 is such that the length of p is minimal, and
thus all obligations are eventually satisfied. To ensure that the constructed canonical
model is unique, we also assume that the set ex(T) is well-ordered and the selected α
is minimal for the node 〈a, p〉.

A proof of the following result can be found in the full version of this paper [15].

Lemma 3. The canonical model I for T and A is a model of T and of A.

Our aim is to prove that we can verify whether A and T entail a conjunctive query q by
checking whether the canonical model I for A and T matches q. Key to this result is the

Data Complexity in the EL Family of Description Logics 343

observation that the canonical model of A and T can be homomorphically embedded
into any model of A and T . We first define homomorphisms and then state the relevant
lemma.

Let I and J be interpretations. A function h : ΔI → ΔJ is a homomorphism from
I to J if the following holds:

1. for all individual names a, h(aI) = aJ ;
2. for all concept names A and all d ∈ ΔI , d ∈ AI implies h(d) ∈ AJ ;
3. for all (maybe inverse) roles r and d, e ∈ ΔI , (d, e) ∈ rI implies (h(d), h(e)) ∈ rJ .

Lemma 4. Let I be the canonical model for A and T , and J a model of A and T .
Then there is a homomorphism h from I to J .

Proof. Let I and J be as in the lemma. For each interpretation Ii in the sequence
I0, I1, . . . used to construct I, we define a homomorphism hi from Ii to J . The limit
of the sequence h0, h1, . . . is then the desired homomorphism h from I to J . To start,
define h0 by setting h0(〈a, ε〉) := aJ for all individual names a. Clearly, h0 is a homo-
morphism:

– Condition 1 is satisfied by construction.
– For Condition 2, let 〈a, ε〉 ∈ AI0 . Then A, T |= A(a). Since J is a model of A and
T , h0(〈a, ε〉) = aJ ∈ AJ .

– For Condition 3, let (〈a, ε〉, 〈b, ε〉) ∈ rI0 . Then r(a, b) ∈ A and since J is a model
of A and by definition of h0, we have (h0(〈a, ε〉), h0(〈b, ε〉)) ∈ rJ .

Now assume that hi has already been defined. If Ii+1 = Ii, then hi+1 = hi. Otherwise,
there is a unique 〈a, pα〉 ∈ ΔIi+1 \ ΔIi . Then 〈a, p〉 ∈ ΔIi , and 〈a, p〉Ii has α =
∃r.B-obligation O such that 〈a, pα〉Ii+1 = subT (O). Let A ∈ 〈a, p〉Ii such that A �
∃r.B ∈ T . By Condition 2 of homomorphisms, we have d = hi(〈a, p〉) ∈ AJ . Since
A � ∃r.B ∈ T , there is an e ∈ BJ with (d, e) ∈ rJ . Define hi+1 as the extension of
hi with hi+1(〈a, pα〉) := e. We prove that the three conditions of homomorphisms are
preserved:

– Condition 1 is untouched by the extension.
– Now for Condition 2. Since 〈a, pα〉Ii+1 = subT (O) andJ is a model of T , it suffices

to show that for all B′ ∈ O, we have e ∈ B′J . Let B′ ∈ O. By definition of O, we
can distinguish three cases.
First, let B′ = B. Then we are done by choice of e.
Second, let there be an A′ ∈ 〈a, p〉Ii such that ∃r−.A′ � B′ ∈ T . Since hi satisfies
Condition 2 of homomorphisms, we have d ∈ A′J . Since J is a model of T and
(d, e) ∈ rJ , it follows that e ∈ B′J .
The third case is that � � (≤ 1 r) ∈ T and there is an A′ ∈ 〈a, p〉Ii such that
A′ � ∃r.B′ ∈ T . It is similar to the previous case.

– Condition 3 was satisfied by Ii and is clearly preserved by the extension to Ii+1.
❏

344 A. Krisnadhi and C. Lutz

Lemma 5. Let I be the canonical model for A and T , and q a conjunctive query. Then
A, T |= q iff I |= q.

Proof. Let I and q be as in the lemma, and n, m, and k as above. If I �|= q, then
A, T �|= q since, by Lemma 3, I is a model of A and T . Now assume I |=π q,
and let J be a model of A and T . By Lemma 4, there is a homomorphism h from I
to J . Define π′ : Var(q) → ΔJ by setting π′(v) := h(π(v)). It is easily seen that
J |=π′

q. ❏

Thus, we can decide query entailment by looking only at the canonical model. At this
point, we are faced with the problem that we cannot simply construct the canonical
model I and check whether I |= q since I is infinite. However, we can show that if
I |= q, then I |=π q for some match π that maps all variables to elements that can be
reached by travelling only a bounded number of role edges from some ABox individual.
Thus, it suffices to construct a sufficiently large “initial part” of I and check whether it
matches q.

To make this formal, let n be the size of A, m the size of T , and k the size of q. In
the following, we use |p| to denote the length of a path p. The initial canonical model
I ′ for A and T is obtained from the canonical model I for A and T by setting

ΔI
′
:= {〈a, p〉 | |p| ≤ 2m + k}

AI
′
:= AI ∩ ΔI

′

rI
′
:= rI ∩ (ΔI

′ × ΔI
′
)

aI
′
:= aI

Lemma 6. Let I be the canonical model for A and T , I ′ the initial canonical model,
and q a conjunctive query. Then I |= q iff I′ |= q.

Proof. Let I, I′, and q be as in the lemma. It is obvious that I ′ |= q implies I |= q. For
the converse direction, let I |=π q. First assume that there is an a ∈ Ind(A) and a v ∈
Var(q) such that π(v) = aI . Since q is connected, this means that for all v ∈ Var(q),
we have π(v) = 〈a, p〉 such that |p| ≤ k. It follows that I ′ |=π q.

Now assume that there are no such a and v. Again since q is connected, this means that
there is an a ∈ Ind(A) such that for all v ∈ Var(q), we have π(v) = 〈a, p〉, for some
p ∈ ex∗(T). If π(v) = 〈a, p〉 with |p| ≤ 2m + k for all v ∈ Var(q), then I ′ |=π q.
Otherwise, there is a v ∈ Var(q) such that π(v) = 〈a, p〉 with p ∈ ex∗(T) such that
|p| > 2m + k. Since q is connected, this implies that for all v ∈ Var(q), we have
π(v) = 〈a, p〉, for some p ∈ ex∗(T) with |p| > 2m. Once more since q is connected,
there is a v0 ∈ Var(q) such that π(v0) = 〈a, p0〉 and for all v ∈ Var(q), we have
π(v) = 〈a, p〉 with p0 a prefix of p.

Since |p0| > 2m and the number of distinct labels dI , d ∈ ΔI , is bounded by 2m,
we can split p0 into p1p2p3 such that 〈a, p1〉I = 〈a, p1p2〉I , and p2 �= ε. Now, let
π′ : Var(q) → ΔI be obtained by setting π′(v) := 〈a, p1p3p〉 if π(v) = 〈a, p1p2p3p〉.
In the full version of the proof given in [15], we show that I |=π′

q. Moreover, for each
v ∈ Var(q) with π(v) = 〈a, p〉 and π′(v) = 〈a, p′〉, we have that the length of p′ is

Data Complexity in the EL Family of Description Logics 345

strictly smaller than that of p. It follows that we can repeat the described construction to
construct a new match from an existing one only a finite number of times. We ultimately
end up with a π∗ such that I |=π∗

q and for all v ∈ Var(q), π∗(v) = 〈a, p〉 with
|p| ≤ 2m + k. ❏

The initial canonical model I ′ for A and T can be constructed in time polynomial
in the size of A. In particular, (i) I0 can be constructed in polytime since, due to the
results of [12,14], instance checking in ELIf is tractable regarding data complexity;
(ii) obligations can be computed in polytime since subsumption in ELIf w.r.t. general
TBoxes is decidable and the required checks are independent of the size of A; (iii) the
number of elements in the initial canonical model is bounded by � := n ·m2m+k and is
thus independent of the size of A.

Our algorithm for deciding entailment of a conjunctive query q by a TBox T in nor-
mal form and an ABox A is as follows. If the UNA is made, we first check consistency
of A w.r.t. T using one of the polytime algorithms from [12,14]. If A is inconsistent
w.r.t. T , we answer “yes”. If the UNA is not made, then we convert A into an ABox
A′ that is admissible w.r.t. T , and continue working with A′. Obviously, the conversion
can be done in time polynomial in the size of A simply by identifying ABox individ-
uals. Both with and without UNA, at this point we have an ABox that is admissible
w.r.t. T . The next step is to construct the initial canonical structure I′ for T and A,
and then check matches of q against this structure. The latter can be done in time poly-
nomial in the size of A: there are at most �k (and thus polynomially many) mappings
τ : Var(q) → ΔI

′
, and each of them can be checked for being a match in polynomial

time. We thus obtain a time bound for our algorithm of p(nk · mk·2m+k2
), with p() a

polynomial. This bound is clearly polynomial in n

Theorem 4. In ELIf , conjunctive query answering w.r.t. general TBoxes is in P re-
garding data complexity.

We conjecture that the time bound can be improved to O((n + 2m)k) (only single-
exponential in m) by a more refined approach to canonical models. Basically, the idea
is to work with the filtration of the canonical model instead of with the initial part.

A matching lower bound can be taken from [8] (which relies on the presence of
general TBoxes and already applies to the instance problem), and thus we obtain P-
completeness.

5 Summary and Outlook

The results of our investigation are summarized in Table 2. In all cases the lower bounds
apply to instance checking and the upper bounds to conjunctive query entailment. The
co-NP upper bounds are a consequence of the results in [10]. When the UNA is not
explicitly mentioned, the results hold both with and without UNA. We point out two
interesting issues. First, for all of the considered extensions we were able to show
tractability regarding data complexity if and only if the logic is convex regarding in-
stances, i.e., A, T |= C(a) with C = D0 � · · · � Dn−1 implies A, T |= Di(a) for
some i < n. It would be interesting to capture this phenomenon in a general result. And
second, it is interesting to point out that subtle differences such as the UNA or local

346 A. Krisnadhi and C. Lutz

Table 2. Complexity of instance checking and conjunctive query entailment

Extensions of EL w.r.t. acyclic TBoxes w.r.t. general TBoxes

EL¬A coNP-complete coNP-complete

ELC�D coNP-complete coNP-complete

EL∀r.⊥, EL∀r.C coNP-complete coNP-complete

EL(≤kr), k ≥ 0 coNP-complete coNP-complete

ELkf w/o UNA, k ≥ 2 coNP-complete coNP-complete
(even w/o TBox)

ELkf , k ≥ 2 with UNA coNP-complete coNP-complete
(in P w/o TBox)

EL(≥kr), k ≥ 2 coNP-complete coNP-complete

EL∃¬r.C coNP-hard coNP-hard

EL∃r∪s.C coNP-hard coNP-hard

EL∃r+.C coNP-hard coNP-hard

ELIf in P P-complete

versus global functionality (for the latter, see EL(≤1r) vs. ELIf) can have an impact
on tractability.

As future work, it would be interesting to extend our upper bound by including more
operators from the tractable description logic EL++ as proposed in [2]. For a start, it is
not hard to show that conjunctive query entailment in full EL++ is undecidable due to
the presence of role inclusions r1 ◦ · · · ◦ rn � s. In the following, we briefly sketch the
proof, which is by reduction of the problem of deciding whether the intersection of two
languages defined by given context-free grammars Gi = (Ni, T, Pi, Si), i ∈ {1, 2}, is
empty. We assume w.l.o.g. that the set of non-terminals N1 and N2 are disjoint. Then
define a TBox

T := {� � ∃ra.� | a ∈ T } ∪ {rA1 ◦ · · · ◦ rAn � rA | A → A1 · · ·An ∈ P1 ∪ P2}.

It is not too difficult to see that L(G1)∩L(G2) �= ∅ iff the conjunctive query S1(u, v)∧
S2(u, v) is entailed by the ABox {�(a)} and TBox T .

We have learned recently that the same undecidability result has been shown inde-
pendently and in parallel in the workshop papers [17,18]. For people interested in the
complexity of conjunctive querying entailment in the EL family of DLs, both papers are
recommended reading. In particular, the algorithms for query answering presented there
seem more suitable for implementation than the brute-force canonical model approach
pursued in Section 4. We have also learned that our undecidability result is very similar
to a number of undecidability results for subsumption in extensions of EL proved in [13].

Acknowledgement. We are grateful to Markus Krötzsch and Meng Suntisrivaraporn
for valuable comments on earlier versions of this paper.

Data Complexity in the EL Family of Description Logics 347

References

1. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: DL-Lite in the light of first-
order logic. In: AAAI 2007. Proc. of the 22nd Conf. on AI, AAAI Press, Stanford, California,
USA (2007)

2. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: IJCAI 2005. Proc. of the 19th
Int. Joint Conf. on AI, pp. 364–369. Morgan Kaufmann, San Francisco (2005)

3. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. (submitted to a Journal, 2007)
4. Baader, F., Lutz, C., Suntisrivaraporn, B.: Is tractable reasoning in extensions of the descrip-

tion logic EL useful in practice? In: M4M 2005. Proc. of the 4th Int. WS on Methods for
Modalities (2005)

5. Baader, F., McGuiness, D.L., Nardi, D., Patel-Schneider, P.: The Description Logic Hand-
book: Theory, implementation and applications. Cambridge University Press, Cambridge
(2003)

6. Brandt, S.: Polynomial time reasoning in a description logic with existential restrictions,
GCI axioms, and—what else? In: ECAI 2004. Proc. of the 16th European Conf. on AI, pp.
298–302. IOS Press, Amsterdam (2004)

7. Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Rosati, R.: DL-lite: Tractable de-
scription logics for ontologies. In: AAAI 2005. Proc. of the 20th National Conf. on AI, pp.
602–607. AAAI Press, Stanford, California, USA (2005)

8. Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Rosati, R.: Data complexity of
query answering in description logics. In: KR 2006. Proc. of the 10th Int. Conf. on KR,
AAAI Press, Stanford, California, USA (2006)

9. Calvanese, D., Giacomo, G.D., Lenzerini, M., Rosati, R., Vetere, G.: DL-lite: Practical rea-
soning for rich dls. In: DL 2004. CEUR Workshop Proceedings. CEUR-WS.org, vol. 104
(2004)

10. Glimm, B., Horrocks, I., Lutz, C., Sattler, U.: Conjunctive Query Answering for the Descrip-
tion Logic SHIQ. In: IJCAI 2007. Proc. of the 20th Int. Joint Conf. on AI, AAAI Press,
Stanford, California, USA (2007)

11. Giacomo, G.D., Lenzerini, M.: Boosting the correspondence between description logics and
propositional dynamic logics. In: AAAI 1994. Proc. of the 12th National Conf. on AI, vol. 1,
pp. 205–212. AAAI Press, Stanford, California, USA (1994)

12. Hustadt, U., Motik, B., Sattler, U.: Data complexity of reasoning in very expressive descrip-
tion logics. In: IJCAI 2005. Proc. of the 19th Int. Joint Conf. on AI, Professional Book
Center, pp. 466–471 (2005)

13. Kazakov, Y.: Saturation-based decision procedures for extensions of the guarded fragment,
PhD thesis, University of Saarland (2005)

14. Krisnadhi, A.: Data complexity of instance checking in the EL family of description logics.
Master thesis, TU Dresden, Germany (2007)

15. Krisnadhi, A., Lutz, C.: Data complexity of instance checking in the EL family of description
logics. available from http://lat.inf.tu-dresden.de/∼clu/papers/

16. Krötzsch, M., Rudolph, S., Hitzler, P.: On the complexity of horn description logics. In:
Proc. of the 2nd WS on OWL: Experiences and Directions. CEUR-WS, vol. 216 (2006),
http://ceur-ws.org/

17. Krötzsch, M., Rudolph, S.: Conjunctive Queries for EL with Composition of Roles. In: DL
2007. Proc. of the 2007 Int. WS on DLs, CEUR-WS.org (2007)

18. Rosati, R.: On conjunctive query answering in EL. In: DL 2007. Proc. of the 2007 Int. WS
on DLs, CEUR-WS.org (2007)

19. Schaerf, A.: On the complexity of the instance checking problem in concept languages with
existential quantification. Journal of Intelligent Information Systems 2, 265–278 (1993)

http://lat.inf.tu-dresden.de/~clu/papers/
http://ceur-ws.org/

An Extension of the Knuth-Bendix Ordering

with LPO-Like Properties

Michel Ludwig1 and Uwe Waldmann2

1 Department of Computer Science, University of Liverpool
Liverpool L69 3BX, United Kingdom
2 Max-Planck-Institut für Informatik

Stuhlsatzenhausweg 85, 66123 Saarbrücken, Germany

Abstract. The Knuth-Bendix ordering is usually preferred over the lex-
icographic path ordering in successful implementations of resolution and
superposition, but it is incompatible with certain requirements of hierar-
chic superposition calculi. Moreover, it does not allow non-linear defini-
tion equations to be oriented in a natural way. We present an extension
of the Knuth-Bendix ordering that makes it possible to overcome these
restrictions.

1 Introduction

In theorem proving calculi like Knuth-Bendix completion, resolution, or super-
position, reduction orderings such as the Knuth-Bendix ordering (KBO) [11] or
the lexicographic path ordering (LPO) by Kamin and Lévy [10] are crucial to
reduce the search space. Among these orderings, the Knuth-Bendix ordering is
usually preferred in state-of-the-art implementations of theorem provers. There
are several reasons for this: it can be efficiently implemented – the most efficient
known algorithm needs only linear time – and it correlates well with the sizes
of terms; so, reductions w. r. t. a KBO usually lead to terms with fewer nodes.
In comparison, computing term comparisons for the lexicographic path ordering
requires at least quadratic time and reductions w. r. t. an LPO may result in
arbitrarily larger terms.

On the other hand, it is exactly this correlation between the KBO and term
sizes that renders the KBO incompatible with special requirements occurring in
certain applications. One example is hierarchic theorem proving [3,6,15], where
one considers two signatures Σ ⊇ Σ0 and needs an ordering in which every
ground term involving a symbol from Σ \ Σ0 is larger than every ground term
over Σ0. With an LPO, this property is easy to establish, with a KBO it is
usually impossible.

A second example is definitions of the form f(t1, . . . , tn) ≈ t0 where f does
not occur in t0. Such definitions can easily be ordered from left to right using
an LPO where f is larger in the precedence than every symbol occurring in
t0. With a KBO, however, we have the additional requirement that no variable
occurs more often in t0 than in f(t1, . . . , tn); non-linear definitions cannot be
handled adequately using a KBO.

N. Dershowitz and A. Voronkov (Eds.): LPAR 2007, LNAI 4790, pp. 348–362, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

An Extension of the Knuth-Bendix Ordering with LPO-Like Properties 349

In this paper, we present a variant of the Knuth-Bendix ordering that pre-
serves as much as possible of the spirit of KBO, yet satisfies the requirements
for hierarchic theorem proving and non-linear definitions. Like the original KBO,
our ordering is a simplification ordering that can optionally be made total on
ground terms. This is an essential property for theorem proving calculi such
as superposition (Bachmair and Ganzinger [2]) and it goes beyond what can
be shown using approaches for showing modular termination of rewrite systems
(e. g., Fernández, Godoy, and Rubio [5]).

Due to lack of space we cannot give complete proofs in this paper, for which
we refer the reader to (Ludwig [13]).

2 Preliminaries

We assume that the reader is familiar with standard concepts and notations in
the area of rewriting (see Baader and Nipkow [1]). We use the notation f/n ∈ Σ
to denote that the signature Σ contains the n-ary function symbol f ; if n = 0, f
is also called a constant symbol. The set of terms over a signature Σ and a set X
of variables is written TΣ(X); TΣ(∅) is the set of ground terms over Σ. For a term
t ∈ TΣ(X), |t| denotes the size, i. e., the number of nodes of t; if x is a variable
in X , |t|x denotes the number of occurrences of x in t, and P(x, t) denotes the
set of all positions of occurrences of x in t. Signatures are assumed to be finite.

Definition 1. Let X be a set of variables, let Σ be a signature, and let �⊆
TΣ(X)×TΣ(X) be a binary relation on the terms over X and Σ. Then � is said to
be compatible with Σ-operations , if s � s′ implies f(t1, . . . , ti−1, s, ti+1, . . . , tn) �
f(t1, . . . , ti−1, s

′, ti+1, . . . , tn) for all symbols f/n ∈ Σ with arity n ∈ N, for all
terms s, s′, t1, . . . , tn ∈ TΣ(X) and for all coefficients i ∈ N, 1 ≤ i ≤ n; �
is called stable under substitutions if s � s′ implies sσ � s′σ for all terms
s, s′ ∈ TΣ(X) and for all substitutions σ : X → TΣ(X). The relation � has the
subterm property if s � s′ whenever s′ is a proper subterm of s; � is a rewrite
relation if � is compatible with Σ-operations and stable under substitutions;
it is a rewrite ordering if it is a strict partial ordering and a rewrite relation;
it is a simplification ordering if � is a rewrite ordering and has the subterm
property.

The Knuth-Bendix ordering (KBO) is an example of a simplification ordering. It
is parameterized by a “precedence” on signature symbols, and a weight function.
The KBO was originally introduced by Knuth and Bendix [11] with a stricter
variable condition; the version presented in this document can be found in (Dick,
Kalmus, and Martin [4]) and also in (Baader and Nipkow [1]).1

First of all, in order to develop later a function that computes the weight of
terms, we need to assign weights to signature symbols, which will be natural
numbers in the case of the KBO.

1 In fact, Dick, Kalmus, and Martin [4] and Baader and Nipkow [1] also permit positive
real coefficients.

350 M. Ludwig and U. Waldmann

Let Σ be a signature, let X be a set of variables and let � be a strict partial
ordering on Σ. A (regular) symbol weight assignment is a function λ : Σ∪X → N.
It is called admissible for � if the following two conditions are satisfied:

(i) There exists a λ0 ∈ N
>0 such that for all x ∈ X : λ(x) = λ0 and for all

c/0 ∈ Σ: λ(c) ≥ λ0.
(ii) If there exists an f/1 ∈ Σ such that λ(f) = 0, then f � g for all g ∈ Σ.

A symbol weight assignment λ is extended recursively to a weight function
wλ : TΣ(X) → N on terms as follows:

– wλ(x) = λ(x) for x ∈ X .
– wλ

(
f(t1, . . . , tn)

)
= λ(f) +

∑n
i=1 wλ(ti) for f/n ∈ Σ, n ∈ N.

At first, the Knuth-Bendix ordering compares two terms by using the weight
function. If both terms have the same weight, the precedence is considered, and
only ultimately, if the top symbol is equal as well, recursion is used to compare
two terms.

Definition 2 (Knuth-Bendix Ordering). Let Σ be a signature and let X be
a set of variables. Additionally, let � be a strict partial ordering, the precedence,
on Σ and λ : Σ∪X → N be a regular symbol weight assignment that is admissible
for �. Finally, let w = wλ : TΣ(X) → N be the regular term weight function
induced by λ.

We define the Knuth-Bendix ordering �KBO ⊆ TΣ(X) × TΣ(X) induced by
(�, λ) on terms s, t ∈ TΣ(X) in the following way: s �KBO t if

(KBO1) ∀x ∈ X : |s|x ≥ |t|x and w(s) > w(t),
or

(KBO2) ∀x ∈ X : |s|x ≥ |t|x, w(s) = w(t) and one of the following cases holds:
(KBO2a) ∃ f/1 ∈ Σ, ∃x ∈ X , ∃n ∈ N

>0 such that s = fn(x) and t = x,
(KBO2b) ∃ f/m, g/n ∈ Σ (m, n ∈ N), ∃ s1, . . . , sm, t1, . . . , tn ∈ TΣ(X)

such that s = f(s1, . . . , sm), t = g(t1, . . . , tn) with f � g,
(KBO2c) ∃ f/m ∈ Σ (m ∈ N

>0), ∃ s1, . . . , sm, t1, . . . , tm ∈ TΣ(X), ∃ i, 1 ≤
i ≤ m such that s = f(s1, . . . , sm), t = f(t1, . . . , tm) and such that
s1 = t1,. . . ,si−1 = ti−1, si �KBO ti.

The Knuth-Bendix ordering is a simplification ordering; moreover, if the prece-
dence is a total ordering, it is total on ground terms. It can be computed in time
O(|s| + |t|), where s and t are the terms to be compared (Löchner [12]).2

3 Transfinite KBO

3.1 Motivation

The Knuth-Bendix ordering correlates well with the sizes of terms, which is
often a desirable property, since it implies that reductions w. r. t. a KBO usually
2 Using a machine model in which addition of numbers takes constant time.

An Extension of the Knuth-Bendix Ordering with LPO-Like Properties 351

lead to terms with fewer nodes. On the other hand, it is exactly this correlation
between the KBO and term sizes that renders the KBO incompatible with some
special requirements for certain applications.

One example is the problem of orienting definition equations in an intuitive
direction. Suppose that we are given a sequence of signatures Σi (0 ≤ i ≤ n)
where Σi = {fi} ∪ Σi−1 for i ≥ 1, and that we have a set of non-recursive
definition equations of the form fi(si1, . . . , sik) ≈ ti, with ti, sij ∈ TΣi−1(X)
and Var(ti) ⊆ Var(fi(si1, . . . , sik)) (where the sij are often, but not necessarily,
variables). If we use a lexicographic path ordering with a precedence fn � · · · �

f2 � f1 � . . . , then every term t with a top symbol fi is larger than every term
in TΣi−1(Var(t)), i. e., all these equations can be oriented from left to right (and
can hopefully be used to eliminate all occurrences of the fi in the remainder of
the specification completely). If we try to get a similar effect with a KBO, we
face two problems: the KBO correlates with term sizes, so in general, a term
cannot be larger than every term over some subsignature, and moreover a term
cannot be larger than another term in which some variable occurs more often.

Another scenario where the Knuth-Bendix ordering does not work satisfac-
torily is hierarchic theorem proving. Standard first-order theorem provers are
notoriously bad at dealing with integer or real arithmetic – encoding numbers
in binary or unary is not really a viable solution in most application contexts. A
hierarchic proof system adds theory knowledge to a saturation-based calculus by
using a proof system for a base theory, say, a decision procedure for real arith-
metic as a black box. The proof system is initially given a set of formulas over
some extension of the base theory, e. g., over real arithmetic extended with data
structures, free function symbols, etc. As usual, the deduction rules of the cal-
culus are employed to generate formulas from premises and the conclusions are
added to the set of formulas; in addition, all derived formulas belonging to the
base domain are passed to the decision procedure. As soon as one of the two sys-
tems encounters a contradiction, the problem is solved. (Bachmair, Ganzinger,
and Waldmann [3], Ganzinger, Sofronie-Stokkermans, and Waldmann [6], Pre-
vosto and Waldmann [15]).

In hierarchic theorem proving calculi, one usually considers a signature Σ0 of
base symbols and a signature Σ ⊇ Σ0 that extends Σ0. Similarly to the ordi-
nary superposition calculus, hierarchic superposition calculi are parameterized
by a reduction ordering � that is total on ground terms. In order to ensure refu-
tational completeness, this ordering must have the property that every ground
term in TΣ0(∅) is strictly smaller than every ground term in TΣ(∅) \ TΣ0(∅).
This requirement is easy to establish with an LPO – the precedence just needs
to be defined in such a way that all the symbols from Σ0 are smaller than all
the symbols from Σ – but it is generally incompatible with the definition of the
Knuth-Bendix ordering.3

Our goal is to find a computable (total) simplification ordering that generalises
the KBO and satisfies the requirements of hierarchic theorem proving. We will

3 Except if Σ0 consists only of constant symbols and at most one unary function
symbol.

352 M. Ludwig and U. Waldmann

show that such an ordering can be constructed using certain ordinal numbers as
weights.

In the next sections, we start by presenting a very general version of the or-
dering, which is computable, but unfortunately not very efficiently. Restrictions
that lead to a better runtime behaviour are discussed later.

3.2 Ordinal Numbers

A set α is an ordinal if α is totally ordered with respect to the subset relation
and every element of α is also a subset of α. The class of all ordinals is denoted
by ON. Ordinals are ordered by the element relation, or equivalently, by the
subset relation, i. e., α < β if and only if α ∈ β if and only if α � β.

If a non-empty ordinal β has a largest element α, then it can be written as
β = α ∪ {α}. We say that β is the successor of α, denoted by β = S(α). A
non-empty ordinal γ that is not a successor of another ordinal is called a limit
ordinal. Every limit ordinal γ is the union (or least upper bound) of all ordinals
that are smaller than γ.

The ordinals ∅, {∅}, {∅, {∅}}, and so on, are identified with the natural num-
bers 0, 1, 2, The smallest limit ordinal is denoted by ω, it corresponds to the
set of all natural numbers.

The following operations on ordinal numbers can be seen as the standard
extensions of the addition, multiplication and exponentiation on natural num-
bers, in particular they coincide with the latter if their arguments are natural
numbers. For more information we refer to (Just and Weese [9]).

Definition 3 (Regular Ordinal Operations). Let α, β ∈ ON be ordinals.
The ordinal α + β, α · β, and αβ are defined by recursion over β:

α + 0 = α
α + β = S(α + γ) if β = S(γ)
α + β =

⋃
γ<β (α + γ) if β is a limit ordinal > 0

α · 0 = 0
α · β = (α · γ) + α if β = S(γ)
α · β =

⋃
γ<β (α · γ) if β is a limit ordinal > 0

α0 = 1
αβ = αγ · α if β = S(γ)

αβ =

{
0 if β is a limit ordinal > 0 and α = 0⋃
γ<β αγ if β is a limit ordinal > 0 and α > 0

We cannot use the regular operations on ordinals to compute the weight of a term
from the weights of its subterms, which is mainly due to the fact that ordinal
addition and multiplication are only monotonic, but not strictly monotonic with
respect to >. For instance, 1 > 0, but 1 + ω = ω = 0 + ω, so α > α′ does in
general not imply α + β > α′ + β. There is an alternative set of operations on
ordinals that is better suited for our purposes. Let us first define a subset of the
ordinal numbers on which we will define those operations:

An Extension of the Knuth-Bendix Ordering with LPO-Like Properties 353

Definition 4 (Set O). We define the set O ⊆ ON inductively as follows:

– 0 ∈ O.
– If there exists an m ∈ N

>0, n1, . . . , nm ∈ N
>0, and δ1, . . . , δm ∈ O with

δ1 > δ2 > · · · > δm, then
∑m

i=1
(ωδi · ni) ∈ O.

The set O exactly contains those ordinals that are smaller than ε0, where the
limit ordinal ε0 is the smallest ordinal such that ε0 = ωε0 . Elements of O are sums
of finite sequences of ordinals ωβi ·ni, which we call the basic building blocks. The
decomposition of an ordinal α into a sum

∑m
i=1 (ωδi · ni) with δ1 > δ2 > · · · > δm

is called the Cantor normal form of α; it is unique. We define

– deg(α) = δ1,
– Exponents(α) = {δ1, δ2, . . . , δm},

– coeff(α, β) =

{
ni if β = δi for some i with 1 ≤ i ≤ m,

0 otherwise.

For α = 0, we define deg(α) = −∞, Exponents(α) = ∅, and coeff(α, β) = 0.
The following operations on ordinals were introduced by Hessenberg [7]. In-

tuitively, they add and multiply ordinals in O as if they were polynomials in ω.

Definition 5 (Hessenberg Addition). The function ⊕ : O × O → O is de-
fined as follows:

– 0 ⊕ α = α for α ∈ O.
– α ⊕ 0 = α for α ∈ O.
– Suppose that

α =
∑m

i=1
(ωδi · ni), β =

∑m′

i=1
(ωδ

′
i · n′i) ∈ O

for natural numbers m, m′ ∈ N
>0, n1, . . . , nm, n′1, . . . , n

′
m′ ∈ N

>0, ordinals
δ1, . . . , δm, δ′1, . . . , δ

′
m′ ∈ O such that δ1 > δ2 > · · · > δm and δ′1 > δ′2 >

· · · > δ′m′ . Then

α ⊕ β =
∑m′′

i=1

(
ωci · (coeff(α, ci) + coeff(β, ci)

))

where we set Exponents(α) ∪ Exponents(β) = {c1, c2, . . . , cm′′} such that
m′′ ∈ N and c1 > c2 > · · · > cm′′ .

Definition 6 (Hessenberg Multiplication). The function � : O × O → O
is defined as follows:

– 0 � α = 0 for α ∈ O.
– α � 0 = 0 for α ∈ O.

354 M. Ludwig and U. Waldmann

– Suppose that

α =
∑m

i=1
(ωδi · ni), β =

∑m′

j=1
(ωδ

′
j · n′j)

for m, m′ ∈ N
>0, n1, . . . , nm, n′1, . . . , n

′
m′ ∈ N

>0, δ1, . . . , δm, δ′1, . . . , δ
′
m′ ∈ O

such that δ1 > δ2 > · · · > δm and δ′1 > δ′2 > · · · > δ′m′ . Then

α � β =
m⊕
i=1

m′⊕
j=1

(
ωδi⊕δ′j · (coeff(α, δi) · coeff(β, δ′j)

))
.

Lemma 7. The following properties hold for all α, β, γ ∈ O:

– α ⊕ β = β ⊕ α.
– α � β = β � α.
– α ⊕ (β ⊕ γ) = (α ⊕ β) ⊕ γ.
– α � (β � γ) = (α � β) � γ.
– α � (β ⊕ γ) = α � β ⊕ α � γ.
– α < β implies α ⊕ γ < β ⊕ γ.
– α < β and γ > 0 imply α � γ < β � γ.

It is important to note that the Hessenberg addition ⊕ on the set O does not
possess the continuity property, i. e., for two ordinals α, β ∈ O such that α < β
there does not necessarily exist an ordinal γ ∈ O such that α⊕ γ = β. A simple
example consists in the two ordinals 1 and ω: there is no ordinal α ∈ O such that
1 ⊕ α = ω. This fact makes the proof of the following lemma (which is essential
for proving that our ordering is stable under substitutions) rather tedious:

Lemma 8. Let α, β, γ, δ, ζ ∈ O be ordinals such that β ≤ ζ and

α ⊕ (β � γ) < δ ⊕ (ζ � γ).

Furthermore, let η ∈ O be an ordinal such that deg(η) > deg(γ). Then

α ⊕ (β � η) < δ ⊕ (ζ � η).

3.3 Constructing the Ordering

We start by introducing two functions. Firstly, we assign an ordinal number, the
so-called symbol weight, to every symbol in the signature and to every variable.

Definition 9 (Ordinal Symbol Weight Assignment). Let X be a set of
variables and Σ be a signature. Then, an ordinal symbol weight assignment is a
function Ω : Σ ∪ X → O.

Adding up ordinals as weights is sufficient for hierarchic theorem proving, but
it is not sufficient for dealing with non-linear definitions. In addition, we need
a factor for each signature symbol, called subterm coefficient, with which we
multiply the weights of subterms before the weight of the top symbol is added:4

4 The idea of multiplying weights of subterms by some factor can also be found in
Otter’s ad hoc ordering [14] (which is in general not a reduction ordering, though).

An Extension of the Knuth-Bendix Ordering with LPO-Like Properties 355

Definition 10 (Subterm Coefficient Function). Let Σ be a signature. Then,
a subterm coefficient function is a mapping Ψ : Σ → O \ {0}.

Using the two previous definitions, we can construct a function that computes
the (ordinal) weight of terms.

Definition 11 (Ordinal Term Weight). Let X be a set of variables and Σ
be a signature. Furthermore, let Ω : Σ ∪ X → O be an ordinal symbol weight
assignment and Ψ : Σ → O \ {0} be a subterm coefficient function. Then, we
inductively define a function

W = W(Ω,Ψ) : TΣ(X) → O

which computes the (ordinal) weight of a term in the following way:

– For x ∈ X :
W(Ω,Ψ)(x) = Ω(x).

– For n ∈ N and terms t1, . . . , tn ∈ TΣ(X):

W(Ω,Ψ)

(
f(t1, . . . , tn)

)
= Ω(f) ⊕ (

Ψ(f) �
n⊕
i=1

W(Ω,Ψ)(ti)
)
.

We define now when an ordinal symbol weight assignment is admissible for a
strict partial ordering on signature symbols.

Definition 12 (Admissible Symbol Weight Assignment). Let Σ be a
signature, X be a set of variables and � be a strict partial ordering on Σ. We
say then that the symbol weight assignment Ω : Σ ∪ X → O is admissible for
the ordering � if the following two conditions are satisfied:

(i) There exists an Ω0 ∈ N
>0 such that for all x ∈ X : Ω(x) = Ω0 and for all

c/0 ∈ Σ: Ω(c) ≥ Ω0.
(ii) If there exists an f/1 ∈ Σ such that Ω(f) = 0, then f � g for all g ∈ Σ.

The coefficient of a position p in a term t is the product of all the coefficients of
the function symbols on the path from the root of t to p:

Definition 13 (Coefficient of a Position). Let X be a set of variables and
Σ be a signature. Furthermore, let Ψ : Σ → O \ {0} be a subterm coefficient
function, t ∈ TΣ(X) be a term and p ∈ pos(t) be a position in t. We inductively
define the coefficient C(p, t) of p in t as follows:

– C(Λ, t) = 1, where Λ is the empty string.
– If t = f(t1, . . . , tn) for n ∈ N

>0, terms t1, . . . , tn ∈ TΣ(X) and a position
p = ip′ such that 1 ≤ i ≤ n and p′ ∈ pos(ti), then

C(p, t) = C(
ip′, f(t1, . . . , tn)

)
= Ψ(f) � C(p′, ti).

356 M. Ludwig and U. Waldmann

We can now define the transfinite Knuth-Bendix ordering (TKBO). Compared
with the definition of the regular Knuth-Bendix ordering (KBO) (Def. 2) the
variable occurrence condition is replaced by two separate conditions on term
variables and coefficient sums. It is then possible for a smaller term (with re-
spect to the TKBO) to contain a specific variable more often than the corre-
sponding larger term, which allows to order non-linear term definitions. Note
that we obtain the usual variable condition as a special case if Ψ(f) = 1 for
every symbol f .

Definition 14 (Transfinite Knuth-Bendix Ordering). Let Σ be a signa-
ture and X be a set of variables. Additionally, let � be a strict ordering on Σ,
let Ω : Σ ∪ X → O be an ordinal symbol weight assignment that is admissible
for � and let Ψ : Σ → O \ {0} be a subterm coefficient function. Finally, let
W = W(Ω,Ψ) : TΣ(X) → O be the ordinal term weight function induced by Ω
and Ψ .

We define the transfinite Knuth-Bendix ordering (TKBO) �T ⊆ TΣ(X) ×
TΣ(X) induced by (�, Ω, Ψ) on terms s, t ∈ TΣ(X) in the following way:

s �T t if

(TKBO1) Var(s) ⊇ Var(t), W(s) > W(t) and

∀x ∈ Var(t) :
⊕

p∈P(x, s)

C(p, s) ≥
⊕

p∈P(x, t)

C(p, t)

or
(TKBO2) Var(s) ⊇ Var(t), W(s) = W(t),

∀x ∈ Var(t) :
⊕

p∈P(x, s)

C(p, s) ≥
⊕

p∈P(x, t)

C(p, t)

and one of the following cases occurs:
(TKBO2a) ∃ f/1 ∈ Σ, ∃x ∈ X , ∃n ∈ N

>0 such that s = fn(x) and t = x,
(TKBO2b) ∃ f/m, g/n ∈ Σ (m, n ∈ N), ∃ s1, . . . , sm, t1, . . . , tn ∈ TΣ(X)

such that s = f(s1, . . . , sm), t = g(t1, . . . , tn) with f � g,
(TKBO2c) ∃ f/m ∈ Σ (m ∈ N

>0), ∃ s1, . . . , sm, t1, . . . , tm ∈ TΣ(X), ∃ i ∈
N, 1 ≤ i ≤ m such that s = f(s1, . . . , sm), t = f(t1, . . . , tm) with s1 =
t1, . . . , si−1 = ti−1, si �T ti.

Example 15. Let Ω(x) = 1, Ω(h) = Ψ(h) = 1, Ω(g) = Ψ(g) = ω, Ω(f) =
Ψ(f) = ωω. Let s = f(h(x)) and t = g(g(x, x), g(x, x)). Then W(s) = ωω · 3 >
W(t) = ω2 · 6 + ω. Furthermore

⊕
p∈P(x, s) C(p, s) = ωω >

⊕
p∈P(x, t) C(p, t) =

ω2 · 4. Hence f(h(x)) �T g(g(x, x), g(x, x)) by (TKBO1).

The following two theorems are proved analogously to the corresponding theo-
rems for KBO (e. g. in Baader and Nipkow [1]):

Theorem 16. The transfinite Knuth-Bendix ordering �T is a simplification
ordering.

An Extension of the Knuth-Bendix Ordering with LPO-Like Properties 357

Theorem 17. If the precedence � is a total ordering, then the transfinite
Knuth-Bendix ordering �T is total on ground terms.

For terms built from symbols with subterm coefficient 1 and natural numbers as
weights, the transfinite Knuth-Bendix ordering �T agrees with �KBO:

Theorem 18. Let Σ0 be a subsignature of Σ such that Ψ(f) = 1 and Ω(f) ∈ N

for all f ∈ Σ0. Let �KBO be the regular Knuth-Bendix ordering on TΣ0(X) with
λ(f) = Ω(f) for f ∈ Σ0. Then, for all terms s, t ∈ TΣ0(X), s �T t if and only if
s �KBO t.

4 Ordering Definition Equations

The TKBO is able to orient every set of non-recursive, but possibly non-linear
definition equations from left to right, i. e. in an intuitive way. Moreover, if the
set of definition equations is finite and given a priori, this is possible even with
natural numbers as weights and subterm coefficients:

Suppose that we have a sequence of signatures Σi (0 ≤ i ≤ n) where Σi =
{fi} ∪ Σi−1 for i ≥ 1, and that we have a set of non-recursive definition equa-
tions of the form fi(s1, . . . , sk) ≈ t, with t, sj ∈ TΣi−1(X) and Var(t) ⊆ Var
(fi(s1, . . . , sk)) (where the sj are not necessarily variables). We start with ar-
bitrary natural numbers as weights and subterm coefficients for the symbols in
Σ0. Then, for i = 1, . . . , n, we recursively choose Ω(fi) and Ψ(fi) in such a way
that Ω(fi) > W(t) and Ψ(fi) ≥ maxx∈Var(t)

(∑
p∈P(x,t) C(p, t)

)
for every defini-

tion equation fi(s1, . . . , sk) ≈ t for fi. It is clear that this construction implies
fi(s1, . . . , sk) �T t by condition (TKBO1).

If we want to have the property that then every term t with a top symbol fi is
larger than every term in TΣi−1(Var(t)), this is still possible with the transfinite
Knuth-Bendix ordering, but now we have to use ordinal numbers beyond ω:

Theorem 19. Let Σ0 be a subsignature of Σ and let i ∈ N such that Ψ(f) < ωω
i

and Ω(f) < ωω
i

for all f ∈ Σ0 and Ψ(f) ≥ ωω
i

and Ω(f) ≥ ωω
i

for all f ∈ Σ\Σ0.
Let s be a term with top symbol in Σ \ Σ0, let t ∈ TΣ0(Var(s)) be a term over
Σ0 and the variables of s. Then s �T t holds.

Corollary 20. If we have a a sequence of signatures Σi, i = 0, . . . , n, where
Σi = {fi} ∪ Σi−1 for i ≥ 1, and an arbitrary KBO �KBO on TΣ0(X) with

weights in N, then defining Ψ(fi) = Ω(fi) = ωω
i

yields a transfinite KBO that
agrees with �KBO on TΣ0(X) and in which moreover every term s with top
symbol fi is larger than every term in TΣi−1(Var(s)).

It is clear that the transfinite Knuth-Bendix ordering is computable: Ordinals
from O can easily be encoded as nested list structures, on which the Hessen-
berg operations can be performed. Neither addition nor multiplication can be
performed in constant time, though. Consequently, the efficiency advantage of
the KBO over the LPO is essentially lost, and Cor. 20 is mostly a theoretical

358 M. Ludwig and U. Waldmann

result. On the other hand, both the criteria from Thm. 18 and from Thm. 19
can be efficiently checked, and together, they are often sufficient in practice.
Cor. 20 then ensures that completeness proofs, etc., which require the existence
of a reduction ordering total on ground terms still hold.

5 Hierarchic KBO

5.1 Simple Simplification Orderings

As mentioned earlier, for refutational completeness a hierarchic proof calculus
that operates on a base signature Σ0 and an extension Σ ⊇ Σ0 of Σ0 needs
a reduction ordering � that is total on ground terms and has the property
that every ground term in TΣ0(∅) is strictly smaller than every ground term
in TΣ(∅) \ TΣ0(∅). It is easy to see that the transfinite Knuth-Bendix ordering
satisfies this property, for instance, if the weight symbol assignment Ω maps
every symbol in Σ0 to a natural number and every symbol in Σ \ Σ0 to an
ordinal number ω · m + n with m > 0, and if Ψ(f) ∈ N for all f ∈ Σ. Note
that ordinals of the form ω · m + n with m ≥ 0, n ≥ 0, can be written as
tuples (m, n); the Hessenberg addition then corresponds to the componentwise
addition of tuples, the Hessenberg multiplication with positive integers to scalar
multiplication, and the ordering on ordinals is equivalent to the lexicographic
ordering over N × N.5

Moreover, a small refinement of the transfinite Knuth-Bendix ordering for
the hierarchic case is possible: In hierarchic superposition calculi there may be
variables for which we only have to consider instantiations with terms from
TΣ0(X) and other variables for which we only have to consider instantiations
with terms from TΣ(X)\TΣ0(X).6 This motivates a relaxation of the definitions
of reduction and simplification orderings.

Definition 21 (Simple Substitution). Let Σ0, Σ be two signatures such that
Σ0 ⊆ Σ and let Xl, Xs, Xu be disjoint sets of variables with X = Xl∪Xs∪Xu. We
say that a substitution σ : X → TΣ(X) is a simple substitution for (Xl, Xs, Xu)
and Σ0 ⊆ Σ if σ(x) ∈ TΣ0(Xs) for all x ∈ Xs and σ(x) ∈ TΣ(X) \TΣ0(Xs ∪Xu)
for all x ∈ Xl.

In other words, variables in Xs (“small variables”) may only be mapped to terms
over base symbols and small variables (“small terms”); variables in Xl (“large
variables”) may only be mapped to terms containing at least one proper exten-
sion symbol or large variable (“large terms”); for variables in Xu (“unspecified
variables”) there is no restriction.

The next definition is analogous to Def. 1 and introduces the concept of simple
simplification orderings.
5 A very restricted case of such a behaviour can also be found in the DomPred mech-

anism implemented in Vampire [16] and SPASS [17].
6 A similar requirement appears in superposition for finite domains (Hillenbrand and

Weidenbach [8]), where it is sufficient to consider substitutions that map variables
to a given set of constant symbols (which are smaller than complex terms).

An Extension of the Knuth-Bendix Ordering with LPO-Like Properties 359

Definition 22 (Simple Simplification Ordering). Let Σ0, Σ be two sig-
natures such that Σ0 ⊆ Σ and let Xl, Xs, Xu be disjoint sets of variables with
X = Xl ∪ Xs ∪ Xu. Furthermore, let �⊆ TΣ(X) × TΣ(X) be a binary relation
on terms. Then we say that

– � is stable under simple substitutions if for all terms s, s′ ∈ TΣ(X) and for
all simple substitutions σ ∈ SubstX,Σ for (Xl, Xs, Xu) and Σ0 ⊆ Σ it holds
that s � s′ =⇒ sσ � s′σ,

– � is a simple rewrite relation if � is compatible with Σ-operations and stable
under simple substitutions,

– � is a simple rewrite ordering if � is a strict partial ordering and a simple
rewrite relation,

– � is a simple simplification ordering if � is a simple rewrite ordering and
has the subterm property.

Note that if Xs = Xl = ∅, the notion of simple simplification ordering coincides
with the notion of (regular) simplification ordering.

5.2 Constructing the Ordering

In order to turn the transfinite Knuth-Bendix ordering into a simple simplifica-
tion ordering, we use ordinals of the form ω ·m+n with m ≥ 0, n ≥ 0 as weights
and positive integers as subterm coefficients.

Definition 23 (Admissible Hierarchic Symbol Weight Assignment).
Let Σ0, Σ be signatures such that Σ0 ⊆ Σ and let Xl, Xs, Xu be pairwise
disjoint sets of variables with X = Xl ∪ Xs ∪ Xu. Additionally, let � be a strict
partial ordering on Σ and let Ω : Σ∪X → O be a symbol weight assignment. We
say that Ω is admissible for � and Σ0 if the following conditions are satisfied:

(i) There exists an Ω0 ∈ N
>0 such that for all x ∈ Xs ∪ Xu: Ω(x) = Ω0 and

such that for all c/0 ∈ Σ: Ω(c) ≥ Ω0;
(ii) For all f ∈ Σ0: Ω(f) ∈ N.

(iii) There exists an Ω1 = ω · m + n with m ∈ N
>0, n ∈ N, such that for all

x ∈ Xl: Ω(x) = Ω1 and such that for all f ∈ Σ\Σ0: Ω(f) = ω·m′+n′ ≥ Ω1;
(iv) If there is a symbol f/1 ∈ Σ such that Ω(f) = 0, then f � g for all g ∈ Σ.

The extension from symbol weights to term weights is defined as before. We can
now introduce the hierarchic Knuth-Bendix ordering (HKBO). Compared with
the transfinite Knuth-Bendix ordering (Def. 14) there are two major differences:
the new case (HKBO1′) implies that small variables can essentially be ignored
if the weight difference of the two terms is large enough, and a change in the
definition of admissible symbol weight assignments enforces large variables to
get assigned the weight Ω1, which is greater than the weight of every symbol
from Σ0.

Definition 24 (Hierarchic Knuth-Bendix Ordering). Let Σ0, Σ be signa-
tures such that Σ0 ⊆ Σ, let Xl, Xs, Xu be pairwise disjoint sets of variables with

360 M. Ludwig and U. Waldmann

X = Xl∪Xs∪Xu. In addition, let � be a strict partial ordering, the precedence,
on Σ, let Ω : Σ ∪ X → {ω · m + n | m, n ∈ N } be a hierarchic symbol weight
assignment that is admissible for � and Σ0, and let Ψ : Σ → N

>0 be a subterm
coefficient function. Finally, let W = W(Ω,Ψ) : TΣ(X) → O be the ordinal term
weight function induced by Ω and Ψ .

We define the hierarchic Knuth-Bendix ordering (HKBO) �H ⊆ TΣ(X) ×
TΣ(X) induced by (�, Ω) on terms s, t ∈ TΣ(X) in the following way:

s �H t if

(HKBO1) Var(s) ⊇ Var(t), W(s) > W(t) and

∀x ∈ Var(t) :
⊕

p∈P(x, s)

C(p, s) ≥
⊕

p∈P(x, t)

C(p, t)

or
(HKBO1′) Var(s) ⊇ Var(t)∩ (Xl ∪Xu), W(s) = ω ·m + n, W(t) = ω ·m′+ n′,

m > m′ and

∀x ∈ Var(t) ∩ (Xl ∪ Xu) :
⊕

p∈P(x, s)

C(p, s) ≥
⊕

p∈P(x, t)

C(p, t)

or
(HKBO2) Var(s) ⊇ Var(t), W(s) = W(t),

∀x ∈ Var(t) :
⊕

p∈P(x, s)

C(p, s) ≥
⊕

p∈P(x, t)

C(p, t)

and one of the following cases occurs:
(HKBO2a) ∃ f/1 ∈ Σ, ∃x ∈ X , ∃n ∈ N

>0 such that s = fn(x) and t = x,
(HKBO2b) ∃ f/m, g/n ∈ Σ (m, n ∈ N), ∃ s1, . . . , sm, t1, . . . , tn ∈ TΣ(X)

such that s = f(s1, . . . , sm), t = g(t1, . . . , tn) with f � g,
(HKBO2c) ∃ f/m ∈ Σ (m ∈ N

>0), ∃ s1, . . . , sm, t1, . . . , tm ∈ TΣ(X), ∃ i ∈
N, 1 ≤ i ≤ m such that s = f(s1, . . . , sm), t = f(t1, . . . , tm) with s1 =
t1, . . . , si−1 = ti−1, si �T ti.

It is easy to show that terms built over Σ0 and “small” variables are smaller
w. r. t. the HKBO than terms which contain at least one large variable or one
symbol from Σ \ Σ0, as required for hierarchic superposition:

Lemma 25. For every term s ∈ TΣ(X) \ TΣ0(Xs ∪ Xu) and for every term
t ∈ TΣ0(Xs) we have s �H t.

Proof. By part (iii) of Def. 23, we have W(s) ≥ ω; by part (i) and (ii) we have
ω > W(t); hence s �H t by (HKBO1′).

The following theorems are proved analogously to the corresponding propositions
for TKBO:

Theorem 26. The hierarchic Knuth-Bendix ordering �H is a simple simplifi-
cation ordering.

An Extension of the Knuth-Bendix Ordering with LPO-Like Properties 361

Theorem 27. If the precedence � is a total ordering, then the hierarchic Knuth-
Bendix ordering �H is total on ground terms.

Furthermore, if we restrict to subterm coefficient functions that map every sym-
bol to 1, then Löchner’s proof [12] that KBO can be computed in linear time
can easily be extended to HKBO:

Theorem 28. If Ψ(f) = 1 for all f ∈ Σ, then there exists an algorithm with
worst-case time complexity O(|s| + |t|) that tests for two terms s and t whether
s = t, s �H t, t �H s, or s and t are incomparable.

6 Conclusions

We have described a generalisation of the Knuth-Bendix ordering that possesses
certain properties that are typical for LPO, such as the usability for hierarchic
theorem proving or the ability to handle non-linear definition equations ade-
quately.

As long as we restrict ourselves to subterm coefficient functions that map
every signature symbol to 1, the transfinite and the hierarchic KBO not only
inherit the general computation scheme of KBO but also its runtime behaviour,
which in particular turns the HKBO into a useful tool for actual implementations
of hierarchic theorem proving. In SPASS+T [15], we have implemented a three-
level version of the HKBO, with numeric constants on the lowest level, numeric
operators and predicates on the middle level, and other operators and predicates
on the top level. This ordering ensures that (a) terms and literals are primarily
compared using their non-numeric parts; (b) terms that differ only by their
numeric constants are essentially compared by the sum of the absolute values
of these constants, e. g., g(20, 4) � g(5, 5) and g(4, 20) � g(5, 5); (c) complex
numeric expressions are always larger than the numbers to which they evaluate,
e. g., 4 · 5 � 20.

On the other hand, choosing subterm coefficients that are larger than 1 is
clearly detrimental to the runtime behaviour of the TKBO. This holds already
when positive integers greater than 1 are used as subterm coefficients (in this
case one needs arbitrary precision integer arithmetic), and even more so when
one uses ordinal numbers beyond ω as subterm coefficients. In its full generality,
the transfinite KBO is mostly a theoretical device which ensures that using
the regular KBO on “small terms” and applying definition equation on “large
terms” are both compatible with a single reduction ordering over the whole
signature that is total on ground terms and whose existence may be required
for refutational completeness of a calculus. Actual computation of the TKBO is
possible, but it is essentially a last resort.

Acknowledgements. We are grateful to Andrei Voronkov and the LPAR re-
viewers for providing useful comments on previous versions of this paper.

362 M. Ludwig and U. Waldmann

References

1. Baader, F., Nipkow, T.: Term rewriting and all that. Cambridge University Press,
New York (1998)

2. Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with se-
lection and simplification. Journal of Logic and Computation 4(3), 217–247 (1994)

3. Bachmair, L., Ganzinger, H., Waldmann, U.: Refutational theorem proving for
hierarchic first-order theories. Applicable Algebra in Engineering, Communication
and Computing (AAECC) 5(3/4), 193–212 (1994)

4. Dick, J., Kalmus, J., Martin, U.: Automating the Knuth-Bendix ordering. Acta
Informatica 28(2), 95–119 (1990)

5. Fernández, M.-L., Godoy, G., Rubio, A.: Recursive path orderings can also be
incremental. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI),
vol. 3835, pp. 230–245. Springer, Heidelberg (2005)

6. Ganzinger, H., Sofronie-Stokkermans, V., Waldmann, U.: Modular proof systems
for partial functions with Evans equality. Information and Computation 204, 1453–
1492 (2006)

7. Hessenberg, G.: Grundbegriffe der Mengenlehre. Vandenhoeck & Ruprecht,
Göttingen (1906)

8. Hillenbrand, T., Weidenbach, C.: Superposition for finite domains. Research Report
MPI-I-2007-RG1-002, Max-Planck-Institut für Informatik, Stuhlsatzenhausweg 85,
66123 Saarbrücken, Germany (April 2007)

9. Just, W., Weese, M.: Discovering modern set theory. I: The Basics, Graduate Stud-
ies in Mathematics, vol. 8. American Mathematical Society (1996)

10. Kamin, S., Lévy, J.-J.: Attempts for generalising the recursive path orderings.
Manuscript Department of Computer Science, University of Illinois, Urbana-
Champaign (1980), available at
http://perso.ens-lyon.fr/pierre.lescanne/not accessible.html

11. Knuth, D.E., Bendix, P.B.: Simple word problems in universal algebras. In: Leech,
J. (ed.) Computational Problems in Abstract Algebra, pp. 263–297. Pergamon
Press, Oxford (1970)

12. Löchner, B.: Things to know when implementing KBO. Journal of Automated
Reasoning 36, 289–310 (2006)

13. Ludwig, M.: Extensions of the Knuth-Bendix ordering with LPO-like properties.
Diploma thesis, Universität des Saarlandes, Saarbrücken, Germany (July 2006)

14. McCune, W.: Otter 3.3 Reference Manual. Argonne National Laboratory, Argonne,
IL, USA, Technical Memorandum No. 263 (August 2003)

15. Prevosto, V., Waldmann, U.: SPASS+T. In: Sutcliffe, G., Schmidt, R., Schulz,
S. (eds.) ESCoR: FLoC 2006 Workshop on Empirically Successful Computerized
Reasoning, Seattle, WA, USA. CEUR Workshop Proceedings, vol. 192, pp. 18–33
(August 2006)

16. Riazanov, A., Voronkov, A.: The design and implementation of Vampire. AI Com-
munications 15, 91–110 (2002)

17. Weidenbach, C., Brahm, U., Hillenbrand, T., Keen, E., Theobalt, C., Topić, D.:
SPASS version 2.0. In: Voronkov, A. (ed.) CADE-18. LNCS (LNAI), vol. 2392, pp.
275–279. Springer, Heidelberg (2002)

http://perso.ens-lyon.fr/pierre.lescanne/not_accessible.html

Retractile Proof Nets of the Purely

Multiplicative and Additive Fragment of
Linear Logic

Roberto Maieli�

Dipartimento di Filosofia
Università degli Studi “Roma Tre”

maieli@uniroma3.it

Abstract. Proof nets are a parallel syntax for sequential proofs of linear
logic, firstly introduced by Girard in 1987. Here we present and intrinsic
(geometrical) characterization of proof nets, that is a correctness crite-
rion (an algorithm) for checking those proof structures which correspond
to proofs of the purely multiplicative and additive fragment of linear
logic. This criterion is formulated in terms of simple graph rewriting
rules and it extends an initial idea of a retraction correctness criterion
for proof nets of the purely multiplicative fragment of linear logic pre-
sented by Danos in his Thesis in 1990.

1 Introduction

Proof nets are a parallel syntax (a graphical presentation) for sequential proofs of
linear logic (LL), firstly introduced by Girard in [3]. An interesting challenge is to
find intrinsic (geometrical) characterizations of proof nets, that is correctness cri-
teria (naively, algorithms) for checking those proof structures which correspond
to LL proofs; this is particularly true for proof nets of the pure multiplicative
and additive fragment of linear logic (MALL).

Our starting idea is that correctness for MALL proof nets should be formu-
lated as simple as possible, following the spirit of correctness for proof nets of
the pure multiplicative fragment of linear logic (MLL, see [3] and [1]). In our
work correctness is formulated by an algorithm which implements simple graph
rewriting rules. In particular, we extend an initial idea of a retraction correctness
criterion for MLL proof nets presented in Danos’s Thesis ([2]) and subsequently
reformulated as a parsing criterion for MELL proof nets by Guerrini and Masini
([6]). Naively, retractility is a way to simulate sequentialization steps: each re-
tracted (sub)graph corresponds to a correct (sequentializable) (sub)proof struc-
ture. Compared with other existing syntaxes for MALL proof nets, like that

� The author thanks Michele Abrusci, Paul Ruet and the anonymous referees for
their suggestions and remarks. This work was partially supported by the MIUR
Project Rete italo-francese di ricerca in logica e geometria della computazione
(Prot. IIO4CE27L4).

N. Dershowitz and A. Voronkov (Eds.): LPAR 2007, LNAI 4790, pp. 363–377, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

364 R. Maieli

one due to Girard ([4]) or Hughes-van Glabbeek ([7]), our retractile correctness
criterion does not rely on any notion of additive box, slice or jump. This effort
should simplify the complexity of checking correctness. However here we do not
discuss complexity aspects of our criterion; moreover, for simplicity reasons, we
restrict to consider only cut-free proof nets.

After recalling, in next sub-section, some basic notions of the MALL frag-
ment we introduce, in Section 2, a notion of (abstract) proof structure; then, in
Section 3, we characterize correctness in terms of a rewriting algorithm which
is shown confluent, correct (sequentializable) and complete (de-sequentializable)
w.r.t. MALL sequent calculus. Finally, in Section 4, we discuss some directions
in the way we could extend our criterion to proof nets with cuts.

1.1 The MALL Fragment of Linear Logic

MALL formulas A, B, ... are built from literals (propositional variables P, Q, ...
and their negations P⊥, Q⊥, ...) by the binary connectives ⊗ (tensor), � (par),
& (with) and ⊕ (plus). Negation (.)⊥ extends to arbitrary formulas by the de
Morgan laws: (A ⊗ B)⊥ = (A⊥�B⊥), (A�B)⊥ = (A⊥ ⊗ B⊥), (A&B)⊥ =
(A⊥⊕B⊥), and (A⊕B)⊥ = (A⊥&B⊥). A MALL sequent Γ is a non empty set
of formula occurrences A1, ..., An. We omit turnstiles (�) since all sequents are
right-sided. Sequents are proved using the following rules:

ax
A,A⊥ Γ,A Δ,A⊥

cut
Γ,Δ

Γ,A Δ,B ⊗
Γ,Δ,A⊗B

Γ,A,B
�

Γ,A�B
Γ,A Γ,B

&
Γ,A&B

Γ,A ⊕1
Γ,A⊕B

Γ,B ⊕2
Γ,A⊕B

2 Proof Structures

Definition 1 (proof structure). A (cut-free) proof structure, shortly PS, of
MALL is an oriented graph s.t. each edge is labelled by a MALL formula and
built on the set of nodes (or vertices) following the typing constraints of Figure 1.
Pending edges are called conclusions. The orientation is from top to bottom; fixed
a node, an entering edge is called premise while its unique emergent edge is called
conclusion. We call link the graph made by a node together with its premise(s)
and conclusion.

⊗ � & C

A ⊗ B A�B A&B A

A B A A BB A B A A

A ⊕ B

ax

A A⊥

⊕ ⊕

A ⊕ B

Fig. 1. MALL links

Retractile Proof Nets of the Purely Multiplicative and Additive Fragment 365

Definition 2 (abstract proof structure). An abstract structure (AS) is a
non oriented graph G equipped with a set C(G) of pairwise disjoint pairs of
coincident edges (two edges are coincident if they share at least a vertex). We
call simply pair a pair of edges of C(G) and base of a pair (possibly one of) its
common vertex(es). A pair is graphically denoted by a crossing arc close to the
base.
An abstract proof structure (APS) is an AS such that:
– each edge is labelled by a MALL formula;
– each pair is denoted by an arc labelled by �, & or C;
– it is build by iterating the rules of Figure 2 (a mapping from PS to APS).

⊗

�

&

C�→

�→

�→

�→

�→

Ai

A ⊗ B A ⊗ B

B

A B

A�B A�B

BA

B

A&BA&B

A B

BA

A A
A A C

&

�

A

A A

A

A⊥A
�→

ax

A A⊥

Ai=1,2

A1 ⊕ A2

⊕

A1 ⊕ A2

Fig. 2. Mapping PS in to APS

Notation: if π is a PS then π∗ denotes its corresponding APS; variables e1, e2, ...
denote edges and v1, v2, ... denote vertices of an APS; a dotted edge incident to
a vertex v and (eventually) labelled by variables a, b, ..., is a compact represen-
tation of possibly several edges incident to v; finally, δ(v) states for the degree
(the number of incident edges) of a vertex v.

Definition 3 (multiplicative retraction). A multiplicative retraction of an
APS π is a rewriting of π into π′ (denoted π � π′) by means of an instance of
the following rules:

R1 (on the left hand side of Figure 3), with the conditions that in π:
– vertices v1 and v2 are distinct;
– the retracted edge e1 does not belong to any pair of C(π).

R2 (on the right hand side of Figure 3), with the conditions that in π:
– vertices v1 and v2 are distinct;
– the two retracted edges e1 and e2 belong to the same �-pair.

Definition 4 (additive retraction)
An additive retraction of an APS π is a rewriting of π into π′ by means of an
instance of the following rules:

366 R. Maieli

�
�R2

π′ π′

�R1

π π

v1

e1

v2

v1

v1

v2

e1 e2 v1

Fig. 3. Multiplicative retraction rules R1 and R2

R3 (on the left hand side of Figure 4), with the conditions that in π:
– each vertex vi, 1 ≤ i ≤ 4, is distinct;
– the two retracted edges e1 and e2 belong to the same C-pair.

R4 (on the right hand side of Figure 4), with the conditions that in π:
– each vertex vi, 1 ≤ i ≤ 3, is distinct;
– the two retracted edges e1 and e2 belong to the same &-pair.
– δ(v2) = 1 and δ(v3) = 1.

π π

v4

v3

e1 e2

v2 v3

v1

v2

v1

a

a

π′

v1

v2 v3

�R4

π′

v1

& &

�R3

e2

&

C
e1

Fig. 4. Additive retraction rules R3 and R4

Definition 5 (distributive retraction). A distributive retraction rule1 of an
APS π is a rewriting of π into π′ by means of an instance of the rule R5 of
Figure 5, with the conditions that in π:

– each vertex vi, 1 ≤ i ≤ 8, is distinct;
– the two retracted edges e1 and e2 belong to the same C-pair;
– the two retracted edges e3 and e4 belong to the same �-pair;
– δ(v4) = 2, δ(v5) = 2, δ(v6) = 3 and δ(v7) = 3.

Fixed a retraction rule Ri, 1 ≤ i ≤ 5, the subgraph of π (resp., of π′) depicted
on the left (resp., on the right) hand side of the �Ri map is called the retraction
(resp., retracted) graph of Ri.

We say that two instances Ri and Rj , with 1 ≤ i, j ≤ 5, overlap (resp.,
separate) when the intersection of their retraction graphs is not empty (resp.,

1 This rule reflects the distributive linear law (b�c)&(b�d) � b�(c&d).

Retractile Proof Nets of the Purely Multiplicative and Additive Fragment 367

v5

v6

v3v2v1

v7

v8

�

&

C

�R5

v8

v6

v3v2v1

�

&

e1

e2

v4

� e4

e3

e5

e6

e7 e8

e7

e8

e5e6

Fig. 5. Distributive retraction rule R5

empty). Ri and Rj are said independent when they can be applied in any order,
i.e. Ri immediately before Rj or Rj immediately before Ri.

An APS π with conclusions A1, ..., An is retractile when there exists a sequence
of retraction instances starting with π and terminating with a single node (•)
with n incident edges labelled by A1, ..., An.

Definition 6 (proof net). A PS π with conclusions A1, ..., An, with n ≥ 1, is
correct (i.e., it is a proof net) if its corresponding APS π∗ is retractile.

Theorem 1 (confluence). If π is a retractile APS then any sequence of retrac-
tion instances starting from π terminates with a single node with the (possibly)
several incident edges labelled by the conclusions of π.

Proof. Assume Σ is a retractions sequence π � π1 � ... � πn = • with Ri as
first retraction (i.e. π �Ri π1) and assume there exists a σ such that π �Rj σ.
We show that σ is retractile too. We reason by induction on the length l of Σ,
where l is the number of retraction instances of Σ.

Assume l = 1, then π �Ri π1 = • and so Ri and Rj must be the same instance
with σ = π1. This follows from the definition of the retraction rules (if Ri and
Rj are two different instances then the retraction graphs of Ri and Rj can be
disjoint or partially overlapping but not included each other).

Assume l > 1, then we split our reasoning in two sub-cases.

1. Ri and Rj are independent. Since, by assumption π1 is retractile in n − 1
steps, then by hypothesis of induction applied to π1 we conclude that any
π′1 obtained by π1 �Rj π′1 must be retractile. This means that σ is retractile
since σ �Ri π′1 and Ri and Rj are independent (see Figure 6).

2. Ri and Rj are not independent; this means that Ri and Rj must be two
overlapping instances of the R5 rule like in left hand side of Figure 7. Again,

368 R. Maieli

σ

�R
j

�
R
i

π π′

1 � ... � •

�
R
i

�R
j

π1 � π2 � ... � • : Σ

Fig. 6. Confluence of independent retractions

� �

CC

1

C

1

C
1

&

&

&

�

�

π1

σ

π′

1

�π

�R
i

�
R
j �R

3
,R

4

�
R
3 ,R

4

Fig. 7. Confluence of non independent retractions

we reason like in the previous case. Since, by assumption π1 is retractile
in n − 1 steps, then we can apply the hypothesis of induction to π1 and
conclude that π′1 is also retractile since π1 �R3,4 π′1. This means that σ will
be retractile too, since σ �R3,4 π′1 (see Figure 6).

3 (De-)Sequentialization

In this section we show that any sequent proof of can be de-sequentialized into
a proof net with the same conclusions (Theorem 2) and vice-versa (Theorem 5).

Theorem 2 (de-sequentialization). A proof π− of the sequent Γ = A1, ...,
An≥1 can be desequentialized in to a proof net π with conclusion Γ .

Retractile Proof Nets of the Purely Multiplicative and Additive Fragment 369

Proof. By induction on the height2 of the given sequential proof π−. We only
consider the case when last rule of π is a &-rule (the other cases are very simple
and we omit them). Assume π− like in the left hand side of Figure 8, then by
hypothesis of induction π−1 and π−2 desequentialize respectively into two retrac-
tile APS π∗1 and π∗2 , like in the middle side of Figure 8. Clearly the resulting
APS π∗ (see the right hand side of Figure 8) will be retracted to • by applying
(iteratively) rule R3 and (an instance of) rule R4.

π−

1

Γ, A

π−

2

Γ, B
π−: &

Γ, A&B

A1

An

&

C

C

A&B

..
.

..
.

A1

An

A

B

A1

An

..
.

π∗

π∗

2

π∗

1

Fig. 8. De-sequentialization of the &-rule

In the following we give an indirect proof of the sequentialization: first we show
that any proof net can be weighted in such a way of becoming a proof net à la
Girard (Section 3.1), then sequentialization follows as a consequence of Girard’s
one (Section 3.2).

3.1 Girard’s Proof Nets

In this section we recall the basic notions of Girard’s proof net; for simplification
reasons we adopt the syntax of [9].

Definition 7 (Girard’s proof structure). A proof structure à la Girard
(GPS) is a PS with weights associated as follows (weights assignment):

1. first we associate a boolean variable, called eigen weight p, to each &-node
(eigen weights are supposed to be different);

2. then we associate a weight, a product of (negation of) boolean variables
(p, p, q, q...) to each node, with the constraint that two nodes have the same
weight if they have a common edge, except when the edge is the premise of a
& or C-node, in these cases we do like in Figure 9:

3. a conclusion node has weight 1;
4. if w is the weight of a &-node, with eigen weight p, and w′ is a weight

depending on p and appearing in the proof structure then w′ ≤ w (we say
that a weight w depends on p when p or p occurs in w).

2 The height, h(π−), of π− is defined inductively as usual. We consider last rule R of
π−: if R = ax then h(π−) = 1 otherwise if R is an unary rule, � or ⊕, (resp., a
binary rule, ⊗ or &) then h(π−) = h(π−

1)+1 (resp., h(π−) = max(h(π−
1), h(π−

2))+1)
where π−

1 (resp., π−
1 and π−

2) is the immediate sub-proof (resp., are the immediate
sub-proofs) of π−.

370 R. Maieli

if p does not occur in w

w

w.pw.p

with w1.w2 = 0

w1 w2

w = w1 + w2C

v2 v1 v2v1

&p

Fig. 9. Weights for GPS

A node L with weight w depends on the eigen weight p if w depends on p or
L is a C-node and one of the weights just above it depends on p.

Definition 8 (slice and switchings). A valuation ϕ for a GPS π is a function
from the set of all weights of π into {0, 1}. Fixed a valuation ϕ for π then:

– the slice ϕ(π) is the graph obtained from π by keeping only those nodes with
weight 1 together its emerging edges;

– a multiplicative switching S for π is the non oriented graph built on the
nodes and edges of ϕ(π) with the modification that for each �-node we take
only one premise (left/right �-switch);

– an additive switching (or simply a switching) is a multiplicative switching
where for each &-node we erase the (unique) premise in ϕ(π) and we add
an oriented edge, called jump, from the &-node to an L-node whose weight
depends on the eigen weight of the &-node.

Definition 9 (Girard’s proof net). A GPS π is correct, so it is a proof net
à la Girard (GPN), if any switching, induced by any valuation of π, is acyclic
and connected (ACC).

Theorem 3 (sequentialization). A GPN can be sequentialized into a MALL
sequent proof with same conclusions and vice-versa.

Proof. omitted (see[4]).

3.2 Sequentialization

Definition 10 (GAPS). A Girard abstract proof structure is an APS with
weights associated as follows:

1. first we associate a distinct eigen weight variable to each &-pair (graphically,
the arc of each &-pair is now labelled by a distinct eigen weight variable);

2. then we associate a weight to each node, with the constraint that two nodes
have the same weight if they have a common edge, except when the edge
occurs in a &-pair or C-pair, in these cases we do like in Figure 10:

3. a conclusion node has weight 1;
4. if w is the weight of a node that is the base of an &p-pair and w′ is a weight

depending on p and appearing in the GAPS then w′ ≤ w.

Retractile Proof Nets of the Purely Multiplicative and Additive Fragment 371

w

wp C

with w1.w2 = 0

w = w1 + w2

wp w1&p
w2

p does not occur in w

Fig. 10. Weights for GAPS

Remark 1. The notions of valuation and slice are still well defined w.r.t. GAPS.
Only the definition of switching needs a slight modification. Fixed a valuation ϕ
for an GAPS π then:

– a multiplicative switching S for π is the (non oriented) graph built on ϕ(π)
with the modification that for each �-pair we take only one edge (left/right
�-switch);

– an additive switching is a multiplicative switching where for each &p-pair
we erase the (unique) edge in ϕ(π) and we add a jump from the base of this
&p-pair to an L-node whose weight depends on p.

Lemma 1. Assume π is an APS such that π �Ri π′, with 1 ≤ i ≤ 5, and as-
sume there exists a weights assignment making π′ a GAPS, then this assignment
can be extended in such a way to transform π in to a GAPS.

Proof. We reason by cases, according to the retraction Ri.
Cases R1. The weight w associated to node v1 in the retracted graph of R1

in Figure 3 is inherited by both nodes v1 and v2 of the retraction graph. Since
all other weights remain unchanged π is a GAPS. Case R2 is similar.

Case R2 is similar.
Case R3. Assume, in the retracted graph of Figure 4, p is the eigen weight

of the &-pair, w is the weight of node v1, wp is the weight of node v2 and
wp is the weight of node v3. We can easily extend this weight assignment to
the corresponding nodes of the retraction graph: it is easy to verify that this
assignment preserves the property of being a AGPS w.r.t. π, since all pair of
C(π) are pairwise disjoint and all other weights remain unchanged.

Case R4. Assume node v1 has weight w in the retracted graph of Figure 4;
then w is trivially inherited by the corresponding node v1 of the retraction
graph. Now, chosen a new eigen weight p for the &-pair, we can assign weights
wp and wp to nodes, respectively, v2 and v3. Now, since all other weights remain
unchanged, π is a GAPS.

Case R5. Assume a weight assignment for the retracted graph of Figure 5 as
follows: the &p-pair together with nodes v1, v6 and v8 have the same weight w,
while nodes v2 and v3 have weights, respectively, wp and wp. This assignment
can be easily extended to π with a slight modifications: the &-pair with base
in v8 inherits the eigen weight p and v8 inherits the weight w; then weight
wp is assigned to v7, v4 and v2, and weight wp to v6, v5 and v3; finally weight
w = wp + wp is assigned to v1. It is easy to verify that this new assignment

372 R. Maieli

preserves the property of being a AGPS w.r.t. π, since all pair of C(π) are
pairwise disjoint and all other weights remain unchanged.

What follows is a well known graph theoretical property (see [5], pages 250-251)
we will exploit in the proof of the Lemma 2.

Property 1 (Euler-Poincaré invariance). Given a graph G, then �CC − �Cy =
�V − �E, where �CC, �Cy, �V and �E denotes, respectively, the number of
connected components, cycles, vertices and edges of G.

We use the predicate Gir(π) for saying that a GAPS is correct in the sense of
Definition 9, i.e., any switching S(π), w.r.t. a fixed valuation ϕ(π), is ACC.

Lemma 2. If π is an GAPS and π �Ri π′, 1 ≤ i ≤ 5, then Gir(π) if Gir(π′).

Proof. Let us fix a valuation ϕ for π. First observe that by Lemma 1 we have
only to verify that every switching S(π) is ACC. The proof idea, illustrated
in Figure 11, relies on the fact that if π �Ri π′ then any switching S for π

.

σ′σ

χ χ

S(π) S ′
(π′

)

B1 Bm

A1 An A1 An

B1 Bm

Fig. 11. Recovering S(π) from S′(π′)

is nothing else that a switching S′ for π′ except for the fact we replace the
switched retracted graph σ′ of Ri by a corresponding switched retraction graph
σ. We reason by cases, according to the retraction rule Ri.

1. If π �R1 π′ (see the left hand side of Figure 3) then trivially any switching
S for π can be recovered from a S′ for π′ where we replaced the retracted
graph σ′ with the retraction graph σ of Figure 12. Clearly S(π) is ACC.

σ′σ

S(π′
)S(π) e1 v1

v2

v1

Fig. 12. Recovering S(π) from S′(π′) after a retraction R1

Retractile Proof Nets of the Purely Multiplicative and Additive Fragment 373

2. If π �R2 π′ (see the right hand side of Figure 3) then any switching S for π
can be recovered from a switching S′ for π′ where we replaced the switched
retracted graph σ′ by a corresponding switched retraction graph σ (resp.,
χ) in case we set a left (resp., right) switch for the �-pair (see Figure 13).
Clearly, S�l

(π) (resp., S�r(π)) is ACC.

σ′σ χ

S ′
(π′

)

�L

e1 e2

v2v2

v1

v1v1

�R

S�l
(π) S�r

(π)

Fig. 13. Recovering S(π) from S′(π′) after a retraction R2

3. If π �R3 π′ (see the left hand side of Figure 4) then any switching S for π
can be recovered from a switching S′ of π′. We need to consider two cases,
according to the jump emerging from the base v1 of the &p-pair in S′.
First case: assume S′ contains an immediate jump j from the base v1 of the
&p-pair to its (unique) premise v2 (see the right hand side of Figure 14).
Then S for π can be recovered from S′ where we replaced the switched
retracted graph σ′ by the corresponding switched retraction graph σ on the
left hand side of Figure 14. We have to show that S is ACC. First, observe

c c

b
a

j j

σ′σ

S(π) S ′
(π′

)

v1

b

a

v4

v2 v2

v1

Fig. 14. Recovering S(π) from S′(π′), with an immediate jump, after a retraction R3

that edges a, b and c are connected in S as well in S′, so the number of
connected components in S is 1. Moreover in S the difference �V − �E must
be the same as that one in S′, that is 1, since in S there is only one more
edge and one more vertex than in S′. So by the Euler-Poincaré invariance in
S we have �CC − �Cy = 1, therefore �Cy in S must be 0. So S is ACC.

374 R. Maieli

Second case: S contains a remote jump j from the base v1 of the &p pair
to a node v depending on p that is different from the (unique) premise of
&p (see the right hand side of Figure 15). Clearly S can be recovered from

a

c

b

a

b

v v

j j

σ σ′

S(π) S ′
(π′

)

v2

v4

v2

v1

c

v1

Fig. 15. Recovering S(π) from S′(π′), with a remote jump, after a retraction R3

a switching S′ where we replaced the switched retracted graph σ′ by the
switched retraction graph σ on the left hand side of Figure 15. We show that
S is ACC. Although vertices v1 and v2 are connected in S′ by assumption,
they cannot be connected through a, otherwise we could easily set a switching
S

′′
for π′ that is identical to S′ except for the immediate jump from v1 to v2

and get a cycle, contradicting the assumption Gir(π′). This means that the
retraction step R3 preserves backwards the connection of S, so �CC of S is
1. Now, observe that the difference �V −�E of S is the same as that one of S′

(i.e. 1), so by the Euler-Poincaré invariance we have, in S, �CC − �Cy = 1.
This means that, in S, �Cy must be 0. So S is ACC.

4. If π �R4 π′ (see the right hand side of Figure 4) then a switching S for π
can be recovered from a switching S′ for π′ plus a jump j emerging from the
base v1 of the &p pair. Now, observe this jump j in S can only be directed
to its (unique) premise, otherwise: (i) either there would exist in π′ a node
whose weight depends on a variable p that is not an eigen weight of any
&-pair or (ii) there would exist in π two &-pairs with the same eigen-weight
variable p. Both cases contradict that π is an AGPS (Lemma 1).

5. If π �R5 π′ (see Figure 5) then a switching S for π is exactly a switching S′

for π′ except for the the jump emerging from the &p-pair and the switch for
the � pair occurring in the retraction R5. So, let us fix in S′ a left �-switch
and jump from the base v6 of the &p-pair (the case with the right �-switch,
is analogous): there are two possible jumps.
First case: assume in S′(π′) we jump from the base v6 of the &p pair to its
(unique) premise. Then a switching S for π is exactly a switching S′ for π′

except for the fact we replaced the switched retracted graph σ′ with σ of
Figure 16. Clearly S is connected, so via the Euler-Poincaré invariance, we
conclude that S is also acyclic (we reason like in the previous point 3).

Retractile Proof Nets of the Purely Multiplicative and Additive Fragment 375

j

j

σ′σ

S(π) S ′
(π′

)

v1 v2

v7

v8 v8

v6

v2v1

Fig. 16. Recovering S(π) form S′(π′), with immediate jump, after a reduction R5

Second case: assume in S′(π) we jump from the base v6 of the &p pair to a
remote node v depending on p. Then a switching S for π can be recovered
from a switching S′ where we replaced the switched retracted graph σ′ with
σ of Figure 17. Now observe that σ′ does not induce any cycle in S, otherwise

v v

σ σ′

S(π) S ′
(π′

)

v1 v2 v1 v2

v7

v8 v8

j

j

v6

Fig. 17. Recovering S(π) form S′(π′), with a remote jump, after a reduction R5

this cycle would already occur in S′. Moreover, the number of vertices and
edges in S is the same as in S′ so, via the Euler-Poincaré invariance, we
conclude that S is connected.

Theorem 4 (PN �→GPN). If π is a PN then there exists a weight assignment
transforming π in to a GPN.

Proof. If π is a PN then π∗ retracts to a node v with possibly several incident
edges labelled by the conclusions of π. Trivially v is an AGPS satisfying the
predicate Gir, then by iteration of Lemma 2 we conclude that π is a GPN.

376 R. Maieli

Theorem 5 (sequentialization). If π is a PN with conclusions Γ then the
sequent Γ is provable in the MALL sequent calculus.

Proof. It follows from Girard’s sequentialization (see [4]) via Theorem 4.

4 Conclusions and Forthcoming Work

We presented a simple system of graph rewriting rules which can be viewed as
a geometrical correction criterion for cut free proof structures of MALL. Each
proof structure that is correct in our sense it will be so also in Girard’s sense
but not vice-versa. In general the other direction of Theorem 4 does not hold:
the proof structure π1, on the left hand side of Figure 18 is not correct for us
(it is not retractile); nevertheless we can find a weight assignment transforming
π1 in to a Girard proof net. Actually we only accept correct the proof structure
π2 depicted on the right hand side of Figure 18 which (in our opinion) better
embeds the two different sequentializations induced by the permutability of the
&-rule w.r.t. the ⊗-rule of the sequent calculus.

v v

σ σ′

S(π) S ′
(π′

)

v1 v2 v1 v2

v7

v8 v8

j

j

v6

Fig. 18. Examples of PS w.r.t. sequentialization

As future work we aim at comparing the complexity of the retractility cor-
rectness criterion w.r.t. Girard and Hughes-van Glabbeek’s criteria. Moreover
we aim at extending retraction rules in such a way to take in to account proof
nets with cuts. At the moment we are investigating some local (commutative)
cut reduction steps, following the style of the Interaction Nets ([8]). Our idea is
sketched in Figure 19 where the
 symbol states for a binary MALL connective

1

2

3

4
C

C

C cut ax ax

ax

ax

�

�

�

cut

cut

�→

cut

cut

3

42

1

Fig. 19. Commutative cut step reduction

Retractile Proof Nets of the Purely Multiplicative and Additive Fragment 377

or a contraction C. But in that case the correspondence with monomial GPS is
lost: as soon as we replace the
 symbol with the & connective we are suddenly
faced to proof structures weighted with polynomials.

References

1. Danos, V., Regnier, L.: The Structure of Multiplicatives. Archive for Mathematical
Logic 28, 181–203 (1989)

2. Danos, V.: La Logique Linéaire appliquée à l’étude de divers processus de normali-
sation (principalment du λ-calcul). PhD Thesis, Univ. Paris VII (Juin 1990)

3. Girard, J.-Y.: Linear Logic. Theoretical Computer Science 50, 1–102 (1987)
4. Girard, J.-Y.: Proof nets: the parallel syntax for proof theory. In: Logic and Algebra,

Marcel Dekker (1996)
5. Girard, J.-Y.: Le point aveugle. In: Hermann (ed.) Cours de Logique. Vers la Per-

fection, Paris, vol. I (2006)
6. Guerrini, S., Masini, A.: Parsing MELL proof nets. Theoretical Computer Sci-

ence 254, 317–335 (2001)
7. Hughes, D., van Glabbeek, R.: Proof Nets for Unit-free Multiplicative-Additive Lin-

ear Logic. In: Proc. of IEEE Logic in Computer Science, IEEE Computer Society
Press, Los Alamitos (2003)

8. Lafont, Y.: From proof nets to interaction nets. In: Girard, J.-Y., Lafont, Y., Reg-
nier, L. (eds.) Advanced in Linear Logic, pp. 225–247. Cambridge Press, Cambridge
(1995)

9. Laurent, O.: Polarized Proof Nets: Proof Nets for LC. In: Girard, J.-Y. (ed.) TLCA
1999. LNCS, vol. 1581, pp. 213–227. Springer, Heidelberg (1999)

Integrating Inductive Definitions in SAT

Maarten Mariën, Johan Wittocx, and Marc Denecker

Department of Computer Science, Katholieke Universiteit Leuven, Belgium
{maartenm,johan,marcd}@cs.kuleuven.be

Abstract. We investigate techniques for supporting inductive defini-
tions (IDs) in SAT, and report on an implementation, called MidL, of
the resulting solver. This solver was first introduced in [11], as a part of a
declarative problem solving framework. We go about our investigation by
proposing a new formulation of the semantics of IDs as presented in [2].
This new formulation suggests a way to perform the computational task
involved, resulting in an algorithm supporting IDs. We show in detail
how to integrate our algorithm with traditional SAT solving techniques.
We also point out the similarities with another algorithm that was re-
cently developed for ASP [1]. Indeed, our formulation reveals a very tight
relation with stable model semantics. We conclude by an experimental
validation of our approach using MidL.

1 Introduction

This work is motivated by the following observations:

– contemporary SAT solvers exhibit impressive performance;
– SAT provides a poor modelling language;
– the ability to express inductive definitions (or recursion) is present in many

important knowledge representation formalisms.

The first two observations provide an impetus to extend SAT with language con-
structs that yield a better modelling language, without giving up too much on the
performance side. Adding to this, the third observation shows what would make a
better modelling language. Hence this paper focuses on providing computational
support for an extension of SAT with (propositional) inductive definitions.

An extension of classical logic with inductive definitions, FO(ID), is given
in [2]. A first model generator for the propositional fragment of this logic,
SAT(ID), was presented in [10]. An improved version of this solver was reported
on in [11], as a part of a declarative problem solving framework. This paper
presents the algorithms of this new solver.

Our work is aimed at closing the computational gap between SAT(ID) and
“pure” SAT. Hence we try to show how ID support can be integrated in state-of-
the-art SAT solving techniques. First, we give an alternative definition of the se-
mantics of SAT(ID). This alternative definition leads to a natural understanding
of the computational task of a SAT(ID) solver. In particular, the new definition
contains two properties that could be used as invariants for such a solver. We

N. Dershowitz and A. Voronkov (Eds.): LPAR 2007, LNAI 4790, pp. 378–392, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Integrating Inductive Definitions in SAT 379

show that applying SAT’s two watched literal technique [14] on (Clark’s comple-
tion of) an ID suffices to satisfy the first property. A more involved algorithm to
satisfy the second property is worked out. It turns out to be very similar to an
algorithm for finding unfounded sets proposed by [1].1 As we show a strong rela-
tion between SAT(ID) and the stable model semantics [5], which is the semantics
used in Answer Set Programming (ASP) [9], this similarity is not unsurprising.

Combining these two algorithms, we end up with an extension of the DPLL
algorithm. As such, a lot of techniques that lead to the impressive performance
of SAT solvers can be used in a SAT(ID) solver.

Finally, we present results obtained with MidL, an implementation of the
discussed algorithms. A comparison with some SAT and ASP solvers shows that
MidL is competitive with state-of-the art ASP solvers, while there is still an
efficiency gap with SAT solvers on problems containing no recursion.

2 Preliminaries

2.1 SAT(ID)

In this section, we introduce SAT(ID), an extension of propositional logic with
inductive definitions. We assume familiarity with propositional logic.

A vocabulary Σ is a set of atoms. A literal is an atom P or its negation ¬P .
An atom P is called a positive literal, ¬P a negative one. For a literal L, we
identify ¬¬L with L. For a set S of literals, we denote by S the set {¬L | L ∈ S},
and by S� the set S ∪ S.

A definition over Σ is a finite set of rules of the form P ← ϕ where P ∈ Σ is
an atom and ϕ is an arbitrary propositional formula over Σ. P is called the head
of the rule and ϕ the body. For a definition Δ, an atom P occuring as head of a
rule in Δ is called a defined atom of Δ. All other atoms are called open atoms of
Δ. The set of all defined, respectively open atoms of Δ is denoted by Def(Δ),
respectively Open(Δ). We say that an atom occurs positively (negatively) in
a propositional formula if it occurs in the scope of an even (odd) number of
negations. We call a definition Δ positive if each occurrence of an atom in the
body of a rule in Δ is positive.

A SAT(ID) theory is a set of propositional formulae and definitions.
A three-valued Σ-interpretation I is a function I : Σ → {t, u, f}. An inter-

pretation is two-valued if it maps no atom to u. The restriction of I to a set
σ ⊂ Σ is denoted I|σ. The truth order ≤ on {t, u, f} is induced by f ≤ u ≤ t
and the precision order ≤p by u ≤p f and u ≤p t. Both orders pointwise extend
to interpretations. Define f−1 = t, u−1 = u and t−1 = f . An interpretation I
on Σ can be extended inductively to propositional formulae over Σ:

I(ϕ∧ψ)=min
≤

({I(ϕ), I(ψ)}), I(ϕ∨ψ)=max
≤

({I(ϕ), I(ψ)}), and I(¬ϕ)=I(ϕ)−1.

We say that I satisfies ϕ, denoted by I |= ϕ, if I(ϕ) = t.
1 We independently developed our algorithm, and believe that the new insights gained

by the alternative presentation are a valuable asset.

380 M. Mariën J. Wittocx, and M. Denecker

We now introduce both the stable and well-founded semantics for definitions.
The semantics of definitions in SAT(ID) will be given by the latter. Our pre-
sentation is based on [16], where the first three-valued characterisation of the
stable model semantics was given: such a characterisation is closer to actual
computational processes, where partial interpretations are used.

Let Σ be a vocabulary, Δ a definition over Σ and IO an Open(Δ)-
interpretation. Denote by LΔ the set of all Σ-interpretations extending IO
and define the operator ΨΔ : LΔ → LΔ by ΨΔ(I)(P) = I(

∨
P←ϕ∈Δ ϕ) if

P ∈ Def(Δ), and ΨΔ(I)(P) = I(P) otherwise. If Δ is a positive definition,
ΨΔ is ≤-monotone, and the least model of Δ extending IO is defined as the
≤-least fixpoint of ΨΔ.

Let I be a 3-valued Σ-interpretation. The reduct of Δ in I, denoted by ΔI , is
the definition obtained by replacing in every rule all open atoms and all negative
occurrences of defined atoms P by I(P). The reduct is a positive definition.

Definition 1 (Stable model). Let Δ be a Σ-definition, IO an Open(Δ)-inter-
pretation. Then a Σ-interpretation I is a (three-valued) stable model of Δ ex-
tending IO iff I|Def(Δ) is the least model of ΔI extending IO and I|Open(Δ) = IO.

Note that in the standard definition of stable models [5] atoms in Open(Δ) are
considered false. Intuitively, an atom P ∈ Open(Δ) here corresponds to an atom
P defined by “P ← notP ′. P ′ ← notP.” in the standard definition.

It is shown in [16] that for every definition Δ and Open(Δ)-interpretation IO,
there exists at least one stable model of Δ extending IO. Also, the greatest lower
bound with respect to ≤p of the set of all stable models of Δ extending IO is
itself a stable model of Δ extending IO.

Definition 2 (Well-founded model). Let Δ be a definition, IO an Open(Δ)-
interpretation. The well-founded model of Δ extending IO is the ≤p-least stable
model of Δ extending IO.

An interpretation I satisfies a definition Δ, denoted I |= Δ, if I is the well-
founded model of Δ extending I|Open(Δ) and I is two-valued. Finally, I satisfies
a SAT(ID) theory T if I satisfies every formula and every definition of T .

Observe that we are only interested in two-valued models of definitions. We
call a definition Δ total if for every two-valued Open(Δ)-interpretation IO, the
well-founded model M of Δ extending IO is two-valued. In this case, M is also
the unique stable model of Δ extending IO. Definitions that are encountered in
practice are total, and for these, the well-founded and stable semantics coincide.

Example 1. The definition {P ← ¬P ′, P ′ ← ¬P} is not total (its well-founded
model is three-valued) and hence has no model.

Example 2. In the following definition Exy represents the existence of an edge
between nodes x and y in a graph, and Rxy the reachability of x to y. Δ2 =
{Rab ← Eab∨ Iacb, Rac ← Eac∨ Iabc, Iacb ← Rac∧Ecb, Iabc ← Rab ∧Ebc}.
For any interpretation IO of {Eab, Ebc, Ecb, Eac}, Δ2 has a two-valued well-
founded model extending IO, e.g. for I1 = {Eab
→ f , Ebc
→ t, Ecb
→ t, Eac
→
f}, the model is I1 ∪ {Rab
→ f , Rac
→ f , Iacb
→ f , Iabc
→ f}.

Integrating Inductive Definitions in SAT 381

2.2 MidL Normal Form

We extend the CNF format, as used by SAT solvers, to a normal form for
SAT(ID) theories. A clause is a disjunction L1 ∨ . . . ∨ Ln of literals. We denote
clauses also by [L1, . . . , Ln]. A CNF theory is a set (conjunction) of clauses. A
definition Δ is in MidL normal form (MNF) if each rule r ∈ Δ is of the form
P ← L1 ∨ · · · ∨ Ln or P ← L1 ∧ · · · ∧ Ln, with Li literals and n ≥ 0, and each
atom in Def(Δ) occurs exactly once as head. A SAT(ID) theory T is in MNF
if T = Δ ∪ Γ , where Δ is a definition in MNF and Γ is a CNF theory.

As with CNF, the advantage of MNF is its simplicity. In particular, MNF
makes explicit the data structures that are implemented in ASP systems such
as Smodels [18] and clasp [4], where both literals and bodies have a truth value.

There exists a linear transformation from an arbitrary SAT(ID) theory T
over Σ to an MNF theory T ′ over Σ′ ⊃ Σ such that there is a one-to-one
correspondence between models M of T and models M ′ of T ′ (with M ′|Σ = M).
Hence without loss of generality, we can from now on assume MNF theories.

3 Theory

In the rest of the paper, T denotes a SAT(ID) theory over vocabulary Σ, with
definition Δ and CNF part Γ , and I denotes a three-valued Σ-interpretation. A
trivial but naive SAT(ID) solving algorithm consists of (1) applying traditional
SAT solving techniques to find a model of Γ and (2) subsequently checking
whether this model satisfies Δ. Several existing algorithms can be used to com-
pute (in quadratic time) the well-founded model extending a given two-valued
interpretation, e.g. [19]. If it turns out that the model does not satisfy Δ, the
algorithm tries to find another model of Γ . This algorithm is very inefficient,
since in general, most models of Γ are not a model of Δ.2 Hence the goal of this
work is to interleave (1) and (2), i.e., while constructing the model of Γ , making
sure that it can still satisfy Δ.

3.1 Justifications

In this section, we introduce the notion of a justification, and use it to provide
an alternative characterization of the stable and well-founded model. We then
return to model generation for SAT(ID), following an approach suggested by
this new characterization.

For a directed graph G = (V, E) and an element v ∈ V , we denote by ChG(v)
the set {w | (v, w) ∈ E}. If V is a set of literals, we call a cycle in G positive,
2 This is a simplified representation of a more intelligent approach, applied by several

ASP solvers, e.g. ASSAT [8] and Cmodels [6]. These apply (1) on Clark’s completion
of the given theory, and in (2) they add a nogood loop formula to the original
theory for every failed SAT model. Though a viable and sometimes competitive
approach, both experimental evaluation and theoretical considerations [7] show that
exponentially many iterations may be needed, i.e., the original conclusion still holds.
A direct integration of IDs in SAT seems more promising in principle.

382 M. Mariën J. Wittocx, and M. Denecker

negative or mixed if it contains respectively only positive, only negative or both
kind of literals.

Definition 3 (Justification). A justification J for Δ is a directed graph (Σ�, E)
such that

– for every conjunctive rule C ← C1 ∧ . . .∧CN ∈ Δ, ChJ (C) = {C1, . . . , CN}
and ChJ (¬C) = {¬Ci} for some i ∈ [1, N], and

– for every disjunctive rule D←D1∨. . .∨DN ∈Δ, ChJ (¬D)={¬D1, . . . ,¬DN}
and ChJ (D) = {Di} for some i ∈ [1, N], and

– for every L ∈ Def(Δ)�, ChJ(L) is empty.

We denote by JΔ the greatest common subgraph of all justifications for Δ.
This contains at least the subgraphs determined by ChJ(C) resp. ChJ(¬D), for
conjunctively resp. disjunctively defined atoms C resp. D. We denote the unique
descendant of ¬C resp. D by DJ : DJ(¬C) = ¬Ci, DJ (D) = Di.

Example 3. Let Δ3 = {P ← Q∨A, Q ← P}. Then Δ3 has two justifications,
J1 and J2, which differ in DJ (P): J1 = J

Δ3 ∪ {(P, Q)}, J2 = J
Δ3 ∪ {(P, A)},

with J
Δ3 =

[
¬A ¬P�� �� ¬Q�� Q �� P

]
.

Definition 4 (Stable, well-founded). Let J be a justification for Δ, and I a
3-valued Σ-interpretation. Then J is stable in I iff

– for each L ∈ Def(Δ)� it holds that I(L) ≥p I(
∧

ChJ (L)); and
– any positive cycle in J contains an atom that is false in I.

The first condition is called J supports I, the second J is cycle-safe in I.
J is well-founded in I iff J is stable in I and no mixed cycle in J contains literals
that are true in I.

Intuitively, the cycle-safeness property expresses that atoms in a positive cycle
without external support must be false.3

Example 4. Continuing from Example 3, let I = {A
→ f , P
→ t, Q
→ t}. Then
J1 supports I and J2 does not, while J2 is cycle-safe in I and J1 is not.

Theorem 1 (Stable, well-founded model). A 2-valued interpretation I is a
stable (well-founded) model of Δ extending I|Open(Δ) iff there exists a justifica-
tion J that is stable (well-founded) for Δ in I.

We omit the proof for well-founded models due to space restrictions; we include
the proof for stable models, however, because it is more instructive.

Proof. Denote by I1 the Σ-interpretation such that I1(P) = I(P) for every
P ∈ Open(Δ) and I1(P) = f for all P ∈ Def(Δ), let In+1 = ΨΔI (In) for every
n ≥ 1, and finally denote the limit of (In)n≥1 by I ′.

3 This intuition can be made explicit by the concept of a loop formula [8].

Integrating Inductive Definitions in SAT 383

(⇐) Assume there exists a stable justification J for Δ in I. From the facts
that J supports I, and I is 2-valued, one can easily show by induction that for
every n ≥ 1, In ≤ I. Now, let V = {P ∈ Def(Δ) | I(P) = t = I ′(P)}. We show
that V = ∅, hence that I = I ′.

Assume towards contradiction V = ∅ and let P ∈ V . If P is defined by the
rule P ← D1∨ . . .∨Dn, then for all 1 ≤ i ≤ n, I ′(Di) < t. Hence I ′(DJ (P)) < t,
while I(DJ (P)) = t. Therefore, DJ (P) must be a defined atom and DJ(P) ∈ V .
If P is defined by the rule P ← C1 ∧ . . . ∧ Cn, there exists a Ci such that
I ′(Ci) < t. As I(Ci) = t, Ci must be defined atom and Ci ∈ V . This proves that
every atom of V has at least one child of V in J . Hence, J contains a positive
cycle whose atoms are true in I. This contradicts the cycle-safeness of J in I.

(⇒) Conversely, assume I is a stable model of Δ, i.e. I = I ′. We construct a
justification J for Δ as follows.

– J contains JΔ.
– For every D ∈ Def(Δ) with rule D ← D1 ∨ . . .∨Dm in Δ, let DJ(D) = D1

if I(D) = f . If I(D) = t, we distinguish between two cases. If there exists
a Di ∈ Open(Δ) ∪ Def(Δ) with I(Di) = t, let DJ (D) = Di for such a Di.
Otherwise, for some n ≥ 3 we have In(D) = t, but In+1(D) = t. Then let
DJ(D) = Di for a Di such that In(Di) = t, but In−1(Di) = t.

– For every C ∈ Def(Δ) with rule C ← C1 ∧ . . . ∧ Cm, let DJ (¬C) = ¬C1 if
I(C) = t. If I(C) = f , let DJ (¬C) = ¬Ci for some Ci such that I(Ci) = f .

It can easily be verified that J supports I. We define the derivation level of a
literal L, denoted dl(L), as follows: if L ∈ Def(Δ) with I(L) = t, then dl(L) =
n + 1, with n such that In(L) = t and In+1(L) = t; in all other cases, dl(L) = 0.
Hence, our construction of J is such that for each child Q in J of any atom
P ∈ Def(Δ) with I(P) = t, dl(Q) is strictly lower than dl(P). Therefore J
cannot contain a positive cycle with true atoms, i.e., J is also cycle-safe in I.

Theorem 1 suggests an approach to compute models of a definition: namely,
maintain a justification that is stable for the partial interpretation at each mo-
ment in the computation. We show in Section 3.2 how to maintain support, and
in Section 3.3 how to maintain cycle-safeness.

3.2 Two Watched Literals

Contemporary SAT solvers have unit propagation as their propagation mecha-
nism: whenever in an input clause [L1, . . . , Ln] all Li are false, except one, this
so-called unit literal is made true. In all state-of-the art solvers, unit propagation
is executed by means of the two watched literals scheme (2WL). In this scheme,
in each clause [L1, . . . , Ln] two literals W1 = Li and W2 = Lj for some i = j are
“watched”, and the statement I(W1∨W2) = t∨I(W1∧W2) = u, called the 2WL
invariant, must be satisfied at all times. Hence, when either W1 or W2 becomes
false, a replacement watch has to be found (the watch has to be“moved”). When
no suitable replacement is found, i.e., all other literals are false, the remaining
watch is made true. In contrast, when any non-watched literal becomes false,

384 M. Mariën J. Wittocx, and M. Denecker

nothing needs to be done. We denote the function mapping clauses [L1, . . . , Ln]
to the set of their watched literals {W1, W2} by F2WL.

To apply 2WL on definitional rules, we first introduce some terminology.

Definition 5. The completion of a rule4 P ← ϕ is given by the clausal form of
P ≡ ϕ. The completion of Δ, denoted by comp(Δ), is the union of the comple-
tions of all r ∈ Δ.

Example 5. comp(Δ3) = {¬P ∨ Q ∨ A, P ∨ ¬Q, P ∨ ¬A, ¬P ∨ Q}.

Observe that for a clause A in the completion or a rule r, either the head of r or its
negation occurs in A: we denote this occurence by HeadA. I.e., Head[D,¬Di] = D,
Head[¬D,D1,...,Dn] = ¬D, etc. Now, when applying 2WL on comp(Δ), F2WL

naturally induces justifications: let for every rule r ∈ Δ and every clause A in
the completion of r, WA be a literal in F2WL(A) such that WA = HeadA. Then
the set of all edges (¬HeadA, WA) forms a justification for Δ. Remark that the
binary clauses in the completion induce the graph JΔ. Multiple justifications
are induced when for some clauses A in the completion HeadA ∈ F2WL(A).
We call the watches in [¬D, D1, . . . , Dn] respectively [C,¬C1, . . . ,¬Cn] of the
completion of a rule r the watches of r and denote them by W1(r) and W2(r),
or simply W1, W2 if r is clear from the context. The following property is easy
to verify.

Proposition 1. If I and F2WL satisfy the 2WL invariant on comp(Δ), then
F2WL induces at least one justification J for Δ such that J supports I, called a
supported justification.

Example 6. Let Δ6 = {P ← Q∧R, Q ← P∨¬S}, and let F2WL([P,¬Q,¬R]) =
{¬Q,¬R} and F2WL([¬Q, P, S]) = {¬Q, P}. Then F2WL induces J1 = J

Δ6 ∪
{(Q, P), (¬P,¬Q)} and J2 = J

Δ6 ∪ {(Q, P), (¬P,¬R)}. The interpretation I =
{P
→ f , Q
→ f , R
→ t, S
→ t} satisfies the 2WL invariants on comp(Δ6). J1

supports I, but J2 does not: I(¬P) = t, whereas I(
∧

ChJ2(¬P)) = I(¬R) = f .

Our algorithm applies the 2WL scheme on the completion of Δ, hence maintains
at least one supported justification. Next section shows to maintain amongst the
supported justifications at least one that is also cycle-safe, hence stable.

3.3 Cycle-Safeness

Assume that for a given I and F2WL, at least one supported justification for Δ is
cycle-safe. Now, moving a watch in comp(Δ) changes the induced justifications.
Hence we have to evaluate which type of watch moves may lead to the introduc-
tion of a positive cycle in any of those, i.e., to the invalidation of cycle-safeness.5

If r is a conjunctive rule with head C, ChJ(C) is fixed, hence moving W1(r)

4 Recall that in MNF each defined atom has exactly one defining rule.
5 The same reasoning was used to introduce the concept of a source pointer in Smod-

els [18], which corresponds to the unique descendant (DJ (·)) concept here.

Integrating Inductive Definitions in SAT 385

or W2(r) cannot introduce a positive cycle in any induced justification. If r is
a disjunctive rule with head D, and W1(r) or W2(r) is moved, a positive cycle
may be introduced if the move is to a defined atom in r’s body.

It is highly inefficient—mainly for technical reasons, related to cache be-
haviour—to interrupt unit propagations to verify whether there is indeed a
positive cycle, and to fix that problem if so. The alternative is to delay this
cycle testing/repairing. To do so, atoms that could be in a positive cycle are
marked as “cycle sources”. We formalize this by means of the following concept.

Definition 6 (Cycle-safe up to a set of atoms). Let J be a directed graph
of literals, S a set of atoms. J is cycle-safe up to S if any positive cycle in J
contains an atom in S. Elements s ∈ S are called cycle sources.

Observe that when all atoms in S are false in I, cycle-safeness up to S implies
cycle-safeness in I. Hence we consider an algorithm that maintains a partial
interpretation I, a watch function F2WL, and a set of cycle sources S, and has as
invariant: at least one justification induced by F2WL and supported by I is cycle-
safe up to S. To satisfy this invariant without interrupting unit propagations,
the head of a disjunctive rule r must be added to S whenever one of r’s watches
is moved to a defined atom. To also obtain a stable justification, the algorithm
must try to remove all non-false atoms from S, but only after unit propagations
reached a fixpoint. Atoms in S should be made false only when they are false
in all three-valued stable models of Δ that are refinements of I. The following
algorithm makes S smaller while preserving the invariant.

1. Select some P ∈ S with I(P) = f .
2. If F2WL induces some J with J cycle-safe up to S \ {P}, remove P from S

and stop.
3. Try to change F2WL such that it satisfies the 2WL invariant and induces J

with J cycle-safe up to S \ {P}. If this succeeds: remove P from S and stop.
4. Set I(P) := f .

This algorithm can be repeated until all remaining atoms in S are false in I.
The main challenge is how to perform Step 3 in an efficient way. Also, we must
be able to prove that this sub-algorithm is complete, so that step 4 is justified,
i.e., any justification supported in I necessarily exhibits a positive cycle. This is
the subject of Section 4.1.

3.4 Identifying a Unique Supported Justification

Let P1, P2 ∈ S, and let J1, J2 be different supported justifications, and suppose
J1 is cycle-safe up to S \ {P1}, while J2 is cycle-safe up to S \ {P2}. We cannot
conclude from this that there is a supported justification that is cycle-safe up
to S \ {P1, P2}. The task of making S smaller would be greatly simplified if a
unique justification J could be maintained during the whole algorithm.

One way to do so is to change F2WL, such that the functionality of the two
watches is distinguished, i.e., the function now maps to a pair (W1, W2) instead
of a set {W1, W2}. We assign W1 as the single watch that induces a justification.

386 M. Mariën J. Wittocx, and M. Denecker

As such, for each clause A in comp(Δ) with F2WL(A) = (W1,A, W2,A), W1,A

should not be equal to HeadA. Then the set of all edges (¬HeadA, W1,A) forms
a unique justification. This change requires some adaptations of 2WL: whenever
W1,A is moved to HeadA, and whenever W1,A becomes false and all other literals
in the clause, except for W2,A, are false, W1,A and W2,A have to be swapped.
Proposition 1 can be adapted accordingly: by applying the new 2WL scheme,
the unique induced justification supports the partial interpretation.6

Observe that this new strategy also means that moving W2(r) in a disjunctive
rule r does not change the induced justification, hence does not generate a cycle
source: thus only about half as many cycle sources are produced.

4 Algorithm

For the whole of Section 4, let J be a justification and S a set of atoms, such
that J supports I and is cycle-safe up to S, and let P ∈ S.

4.1 Justifying Cycle Sources

We want to remove P from S. This can be done when J is cycle-safe up to
S \ {P}. If this is not the case for the current J , a search for an alternative
justification has to begin, i.e., for some atoms A, DJ (A) has to be changed. We
now investigate which atoms need to be considered.

Example 7. Consider following sub-graph of a justification J , where P is a cycle
source:

[
U �� P

��
Q�� �� R V

]
. At least one of the outgoing edges from P

or Q has to change its child node. Changing it to U , however, would introduce
a new cycle, while changing it to R or V would not. It follows that only DJ(P),
DJ(Q) and/or DJ(U) need to be changed. Generalizing: the ancestor atoms of
a cycle may need to change their outgoing edges, the descendants do not.

We express the observation from this example using following concepts.

Definition 7. Let A be a defined atom, J a justification. Define TopJ(A) as
the set of atoms {B | there is a non-empty path of atoms in J from B to A}.

Definition 8. Let A be a defined atom, J a justification, S a set of atoms. A
is justified in J up to S iff for any positive cycle in J , either the cycle contains
an element of S, or A ∈ TopJ(B) for any atom B in the cycle.

Clearly, if P ∈ TopJ(P), there is no positive cycle through P . The intuition
behind Definition 8 is that J might contain positive cycles through P : if J
contains no path of atoms from A to any atom B in such a cycle, then A is
justified. Hence the following formalization of the intuition from Example 7: any
atom outside TopJ(P) is justified in J up to S \ {P}. This means that we can
restrict the search for an alternative justification to TopJ(P).
6 Actually, the 2WL invariant must be refined to the following: if one of the watches

is false, then all other literals of the clause are false, except for the other watch.
Current SAT solvers already maintain this invariant for efficiency reasons.

Integrating Inductive Definitions in SAT 387

Remark 1. It is easy to adjust the definition of TopJ to take into account the
strongly connected components (SCCs) of the positive atom dependency graph.
Then the search can be further restricted to those atoms in TopJ(P) that are in
the same SCC as P . For simplicity, we stick to definition 7 in this presentation.

During the search, a set N of atoms is maintained, of which it is not known yet
whether they are justified up to S \ {P} in the current justification J . In other
words, these atoms may be in, or may positively depend on, a positive cycle in J .
Initially, N is set to TopJ(P); after that, the goal of the algorithm is to decrease
N until P ∈ N . Informally, we call removing an atom A from N , “justifying” A.
Any non-false literal from outside N can be used for justifying atoms in N . E.g.,
let D ← D1 ∨ . . . ∨ DN be a rule with DJ (D) = Di, D, Di ∈ N and for some
Dj , Dj ∈ N and I(Dj) = f , then we can safely remove D from N by changing
DJ(D) to Dj . For a conjunction, the head can only be justified by showing that
all body literals are outside N . The algorithm employs a function f∧ for this,
which maps conjunctively defined atoms to one of their body literals. Note that
other cycle sources than P could be in TopJ(P); justifying them during the
process effectively means that they can be safely removed from S.

This search for an alternative justification J ′ proceeds downward from P , from
head to body atoms. As such it tries to justify atoms as close to P as possible,
the intuition being that in most cases, a solution can be found close to P . To
avoid double work, a set T of “touched” atoms is also maintained. When an atom
is touched, it is added to Q: this set contains the atoms for which search can
still be expanded, i.e., it is the “working queue”. When an atom is justified, it is
not only removed from N , but also from T . Hence when Q is empty (the whole
search space has been visited), but T = ∅, the search proved unable to produce
a good justification for the atoms in T —i.e., in the current interpretation, they
have to be false.7

Algorithm 1 is the result of the above reasoning. Here we provide a correctness
and completeness result with respect to this algorithm.

Theorem 2. Let I be an interpretation, S a set of atoms, J a justification such
that J supports I and cycle-safe up to S, and P ∈ S. Then Algorithm 1 applied
on these inputs terminates. Let U be the output, and S′ and J ′ respectively the
set of cycle sources and the justification after applying the algorithm. Then J ′

supports I and is cycle-safe up to S′, and also one of the following holds:

– U = ∅, J ′ = J and S′ = S \ {P};
– U = ∅, P ∈ TopJ(P) and S \ TopJ(P) ⊆ S′ ⊆ S \ {P};
– U = ∅, S \ TopJ(P) � S′ ⊆ S, and for each Q ∈ U , max≤{I ′(Q) | I ′ is a

three-valued stable model extending I|Open(Δ)} = f .

In the third of the possible outcomes, U is an unfounded set. It then also holds
that each Q ∈ U is in a positive cycle in J ′ through P . Observe that in the second
and third possible outcome the set S′ is not precisely defined: some atoms from
TopJ(P) may be removed from S in Step 1 of the algorithm.
7 They are in an unfounded set [20].

388 M. Mariën J. Wittocx, and M. Denecker

4.2 Overall Algorithm

The difference between the overall MidL algorithm and the DPLL algorithm
as used in SAT solvers lies entirely in an adapted initialization phase, and an
augmentation of DPLL’s unit propagation. The former must make sure that
the invariants are satisfied: a straightforward (though slightly naive) initializa-
tion phase may set S := Def(Δ). The latter is replaced by Algorithm 2. Here,
the function UnitProp() applies unit propagation by means of the (new) 2WL
scheme on Γ and on comp(Δ), as described in Section 3. At the end of this step,
the invariants “J supports I” and “J is cycle-safe up to S” are satisfied, and a
while-loop begins, trying to decrease S. The loop applies Justify(P) on every
non-false cycle source P ,8 continuing unit propagations as soon as an unfounded
set is found. At the end of Algorithm 2, S is made as small as possible. We
then have “J is cycle-safe up to S”, and “∀A ∈ S : I(A) = f”, hence also “J is
cycle-safe in I”. We can conclude that I is a three-valued stable model.

By repeated application of Algorithm 2 on new choice literals, we obtain a
two-valued stable model. A standard well-founded model checking algorithm can
subsequently verify whether that model is also well-founded. This check may fail
when Δ is not total, causing backtracking. However, all definitions encountered
in practice are total. We demonstrate the algorithm in next example.

Example 8. Let Δ8 = {P ← Q ∨ R. Q ← P. R ← A.}. Initially, everything is
unknown. Suppose DJ(P) = R. A sample run of the algorithm might make P
true (by choice), which makes Q true by unit propagation. S is still empty, so
a new choice is made: say, ¬A. This makes R false by unit propagation, which
forces DJ(P) to change to Q, so that P must be added to S. Next, Justify(P)
finds the unfounded set {P, Q}, so both atoms are made false, which yields a
conflict. By backtracking, A is made true, propagating to R and P . P is still in
S, so Justify(P) is run again, changing DJ (P) back to R, thus creating a cycle
safe justification. The resulting interpretation is 2-valued, hence a model of Δ8.

Theorem 3 (Correctness & Completeness). Let T be a SAT(ID) theory in
MNF. Given input T , MidL returns a model of T when such a model exists and
concludes that T is unsatisfiable otherwise.

This can easily be proven by completeness of standard backtracking, and cor-
rectness and completeness of both UnitProp() and Justify(·).

5 Evaluation

On MidL. We have implemented the above algorithms in a system called
MidL [12,13]. The following features that make contemporary SAT solvers effi-
cient and robust have been implemented in MidL: good choice heuristics (Vsids

8 Observe that not removing false atoms from S renders it unnecessary to change S
during backtracking.

Integrating Inductive Definitions in SAT 389

Result: A set of atoms U
N := TopJ(P);1

if P �∈ N then S := S \ {P}; return ∅ ;2

T := Q := {P};3

while Q �= ∅ do4

Remove an atom Q from Q ;5

if Q is disjunctively defined then6

% Let the rule for Q be Q← D1 ∨ ... ∨Dn.

D := {Di | 1 ≤ i ≤ n, I(Di) �= f}. % Note that D �= ∅.7

if ∃Di ∈ D \ N then8

DJ (Q) := Di ; BUProp(Q) ;9

else10

Add D \ T to Q ; Add D to T ;11

else12

% Let the rule for Q be Q← C1 ∧ ... ∧ Cn.

C := {Ci, 1 ≤ i ≤ n | Ci ∈ N};13

if C = ∅ then14

BUProp(Q) ;15

else16

if ∃Ci ∈ T then f∧(Q) := Ci ;17

else Choose a Ci ∈ C; f∧(Q) := Ci; Add Ci to Q and to T ;18

return T ;19

function BUProp Q20

Remove Q from N , T and Q ;21

if Q ∈ S then S := S \ {Q} ;22

if Q = P then return ∅ ;23

for each C ∈ T with f∧(C) = Q do24

Push C on Q ;25

for each D ∈ T with rule rD = D ← . . . ∨Q ∨ . . . do26

DJ (D) := Q ; BUProp(D) ;27

end function28

Algorithm 1. Justify(P): justifying a cycle source P

repeat1

UnitProp();2

U := ∅;3

while U = ∅ and ∃P ∈ S such that I(P) �= f do4

Let P ∈ S such that I(P) �= f ;5

U := Justify(P);6

I(Q) := f for every Q ∈ U ;7

until U = ∅ ;8

Algorithm 2. SAT(ID) replacement of SAT’s unit propagation

390 M. Mariën J. Wittocx, and M. Denecker

and Vmtf), clause learning and backjumping, restarts, compact encoding of bi-
nary clauses. Some other important features could make it more mature still,
such as preprocessing, clause deletions, and compact encoding of ternary clauses.

On SAT(ID) experimenting. SAT(ID) is a relatively new logic, hence few
solvers exist. The main purpose of this paper, however, is to demonstrate how
to integrate ID support in a SAT solver, and to illustrate that this integra-
tion is viable. Hence we perform experiments on two different fronts: one
concerning ID support, where we compare with ASP solvers on problems con-
taining inductive definitions, and one concerning SAT solving, where we com-
pare with both ASP and SAT solvers on problems not containing any inductive
definitions.9

Are IDs needed? Observe that the need for using IDs can sometimes be
avoided by using elaborate encodings, e.g. for the Hamiltonian circuit prob-
lem.10 The propositional instances obtained this way are over 50 times the size
of those using an ID encoding, for graphs with 150 nodes, and were simply too
big for graphs with 200 nodes. In Table 1, the column for MiniSAT refers to these
instances. Also a reduction from SAT(ID) to SAT is a possibility [15]. The idsat
solver implements this, but yielded only time-outs on the instances of Table 1
(using MiniSAT). Clearly, an integrated approach is superior.

Experiments and discussion. We show the experimental results in Table 1.11

The first set of results concerns Hamiltonian cycle problems, where we com-
pare MidL with the ASP solvers clasp [4], Smodels [18], Cmodels [6], and
Smodelscc [21], and with MiniSAT [3] on an alternative encoding. The instances
have respectively (100, 800), (150, 1200) and (200, 1800) nodes and edges (4 in-
stances of each kind). Too big ground files are denoted ‘#’. We can conclude that
MidL and clasp are comparable, and outperform all other solvers. The second
set concerns Hitori puzzles of size 50 × 50, compared against the same ASP
solvers. These puzzles contain inductive definitions, but with very few cycles: on
most instances, Cmodels needed to create no or only one loop formula. It out-
performed both MidL and the other ASP solvers, despite its use of a somewhat
outdated SAT solver. The last set concerns Blocked 28-queens problems, where
we also compare with the SAT solvers siege [17] and MiniSAT. We observe an ef-
ficiency gap between pure SAT solvers, and ID supporting solvers. Interestingly,
Cmodels’ performance is not as good as that of siege and MiniSAT. By analogy,

9 Naturally, problem encodings differ according to the formalism used. We have tried
to ensure fair comparisons, e.g., we haven’t used aggregate expressions.

10 See http://www.cs.sfu.ca/research/groups/mxp/examples/view.php?f=hc.
11 Version numbers of the programs used are: Minisat 1.14, siege 4, Clasp 1.0.3, Smod-

els 2.32, Cmodels 3.67, SmodelsCC 1.08, idsat 0.9.5, and MidL 2.1.1. All experi-
ments run on a P4 2.8GHz with 1GB memory. Problem instances of Hamiltonian
cycle and of Blocked N-queens are taken from the benchmark website Aspara-
gus, http://asparagus.cs.uni-potsdam.de/. Results of all bencmark instances are
available in attachment, but left out here due to space restrictions.

http://www.cs.sfu.ca/research/groups/mxp/examples/view.php?f=hc
http://asparagus.cs.uni-potsdam.de/

Integrating Inductive Definitions in SAT 391

Table 1. Running times (sec.) of Hamiltonian Cycle (left), Hitori (right) and Blocked
N-queens (below) problem instances. First lines show averages.

clasp MidL Cmodels MiniSAT Smodelscc Smodels
1.05 2.28 19.35 163.8 194.43 210.6
0.47 0.48 3.92 7.22 285.86 > 300
0.48 1.36 2.37 5.77 > 300 > 300
0.48 0.67 2.35 6.18 24.33 8.63
0.48 0.69 1.96 15.95 77.70 > 300
0.79 1.51 5.05 55.15 181.35 > 300
1.07 1.37 7.77 > 300 > 300 > 300
0.91 3.75 5.59 179.18 185.29 > 300
0.87 1.22 8.57 196.12 59.54 19.69
1.78 4.65 146.07 # 151.90 47.51
2.27 4.26 20.73 # 167.15 51.32
1.51 4.02 13.37 # > 300 > 300
1.45 3.41 14.40 # > 300 > 300

Cmodels clasp MidL Smodels Smodelscc

1.32 6.04 8.15 17.63 51.55
1.00 6.50 7.19 16.26 45.87
0.94 6.53 7.24 16.40 45.98
1.18 7.62 8.66 20.75 68.21
0.90 5.24 5.70 22.36 55.80
1.25 7.97 6.86 18.72 52.78
0.93 0.38 0.61 1.37 1.37
1.56 6.68 12.82 18.43 58.31
0.67 0.37 0.63 1.64 1.25
3.94 9.00 25.14 27.72 78.76
1.20 5.86 7.08 23.03 62.33
1.15 9.64 8.32 22.36 72.89
1.17 6.69 7.55 22.54 75.05

MiniSat Siege clasp MidL Cmodels Smodels Smodelscc

0.54 2.53 3.26 4.68 5.66 24.16 58.29
0.62 2.14 2.18 4.40 8.38 17.44 44.61
0.10 1.65 4.20 2.33 2.90 1.79 2.28
0.23 2.27 1.41 3.61 0.43 8.20 12.74
0.34 0.60 1.02 1.43 1.22 5.16 12.17
0.37 0.85 1.29 2.26 1.79 18.81 70.48
2.26 11.87 14.37 18.54 28.64 124.30 > 300
0.19 0.28 0.58 1.23 0.59 5.36 15.60
0.20 0.54 1.02 3.67 1.30 12.21 8.41

a possible explanation for the worse performance of the ID solvers is that their
implementation details are less advanced than those of siege and MiniSAT.

6 Conclusions, Related and Future Work

In this paper, we have illustrated an approach to integrate ID support in contem-
porary SAT solving algorithms. In particular, we have shown how SAT’s 2WL
scheme can be reused to also determine justifications, and how such justifications
can be used to find models of IDs. Finally, we reported on an implementation of
the algorithms discussed.

A related approach to SAT(ID) solving works by reduction to SAT [15].12 An
algorithm for finding unfounded sets, presented in [1], is closely related to our
Algorithm 1. In particular, the following sets have similar functionalities: Set
∼ T , Ext ∼ Q, Sink ∼ (Σ \ N). The precise relation between Source and S is
unclear.

The most obvious item of future work is to convert theory into practice,
by actually extending an existing contemporary SAT solver such as MiniSat
with IDs. On the other hand, extending MidL with additional features such
as preprocessing may make it more mature and robust. There is also room for
experimenting with variants of Algorithm 1. Finally, it is a goal of our project to
make SAT more expressive by adding relevant modelling constructs: for instance,
we intend to also support aggregate expressions in MidL.

12 The solver described in this paper had mostly time-outs in our experiments.

392 M. Mariën J. Wittocx, and M. Denecker

References

1. Anger, C., Gebser, M., Schaub, T.: Approaching the core of unfounded sets. In: Dix,
J., Hunter, A. (eds.) Proceedings of the International Workshop on Nonmonotonic
Reasoning, pp. 58–66 (2006)

2. Denecker, M.: Extending classical logic with inductive definitions. In: Palamidessi,
C., Moniz Pereira, L., Lloyd, J.W., Dahl, V., Furbach, U., Kerber, M., Lau, K.-K.,
Sagiv, Y., Stuckey, P.J. (eds.) CL 2000. LNCS (LNAI), vol. 1861, pp. 703–717.
Springer, Heidelberg (2000)

3. Eén, N., Sörensson, N.: An extensible sat-solver. In: Giunchiglia, E., Tacchella, A.
(eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

4. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: clasp: A conflict-driven
answer set solver. In: LPNMR 2007 (2007)

5. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
JICSLP 1988, pp. 1070–1080. MIT Press, Cambridge (1988)

6. Lierler, Y.: cmodels - sat-based disjunctive answer set solver. In: Baral, C., Greco,
G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp.
447–451. Springer, Heidelberg (2005)

7. Lifschitz, V., Razborov, A.A.: Why are there so many loop formulas? ACM Trans.
Comput. Log. 7(2), 261–268 (2006)

8. Lin, F., Zhao, Y.: Assat: computing answer sets of a logic program by sat solvers.
Artif. Intell. 157(1-2), 115–137 (2004)

9. Marek, V.W., Truszczyński, M.: Stable models and an alternative logic program-
ming paradigm. In: Apt, K.R., et al. (ed.) The Logic Programming Paradigm: a
25 Years Perspective, pp. 375–398. Springer, Heidelberg (1999)

10. Mariën, M., Mitra, R., Denecker, M., Bruynooghe, M.: Satisfiability checking for
PC(ID). In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835,
pp. 565–579. Springer, Heidelberg (2005)

11. Mariën, M., Wittocx, J., Denecker, M.: The IDP framework for declarative problem
solving. In: Search and Logic: Answer Set Programming and SAT, pp. 19–34 (2006)

12. Mariën, M., Wittocx, J., Denecker, M.: MidL: a SAT(ID) solver. In: ASP 2007 (to
appear, 2007)

13. MidL. http://www.cs.kuleuven.be/∼dtai/krr/software/midl.html
14. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering

an efficient SAT solver. In: DAC, pp. 530–535. ACM, New York (2001)
15. Pelov, N., Ternovska, E.: Reducing inductive definitions to propositional satisfiabil-

ity. In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005. LNCS, vol. 3668, pp. 221–234.
Springer, Heidelberg (2005)

16. Przymusinski, T.C.: Well founded semantics coincides with three valued Stable
Models. Fundamenta Informaticae 13, 445–463 (1990)

17. Ryan, L.: Efficient algorithms for clause-learning SAT solvers. Master’s thesis, Si-
mon Fraser University (2004)

18. Simons, P.: Extending and Implementing the Stable Model Semantics. PhD thesis,
Helsinki Univ. of Technology (2000)

19. Van Gelder, A.: The alternating fixpoint of logic programs with negation. Journal
of Computer and System Sciences 47(1), 185–221 (1993)

20. Van Gelder, A., Ross, K., Schlipf, J.: The well-founded semantics for general logic
programs. Journal of the ACM 38(3), 620–650 (1991)

21. Ward, J., Schlipf, J.: Answer set programming with clause learning. In: Lifschitz,
V., Niemelä, I. (eds.) Logic Programming and Nonmonotonic Reasoning. LNCS
(LNAI), vol. 2923, pp. 302–313. Springer, Heidelberg (2003)

http://www.cs.kuleuven.be/~dtai/krr/software/midl.html

The Separation Theorem

for Differential Interaction Nets

Damiano Mazza1,� and Michele Pagani2,��

1 Laboratoire d’Informatique de Paris Nord
damiano.mazza@lipn.univ-paris13.fr

http://www-lipn.univ-paris13.fr/~mazza
2 Dipartimento di Filosofia – Università degli Studi Roma Tre

pagani@uniroma3.it

http://logica.uniroma3.it/~pagani

Abstract. Differential interaction nets (DIN) have been introduced by
Thomas Ehrhard and Laurent Regnier as an extension of linear logic
proof-nets. We prove that DIN enjoy an internal separation property:
given two different normal nets, there exists a dual net separating them,
in analogy with Böhm’s theorem for the λ-calculus. Our result implies
in particular the faithfulness of every non-trivial denotational model of
DIN (such as Ehrhard’s finiteness spaces). We also observe that internal
separation does not hold for linear logic proof-nets: our work points out
that this failure is due to the fundamental asymmetry of linear logic
exponential modalities, which are instead completely symmetric in DIN.

Keywords: Differential interaction nets, faithfulness, linear logic, obser-
vational equivalence, proof-nets.

1 Introduction

The question of separation is an important one in computer science and, more
recently, also in proof theory. The best known example of separation result
is Böhm’s theorem for the pure λ-calculus [1]: if t, t′ are two distinct closed
βη-normal terms, then there exist terms u1, . . . , un, such that tu1 . . . un →∗β 0
and t′u1 . . . un →∗β 1.1 This result has consequences both at the semantical level
as well as at the syntactical one: on the one hand it entails that a model of the
λ-calculus cannot identify two different βη-normal forms without being trivial
(in this case we say that the model is faithful, or injective); on the other hand
it establishes a balance between syntactical constructs and β-reduction: any dif-
ference in the structure of a βη-normal form implies a difference in the value of
that normal form on suitable arguments.

After Böhm, this kind of question was studied by Friedman and Statman in
the simply typed framework [2,3], leading to what is often called “typed Böhm’s
� Supported by a post-doc fellowship of French ANR project “NOCoST”.

�� Post-doc fellow, research project: “Ricerche sulla geometria della logica”.
1 As it is usual in the λ-calculus, 1 = λxy.x and 0 = λxy.y.

N. Dershowitz and A. Voronkov (Eds.): LPAR 2007, LNAI 4790, pp. 393–407, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

394 D. Mazza and M. Pagani

theorem”.2 In this case the two distinct βη-normal terms have the same type
A1, . . . , An → X , and they are not separated directly on that type, but on an
instance of it: that is, there is a type B and, for each 1 ≤ i ≤ n, an argument ui
of type Ai[B/X] such that tu1 . . . un →∗β 0 and t′u1 . . . un →∗β 1.3

After the introduction of linear logic [5], the question of separation has been
addressed also in proof theoretical frameworks. The first work on the subject
is [6], where the authors deal with “pure proof-nets”, a linear logical system cor-
responding to the pure λ-calculus. But it is only with Girard’s work on ludics [7]
that separation became a key property of proof theory, which may now be seen
as a fundamental step in analyzing the structure of our representation of proofs.

There is a good reason why syntactical, interactive separation in the style
of Böhm’s theorem has taken so many years to shift from computer science to
proof theory: the lack of results was essentially due to the absence of interesting
logical systems where proofs could be represented in a “nice” canonical way. The
only existing exception was natural deduction for minimal logic which, being
isomorphic to the simply typed λ-calculus, had already been fully covered by
Friedman and Statman’s results.

In linear logic, canonical representations of proofs do exist, under the form of
directed graphs called proof-nets [5]. A key ingredient of proof-nets is to forget
the context of logical rules (except for the so-called promotion rule), so as to allow
a higher degree of parallelism in the representation of proofs, which becomes thus
more canonical. The typical (and most fundamental) form of parallelism we refer
to here is the one needed to obtain the associativity of deduction: from three
lemmas proving that A implies B, B implies C, and C implies D, we should
only obtain one proof that A implies D, even if there are two ways of composing
the lemmas. This is true in proof-nets (as it is true in natural deduction), but is
strikingly false in sequent calculus.

In recent years, Tortora de Falco studied the canonicity of linear logic proof-
nets by addressing the question of faithfulness (injectivity) in coherent spaces
(which is, as cited above, strictly related to syntactical separation). With the
exception of certain subsystems of linear logic, this study yielded a series of neg-
ative results: coherent spaces are not in general a faithful model of proof-nets,
and separation fails [8]. The problem lies in the exponential modalities of linear
logic, and more precisely in their uniform behavior: during cut-elimination, if
at some point there is the need for two proofs of the same exponential formula
to be provided, the procedure always answers this need with two copies of the
same proof. In an interactive setting, this corresponds to the environment giv-
ing the same answer to a program querying multiple times for the value of an
argument.

2 Actually Friedman and Statman proved the faithfulness of standard models of the
simply typed λ-calculus; from those semantic results however one can easily infer
the syntactical separation (see for example [4]).

3 Here we are supposing that X is the only variable occurring in the type of t, t′. To
consider a term of type A also as a term of type A[B/X], for any formula B, is
sometimes called “Statman’s typical ambiguity”.

The Separation Theorem for Differential Interaction Nets 395

A new, potentially very powerful tool for the analysis of linear logic proofs
came from the work of Ehrhard and Regnier, which led to the introduction of dif-
ferential interaction nets (DIN, [9]). Based on Lafont’s interaction nets [10], DIN
are a syntax corresponding to the semantical constructions defined by Ehrhard
in his finiteness spaces [11]. This semantical interpretation models linear proofs
with linear functions on certain topological vector spaces, on which one can de-
fine an operation of derivative. Non-linear proofs (i.e., proofs using exponential
modalities) become analytic functions, in the sense that they can be arbitrarily
approximated by the equivalent of a Taylor expansion, which becomes available
thanks to the presence of a derivative operator.

In syntactical terms, these constructions take a very interesting form: they
correspond to “symmetrizing” the exponential modalities, i.e., in the logical
system arising from finiteness spaces the rules handling the two dual exponential
modalities of course/why not are perfectly symmetrical (although the logic is
not self-dual). What is equally interesting is that the “old” rules of linear logic
exponentials are not lost: proof-nets can be encoded in DIN.

This paper considers the question of separation for DIN, giving a positive
answer in Theorem 1: given two different normal nets, we find another (dual)
net separating them, up to Statman’s typical ambiguity. This separation is as
meaningful as that of Böhm’s theorem, as it implies the faithfulness of every
denotational semantics of DIN (Corollary 1), so in particular of finiteness spaces
themselves.

We then apply Theorem 1 to the framework of proof-nets, and show with a few
examples that pairs of proof-nets which cannot be interactively distinguished can
on the contrary be easily separated once encoded in DIN, by heavily exploiting
the symmetry of DIN exponentials. This shows concretely one of the main insight
provided by our work: separation in proof-nets fails because of the asymmetry
of linear logic exponentials.

2 Differential Interaction Nets

Preliminaries. In what follows, the set of all permutations over n elements is
denoted by Sn.

The formulas of propositional multiplicative exponential linear logic (MELL)
are generated by the following grammar, where X, X⊥ range over a denumerable
set of propositional variables:

A, B ::= X | X⊥ | 1 | A ⊗ B | ⊥ | A�B | !A | ?A.

Linear negation is defined through De Morgan laws:

(X)⊥ = X⊥ (X⊥)⊥ = X
(1)⊥ = ⊥ (⊥)⊥ = 1

(A ⊗ B)⊥ = A⊥�B⊥ (A�B)⊥ = A⊥ ⊗ B⊥

(!A)⊥ = ?A⊥ (?A)⊥ = !A⊥

Lists of occurrences of formulas will be ranged over by Γ, Δ, Σ. If Γ =
A1, . . . , An, we shall denote by Γ⊥ the list A⊥1 , . . . , A⊥n .

396 D. Mazza and M. Pagani

?

⊗ !⊗

!

Z

X (X⊥�!X)⊗!Z⊥ 1

Z

1

1

�

Z�1

Z⊥⊗ ⊥

?Z⊥

!Z

Y Y ⊥

⊥ Z⊥ Z

X⊥�X⊥Z⊥ X ⊗ X

X⊥�!X

!

�

Z⊥

!Z⊥

!XX⊥

Fig. 1. A simple net

Differential Interaction Nets. Differential interaction nets are defined on top of
simple nets, which are particular interaction nets [10]. Here we give an informal
definition; for a more detailed one, see [12].

A simple net is a set of cells and wires, graphically represented as in Fig. 1.
Each cell has a type, which is a MELL connective, i.e., a symbol belonging to
the set {1,⊗,⊥, �, !, ?}, and a number of ports, exactly one of which is called
principal, while the others (if any) are called auxiliary. The arity of a cell is equal
to the number of its auxiliary ports; cells of type 1 and ⊥ are required to be
nullary, and those of type ⊗ and � must be binary. Graphically, the principal
port of a non-nullary cell is seen as one of the “tips” of the triangle representing
it, while a nullary cell is represented by a circle.

A wire is represented as. . . a wire; the extremities of wires not connected to
anything are called free ports of the net. For example, the net in Fig. 1 has six
free ports. In the case of cyclic wires like the one at the top-right of Fig. 1, which
are called deadlocks, we stipulate that there are two wires connecting the same
two internal ports. Hence, there are four kinds of ports: principal, auxiliary, free,
and internal. A wire connecting two non-principal ports is said to be an axiom;
a wire connecting two principal or internal ports is said to be a cut. Note that a
wire may be an axiom and a cut at the same time; this is the case of deadlocks.
Those wires that are neither axioms nor cuts are called simple.

Each port i has a type T (i), which is a MELL formula. These types must
satisfy the following:

– if i, j are connected by an axiom or a cut, then T (i) = T (j)⊥;
– if i, j are connected by a simple wire, then T (i) = T (j);
– if i0 is the principal port of a cell of type 1, then T (i0) = 1;
– if i0 is the principal port of a cell of type ⊗, whose two auxiliary ports are

i1, i2, then T (i0) = T (i1) ⊗ T (i2);
– if i0 is the principal port of a cell of type ⊥, then T (i0) =⊥;
– if i0 is the principal port of a cell of type �, whose two auxiliary ports are

i1, i2, then T (i0) = T (i1)�T (i2);
– if i0 is the principal port of a cell of type !, whose auxiliary ports are i1, . . . , in,

then T (i1) = · · · = T (in) = A, and T (i0) =!A;
– if i0 is the principal port of a cell of type ?, whose auxiliary ports are

i1, . . . , in, then T (i1) = · · · = T (in) = A, and T (i0) =?A;

The Separation Theorem for Differential Interaction Nets 397

If a simple net α has n free ports, we assume that they are numbered by the
integers 1, . . . , n, so that pk is the kth free port. Then, we refer to the list of
occurrences of formulas T (p1), . . . , T (pn) as the conclusions of α.

The empty simple net will be denoted by 1.
We now introduce a fundamental equivalence on simple nets, accounting for

the fact that the auxiliary ports of exponential cells are unordered:

Definition 1 (σ-equivalence). We define σ-equivalence, denoted by ≡, as the
contextual, reflexive-transitive closure of the following unoriented equation:

e e

σ. . .

. . .

. . .

≡

where σ is a generic permutation, and the symbol e stands for either ! or ?.

Unless otherwise stated, simple nets will be considered modulo ≡, i.e., when-
ever we refer to “the simple net α”, we actually mean “the σ-equivalence class
containing α”.

Definition 2 (Differential interaction net). A differential interaction net,
or, more simply, a net, is a denumerable set of σ-equivalence classes of simple
nets with the same conclusions Γ , which are also said to be the conclusions of the
net. Nets will be ranged over by μ, ν. The empty net ∅, which can be considered
to have any conclusions (including none), will be denoted by 0.

Definition 3 (Composition). Let α and β be two simple nets with resp. con-
clusions Δ, Γ and Γ⊥, Σ. We denote by 〈α |β〉 the simple net with conclusions
Δ, Σ obtained by plugging each conclusion in Γ of α to the dual conclusion in
Γ⊥ of β. Similarly, if μ and ν are two nets with resp. conclusions Δ, Γ and
Γ⊥, Σ, we pose 〈μ | ν〉 = {〈α |β〉 | α ∈ μ, β ∈ ν}, which is a net of conclusions
Δ, Σ.

In the sequel, we shall confuse a simple net α with the net {α} whenever this
is not source of ambiguity. In particular, the net with no conclusions containing
only the empty simple net, i.e. {1}, will simply be denoted by 1.

Nets are provided with two rewriting relations, corresponding to MELL cut-
elimination (β-reduction) and non-atomic axiom-elimination (η-expansion). On
simple nets, these are the contextual closures of the rules resp. given in Fig. 2
and Fig. 3, and are resp. denoted by �β and �η.

The two topmost rules of Fig. 2 are called multiplicative; the bottom rule is
called exponential. In all rules, a simple net reduces to a net; in the multiplicative
cases, the right member must be seen as a singleton. In the exponential case, if
the arities of the two interacting cells do not match, the rule yields the empty
net; in case the arities match, the rule yields a net containing all simple nets
obtained by connecting in all possible ways the auxiliary ports of the two cells.

Similarly, the topmost two rules of Fig. 3 are called multiplicative, and the
bottom rule exponential. These rules also yield a net out of a simple net, with

398 D. Mazza and M. Pagani

⊥
1

1
⊥

A ⊗ B A⊥�B⊥

⊗ �
B⊥A B A⊥

A⊥A A A⊥

! ?

.

!A ?A⊥

m︷ ︸︸ ︷ n︷ ︸︸ ︷

�β

�β

A B A⊥ B⊥

�β

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

if m = n

if m �= n0

σ

⎧
⎨
⎩

A A A⊥ A⊥
⎫
⎬
⎭

⋃
σ∈Sn

.

Fig. 2. Cut-elimination rules (β-reduction)

1 ⊥ ⊥

⊥1

1

�η

A ⊗ B A⊥�B⊥

�η

A B

A⊥�B⊥

⊗ �

A⊥ B⊥

A ⊗ B

�η
⋃
k<ω

A⊥

! ?

!A ?A⊥

A⊥
k︷︸︸︷. . .

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

A A
k︷︸︸︷. . .

!A ?A⊥

Fig. 3. Non-atomic axiom-elimination rules (η-expansion)

the right member of the multiplicative rules equal to a singleton. In the expo-
nential rule, an axiom is replaced by its expansions using all possible arities for
exponential cells.

Definition 4 (β-reduction and η-expansion). We define the relation →β on
nets as follows: μ →β μ′ iff

μ′ =
⋃
α∈μ

να,

where α �β να or να = {α}, and α �β να for at least one α ∈ μ. The relation
→η is defined similarly, with �η instead of �β. We pose → = →β ∪ →η, and
we say that a net μ is normal iff it contains no deadlock and there is no μ′ such
that μ → μ′. A net μ is normalizable iff there exists a normal net ν such that
μ →∗ ν.

Proposition 1 (Confluence). The relation →∗ is confluent. Hence, a normal-
izable net has a unique normal form.

Proof. Actually →∗ is strongly confluent: if μ → μ′, μ′′ with μ′ �= μ′′, then there
exists ν s.t. μ′, μ′′ →∗ ν in at most one step. ��

The Separation Theorem for Differential Interaction Nets 399

Moreover notice that every finite net is strongly β-normalizing. In fact, define
for any simple net α with k ports, �α =

∏
n≤k n!. By simply inspecting Fig. 2, we

see that α →β να implies �α >
∑

α′∈να
�α′. Now suppose μ finite and μ →β μ′.

Observe that μ′ is also finite and
∑

α∈μ �α >
∑
α′∈μ′ �α′, so μ is strongly β-

normalizing.
However, strong normalization may fail in case of infinite nets, even if we ignore

deadlocks (which of course are not normalizable).4 In fact, for each non-negative
integer k, it is easy to find a simple net αk such that {αk} reduces to a normal net
in at least k steps. Then, the net

⋃
k<ω{αk} obviously has no normal form.

Differences with respect to Ehrhard-Regnier’s presentation. There are two no-
table differences with respect to the definition of DIN given in [9].
(i) We consider generalized exponential cells, corresponding in [9] to trees of
binary (co)contraction cells with (co)dereliction and (co)weakening cells on the
leaves, modulo associativity, commutativity, and neutrality of (co)weakening.
This is so-called nouvelle syntaxe [13], and provides more canonical nets. In fact,
only commutativity needs to be explicitly treated in our framework (through σ-
equivalence); associativity and neutrality are built-in.
(ii) In [9] nets are defined as finite sets of simple nets. The need to consider
infinite nets is a consequence of (i), which forbids a conclusion of an axiom
to be (co)contracted. In our syntax, such configurations are represented using
η-expansion, which yields infinite nets in the exponential case. Additionally,
infinite nets are required if one wants to consider the Taylor-Ehrhard expansion
of proof-nets, as we do in Sect. 4.

3 The Separation Theorem

In this section, we fix a single propositional variable X , and consider only formu-
las built on the dual pair X, X⊥. Everything we say can of course be generalized
to types containing arbitrary atoms.

Let μ be a net with conclusions Γ and let A be a formula. We denote by
μ[A/X] the net with conclusions Γ [A/X] obtained from μ by substituting each
occurrence of X with A.

Our main result is the following one:

Theorem 1 (Separation). For each pair of different normal nets μ, μ′ with
same conclusions Γ , there is a simple net ν with conclusions Γ [?1/X]⊥ s.t.
〈ν |μ[?1/X]〉 →∗β 1 and 〈ν |μ′[?1/X]〉 →∗β 0, or vice versa.

We remark that the use of multiplicative units is only a convenience: Theorem 1
also holds in their absence, using a formula of the form ?!A instead of ?1, where
A is arbitrary (for example X itself).

We now proceed with the proof of Theorem 1. First of all, in case Γ is empty
(i.e., μ, μ′ have no conclusion), then by definition of normal net, either μ = μ′

4 By the way, there are geometrical conditions, known as correctness criteria [9], which
prevent a net satisfying them from producing deadlocks.

400 D. Mazza and M. Pagani

ω

τ1 τn

C1 Cn

. 1 1
. . .

i︷ ︸︸ ︷

a) εi =b) ?

?1

Fig. 4. a) Decomposition of a normal simple net. b) Definition of the net εi, i ∈ N.

or μ = 1 and μ′ = 0. Otherwise, let us suppose that μ, μ′ do have conclusions.
Observe that if two normal nets μ, μ′ are different, then there is a simple net α in
one of them which is different from every simple net in the other one; to separate
μ and μ′ we shall define a (simple) net ν which has the property of reducing to
1 when applied to α, and to 0 in all other cases (see Definition 6 and Lemma 1).
To do this properly, we need to be careful because nets are defined as sets of σ-
equivalence classes, which unfortunately do not have canonical representatives.
Therefore, in the rest of the section, α will denote an actual simple net, and we
may have α �= α′ without having α �≡ α′.

We define a wiring to be a simple net containing no cells and no deadlock.
Wirings will be ranged over by ω, and are said to be atomic if their conclusions
are all atomic. If A is a formula, a tree of root A is a simple net defined by
induction on A:

– if A is atomic, then the only tree of root A is a wire of conclusions A⊥, A;
– if A = 1 (resp. A =⊥), then the only tree of root A consists of a single cell

of type 1 (resp. ⊥);
– if A = A1 ⊗ A2 (resp. A = A1�A2), and τ1, τ2 are two trees of resp. roots

A1 and A2, then the net obtained by plugging the roots of τ1 and τ2 to the
auxiliary ports of a cell of type ⊗ (resp. �) is a tree of root A;

– if A =!B (resp. A =?B), and τ1, . . . , τn are trees of root B (n ∈ N), then the
net obtained by plugging the roots of each τi to the auxiliary ports of a cell
of type ! (resp. ?) is a tree of root A.

The perfect symmetry of DIN cells allows the following definition, which is a
crucial point in the proof of Theorem 1:

Definition 5 (Mirror tree). Let τ be a tree of root A. The mirror tree of τ ,
denoted by τ⊥, is the tree of root A⊥ obtained from τ [X⊥/X] by substituting
each cell with one of dual type (i.e. 1 ↔⊥, ⊗ ↔�, ! ↔?).

Definition 6 (Antagonist). Let α be a normal simple net of conclusions
C1, . . . , Cn. It is not hard to see that α can be decomposed in terms of an atomic
wiring ω and n trees τ1, . . . , τn as in Fig. 4a. Then, we say that a normal simple
net α† of conclusions C1[?1/X]⊥, . . . , Cn[?1/X]⊥ is an antagonist of α iff α† is
built as follows. First of all, fix two enumerations 0, . . . , k of the conclusions of
ω of type X and of the conclusions of type X⊥. We write ω(i) = j iff the ith
occurrence of X is connected to the jth occurrence of X⊥ in ω. These enumer-
ations induce two enumerations of the leaves of the forest ϕ = τ⊥1 , . . . , τ⊥n (the
comma here denotes the juxtaposition of two simple nets). Then, α† is equal to

The Separation Theorem for Differential Interaction Nets 401

ϕ[?1/X] in which, for all i ∈ {0, . . . , k}, the net εi is plugged to the leaf i, and
the net ε⊥i is plugged to the leaf ω(i), where εi is defined in Fig. 4b.

Observe that, in the decomposition of Fig. 4a, ω may as well be empty; in that
case, α is a forest τ1, . . . , τn, and its only antagonist is τ⊥1 , . . . , τ⊥n .

Lemma 1. Let α be a normal simple net of conclusions C1, . . . , Cn, let α† be a
simple net σ-equivalent to an antagonist of α, and let α′ be a normal simple net
with the same conclusions as α. Then:

1. α ≡ α′ implies 〈α† |α′[?1/X]〉 →∗β 1;
2. α �≡ α′ implies 〈α† |α′[?1/X]〉 →∗β 0.

Proof. By induction on the number of cells in α. If α is a wiring, then it must
be atomic, so α′ is also an atomic wiring. In that case, α† is an antagonist of α,
α ≡ α′ iff α = α′, and it is then easy to prove points 1 and 2 of the lemma. If α
has a cell, then one of its conclusions must be connected to the principal port of
a cell c, because α is normal. We can suppose w.l.o.g. this conclusion to be C1.
The proof splits into six cases, depending on the type of c. We consider only the
case in which c is of type !, the ? case being perfectly symmetrical and the other
cases being easier.

So we have C1 =!A. This also means that the corresponding conclusion of α′

is connected to the principal port of a cell c′ of type ! (recall that α′ is η-normal).
If the arity of c′ is different than that of c, then α′ �≡ α and we immediately have
〈α† |α′〉 →∗β 0. So suppose that c and c′ have same arity k. Let α0 (resp. α′0)
be the simple net obtained from α (resp. α′) by removing c (resp. c′). Observe
that the conclusions of α0 (as those of α′0) are A1, . . . , Ak, C2, . . . , Cn, where
A1, . . . , Ak are occurrences of the same formula A and correspond to the type
of the auxiliary ports of c and c′. In 〈α† |α′〉 we have a cut between c′ and a cell
c† of type ?, which is also of arity k. By reducing this cut, we obtain

〈α† |α′〉 →β {〈δ | γ〉 ; γ ∈ P},
where δ is obtained from α† by removing the cell c†, and P is the set of all simple
nets obtained from α′0 by permuting the conclusions A1, . . . , Ak. Each γ ∈ P has
the same conclusions as α0, so P can be partitioned into P0 = {γ ∈ P ; γ �≡ α0}
and P1 = {γ ∈ P ; γ ≡ α0}. Now, it is possible that δ is not σ-equivalent to an
antagonist of α0: this may be because α† is σ-equivalent to an antagonist of α
thanks to a permutation σ ∈ Sk on the auxiliary ports of c†. But in that case one
can always include this permutation in the ones generated by the β-reduction
(Sk is a group, so σSk = Sk), so that actually δ can always be considered to
be σ-equivalent to an antagonist of α0. This latter contains strictly fewer cells
than α, so by induction hypothesis 〈δ | γ〉 →∗β μ iff γ ∈ Pμ, where μ ∈ {0,1}.
But α ≡ α′ iff P1 �= ∅, hence the lemma holds. ��
We can now conclude the proof of Theorem 1. Take two different normal nets
μ, μ′. As remarked above, we can assume w.l.o.g. that μ contains a σ-equivalence
class not contained in μ′. Take any representative α of this equivalence class, and
define ν to be the net containing only the equivalence class of an antagonist of
α. By Lemma 1, we have 〈ν |μ[?1/X]〉 →∗β 1, while 〈ν |μ′[?1/X]〉 →∗β 0.

402 D. Mazza and M. Pagani

3.1 An Application: Faithfulness

A denotational semantics M of DIN is a ∗-autonomous category with some
additional structure (refer to [14] for the details) interpreting MELL formulas
as objects and nets as morphisms. More precisely, having associated with the
variable X an object X , then M associates with each MELL formula A an object
�A�X and with each net μ of conclusions C1, . . . , Cn (for n ≥ 0) a morphism �μ�X
from �1�X = I (the identity object of the monoidal structure) to �C1� . . .�Cn�X ,
in such a way that:

composition: �〈μ | ν〉�X = �μ�X ◦ �ν�X .5

invariance: if μ → μ′ then �μ�X = �μ′�X .

A semantics is faithful (or injective, see [8]) if for any two distinct normal
nets μ, μ′, there is an object X , s.t. �μ�X �= �μ′�X . A notable corollary of
Theorem 1 is the faithfulness of every non-trivial denotational semantics (for
example Ehrhard’s finiteness spaces, introduced in [11]).

Corollary 1 (Faithfulness). Let M be a denotational semantics for DIN. If
there exist two distinct normal nets μ, μ′ s.t. for every object X , �μ�X = �μ′�X ,
then the semantics is trivial, i.e., for every object X , for every net ν, �ν�X =
�0�X .

Proof. Suppose that for every object X , �μ�X = �μ′�X . By Theorem 1, there
is a simple net α such that 〈{α} |μ[?1/X]〉 →∗β 1 and 〈{α} |μ′[?1/X]〉 →∗β 0.
Now let ν be a net and consider the net να obtained by juxtaposing α to each
simple net of ν. Remark that 〈να |μ[?1/X]〉 →β ν and 〈να |μ′[?1/X]〉 →β 0. By
hypothesis we have that, for every object X , �μ[?1/X]�X = �μ′[?1/X]�X , hence
by composition �〈μ[?1/X] | να〉�X = �〈μ′[?1/X] | να〉�X , and finally by invariance
�ν�X = �0�X . ��

4 Proof-Nets in DIN

We shall now apply Theorem 1 to the framework of proof-nets, and show a
few examples of interactively indistinguishable proof-nets which can be easily
separated once encoded in DIN.

Our definition of MELL proof-nets follows closely that of Danos and
Regnier [15]:

Definition 7 (Proof-net). A proof-net is a simple net containing only mul-
tiplicative cells, arbitrary ? cells, and unary ! cells (which are called promotion
cells in the context of proof-nets), and satisfying the following conditions:

5 Here we are implicitly exploiting the ∗-autonomous structure of the category: a
morphism of type I → �Δ���Γ � and a morphism of type I → �Γ⊥

���Σ� can be
seen resp. as morphisms of type �Δ⊥

� → �Γ � and �Γ � → �Σ�, so it makes sense to
compose them.

The Separation Theorem for Differential Interaction Nets 403

boxing condition: each promotion cell c has an associated subnet B, called a
!-box, such that one conclusion of B, called principal door, is connected to
the auxiliary port of c, and all the other conclusions, called auxiliary doors,
are connected to auxiliary ports of ? cells. Moreover, two !-boxes must either
be disjoint, or included one in the other. In graphical representations, !-boxes
will be drawn as rectangular frames.

sequentialization condition: the net must be defined inductively as follows:
the empty net is a proof-net; a wire, a ⊥ or 1 cell are proof-nets; the graph
obtained from a proof-net π by adding a � or ? cell with auxiliary ports
conclusions of π is a proof-net; the graph obtained from two proof-nets π1, π2

by juxtaposing them, or by linking a conclusion of π1 and one of π2 by a wire
or by a ⊗ cell, is a proof-net; if a proof-net π has conclusions A, ?C1, . . . , ?Cn,
then the graph obtained from π by adding a ! cell with auxiliary port the
conclusion A, and whose associated !-box is the (maximal) subnet of π not
containing the ? cells with conclusions ?C1, . . . , ?Cn, is a proof-net.

If π is a proof-net, the depth of a cell of π is the number of nested !-boxes in
which it is contained. The depth of π, denoted by ∂(π), is the maximum depth
of its cells.

A proof-net is not a simple net because it contains additional information,
namely that carried by !-boxes. However, this additional information can be
accommodated in DIN thanks to the Taylor-Ehrhard formula, which is the re-
formulation in terms of nets of the usual Taylor expansion of analytic functions
around the origin [11].

Definition 8 (Taylor-Ehrhard expansion). Let π be a proof-net of conclu-
sions Γ . Its Taylor-Ehrhard expansion π∗ is a net of conclusions Γ defined by
induction on the depth of π: if ∂(π) = 0, then π∗ = {π}; if ∂(π) > 0, then we
have

. . .
π1

!

πn

!

π0

π =

where π0 contains no !-boxes. In the above picture, a wire with a diagonal stroke
drawn across it represents an arbitrary number of wires (possibly zero). Then,
we set

!
. . .

. . .α1
1 α1

k1

. . .
!

. . .

. . .αn1 αnkn

. . .

π′0

. . .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⋃
k1,...,kn<ω

αi
1,...,α

i
ki
∈π∗

i

π∗ =

where π′0 is obtained as follows: by the boxing condition (Definition 7), each
conclusion of πi which is not connected to the auxiliary port of a promotion cell

404 D. Mazza and M. Pagani

must be connected to an auxiliary port of a ? cell c in π0. Then, π′0 is obtained
from π0 by changing the arity of such cells c as follows: if the arity of c is k + 1
in π0, then it becomes k + ki in π′0.

Cut-elimination is defined exactly as in Fig. 2, except for exponential cuts. In
these cuts !-boxes play a crucial role, since they delimit subnets to be erased
or duplicated as a whole in one step. Fig. 5 defines exponential cut-elimination
for proof-nets: what happens is that the !-box dispatches n copies of π1 (n ≥ 0
being the arity of ? cell shown) inside the !-boxes (if any) crossed by the auxiliary
doors of the ? cell.

π1
A⊥

A

π1

! ?
!A

· · ·

�β

A⊥

A⊥ π1
A⊥

A

· · ·
?A⊥

Fig. 5. Cut-elimination rule for promotion

The Taylor-Ehrhard expansion preserves MELL reductions on proof-nets, in
the sense given by the following proposition:

Proposition 2 (Simulation). Let π1 (resp. π2) be a normal proof-net of con-
clusions A, Γ (resp. A⊥, Δ). If 〈π1 |π2〉 →∗β π3, then 〈π∗1 |π∗2〉 →∗β π∗3 .

Proof. It is enough to prove that, given a generic proof-net π, if π →β π′ by
reducing a cut at depth 0, then π∗ →β π′∗. We omit the details. ��
Coherent spaces provide the most classical denotational semantics for proof-nets
(see [5]). Lorenzo Tortora de Falco proves in [8] that this semantics fails to be
faithful: there are distinct normal proof-nets which are associated with the same
morphism, for any interpretation of the variables. We reproduce in Fig. 6a and
in Fig. 7a two examples of pairs of non-separable proof-nets. This means that
MELL proof-nets cannot verify the separation property, at least in the strong
form of Theorem 1, as this would contradict Corollary 1 (which would hold also
for MELL in that case).

The example of Fig. 6a morally6 corresponds to the following PCF terms:

λx.if x then (ifx thenfalseelse
true

false
) else (ifx then

false

true
elsefalse)

6 We cheated a bit in order to have simpler proof-nets. The exact proof-nets should
use additives and have conclusions ?(⊥&⊥), 1⊕ 1.

The Separation Theorem for Differential Interaction Nets 405

⊗

?

!

?

!

⊗

!

⊗

!

?εi

⊗

ε⊥p1 ε⊥q1
!⊥ !⊥

⊗

ε⊥pm+n
ε⊥qm+n

!⊥ !⊥
⊗

ε⊥n ε⊥m
!⊥ !⊥

?(!⊥⊗!⊥)?1

· · ·
!⊥⊗!⊥

!⊥⊗!⊥
!⊥⊗!⊥⊥ ⊥

?1

!

⊥⊥ 1

!

⊥⊥1

!⊥⊗!⊥

!⊥ !⊥!⊥!⊥
1 1

⊥ ⊥

⊥⊥⊥⊥

!⊥

?(!⊥⊗!⊥)

!⊥⊗!⊥
!⊥

a) b)

Fig. 6. a) Example 1 of non-separable proof-nets: π1 is defined by considering the
dotted wire and cell, instead π2 by considering the dashed ones. b) Definition of
α 〈i, n,m, p1, q1, . . . , pn+m, qn+m〉, where εi is the simple net of Fig. 4b.

??X⊥

??

??

?

???X⊥

??X⊥

?X⊥?X⊥

X⊥X⊥

?

??X

??

??

?

???X

??X

?X?X

X X

?

?X

a)

?X⊥

!!

!!

!

⊥
⊥

!

!!

!!

!

1
1

!

b)

!

! ⊥

!! ⊥

!!! ⊥

!!!! ⊥

!! ⊥

! ⊥

!

!! ⊥

!!! ⊥

?

?1

?

!?1!?1

!!?1

!!!?1

!!?1

!?1

?1

Fig. 7. a) Example 2 of non-separable proof-nets: π1 is defined by considering the
dashed wires, instead π2 by considering the dotted ones. b) Simple net separating π∗

1 ,
π∗

2 of a).

where the term corresponding to π1 is obtained by choosing true from true
false

and
false from false

true
, while π2 by making the opposite choices. It is well-known that

this two terms are indistinguishable also in PCF, since the nested if then else
have all the same argument x (corresponding to the ? cell of conclusion ?(!⊥⊗!⊥)
in Fig. 6a).

The example of Fig. 7a is reported7 in [8]. Notice that this example does not
use promotion: the proof-nets of Fig. 7a are already simple nets, i.e. π∗i = πi.
The problem of proof-net separation therefore lies in the contraction rule, and
not in the exponential box.

Although the examples of Fig. 6a and Fig. 7a are not separable in MELL proof-
nets, they become easily separable when translated in DIN. Let us start with the
proof-nets π1, π2 defined in Fig. 6a. Their Taylor-Ehrhard expansions in DIN are:

7 To be pedantic, the example we show here is a slight simplification of that defined
in [8], since we are using units and mix.

406 D. Mazza and M. Pagani

π∗1 =
{
α 〈i, n, m, p1, q1, . . . , pn+m, qn+m〉 | i =

∑n
j=1 qj

}

π∗2 =
{
α 〈i, n, m, p1, q1, . . . , pn+m, qn+m〉 | i =

∑n+m
j=n+1 pj

}

where α 〈i, n, m, p1, q1, . . . , pn+m, qn+m〉 is the simple net defined in Fig. 6b, and
n, m, pj, qj range over all non-negative integers.

An example of separating simple net is α⊥ 〈2, 1, 0, 0, 2〉. In fact, we have
〈π∗1 |α⊥ 〈2, 1, 0, 0, 2〉〉 →∗β 1 and 〈π∗2 |α⊥ 〈2, 1, 0, 0, 2〉〉 →∗β 0.

Let us turn to π1, π2 as defined in Fig. 7a. Let α be the simple net of Fig. 7b;
we have 〈π1[?1/X] |α〉 →∗β 1 and 〈π2[?1/X] |α〉 →∗β 0.

Observe that both examples are separable by means of simple nets which make
a crucial use of ! cells of arity different (in particular, higher) than 1, which are
exactly the cells not allowed in MELL proof-nets.

5 Concluding Remarks

Faithfulness of relational semantics. It is known that in general a denotational
semantics for MELL does not provide a semantics for DIN: for example, co-
herent semantics does not interpret cocontraction (i.e., ! cells of arity higher
than 1).

On the other hand, any denotational semantics of DIN provides a semantics
for MELL through the Taylor-Ehrhard expansion: given a proof-net π, one can
define �π� as �π∗�.8

An immediate consequence of our result is that any semantics of DIN separates
any two proof-nets with different Taylor-Ehrhard expansions. This sheds more
light upon the faithfulness of relational semantics: a few years ago Tortora de
Falco conjectured in [8] that such semantics is faithful for MELL proof-nets, a
question which still waits to be settled. Since relational semantics is a semantics
for DIN, we can reduce Tortora’s conjecture to the question of whether different
normal proof-nets have different Taylor-Ehrhard expansions.

λμ-calculus. The question of separation for the λμ-calculus has been addressed
by David and Py in [16]. In that paper the authors produce two λμ-terms which
are indistinguishable: the two terms are a variant of the nested if then else
analyzed in the example of Fig. 6a. Very recently Lionel Vaux has introduced
in [17] a differential extension of the λμ-calculus: in such extension, it is not
hard to find a term separating David and Py’s terms in exactly the same way
as we did for separating the two proof-nets of Fig. 6a. It is then likely that a
separation result similar to Theorem 1 holds for Vaux’s extension of the λμ-
calculus.

8 This is possible only if one considers DIN modulo commutativity of exponential cells,
as we do with our σ-equivalence. For a more detailed discussion of the link between
DIN and linear logic denotational semantics see [14].

The Separation Theorem for Differential Interaction Nets 407

References

1. Böhm, C.: Alcune proprietà delle forme βη-normali nel λ-K-calcolo. Pubblicazioni
dell’IAC 696, 1–19 (1968)

2. Friedman, H.: Equality between functionals. In: Proceedings of LC 72-73. Lecture
Notes in Math., vol. 453, pp. 22–37 (1975)

3. Statman, R.: Completeness, invariance and λ-definability. J. Symbolic Logic, 17–26
(1983)

4. Joly, T.: Codages, séparabilité et représentation de fonctions en λ-calcul simple-
ment typé et dans d’autres systèmes de types. Ph.D. Thesis, Université de Paris 7
(2000)

5. Girard, J.Y.: Linear logic. Theoret. Comput. Sci. 50, 1–102 (1987)
6. Mascari, G., Pedicini, M.: Head linear reduction and pure proof net extraction.

Theoret. Comput. Sci. 135, 111–137 (1994)
7. Girard, J.Y.: Locus solum. Math. Struct. Comput. Sci. 11, 301–506 (2001)
8. de Falco, L.T.: Obsessional experiments for linear logic proof-nets. Math. Struct.

Comput. Sci. 13, 799–855 (2003)
9. Ehrhard, T., Regnier, L.: Differential interaction nets. Theoret. Comput. Sci. 364,

166–195 (2006)
10. Lafont, Y.: Interaction nets. In: POPL 1990, pp. 95–108 (1990)
11. Ehrhard, T.: Finiteness spaces. Math. Struct. Comput. Sci. 15, 615–646 (2005)
12. Mazza, D.: Interaction Nets: Semantics and Concurrent Extensions. Ph.D. Thesis,

Universitée de la Méditerranée/Universitá degli Studi Roma Tre (2006)
13. Regnier, L.: Lambda-calcul et réseaux. Ph.D. Thesis, Université de Paris 7 (1992)
14. De Carvalho, D.: Sémantique de la logique linéaire et temps de calcul. Ph.D. Thesis,

Université d’Aix-Marseille 2 (2007)
15. Danos, V., Regnier, L.: Proof nets and the Hilbert space. In: Advances in Linear

Logic, pp. 307–328. Cambridge University Press, Cambridge (1995)
16. David, R., Py, W.: λμ-calculus and Böhm’s theorem. J. Symbolic Logic 66, 407–413

(2001)
17. Vaux, L.: The differential λμ-calculus. Theoret. Comput. Sci. 379, 166–209 (2007)

Complexity of Planning in Action Formalisms

Based on Description Logics

Maja Miličić�

Institut für Theoretische Informatik
TU Dresden, Germany

maja@tcs.inf.tu-dresden.de

Abstract. In this paper, we continue the recently started work on inte-
grating action formalisms with description logics (DLs), by investigating
planning in the context of DLs. We prove that the plan existence prob-
lem is decidable for actions described in fragments of ALCQIO. More
precisely, we show that its computational complexity coincides with the
one of projection for DLs between ALC and ALCQIO if operators con-
tain only unconditional post-conditions. If we allow for conditional post-
conditions, the plan existence problem is shown to be in 2-ExpSpace.

1 Introduction

Description Logics (DLs) are a well-known family of knowledge representation
formalisms that may be viewed as decidable fragments of first-order logic (FO).
The main strength of DLs is that they offer a nice compromise between expres-
siveness and complexity of reasoning [1].

The idea to investigate action formalisms based on description logics was
inspired by the expressiveness gap between existing action formalisms: they were
either based on FO logic and undecidable, like the Situation Calculus [14] and
the Fluent Calculus [17], or decidable but only propositional.

First results on integrating DLs with action formalisms from [2] show that
reasoning remains decidable even if an action formalism is based on the expres-
sive DL ALCQIO. In [2], ABoxes give incomplete descriptions of the current
state of the world, and describe the pre- and post-conditions of actions. Domain
constraints are captured by acyclic TBoxes, and post-conditions may contain
only atomic concept and role assertions. This formalism is in fact a decidable
fragment of SitCalc. It is shown in [2] that the projection and executability
problem for actions can be reduced to standard DL reasoning problems. Further
work in this line [11,10] treat the problem of computing ABox updates and the
ramification problem induced by GCIs.

However, in the mentioned DL-action-framework, planning, an important rea-
soning task, has not yet been considered. Intuitively, given an initial state A,
final state Γ and a finite set of actions Op, the plan existence problem is the
following: “is there a plan (a sequence of actions from Op) which transforms
� The author is supported by the EU project TONES.

N. Dershowitz and A. Voronkov (Eds.): LPAR 2007, LNAI 4790, pp. 408–422, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Complexity of Planning in Action Formalisms Based on Description Logics 409

A into a state where Γ is satisfied?”. It is known that, already in the proposi-
tional case, planning is a hard problem. For example, the plan existence prob-
lem for propositional STRIPS-style actions with complete state descriptions is
PSpace-complete [4,7], while it is ExpSpace-complete for conformant planning
(incomplete state descriptions) where actions have conditional post-conditions
[8,15].

The planning problem in DL action formalisms is not only interesting from
the theoretical point of view. It is well known that the semantic web ontology
language OWL [9] is based on description logics; thus actions described in DLs
can be viewed as simple semantic web services. In this context, planning is a
very important reasoning task as it supports, e.g., web service discovery which
is needed for an automatic service execution.

This paper is, to our best knowledge, the first attempt to formally define the
planning problem in a DL fragment of SitCalc. We investigate the computational
complexity of the plan existence problem for the description logics “between”
ALC and ALCQIO. By using a compact representation of possible states ob-
tained by action application, we show that, if we allow only for actions with
unconditional post-conditions, in these logics the plan existence problem is de-
cidable, and of the same computational complexity as projection. If conditional
post-conditions are allowed, we show that the plan existence problem is in 2-
ExpSpace. In the last section we discuss possible ways of developing practical
planning algorithms for DLs.

2 The Description Logic ALCQIO
The action formalism used in this paper is not restricted to a particular DL.
However, for our complexity results we consider the DL ALCQIO and a number
of its sublanguages. The reason for choosing this family of DLs is that they are
very expressive, but nevertheless admit practical reasoning. Moreover, ALCQIO
forms the core of OWL-DL, the description logic variant of OWL. As discussed
in [2], the additional OWL-DL constructors can be easily added, except for
transitive roles which lead to semantic and computational problems. Indeed,
DLs from this family underlie highly optimized DL systems such as FaCT++,
RacerPro, and Pellet.

In DL, concepts are inductively defined with the help of a set of constructors,
starting with a set NC of concept names, a set NR of role names, and a set NI

of individual names. The constructors determine the expressive power of the
DL. Table 1 shows a minimal set of constructors from which all constructors of
ALCQIO can be defined. The first row contains the only role constructor: in
ALCQIO, a role s is either a role name r ∈ NR or the inverse r− of a role name
r. Concepts of ALCQIO are formed using the remaining constructors shown in
Table 1, where r is a role, n a positive integer, and a an individual name. Using
these constructors, several other constructors can be defined as abbreviations:

– C � D := ¬(¬C � ¬D) (disjunction),
– � := A � ¬A for a concept name A (top-concept),

410 M. Miličić

Table 1. Syntax and semantics of ALCQIO

Name Syntax Semantics

inverse role r− {(y, x) | (x, y) ∈ rI}
negation ¬C ΔI \ CI

conjunction C �D CI ∩DI

at-least restriction (� n s C) {x ∈ ΔI | card{y ∈ CI | (x, y) ∈ sI} ≥ n}
nominal {a} {aI}

– ∃s.C := (� 1 s C) (existential restriction),
– ∀s.C := ¬(∃s.¬C) (value restriction),
– (� n s C) := ¬(� (n + 1) s C) (at-most restriction).

The DL that allows for negation, conjunction, and value restrictions is called
ALC. The availability of additional constructors is indicated by concatenating
the corresponding letter: Q stands for number restrictions; I stands for inverse
roles, and O for nominals. This explains the name ALCQIO for our DL, and
also allows us to refer to sublanguages in a simple way.

The semantics of ALCQIO-concepts and roles is defined in terms of an inter-
pretation I = (ΔI , ·I). The domain ΔI of I is a non-empty set of individuals
and the interpretation function ·I maps each concept name A ∈ NC to a sub-
set AI of ΔI , each role name r ∈ NR to a binary relation rI on ΔI , and each
individual name a ∈ NI to an element aI ∈ ΔI . The extension of ·I to arbi-
trary concepts and roles is inductively defined, as shown in the third column
of Table 1. Here, the function card yields the cardinality of the given set. Note
that the third column of Table 1 suggests a straightforward translation of DL
concepts into first-order formulas with one free variable, as explicated e.g. in [1].

A concept definition is an identity of the form A
.= C, where A is a concept

name and C an ALCQIO-concept. A TBox T is a finite set of concept defini-
tions with unique left-hand sides. Concept names occurring on the left-hand side
of a definition of T are called defined in T whereas the others are called prim-
itive in T . The TBox T is acyclic iff there are no cyclic dependencies between
the definitions [1]. The semantics of TBoxes is defined in the obvious way: the
interpretation I is a model of the TBox T (I |= T) iff it satisfies all its defini-
tions, i.e., AI = CI holds for all A

.= C in T . In the case of acyclic TBoxes, any
interpretation of the primitive concepts and of the role names can uniquely be
extended to a model of the TBox [12].

An ABox assertion is of the form C(a), r(a, b) or ¬r(a, b), where a, b ∈ NI,
C is a concept, and r a role name.1 An ABox is a finite set of ABox assertions.
The interpretation I is a model of the ABox A (I |= A) iff it satisfies all its
assertions, i.e., aI ∈ CI ((aI , bI) ∈ rI , (aI , bI) /∈ rI) for all assertions C(a)
(r(a, b), ¬r(a, b)) in A. If ϕ is an assertion, then we write I |= ϕ to indicate that
I satisfies ϕ.
1 Disallowing inverse roles in ABox assertions is not a restriction since r−(a, b) can be

expressed by r(b, a).

Complexity of Planning in Action Formalisms Based on Description Logics 411

Various reasoning problems are considered for DLs. For the purpose of this
paper, it suffices to introduce ABox consistency and ABox consequence: the
ABox A is consistent w.r.t. the TBox T iff there exists an interpretation I that
is a model of both T and A; the ABox assertion ϕ is a consequence of A w.r.t.
T (written T ,A |= ϕ) iff every model I of T and A is also a model of ϕ.

3 Action Formalism

In this section, we present (a slightly extended version of) the action formalism
from [2]. Since we focus on planning in this paper, the central notion become
parameterized actions (operators), rather than ground actions like in [2].

The main ingredients of our framework are operators and actions (as defined
below), ABoxes describing the current knowledge about the state of affairs in the
application domain, and acyclic TBoxes for describing general knowledge about
the application domain similar to state constraints in the SitCalc and Fluent
Calculus.

Definition 1 (Action, operator). Let NX be a countably infinite sets of vari-
ables, disjoint with NC, NR and NI. Moreover, let T be an acyclic TBox. A
primitive literal for T is an ABox assertion

A(a),¬A(a), r(a, b), or ¬r(a, b)

with A a primitive concept name in T , r a role name, and a, b ∈ NI. An atomic
atomic α = (pre, occ, post) for T consists of

– a finite set pre of ABox assertions, the pre-conditions;
– a finite set occ of occlusions of the form A(a) or r(a, b), with A primitive

concept in T , r role name, and a, b ∈ NI;
– a finite set post of conditional post-conditions of the form ϕ/ψ, where ϕ is

an ABox assertion and ψ is a primitive literal for T .

A composite action for T is a finite sequence α1, . . . , αk of atomic actions for
T . An operator for T is a parameterized atomic action for T , i.e., an action
in which definition variables from NX may occur in place of individual names.

We call post-conditions of the form �(t)/ψ unconditional and write just ψ in-
stead.

Applying an action changes the state of affairs, and thus transforms an in-
terpretation I into an interpretation I′. Intuitively, the pre-conditions specify
under which conditions the action is applicable. The post-condition ϕ/ψ says
that, if ϕ is true in the original interpretation I, then ψ is true in the interpre-
tation I ′ obtained by applying the action. The rôle of occlusions is to indicate
those primitive literals that can change arbitrarily.

When defining the semantics of actions, we assume that states of the world
correspond to interpretations. Thus, the semantics of actions can be defined by
means of a transition relation on interpretations. We do not give semantics of

412 M. Miličić

operators explicitly and assume that they are grounded before their applica-
tion. Let T be an acyclic TBox, α = (pre, occ, post) an action for T , and I an
interpretation. For each primitive concept name A and role name r, set:

A+ := {bI | ϕ/A(b) ∈ post ∧ I |= ϕ}
A− := {bI | ϕ/¬A(b) ∈ post ∧ I |= ϕ}
IA := (ΔI \ {bI | A(b) ∈ occ}) ∪ (A+ ∪ A−)
r+ := {(aI , bI) | ϕ/r(a, b) ∈ post ∧ I |= ϕ}
r− := {(aI , bI) | ϕ/¬r(a, b) ∈ post ∧ I |= ϕ}
Ir := ((ΔI × ΔI) \ {(aI , bI) | r(a, b) ∈ occ}) ∪ (r+ ∪ r−)

The transition relation on interpretations should ensure that A+ ⊆ AJ and
A− ∩ AJ = ∅ if J is the result of applying α in I. It should also ensure that
nothing else changes, with the possible exception of the occluded literals. Intu-
itively, IA and Ir describe those parts of the model that are not exempted from
this restriction by the presence of an occlusion. Since we restrict our attention
to acyclic TBoxes, for which the interpretation of defined concepts is uniquely
determined by the interpretation of primitive concepts and role names, it is not
necessary to consider defined concepts when defining the transition relation.

Definition 2. Let T be an acyclic TBox, α = (pre, occ, post) an atomic action
for T , and I, I ′ models of T respecting the unique name assumption (UNA) on
individual names and sharing the same domain and interpretation of all indi-
vidual names. We say that α may transform I to I′ (I ⇒Tα I ′) iff, for each
primitive concept A and role name r, we have

A+ ∩ A− = ∅ and r+ ∩ r− = ∅
AI

′ ∩ IA = ((AI ∪ A+) \ A−) ∩ IA
rI

′ ∩ Ir = ((rI ∪ r+) \ r−) ∩ Ir .

The composite action α1, . . . , αk may transform I to I ′ (I ⇒Tα1,...,αk
I ′) iff

there are models I0, . . . , Ik of T with I = I0, I ′ = Ik, and Ii−1 ⇒Tαi
Ii for

1 ≤ i ≤ k.

Note that the semantics is such that the changes are minimized w.r.t. the initial
interpretations. Also note that this definition does not check whether the action
is indeed executable, i.e., whether the pre-conditions are satisfied. It just says
what the result of applying the action is, irrespective of whether it is executable
or not. Since we use acyclic TBoxes to describe background knowledge, if occ is
the empty set, there cannot exist more than one I′ such that I ⇒Tα I ′. Thus,
actions with empty occlusions are deterministic.

Like in [2], we assume that actions α = (pre, occ, post) are consistent with T in
the following sense: for every model I of T , there exists I′, such that I ⇒Tα I ′.
It is not difficult to see that this is the case iff {ϕ1/ψ, ϕ2/¬ψ} ⊆ post implies
that the ABox {ϕ1, ϕ2} is inconsistent w.r.t. T .

Complexity of Planning in Action Formalisms Based on Description Logics 413

Two standard reasoning problems about actions, projection and executability,
are thoroughly investigated in [2] in the context of DLs. Executability is the
problem of whether an action can be applied in a given situation, i.e. if pre-
conditions are satisfied in the states of the world considered possible.

Formally, let T be an acyclic TBox, A an ABox, and let α1, . . . , αn be a com-
posite action with αi = (prei, occi, posti) atomic actions for T for i = 1, . . . , n.

We say that α1, . . . , αn is executable in A w.r.t. T iff the following conditions
are true for all models I of A and T :

– I |= pre1

– for all i with 1 ≤ i < n and all interpretations I ′ with I ⇒Tα1,...,αi
I ′, we

have I ′ |= prei+1.

Projection is the problem of whether applying an action achieves the desired
effect, i.e., whether an assertion that we want to make true really holds af-
ter executing the action. Formally,the assertion ϕ is a consequence of applying
α1, . . . , αn in A w.r.t. T iff for all models I of A and T and for all I′ with
I ⇒Tα1,...,αn

I ′, we have I ′ |= ϕ.
In [2] it was shown that projection and executability are decidable for the log-

ics between ALC and ALCQIO. More precisely, projection in L can be reduced
to (in)consistency of an ABox relative to an acyclic TBox in LO. The following
theorem from [2] states that upper complexity bounds obtained in this way are
optimal:

Theorem 1. ([2]) Projection and executability of composite actions are:

(a) PSpace-complete in ALC,ALCO,ALCQ, and ALCQO;
(b) ExpTime-complete in ALCI and ALCIO;
(c) co-NExpTime-complete in ALCQI and ALCQIO.

Looking carefully at the reduction of projection in L to ABox inconsistency in
LO from [2,3], we conclude that the upper complexity bounds from Theorem 1
hold even for the “stronger” projection problem, namely the one where instead
of a single ABox assertion ϕ, we have an ABox Γ . We will need this strengthened
complexity result in the coming sections.

4 Planning Problem

We continue by defining the plan existence problem in the introduced framework.
First we introduce a bit of notation. If o is an operator (for a TBox T), we use
var(o) to denote the set of variables in o. A substitution v for o is a mapping
v : var(o) → NI. An action α that is obtained by applying a substitution v to o is
denoted as α := o[v]. Intuitively, the plan existence problem is: given an acyclic
TBox T which describes the background knowledge, ABoxes A and Γ giving
incomplete descriptions of the initial and the goal state, and a set of operators
Op, is there a plan (sequence of actions obtained by instantiating operators

414 M. Miličić

from Op) which ”transforms” the stated described by A into a state where Γ is
satisfied?

In this paper, we assume that operators can be instantiated with individuals
from a finite set Ind ⊂ NI. Moreover, we assume that T , A and Γ contain only
individuals from Ind (we say that they are based on Ind). For an operator o,
we set o[Ind] := {o[v] | v : var(o) → Ind} and for Op a set of operators, we
set Op[Ind] := {o[Ind] | o ∈ Op}, i.e. Op[Ind] is the set of all actions obtained
by instantiating operators from Op with individuals from Ind. In the following
definition, we formally introduce the notion of a planing task:

Definition 3 (Planning task). A planning task is a tuple Π = (Ind, T , Op,
A, Γ), where

– Ind is a finite set of individual names;
– T is an acyclic TBox based on Ind;
– Op is a finite set of atomic operators for T ;
– A (initial state) is an ABox based on Ind;
– Γ (goal) is an ABox based on Ind.

A plan in Π is a composite action α = α1, . . . , αk, such that αi ∈ Op[Ind],
i = 1..k. A plan α = α1, . . . , αk in Π is a solution to the planning task Π iff:

1. α is executable in A w.r.t. T ; and
2. for all interpretations I and I′ such that I |= A, T and I ⇒Tα I ′, it holds

that I ′ |= Γ .

Example 1. We illustrate the previous definition by the following example de-
scribing a (simplified) process of opening a bank account in the UK.

Let the set of individuals be defined as

Ind = {dirk, uni liv, yoga center, UK, el, el′, l, ba}.

The initial state - ABox A states that Dirk is a resident of the UK who has
gotten two jobs – at the University of Liverpool and in the Yoga Center, but
still does not hold a bank account in the UK.

A := {resident(dirk, UK), employs(uni liv, dirk), employs(yoga center, dirk),
University(uni liv),¬∃holds.(B acc � ∃in.{UK})(dirk)}

Moreover, the set Op contains the operators for obtaining a lease, a letter from
employer, and a bank account. The set of occlusions occ is empty for all three
operators, so we will state only the sets of pre- and post-conditions pre and post.

– Suppose the pre-condition of obtaining a lease is that the customer x holds
a letter from his employer. This is formalized by the operator get Lease:

pre : {∃holds.EmployerLetter(x)}
post : {holds(x, y), Lease(y)}

Complexity of Planning in Action Formalisms Based on Description Logics 415

– The operator get Letter describes the process of an employee x getting a
letter y from his employer z:

pre : {employs(z, x)}
post : {holds(x, y), EmployerLetter(y), signed(z, y)}

– Suppose the pre-condition of opening a bank account is that the customer
x is a resident in the UK and holds a proof of address. Moreover, suppose
that, if x is rated as “reliable”, then the bank account comes with a credit
card, otherwise not. This service can be formalized by the following operator
get B acc:

pre : {∃resident.{UK}(x), ∃holds.Proof address(x)}
post : {holds(x, y), in(y, UK),

Reliable(x)/B acc credit(y),
¬Reliable(x)/B acc no credit(y)}

The meaning of the concepts used in A and Op is defined in the following acyclic
TBox T :

Reliable
.= ∃holds.(B acc � Good credit rating � ∃in.{UK})
�∃holds.(EmployerLetter � ∃signed−.University}

Proof address
.= Electricity contract � Lease

B acc
.= B acc credit � B acc no credit

The first concept definition tells us that a person is rated as reliable if and only if
he already holds a bank account in the UK with a good credit rating, or holds a
letter stating that he is employed at the university. The second definition defines
a proof of the address to be either en electricity contract or a lease, while the
last one states that a bank account can come either with or without a credit
card.

Finally, we have two goals, Γ1 = {∃holds.(B acc � ∃in.{UK})(dirk)}, requiring
that Dirk holds a bank account in the UK, and a more ambitious one, Γ2 =
{∃holds.(B acc credit�∃in.{UK})(dirk)}, namely that Dirk holds a bank account
in the UK with a credit card. We define corresponding planing tasks Π1 and Π2

as Π1 = (Ind, T , Op,A, Γ1) and Π2 = (Ind, T , Op,A, Γ2). It is not difficult to see
that the plan:

get Letter[x/dirk, y/el, z/yoga center], get Lease[x/dirk, y/l], get B acc[x/dirk, y/ba]

is a solution to Π1, but not Π2, while the plan:

get Letter[x/dirk, y/el′, z/uni liv], get Lease[x/dirk, y/l], get B acc[x/dirk, y/ba]

is a solution both to Π1 and Π2.

The plan existence problem (PLANEX), c.f. [7], is the problem of whether a given
planning task Π has a solution. If operators in Π contain conditional post-
conditions, we will call it conditional PLANEX, and otherwise unconditional
PLANEX.

416 M. Miličić

5 Complexity of Planning: Unconditional Post-Conditions

In this section, we will focus on the plan existence problem in the case oper-
ators have only unconditional post-conditions. It turns out that unconditional
PLANEX is not harder, at least in theory, than projection in the fragments of
ALCQIO from Theorem 1.

Obviously, the plan existence problem is closely related to projection and
executability. First we introduce some notation. Let A be an ABox, T an acyclic
TBox, α a (possibly composite) action, and ϕ an ABox assertion. We will write
T ,Aα |= ϕ iff ϕ is a consequence of applying α in A w.r.t. T . For an ABox B,
we write T ,Aα |= B iff T ,Aα |= ϕ for all ϕ ∈ B.

Let Π = (Ind, T , Op,A, Γ) be a planning task for which we want to decide
if it has a solution. This means that we want to check if there is a sequence of
actions from Op[Ind] which transform the initial state (described by A) into a
state where goal Γ holds.

In the propositional case, planning is based on step-wise computation of the
next state – which corresponds to computing updated ABoxes. However, in [11],
it is shown that an updated ABox may be exponentially large in the size of the
initial ABox and the update, which makes this approach unsuitable. We base
our approach in this paper on the following observation: instead of computing
a sequence of (exponentially large) updated ABoxes, it suffices to compute a
sequence of updates which are applied to the initial ABox A. Intuitively, these
updates are lists of accumulated triggered post-conditions. Similarly, we keep
track of accumulated occlusions. Thus, states of the search space can be com-
pactly described as pairs: (occlusion, update).

We define the set of possible (negated) atomic changes as:

Lpost := {ψ,¬ψ | ψ ∈ post, α = (pre, occ, post), α ∈ Op[Ind]}
and the set of possible occlusions:

Locc := {ψ | ψ ∈ occ, α = (pre, occ, post), α ∈ Op[Ind]}
An update for Π is a consistent subset of Lpost. Let U be a set of all updates
for Π . Moreover, let O := 2Locc . Then O × U is our search space, the size of
which |O| · |U| is exponential in the size of Π , since the sizes of Lpost and Locc

are polynomial in Π . For a U ∈ U, we set ¬U := {¬l | l ∈ U} and U := {l | l ∈
U ∪ ¬U and l positive}.

Intuitively, (∅, ∅) represents the initial state, and all tuples (O,U) ∈ O × U
such that T ,A(∅,O,U) |= Γ represent goal states. In the next step, we define the
transition relation “ α→T ,A” on O× U. Let (O,U),(O′,U ′) ∈ O× U. We say that
(O,U) α→ (O′,U ′) iff:

(i) O′ = (O ∪ occ) \ post
(ii) U ′ = (U \ (occ ∪ ¬occ ∪ ¬post)) ∪ post

Obviously, the relation “ α→” is functional for every α. In the following lemma,
we show that “ α→” simulates “⇒Tα ” on the set O×U. We omit the proof, which
can be done by an easy induction.

Complexity of Planning in Action Formalisms Based on Description Logics 417

Lemma 1. Let Π = (Ind, T , Op,A, Γ) be a planning task and let α = α1, . . . , αk
be a plan in Π. Let U0 = O0 := ∅ and let (O1,U1), . . . , (Ok,Uk) be such such
that

(O0,U0) α1→ (O1,U1) · · · αk→ (Ok,Uk)

Then the following holds:

(a) For all interpretations I, I′ such that I |= A and for all 1 ≤ i ≤ k, we have
that I ⇒Tα1,...,αi

I ′ iff I ⇒T(∅,Oi,Ui)
I ′.

(b) T ,A(∅,Oi,Ui) |= prei+1 for all i < k iff α1, . . . , αk is executable in A w.r.t. T ;

We now present a non-deterministic procedure which decides whether the plan-
ning task Π has a solution. The procedure searches for an executable sequence
of actions from Op[Ind] which transforms the initial state S0 = (∅, ∅) into a
state SΓ = (OΓ ,UΓ) ∈ O × U such that T ,ASΓ |= Γ 2 (goal state). We use
ε do denote the empty action (∅, ∅, ∅). Since the search space O × U is of size
2|Locc| · 3

|Lpost|
2 (< 2|Locc|+|Lpost|), there is no need to search for longer sequences

than 2|Locc|+|Lpost|.

PLANEX(Π)
i := 0; S0 := (∅, ∅);
while i < 2|Locc|+|Lpost|

guess α = (pre, occ, post) ∈ Op[Ind] ∪ {ε}
if T ,ASi �|= pre

then return FALSE
compute Si+1 such that Si α→ Si+1

i := i + 1
if T ,ASi �|= Γ

then return FALSE
return TRUE

It is not difficult to show that Lemma 1 implies that PLANEX(Π) returns
TRUE iff Π has a solution. Clearly, PLANEX(Π) works in NPSpace with
the “projection oracle”. If projection is in PSpace, then PLANEX is obviously
in NPSpace. By using Savitch’s result [16] that PSpace = NPSpace, we ob-
tain that PLANEX is then in PSpace. Similarly, if projection is in ExpTime,
since NPSpace ⊆ ExpTime, we have that PLANEX can be decided in Ex-
pTime. Finally, we will show the less straightforward result that PLANEX is
in co-NExpTime if projection is in co-NExpTime. To this end, we develop
an alternative NExpTime algorithm which returns TRUE iff the planning task
Π has no solution. Let S = O × U and Q = {pre(α) | α ∈ Op[Ind]} ∪ {Γ}.
The alternative algorithm has three steps: (i) guess an (exponentially big) set
T of tuples (S,Q) from S × Q; (ii) check whether for all tuples (S,Q) it holds
that T ,AS �|= Q; (iii) check if the following holds: in every run of the origi-
nal PLANEX(Π) procedure, there is at least one projection test T ,AS |= Q?

2 From now on, if S = (O,U), we write S as an abbreviation for the action (∅,O,U).

418 M. Miličić

such that (S,Q) ∈ T . If (ii) and (iii) give positive answers, return TRUE. Since
(ii) and (iii) can be checked in ExpTime, the steps (i)-(iii) can be executed in
NExpTime. Thus, we obtained the following lemma:

Lemma 2. Let L ∈ {ALC,ALCO,ALCI,ALCQ,ALCIO,ALCQO,ALCQI,
ALCQIO}. The unconditional PLANEX in L has the same upper complexity
bound as projection in L.

We show that the upper complexity bounds established in Lemma 1 are tight
by the following easy reduction of projection to PLANEX. Let A be an ABox,
α an action with empty pre-conditions and empty occlusions and only with
unconditional post-conditions, and ϕ an assertion.We define the planning task
ΓA,α,ϕ as ΓA,α,ϕ := (∅, ∅, {α},A, {ϕ}). It is not difficult to see that Aα |= ϕ iff
ΓA,α,ϕ has a solution.

Since the lower bounds for projection from Theorem 1 hold already in the
case of the empty TBox and an atomic action with empty pre-conditions and
occlusions and only with unconditional post-conditions [2], we conclude that the
complexity bounds from Lemma 2 are optimal, i.e. plan existence problem is of
exactly the same computational complexity as projection.

Theorem 2. The unconditional plan existence problem is:

(a) PSpace-complete in ALC, ALCO, ALCQ, and ALCQO;
(b) ExpTime-complete in ALCI and ALCIO;
(c) co-NExpTime-complete in ALCQI and ALCQIO.

6 Complexity of Planning: Conditional Post-Conditions

If we allow for conditional post-conditions in operators, the complexity results
from the previous section do not hold anymore. With conditional post-conditions,
already in the propositional case, conformant PLANEX is ExpSpace-hard [8,15].
In this section we will show that conditional PLANEX is decidable for DLs
between ALC and ALCQIO. Decidability will be shown by an 2-ExpSpace
algorithm.

Let Π = (Ind, T , Op,A, Γ) be a planning task for which we want to decide
if it has a solution. For the sake of simplicity, we assume that occlusions in
operators from Op are empty, i.e. operators are of the form (pre, post). Non-
empty occlusions can be treated similarly as in the previous section. We will
also use abbreviations introduced in the previous section. Moreover, we set

Lpost := {ψ,¬ψ | ϕ/ψ ∈ post, α = (pre, post), α ∈ Op[Ind]}

and
Cpost := {ϕ | ϕ/ψ ∈ post, α = (pre, post), α ∈ Op[Ind]}.

An update in Π is a consistent subset of Lpost. Let U be the set of all updates in
Π . A context C in Π is a consistent subset of Cpost ∪ ¬Cpost such that for every

Complexity of Planning in Action Formalisms Based on Description Logics 419

ϕ ∈ Cpost, it is the case that either ϕ ∈ C or ¬ϕ ∈ C. Moreover let C be the set of
all contexts in Π . Let M be the set of admissible mappings m : U → C, where a
mapping m is admissible iff there exists an interpretation I, such that I |= A, T
and for all U ∈ U it holds that IUT |= m(U).3. Intuitively, if m(U) = C, it means
that after updating a model I of A and T with U , all assertions from C will hold.
Thus every admissible m describes a relevant class of possible initial models of A
and T . The number of different mappings m : U → C is at most 2|Cpost|·2Lpost , and
for every m it can be checked in ExpSpace if it is admissible, if projection is in
ExpSpace. The search space S is the set of all mappings S : M → U, the size

of which |S| ≤ 2|Lpost|·2|Cpost|·2Lpost

. Similarly as in the previous section, we define
the transition relation α→ on S × S. For S,S′ ∈ S, m ∈ M, and α = (pre, post)
we set postα,S,m := {ψ | ϕ/ψ ∈ post, ϕ ∈ m(S(m))}. We say that S α→ S′ iff

S′(m) = (S(m) \ ¬postα,S,m) ∪ postα,S,m for all m ∈ M

Moreover, for B be an ABox, we say that T ,AS |=∗ B iff for all m ∈ M the
following holds: for all interpretations I such that I |= A, T , if for all U ∈ U it
holds that IUT |= m(U), then IS(m)

T |= B.

condPLANEX(Π)
i := 0; S0(m) = ∅ for all m ∈ M;

while i < 2|Lpost|·2|Cpost|·2Lpost

if T ,ASi |=∗ Γ
then return TRUE

guess α = (pre, post) ∈ Op[Ind]
if T ,ASi �|=∗ pre

then return FALSE
compute Si+1 such that Si α→ Si+1

i := i + 1
return FALSE

It is not difficult to show that condPLANEX(Π) indeed decides if Π has a solu-
tion. The search space S is 3-exponential in the size of Π , thus condPLANEX
requires 2-NExpSpace with a “|=∗ oracle”. It is not difficult to see that |=∗ can
be decided in 2-ExpSpace if projection is in ExpSpace. Thus we have that con-
ditional PLANEX in 2-NExpSpace. Since 2-NExpSpace =2-ExpSpace [16],
we obtain the following theorem:

Theorem 3. The conditional plan existence problem is in 2-ExpSpace in the
DLs between ALC and ALCQIO.

7 Individuals Not Part of Input

The previous decidability and complexity results are obtained under assumption
that the set of individuals Ind used to instantiate operators is finite and a part
3 IUT denotes the unique interpretation I′ such that I ⇒T

U I′.

420 M. Miličić

of the input. This assumption is rather natural and in the line with the standard
definitions of planning tasks for STRIPS operators from [4,7]. Intuitively, Ind is
the set of individuals the planning agent has control over.

Alternatively, one can omit individuals from the input and define a planning
task Π as Π = (T , Op,A, Γ). The extended plan existence problem is the one
of whether there is a solution for Π , defining a plan for Π to be a sequence of
actions α1, . . . , αk, where each αi is obtained by instantiating an operator from
Op with individuals from an infinitely countable set NI.

In the case of the datalog STRIPS, it is shown that the extended plan exis-
tence problem is undecidable [7,6]. However, this undecidability result does not
automatically carry over to the action formalism instantiated by DLs used in
this paper. Indeed, the undecidability result from [7,6] relies on the closed world
assumption and negative pre-conditions. By using these two, one can define oper-
ators which are applicable only if instantiated with “unused” individuals. Such
operators would have ¬Used(x) among its pre-conditions, and Used(x) in the
list of post-conditions. Like this, one can enforce the usage of infinitely many
individuals.

In the case of DLs considered in the previous sections, due to the open world
assumption (OWA), it is not possible to state that all individuals not appearing
in the initial ABox are instances of the concept ¬Used. However, in the presence
of the universal role U , we can make assertions over the whole domain. For exam-
ple, the assertion ∀U.¬Used(a) can ensure that all element domains are unused
in the initial state. We will show that extended planning in ALCU (extension of
ALC with the universal role) is undecidable. Undecidability is shown by reduc-
ing the halting problem of a deterministic Turing machine to the extended plan
existence problem, similar to [6].

Let M = (Q, Σ, δ, q0, qf) be a deterministic Turing machine, where

– Q = {q0, . . . , qn} a finite set of states;
– Σ = {blank, a1, . . . , am} a finite alphabet;
– δ : Q × Σ → Q × Σ × {L, R} is a transition function;
– q0 is the initial state;
– qf ∈ Q is the final state.

Let a = ai0 , . . . aik ∈ Σ∗ be an input word. We will define a planning task
ΠM,a = (∅, OpM,a,AM,a, ΓM,a) such that a planner for Π simulates moves of
the Turing Machine M . In the reduction, we use concept names Q0, . . . , Qn,
Blank, A1, . . . , Am, Used, Last, M , Done, and the role name right. We define the
initial state AM,a, the goal ΓM,a, and the set of operators OpM,a as:

AM,a := {(M � ∀U.¬Used)(t0)} ∪ {Ai0(t0), . . . , Aik (tk)}
∪{right(t0, t1), . . . right(tk−1, tk)}

ΓM,a := {Done(t0)}
OpM,a := {start, create succ(x.y), done(x), done to left(x, y)} ∪⋃

δ(q,a)=(q′,b,R)

{rightq,a,q′,b(x, y)} ∪
⋃

δ(q,a)=(q′,b,L)

{leftq,a,q′,b(x, y)}

Complexity of Planning in Action Formalisms Based on Description Logics 421

where the single operators (of the form (pre, post), occ = ∅ for all operators) are
defined as follows :

start := ({M(t0)}, {Used(t0), ..., Used(tk), Last(tk),¬M(t0), Q0(t0)})
create succ(x.y) := ({Last(x),¬Used(y)},

{right(x, y),¬Last(x), Last(y), Used(y), Blank(y)}
rightq,a,q′,b(x, y) := ({Q(x), A(x), right(x, y)}, {¬Q(x),¬A(x), B(x), Q′(y)}
leftq,a,q′,b(x, y) := ({Q(x), A(x), right(y, x)}, {¬Q(x),¬A(x), B(x), Q′(y)}

done(x) := ({Qf(x)}, {Done(x)})
done to left(x, y) := ({Done(x), right(y, x)}, {Done(y)})

It is not difficult to show that the following lemma holds:

Lemma 3. The Turing machine M halts on the input a iff there is a solution
to the planning task ΠM,a = (∅, OpM,a,AM,a, ΓM,a).

Thus, we obtained the following theorem:

Theorem 4. The extended plan existence problem is undecidable in ALCU .

We conjecture that in the fragments of ALCQIO (i.e. without the universal role)
the extended plan existence problem is decidable. However, a proof is yet to be done.

8 Conclusion and Future Work

In this paper, we have shown that the plan existence problem (PLANEX) is de-
cidable in the action formalism based on fragments of ALCQIO. More precisely,
PLANEX is shown to be of the same computational complexity as projection in
the logics between ALC and ALCQIO if operators have only unconditional post-
conditions. It is also shown that occlusions do not make planning harder. If oper-
ators have conditional post-conditions, planning is shown to be in 2-ExpSpace.
At the moment, it remains an open problem if this complexity bound is optimal.
Finally, we have shown that the extended plan existence problem is undecidable
in DLs providing for the universal role but we conjecture that it is decidable in
the fragments of ALCQIO (without the universal role).

A future work will include a development and implementation of efficient
planners for description logics. Unfortunately, the complexity results we obtained
are quite discouraging. Unlike the propositional case, for DLs between ALC and
ALCQIO, looking for polynomial-length plans is not easier than PLANEX,
since the hardness results from Theorem 2 hold already for the plans of constant
length. Thus it looks reasonable to start with “small” DLs, like EL or EL(¬), for
which projection is in co-NP, and try to adapt some of the known techniques
for SAT-based conformant planning [5,13].

Acknowledgements. Thanks to Carsten Lutz for inspiring discussions. Many
thanks to Ricard Gavaldà for his help concerning complexity classes.

422 M. Miličić

References

1. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.):
The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press, Cambridge (2003)

2. Baader, F., Lutz, C., Milicic, M., Sattler, U., Wolter, F.: Integrating description
logics and action formalisms: First results. In: Proceedings of AAAI 2005, Pitts-
burgh, PA, USA (2005)

3. Baader, F., Lutz, C., Milicic, M., Sattler, U., Wolter, F.: Integrating description
logics and action formalisms for reasoning about web services. Technical Report
LTCS 05-02, TU Dresden (2005), See
http://lat.inf.tu-dresden.de/research/reports.html

4. Bylander, T.: The computational complexity of propositional STRIPS planning.
Artificial Intelligence 69(1-2), 165–204 (1994)

5. Castellini, C., Giunchiglia, E., Tacchella, A.: Sat-based planning in complex do-
mains: Concurrency, constraints and nondeterminism. Artif. Intell. 147(1-2), 85–
117 (2003)

6. Erol, K., Nau, D.S., Subrahmanian, V.S.: Complexity, decidability and undecidabil-
ity results for domain-independent planning: A detailed analysis. Technical Report
CS-TR-2797, University of Maryland College Park (1991)

7. Erol, K., Nau, D.S., Subrahmanian, V.S.: Complexity, decidability and undecidabil-
ity results for domain-independent planning. Artificial Intelligence 76(1-2), 75–88
(1995)

8. Haslum, P., Jonsson, P.: Some results on the complexity of planning with incom-
plete information. In: Biundo, S., Fox, M. (eds.) ECP 1999. LNCS, vol. 1809, pp.
308–318. Springer, Heidelberg (2000)

9. Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From SHIQ and RDF to
OWL: The making of a web ontology language. Journal of Web Semantics 1(1),
7–26 (2003)

10. Liu, H., Lutz, C., Milicic, M., Wolter, F.: Reasoning about actions using description
logics with general TBoxes. In: Fisher, M., van der Hoek, W., Konev, B., Lisitsa,
A. (eds.) JELIA 2006. LNCS (LNAI), vol. 4160, pp. 266–279. Springer, Heidelberg
(2006)

11. Liu, H., Lutz, C., Milicic, M., Wolter, F.: Updating description logic ABoxes. In:
Proceedings of KR 2006, pp. 46–56 (2006)

12. Nebel, B.: Terminological reasoning is inherently intractable. Artificial Intelli-
gence 43, 235–249 (1990)

13. Palacios, H., Geffner, H.: Compiling uncertainty away: Solving conformant plan-
ning problems using a classical planner (sometimes). In: Proc. of AAAI 2006 (2006)

14. Reiter, R.: Knowledge in Action. MIT Press, Cambridge (2001)
15. Rintanen, J.: Complexity of planning with partial observability. In: Proceedings of

(ICAPS 2004), pp. 345–354 (2004)
16. Savitch, W.J.: Relationship between nondeterministic and deterministic tape com-

plexities. Journal of Computer and System Sciences 4, 177–192 (1970)
17. Thielscher, M.: Introduction to the Fluent Calculus. Electronic Transactions on

Artificial Intelligence 2(3–4), 179–192 (1998)

http://lat.inf.tu-dresden.de/research/reports.html

Faster Phylogenetic Inference with MXG

David G. Mitchell, Faraz Hach, and Raheleh Mohebali

Computational Logic Laboratory
Simon Fraser University, Burnaby BC, Canada

{mitchell,fhach,rmohebal}@cs.sfu.ca

Abstract. We apply the logic-based declarative programming approach of
Model Expansion (MX) to a phylogenetic inference task. We axiomatize the task
in multi-sorted first-order logic with cardinality constraints. Using the model ex-
pansion solver MXG and SAT+cardinality solver MXC, we compare the perfor-
mance of several MX axiomatizations on a challenging set of test instances. Our
methods perform orders of magnitude faster than previously reported declarative
solutions. Our best solution involves polynomial-time pre-processing, redundant
axioms, and symmetry-breaking axioms. We also discuss our method of test in-
stance generation, and the role of pre-processing in declarative programming.

Keywords: Phylogeny, Declarative Programming, Model Expansion.

1 Introduction

We apply a declarative programming approach, based on the logical task of model ex-
pansion (MX), to a problem in phylogenetic inference. In the approach, an instance is a
finite structure; a solution is a finite structure; a problem specification is an axiomatiza-
tion, in a suitable logic, of the relationship between instances and solutions [16].

A phylogenetic tree is a directed graph representing the evolutionary relationships
among a collection of species. Phylogenetic inference (or re-construction) is the task
of constructing a phylogenetic tree (or other network) from species data. It has many
applications in biology and elsewhere, producing a variety of particular computational
problems. Our interest in these problems is primarily as developers of declarative pro-
gramming tools: In trying to make our tools more effective, it is useful to work on
challenging applications, especially those where success may not be immediate, but
benefits may be significant. Phylogenetic inference is interesting because of the fol-
lowing observations. Most interesting variants are NP-hard optimization problems, and
there are many data sets too hard to solve well in practice; Many particular problems
are variants of, or combinations of, a few basic problems; And, the optimality metrics
often do not precisely match subjective solution quality, so users could benefit from a
method to interactively add ad-hoc constraints, which is not possible with current tools.

Contributions. We describe a method that is faster, by many orders of magnitude, than
the only previous declarative solution we know of. In doing so, we demonstrate that
MX-based tools can be effective on more realistic domains than has previously been
shown. Effectively measuring progress in solving NP-hard problems is tricky, and we

N. Dershowitz and A. Voronkov (Eds.): LPAR 2007, LNAI 4790, pp. 423–437, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

424 D.G. Mitchell, F. Hach, and R. Mohebali

believe the method we use here is interesting. Our pre-processing method, in addition to
benefiting our own solution, could improve the performance of existing software pack-
ages. We point out that instance pre-processing, often important in problem solving,
can be done declaratively.

The Problem. The particular problem we study is the binary cladistic Camin-Sokal
(CCS) problem, which we chose because it is a simple problem which is NP-hard;
to which standard tools apply; for which we have suitably challenging real data; and
for which there is a previous declarative programming solution to compare with. Our
primary solving mechanism is the model expansion grounder/solver MXG [16], with
the SAT+cardinality solver MXC [2]. Our test set consists of several hundred instances
of graduated difficulty derived from biological data. We compare the performance of:

– MXG and MXC, with various axiomatizations using cardinality constraints;
– MXG and Minisat [6], a high-performance SAT solver, with non-cardinality MX

axiomatizations;
– clasp [9], a high-performance answer set programming (ASP) solver, with the best-

performing ASP axiomatization from [13];
– MXG and MXC, aided by polynomial-time instance pre-processing;
– PAUP, a widely-used phylogeny software package [19].

Related Work. Kavanagh et al [13] reported answer set programming (ASP) based
solutions to binary CCS. Their best solution established optimal trees for instances for
which the phylogeny software package PENNY [8] could not, but could not solve their
largest instance (which is identical to our largest instance), or even moderate-sized sub-
sets. ASP solutions to some other phylogeny problems, which are not directly compa-
rable, are reported in [3,7,1]. [3] use “large compatibility”, where the goal is to find
the maximum number of characters, for a given set of species, for which there is a
perfect phylogeny. In contrast, we use “large parsimony”, where we find a (perhaps
not perfect) phylogeny for the input species with the minimum number of evolutionary
changes. The task in [7] is to construct a “perfect phylogenetic network”, from given
phylogenetic trees (the “species” there are natural languages). [1] studied the “Maxi-
mum Quartet Consistency” problem, and evaluated an ASP solution on synthetic data.

2 The Binary Camin-Sokal Phylogeny Problem

We study a simple “large parsimony” problem in character-based cladistics. A group of
species is characterized by a set of characters. Each character can take one of several
states, and each species is described by a vector giving a state for each character. The
input is a set of species vectors and the goal is to construct a tree with nodes labeled by
character vectors, so that the vector of every input species labels some node. Changes of
a character’s state along an edge are mutations. Problem variations result from differing
cost metrics and restrictions on character changes. A tree minimizing the cost metric
is a “most parsimonious tree”. In the cladistic Camin-Sokal (CCS) problem, the states
of each character are ordered and mutations must be increasing on this order. This is

Faster Phylogenetic Inference with MXG 425

appropriate when the direction of evolutionary change of characters is assumed to be
known. The goal is to minimize the total number of mutations. (Examples of biological
application of CCS include [5,18]). The decision version of the problem, even in the
binary case where each character has just two states, is NP-complete [4].

Definition 1. The binary cladistic Camin-Sokal problem (binary CCS) is:

Instance: Set S of n distinct vectors from {0, 1}m; natural number B.
Question: Is there a directed tree T = (V, E), such that: 1) T is rooted at 0m;

2) S ⊆ V ⊆ {0, 1}m; 3) Every leaf of T is in S; 4) For each directed edge
(v1, v2) ∈ E, v1 and v2 differ in exactly one character, which is 0 at v1

and 1 at v2; 5) |V | ≤ B.

Remark 1. An alternate definition allows multiple mutations on an edge. The definition
we use here was also used in [13], and is easier to axiomatize in MXG.

In a perfect phylogeny, each character mutation occurs only once. For the binary CCS,
this is equivalent to setting B = m, provided that both states of every character occur
in S. (Note that if some character has only one state, we may safely delete it.) When
an instance does not have a perfect phylogeny, some character mutations must occur
more than once in the tree. Since mutations are irreversible in CCS, the same character
cannot change more than once on a directed path from the root, so the same mutation
will occur in distinct subtrees. The goal is to find a tree that minimizes the number of
these “extra mutations”. We allow only one mutation per edge, so the number of extra
mutations is equivalent to the number of “extra vertices” or “extra edges” needed to
construct a phylogeny. Since mutation is irreversible, we may assume that all mutations
are from state 0 to state 1, and the tree is rooted at the zero vector.

3 Model Expansion and MXG Basics

We give a minimal and informal description of MXG. For further details, including
formal aspects of MX, the MXG language and grounding algorithm, examples and
performance on other problems, see [16]. MXG is a model expansion grounder/solver.
It takes as input a problem specification S and an instance I . The problem specification
is essentially an axiomatization in multi-sorted first-order logic (FO) extended with
inductive definitions and cardinality constraints.

Vocabulary symbols in an axiomatization have three distinct roles: Instance vocab-
ulary consists of symbols whose interpretation is given by an instance; Solution vo-
cabulary is symbols whose interpretations comprise a solution; Auxiliary vocabulary is
symbols that are not part of the instance or solution. The solution and auxiliary vocabu-
lary together form the expansion vocabulary, the symbols whose interpretations must be
constructed by the solver. Problem specifications contain declarations of types, typed
declarations of vocabulary symbols, and axioms. They have three parts: Given: has
declarations of all types and instance vocabulary; Find: has the declaration of solution
vocabulary; Satisfying: has axioms, plus declaration of auxiliary vocabulary, if any.

As an example, Figure 1 is an MXG specification for the graph colouring problem.
The sorts are Vtx (vertices) and Clr (colours); the instance vocabulary is the binary

426 D.G. Mitchell, F. Hach, and R. Mohebali

Given: type Vtx Clr;
Edge(Vtx, Vtx)

Find: Colour(Vtx, Clr)

Satisfying:
∀ x : ∃ y : Colour(x, y)
∀ x y : (Edge(x,y) ⊃ (∀ z : ¬(Colour(x, z) & Colour(y,z))))
∀ x y z : ((Colour(x, y) ∧ Colour(x, z)) ⊃ (y=z))

Fig. 1. An MXG problem specification for graph colouring

relation Edge; the solution vocabulary is the binary relation Colour. The axioms say
that the interpretation of Colour must give a proper colouring of the given graph. The
MXC instance file for the instance with colours {1, 2}, vertices {1, 2, 3}, and edges
(1, 2) and (1, 3) contains: Vtx = [1..3] Clr = [1; 2] Edge = {1, 2; 1, 3}.

MXG combines a specification and instance, producing a propositional formula φ
which is a “reduced grounding” of S with respect to I . That is, satisfying assignments
of φ correspond one-to-one with solutions of I . Currently, φ is a CNF formula, possibly
extended with cardinality constraints. A propositional solver searches for a satisfying
assignment to φ, and if found MXG maps the assignment back to the FO language to
produce a solution. Other relevant aspects of the (current) MXG language are:

– Vocabulary symbols are typed, by declarations in the specification. The domain of
each variable is inferred from its use, which must be consistent.

– Each type is an ordered finite set given by the instance. The ordering is determined
by the form of the instance description: Numerical if expressed as a range of in-
tegers; otherwise as enumerated. For each type, constant symbols MIN and MAX,
binary relation symbols <, ≤, etc., and binary relation SUCC are all implicitly
defined, with the natural semantics. Types are disjoint, so two elements are compa-
rable only if of identical type.

– Bounded quantifiers are supported: ∀x y < x : φ(x,y) is equivalent to ∀x ∀y : (y<x
⊃ φ(x,y)); ∃x y < x : φ(x,y) is equivalent to ∃x ∃y : (y<x ∧ φ(x,y)).

– Simple cardinality constraints are supported, which are universal sentences of the
form ∀x : 	(n; y; φ(x, y)), where 	 is one of UB, LB, or CARD, for upper bound,
lower bound, and equivalence, respectively. For example ∀u : UB(1;v;Edge(v,u))
says the in-degree of every vertex is at most 1.

– A limited form of inductive definition is supported (see [16] for details).

4 MX Axiomatizations of Binary CCS

Here we give three MX axiomatizations of Binary CCS. One we find natural and sim-
ple, using cardinality constraints; one uses no cardinality constraints, and can be solved
by straightforward reduction to SAT; and one is a translation to MX of the best ASP
encoding from [13]. We produced other distinct axiomatizations, but since none per-
formed better than our basic one (except when using enhancements such as described
in Section 6), we do not report them.

Faster Phylogenetic Inference with MXG 427

Given: type Char Vertex State;
A(Vertex, Char, State)
NSpecies: Vertex
NEdges: Vertex

Find: Edge(Vertex, Vertex)
Vector(Vertex, Char)

Satisfying:
∀ s ≤ NSpecies c : (A(s,c,MAX)⇔ Vector(s, c)) (1)
∀ u v : UB(1; c; (Edge(u,v) ∧ ¬ Vector(u,c) ∧ Vector(v,c))) (2)
∀ u v : (Edge(u,v) ⊃ (∃c : (¬Vector(u,c) ∧ Vector(v,c)))) (3)
∀ u v : UB(0; c; (Edge(u,v) ∧ Vector(u,c) ∧ ¬ Vector(v,c))) (4)
CARD(NEdges; v, u; Edge(v,u)) (5)
∀ v>MIN : CARD(1; u; Edge(u, v)) (6)

Fig. 2. Basic MX axiomatization of binary CCS phylogeny re-construction

Basic MX Axiomatization. The types are Vertex, vertices of the tree; Char, the set of
characters; and State (= {0, 1}), the set of states. We identify the n species with the
first n vertices. The (too simple) type system requires that variables and constant sym-
bols which are to range over species must be of type Vertex. The instance vocabulary
consists of:

– A(Vertex, Char, State): the set of triples specifying the matrix of species of data.
(The first argument is the species.)

– NSpecies: a constant symbol denoting the number of species.
– NEdges: a constant symbol which is always set to |Vertex| − 1.

The solution vocabulary has two binary relation symbols: Edge, the set of edges, and
Vector, which labels vertices with character vectors. Vector(v,c) holds if character c
has state 1 in the vector labeling v. The axioms (see Figure 2) state:

– The label of vertex i, for i ∈ {1, . . . , n}, must be species vector i (Axiom 1);
– Each edge has exactly one character changing from 0 to 1, and no characters chang-

ing from 1 to 0 (Axioms 2–4);
– Every node, except the root, has in-degree exactly one, and the number of edges is

exactly the number of vertices less one (Axioms 5,6).

Axioms 2 through 4 ensure edges have only allowed mutations, and in particular that
every path is monotone increasing in the set of characters with state 1; Axioms 5 and 6
ensure the graph is a tree, which is rooted at the zero vector by a convention that species
1 is the zero vector.

Non-Cardinality Axiomatization. To determine if we obtain a speed-up over pure
SAT solving by using MXC with cardinality constraints, we produced several axioma-
tizations without cardinality constraints, which MXG grounds to SAT. Figure 3 shows
the best-performing of these. The axioms state: The input species vector i must label
vertex i (Axiom 1 - as before); Each edge has exactly one character changing from 0 to
1 (Axiom 2); On a directed path the set of 1-characters is monotone increasing (Axiom
3), so there are no reverse mutations; The graph is a tree (Axioms 4 and 5), since every
node but the root has in-degree one and there are no cycles in the transitive closure of

428 D.G. Mitchell, F. Hach, and R. Mohebali

Given: type Char Vertex State;
A(Vertex, Char, State)
NSpecies: Vertex
NEdges: Vertex

Find: Edge(Vertex, Vertex)
Vector(Vertex, Char)

Satisfying:
TC(Vertex, Vertex) // TC will be the transitive closure of Edge.
∀ s ≤ NSpecies c : (A(s,c,MAX)⇔ Vector(s,c)) (1)
∀ v1 v2: (Edge(v1,v2)⊃(∃ c1 : (¬Vector(v1,c1)∧Vector(v2, c1) (2)

∧ (∀c2 : ((¬Vector(v1,c2) ∧ Vector(v2, c2)) ⊃ (c1=c2))))))
∀ u v c : ((TC(u, v) ∧ Vector(u, c)) ⊃ Vector(v,c)) (3)
∀ u>MIN : ∃ v : (Edge(v,u) ∧ (∀v2 : (Edge(v2, u) ⊃ (v2 = v)))) (4)
∀ u v>u : ¬(TC(u, v) ∧ TC(v, u)) (5)
∀ u v : (TC(u,v)⇔ ((u = v) ∨ Edge(u,v) ∨ (∃x : (TC(u, x) ∧ Edge(x,v))))) (6)

Fig. 3. MXG axiomatization with no cardinality constraints

Given: type Chars Vertex State Species;
A(Species, Char, State)

Find : Edge(Vertex, Vertex)

Satisfying :
M(Vertex, Char)
P(Species, Vertex)
TC(Vertex, Vertex)
∀ v : CARD(1; c; M(v,c)) (1)
∀ s : CARD(1; v; P(s,v)) (2)
∀ v : UB(1; u; Edge(u, v)) (3)
∀ u v : (TC(u,v)⇔ ((u = v) ∨ Edge(u,v) ∨ (∃x : (TC(u, x) ∧ Edge(x,v))))) (4)
∀ u v>u : ¬(TC(u,v) ∧ TC(v,u)) (5)
∀ s c: (A(s,c,MAX)⇔ (∃ u v : (TC(u, v) ∧ M(u,c) ∧ P(s, v)))) (6)
∀ s v c : ¬(P(s,v) ∧ M(v,c) ∧ A(s,c, MIN)) (7)
∀ v v1>v c : ¬(TC(v, v1) ∧ M(v1, c) ∧ M(v, c)) (8)

Fig. 4. MXG axiomatization based on ASP encoding “A+” from [13]

Edge; TC is the transitive closure of Edge (Axiom 6 provides the lower bound on TC;
Axiom 5 the upper bound). We report results based on the SAT solver minisat, arguably
the best all-around SAT solver available.

Translation of ASP to MX. We also used an MX axiomatization based on the best ASP
encoding from [13] (denoted “A+” there). It differs from the previous two in that: 1) We
have a type Species, distinct from Vertex. 2) Rather than identify the n species with the
first n vertices, we construct a function P (represented as a binary relation) from species
to vertices. 3) We construct a function M from vertices to characters. The mutation
on edge (u,v) is the character c such that M(v,c) holds. In contrast, in our previous
axiomatizations the mutation on edge (u,v) is implicit in the difference between the
vectors labeling u and v. 4) The (root) vector 0 is left implicit, so a solution is a forest.
A tree is obtained by adding an edge from 0 to the root of each forest component.

Figure 4 gives the axioms, which state: Each vertex is mapped to exactly one char-
acter (Axiom 1); Each species is mapped to a vertex (Axiom 2); The graph is a tree
(Axioms 3–5); The characters which are 1 at species S must have mutated at some

Faster Phylogenetic Inference with MXG 429

ancestor of the node S is mapped to (Axiom 6); If species S is mapped to vertex v, the
character which mutated at v must not be 0 at S (Axiom 7); A character mutates at most
once on any (directed) path (Axiom 8). Axioms 7 and 8 are redundant, but improve
performance.

5 Evaluating Progress in Performance

Evaluating performance of solvers for NP-hard problems has many pitfalls, especially
when there is no base-line provided by well-established benchmarks and solvers. Our
goal is to have a clear measure of progress in performance. Direct comparison of run-
times does not work here, because run-times for the methods we test vary by many
orders of magnitude (see Figure 8). A better measure is the number of instances that can
be solved within reasonable time. For this, a collection of related instances of graduated
difficulty is needed, but in practice this is often hard to arrange. For example, [13]
obtained three real data sets: Two were too easy and the third was too hard. Randomly
generated instances are easily graduated, but their use requires care (see, e.g., [17]), and
may be irrelevant to practice.

Instances. Here, we produce a set of suitably graduated instances from the one chal-
lenging real data set we have for our problem. This is possible because, if we view a set
of n species vectors of length m as an n × m matrix M , any sub-matrix of M is a valid
set of data, as real (or not) as the full matrix. For illustration: {eye-colour,hair-colour}
is as valid a set of characters as {eye-colour,hair-colour,handedness}. (Not every such
matrix is scientifically interesting, of course.) Our initial instance is a 36 × 63 matrix
obtained from the experimentally obtained haplotype data of [12] (for Poecilia retic-
ulata – guppies) as described in [13]. Following [13], we produced a set of instances
from upper-left sub-matrices of size k × l, for k, l multiples of 3. Thus, we view perfor-
mance as a function of two natural instance parameters: number of species and number
of characters. Unfortunately, the resulting instances were not nicely graduated, as most
moderate-size instances were very easy for our methods. The problem was that most
sub-matrices had all-zero columns and duplicate rows, which we solved as follows.
Keeping the zero vector as species 1, we put all other species in reverse lexicographic
order. Thus, the first row was all zero, but the second row had many ones. The set of
instances produced from this initial matrix by the scheme described above satisfied our
main criteria: the instances are smoothly graded in difficulty for our solvers, and they
do not contain significant numbers of trivial or duplicate rows or columns.

Performance Measure. As an objective measure of progress, we require the solver
to establish the optimal phylogeny size within a fixed time bound. As with any op-
timization problem, one may trade solution quality for solving time. In phylogenetic
inference, user’s often don’t care about optimality per se, because the cost metrics do
not exactly correspond their subjective notion of quality. But if optimality is not a pre-
cise measure of quality, surely being within some distance of optimal is not either, so
relaxing the optimality requirement does not improve our measure. The requirement
to solve to optimality would seem to better measure whether we are making progress

430 D.G. Mitchell, F. Hach, and R. Mohebali

0

3

6

9

12

15

18

21

24

27

30

33

36

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63

N
um

be
r

of
Sp

ec
ie

s

Number of Characters

clasp
MX-Basic

♦

♦

♦

♦

♦

♦

♦

♦

♦

♦

♦

♦

♦
MX-ASP

�

�

�

�

�

�

�

�

�

�

�

�

�
MX-SAT

+

+

+

+

+

+

+

+

+

+

+

+

+

Fig. 5. Frontier comparison of three MX axiomatizations and an ASP solution

in dealing with whatever it is that makes up the combinatorially hard aspect of our in-
stances. For measuring progress toward being able to practically solve larger and harder
instances than currently possible, we believe that establishing optimal solutions within
a reasonable time cut-off is as good a measure as any we know of.

Evaluation. MXG does not have a built-in optimization facility, so for each optimiza-
tion instance we solve a sequence of search instances. The first asks for a perfect phy-
logeny (with the same number of mutations as characters). Successive instances allow
one more mutation. We run the solver on the sequence, stopping when a solution is
found – which must be optimal – or when the cumulative run time reaches two hours.
Sequential search is faster than binary search because instances with too few mutations
are typically easier than those with too many. Time for sequential search is dominated,
almost without exception, by the two instances needed to establish optimality: the one
producing an optimum solution and the one with one fewer mutations. Binary search
is often dominated by the instances just beyond optimal, which sequential search never
visits. This pattern of hardness also supports our argument in favour of using optimality
in our measure of performance.

Tests were run on Sun Fire VZ20 Dual Opteron computers with 2.4 GHz AMD
Opteron 250 processors, with 1MB cache and 2GB of RAM per processor, running
Suse Enterprise Linux 2.6.11. The software versions were: MXG 0.17; MXC 0.5; min-
isat v2s; clasp rc3; and paup4b10-opt-linux-a. Executables for clasp and PAUP were
downloaded from the solver web sites, while MXG, MXC, and minisat v2s were com-
piled with gcc version 3.3.4.1

Figure 5 shows the “frontier” for MXG with the axiomatizations of Section 4, and
for the ASP solver clasp using the A+ axiomatization of [13]. We plot a curve for each

1 MXG and MXC are at www.cs.sfu.ca/research/groups/mxp/; minisat at
www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/, clasp at
www.cs.uni-potsdam.de/clasp/ and PAUP at http://paup.csit.fsu.edu/

www.cs.sfu.ca/research/groups/mxp/
www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/
www.cs.uni-potsdam.de/clasp/
http://paup.csit.fsu.edu/

Faster Phylogenetic Inference with MXG 431

solving method. A point at (x, y) denotes that x is the largest number of characters for
which the method succeeded in solving instances with y species within the two-hour
cut-off. Instances left of or below a curve were solved; those above and to the right
were not. The basic MX axiomatization is best, except with very few species. MXG
performs relatively poorly with few species because it must construct the whole vector
for each vertex, and thus with many characters has quite a bit of work to do, while the
ASP axiomatizations do not. We ran two ASP solvers, cmodels [14] and clasp [9], on the
A+ axiomatization. Since the performance was similar, with clasp being slightly better,
we show only the clasp curve. The no-cardinality axiomatization and minisat performed
essentially the same as our basic MX axioms, except for being slightly weaker with few
species. Our translation of the ASP axioms to MX performed poorly.

We conclude that our basic MX axiomatization, which is already substantially better
than the best solution in [13], is a good starting point for further work.

6 Enhancing Performance

In this section, we report on two ways we refined our basic axiomatization that dramat-
ically improved performance. Adding redundant axioms is a standard method in SAT
and CSP encodings, and [13] reported significant speedups with this method. It is not
well understood why particular redundant axioms help (or hurt) performance. Natu-
ral explanations are that they increase the amount of unit propagation performed for
some partial assignments, or that they help a clause-learning solver learn more useful
clauses. Symmetry-breaking axioms eliminate some - but not all - solutions among a
set of symmetric solutions. They often improve performance, even when only one so-
lution is needed, presumably because they help the solver effectively eliminate many
symmetric “near-solutions”.

Axioms 13 of Figure 6 states that no extra vertex is a leaf. It is neither symmetry-
breaking nor redundant, but has a similar flavour in that it removes only solutions that
are not very interesting, and improves performance.

Computing Vertex Depth. In a binary CCS tree, each vector labeling a vertex at depth
k has exactly k 1’s. Thus, if K is the maximum number of 1’s in any species vector,
the tree has height at most K . We can add axioms requiring labels of vertices to respect
this property. These are axioms seven through ten and thirteen of Figure 6, which state:

– Each vertex must be assigned a unique depth (Axiom 8), which must be one greater
than that of its parent (Axiom 9).

– The depth of each vertex is the number of 1’s in its label (Axiom 10).
– Only the root has depth 0 (Axiom 11);

These axioms are redundant, but significantly improve performance. They use two
auxiliary relation symbols, SpcDepth and VtxDepth. VtxDepth(v,d) holds if vertex v
is at depth d. SpcDepth(s, c, d) holds if the number of 1’s among the first c characters
for species s is d. Axiom 7 is an inductive definition which plays a special role. The
form of this definition is such that MXG can compute the relation SpcDepth before
grounding Axioms 8, 9 and 10. Thus, it is as if a pre-processor computed this relation

432 D.G. Mitchell, F. Hach, and R. Mohebali

Given: type Char Vertex State Depth;
A(Vertex, Char, State)
NSpecies: Vertex
NEdges: Vertex

Find: Edge(Vertex, Vertex)
Vector(Vertex, Char)

Satisfying:
// Axioms 1-6 are the Basic MX Axioms of Figure 2

VtxDepth(Nodes, Depth)
SpcDepth(Nodes, Chars, Depth)
{ SpcDepth(u,c,d) ← c=MIN ∧ d=MIN ∧ s = MIN ∧ A(u,c,s) (7)

SpcDepth(u,c,d) ← c=MIN ∧ SUCC(MIN, d) ∧ s = MAX ∧ A(u,c,s)
SpcDepth(u,c,d) ← SpcDepth(u,c1, d) ∧ SUCC(c1, c) ∧ A(u,c,s) ∧ s=MIN
SpcDepth(u,c,d) ← SpcDepth(u,c1, d1) ∧ SUCC(c1, c) ∧ SUCC(d1, d)

∧ A(u,c,s) ∧ s=MAX
}
∀ u : CARD(1; d; VtxDepth(u, d)) (8)
∀ u v d1 d2 : ((Edge(u,v) ∧ VtxDepth(u, d1) ∧ VtxDepth(v,d2)) ⊃ SUCC(d1, d2)) (9)
∀ u≤NSpecies d: (VtxDepth(u,d)⇔ SpcDepth(u,MAX,d)) (10)
∀ u>MIN : ¬ VtxDepth(u,MIN) (11)
∀ u>NSpecies v>u d1 d2 : ((VtxDepth(u,d1) ∧ VtxDepth(v,d2)) ⊃ d2 ≥ d1) (12)
∀ u>NSpecies : ∃ v : Edge(u,v) (13)

Fig. 6. MX-Depth (Axioms 1-10) and MX-Depth+ (Axioms 1-13) axiomatizations

and added it to the instance. Since SpcDepth(s, MAX, d) says that species s is at depth
d, the grounder has computed the depth for each species. (For simplicity of axiomatiza-
tion, we also added a new type Depth, which is a set the size of the maximum number
of ones in species vector. We added this to our instances in a simple pre-processing step,
although this could be avoided with a more complex axiomatization.)

Symmetry Breaking. Our final example is a symmetry-breaking axiom. It states that
the depth of “extra vertices” (those which allow extra mutations), respects their numer-
ical order (Axiom 12).

Instance Pre-processing. We found that instances (including the largest) often satisfied
easily-checked properties that could be used to simplify them with a pre-processing
step, which greatly improved performance. We recursively applied the following rules:
1. Delete any all-zero column: The character does not mutate, so we need no node for
it. 2. Delete any column having exactly one 1: If c is 1 only in s, we construct a tree
without c, then add c = 0 to every vector on the tree, adding one new edge and vertex
where s appears. 3. Delete any column having exactly one 0: The 0 occurs in the root
zero vector. We construct a solution without c, and insert one new node beneath the
root in the solution, setting c = 1 everywhere except the root. 4. Delete any duplicate
species. 5. Delete s2 for any pair s1, s2 of species such that: (a) s1 ⊂ s2, i.e., every
character that is 1 for s1 is also 1 for s2; (b) |s2 − s1| = k, i.e., s2 has k more 1’s than
s1; (c) ∀s3 �∈ {s1, s2}, |s2\s3| ≥ k. Solve the instance without s2, then add it to a path
of length k below s1.

Performance with Refined Axioms and Pre-processing. Figure 7 is a frontier plot
showing performance improvements obtained with enhanced axiomatizations and

Faster Phylogenetic Inference with MXG 433

0

3

6

9

12

15

18

21

24

27

30

33

36

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63

N
um

be
r

of
Sp

ec
ie

s

Number of Characters

clasp
MX-Basic

♦

♦

♦

♦

♦

♦

♦

♦

♦

♦

♦

♦

♦
MX-Depth

+

+

+

+

+

+

+

+

+

+

+

+

+

MX-Depth+
�

�

�

�

�

�

�

�

�

�

�

�

�

MX-Depth+(PP) �

�

�

�

�

�

�

�

�

�

�

�

�

Fig. 7. Frontier plot showing performance improvement with refined axiomatizations (MX-Depth
and MX-Depth+) and instance pre-processing (MX-Depth+(PP))

pre-processing. For comparison, we included the curves for clasp and MX-Basic, and
in addition three new curves:

– MX-Depth: MX-Basic axioms extended with Axioms 7–10 of Figure 6;
– MX-Depth+: MX-Depth further extended with Axioms 11–13 of Figure 6;
– MX-Depth+(PP): Pre-processing of instances, and solving with the MX-Depth+

axiomatization (all axioms of Figure 6).

Remark 2. The “dip” in performance of MX-Depth+(PP) at 27 species is the conse-
quence of pre-processing being less effective on these.

How Much Better: Frontier vs. Run-time. The frontier plots show that we have pro-
gressed in terms of our chosen measure, but do not show the (dramatic) corresponding
changes in run-time. Figure 8 illustrates, showing run-times as a function of number
of characters, with number of species fixed at 24. Analogous curves for fewer or more
species are similar, except for very small numbers of species. The y (time) axis is log
scale, so these run-times appear to be exponential in the number of characters. Notice
that the curves have very different slopes, suggesting that the run-time curves for MX-
Depth+ and MX-Depth+(PP) have much smaller exponents than the other solutions.
We cannot really extrapolate the curves for the ASP or Basic MX solutions to compare
run-times for large instances with the best methods, but unless the curves here are com-
pletely mis-leading the difference is certainly many orders of magnitude. Solving the
hardest instances with those methods is completely infeasible in practice.

7 MXG vs. PAUP

The two most widely used phylogeny software packages, PHYLIP [8] and PAUP [19],
both use two methods to carry out phylogenetic inference (for CCS and other models).

434 D.G. Mitchell, F. Hach, and R. Mohebali

1000

100

10

1

0.1
0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51

T
im

e
(s

ec
on

ds
)

Number of Characters

MX-Basic

�
� �

�

�
�

MX-SAT
MX-ASP

�

�

�

�

�

clasp

�

� �

�
MX-Depth

♦

♦ ♦

♦

♦

♦

♦
MX-Depth(PP) + ++

MX-Depth+

×

× ×

×
×

×

×
×

×
×

×

×

×
MX-Depth+(PP)

� �

�

�

� �

�

�

�

Fig. 8. Run-times for instances with 24 species, as a function of number of characters

0

3

6

9

12

15

18

21

24

27

30

33

36

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63

N
um

be
r

of
Sp

ec
ie

s

Number of Characters

Basic

♦

♦

♦

♦

♦

♦

♦

♦

♦

♦

♦

♦

♦
MX-Depth+(PP)

�

�

�

�

�

�

�

�

�

�

�

�

�
PUAP-BnB +

+

+

+

+

+

+

+

+

+

+

+

+

PUAP-BnB(PP) �

�

�

�

�

�

�

�

�

�

�

�

�

Fig. 9. Frontier for MX-Basic, PAUP-BnB, PAUP-BnB(PP), and MX-Depth+(PP)

One method is based on heuristic search, which cannot guarantee optimality, and one is
based on branch-and-bound, which can. The branch-and-bound program for CCS in the
PHYLIP package is called PENNY (after the second author of [11], where branch and
bound was proposed for this task). In [13], the performance of PENNY was compared
with the ASP-based solutions developed there. PENNY was unable to prove optimality
of solutions for any instances with more than 18 species.

We compare the performance of our method against the branch and bound implemen-
tation in PAUP. (We might expect PAUP (which is not free) to be faster than PHYLIP
(which is free), because it has had more development effort, and this seems to be the
case.) Figure 9 shows the frontier plots for the PAUP branch and bound implementation
(PAUP-BnB), along with that for MX-Depth+(PP), and MX-Basic for comparison. Our
MX-based solution is similar overall to PAUP, but comes closer to solving our largest –

Faster Phylogenetic Inference with MXG 435

and presumably hardest – instances. For completeness, we also ran PAUP branch-and-
bound on the instances produced by our pre-processing algorithm. Interestingly, PAUP
performance improved, and with our pre-processing it solved all instances.

8 Discussion

We have developed MX-based solutions to a phylogenetic inference problem. A simple
and natural axiomatization gave much better performance than the only other declara-
tive solution to this problem we know of, and more refined efforts produced a solution
scheme with dramatically better performance. Ultimately, the kinds of methods and
tools we use must be validated by demonstrating good performance on a wide range of
problems and instances. Here we have tackled one interesting and non-trivial problem,
and we believe what we have learned here will usefully inform more general solutions
to a variety of phylogeny problems. Our instances here are derived from a single source
of data, but we have taken pains to ensure that our instances and performance mea-
sures provide a good measure of performance progress. The improvements in running
time, which are of many orders of magnitude, strongly suggest that our methods will be
significant improvements by any other reasonable measure of performance.

MX vs. ASP. We remind the reader that, while our Model Expansion based solutions,
using the grounder MXG with ground solver MXC, perform dramatically better than the
ASP solution we evaluate, our results here do not justify a claim of superiority of MX
methodology or solvers over those of ASP. The best ASP solvers are quite powerful,
and alternate approaches to ASP axioms, combined with pre-processing of the sort we
do, might yield effective ASP-based solutions. (A comparison of MXG with several
ASP solvers appears in [16].)

PAUP Heuristics. An easy criticism of the work presented here is that the heuristic
methods implemented in PAUP and PHYLIP often perform very well, and we have
not compared our methods with those. In fact, the heuristic search method of PAUP
finds optimum solutions for all of our instances well within our time limit. PAUP, of
course, does not know if they are optimal or not, and neither would a PAUP user. But,
if optimality per se is not of much value to a biologist, why would they care?

One reply is that declarative solutions are potentially very useful. For example, user’s
don’t worry about optimality because they are interested in criteria that are not captured
by the cost function. With standard tools they are limited in how they can address these
other preferences. Good declarative tools would allow them to add specific constraints,
say that certain species should not be in the same sub-tree, and find solutions satisfy-
ing these (see also [7]). Another reason good declarative techniques could pay off is
that problems of interest are often variants of a few core problems, and in some cases
these are much more complex than the simple problem we studied here. An example
is the Galled Tree Network Haplotyping Problem [10]. An instance is genotype data,
which consists of vectors of conflated pairs of haplotypes. The task is to infer a set of
haplotype vectors from the genotype data for which a parsimonious galled tree network
exists. A galled tree network is a significantly more complex phylogeny than our binary

436 D.G. Mitchell, F. Hach, and R. Mohebali

CCS trees. The task of inferring small sets of haplotypes from genotype data, without
worrying about phylogenies, is itself NP-hard (although SAT solvers do well at this
[15], so MXG should also). Implementing a special-purpose program for this problem
would be some effort, and finding simple heuristics which work reliably on large in-
stances of such a problems seems unlikely. However, if we had effective declarative
solutions for haplotype inference and construction of galled-tree networks, it would be
easy to combine them and have a good start toward a solution for the larger problem.

Declarative Pre-Processing. A point that may be argued against the progress we claim
is that pre-processing of the instances before passing to the declarative solver was im-
portant, but this step is not declarative. Indeed, pre-processing is important in tackling
many problems, seemingly a stumbling block for declarative methods. We point out
the technique we used in our MX-Depth axiomatization (Figure 6), where we wrote
an inductive definition to compute a set, and then used certain elements of that set in
other axioms. MXG computes the defined set directly, while grounding, so the ground
solver does not see this part of the axiomatization. Essentially any poly-time prepro-
cessing can be carried out using this technique (not necessarily by the current ver-
sion of MXG). With suitably refined languages, some users could accomplish such
pre-processing more conveniently with declarative descriptions than with procedural
code.

Conclusion. We have not, yet, changed the way phylogenetic inference will be done in
practice. But we have made progress that justifies our optimism regarding declarative
approaches in general, and our MX-based tools in particular.

Acknowledgments. We thank Jonathan Kavanagh for his instances, ASP programs,
and bibtex file, and Eugenia Ternovska, Jan Manuch, and Sharon (Xiao-hong) Zhong
for helpful discussions on axiomatizations and instances.

References

1. Adn, G.W., You, J.-H., Lin, G.: Quartet-based phylogeny reconstruction with answer set
programming. IEEE/ACM Transactions on Computational Biology and Bioinformatics 4(1),
139–152 (2007)

2. Bregman, D.R., Mitchell, D.G.: The sat solver mxc, version 0.5, Solver Description for the
2007 SAT Solver Competition (2007)

3. Brooks, D.R., Erdem, E., Minett, J.W., Rings, D.: Character-based cladistics and answer set
programming. In: Hermenegildo, M.V., Cabeza, D. (eds.) PADL 2005. LNCS, vol. 3350, pp.
37–51. Springer, Heidelberg (2005)

4. Day, W.H.E., Johnson, D.S., Sankoff, D.: The computational complexity of inferring rooted
phylogenies by parsimony. Mathematical Biosciences 81, 33–42 (1986)

5. Edwards-Ingram, L.C., Gent, M.E., Hoyle, D.C, Hayes, A., Stateva, L.I., Oliver, S.G.: Com-
parative genomic hybridization provides new insights into the molecular taxonomy of the
saccharomyces sensu stricto complex. Genome Research 14, 1043–1051 (2004)

6. Een, N., Sorensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.)
SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

Faster Phylogenetic Inference with MXG 437

7. Erdem, E., Lifschitz, V., Nakhleh, L., Ringe, D.: Reconstructing the evolutionary history
of indo-european languages using answer set programming. In: Proc. Practical Aspects of
Declarative Languages: 5th Int’l. Symposium, pp. 160–176 (January 2003)

8. Felsenstein, J.: Phylip home page phylip (1980),
http://evolution.genetics.washington.edu/

9. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: clasp: A conflict-driven answer set
solver. In: Baral, C., Brewska, G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI), vol. 4483,
pp. 260–265. Springer, Heidelberg (2007)

10. Gupta, A., Manuch, J., Zhao, X., Stacho, L.: Characterization of the existence of galled-tree
networks. J. Bioinformatics and Computational Biology 4(6), 1309–1328 (2006)

11. Hendy, M.D., Penny, D.: Branch and bound algorithms to determine minimal evolutionary
trees. Mathematical Biosciences 59(2), 277–290 (1982)

12. Hoffmann, M., Tripathi, N., Henz, S.R., Lindholm, A.K., Weigel, D., Breden, F., Dreyer, C.:
Opsin gene duplication and diversification in the guppy, a model for sexual selection. Proc.
of the Royal Society of London Series B 274, 33–42 (2007)

13. Kavanagh, J., Mitchell, D.G., Ternovska, E., Manuch, J., Zhao, X., Gupta, A.: Construct-
ing Camin-Sokal phylogenies via answer set programming. In: Hermann, M., Voronkov, A.
(eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp. 452–466. Springer, Heidelberg (2006)

14. Lierler, Y., Maratea, M.: Cmodels-2: SAT-based answer set solver enhanced to non-tight
programs. In: Lifschitz, V., Niemelä, I. (eds.) LNMR 2004. LNCS (LNAI), vol. 2923, pp.
346–350. Springer, Heidelberg (2004)

15. Lynce, I., Silva, J.P.M.: Efficient haplotype inference with boolean satisfiability. In: Proc.
AAAI 2006 (2006)

16. Mitchell, D., Ternovska, E., Hach, F., Mohebali, R.: A framework for modelling and solving
search problems. Technical Report TR 2006-24, School of Computing Science, Simon Fraser
University (December 2006)

17. Mitchell, D.G., Levesque, H.J.: Some pitfalls for experimenters with random SAT. Artifi-
cial Intelligence 81(1,2) (March 1996) Special Issue – Frontiers in Problem Solving: Phase
Transitions and Complexity.

18. Nozaki, H., Ohta, N., Matsuzaki, M., Misumi, O., Kuroiwa, T.: Phylogeny of plastids based
on cladistic analysis of gene loss inferred from complete plastid genome sequences. J. Molec-
ular Evolution 57, 377–382 (2003)

19. Swofford, D.L.: Paup* 4.0, Phylogenetic Analysis Using Parsimony (*and Other Methods)
(2001)

http://evolution.genetics.washington.edu/

Enriched μ–Calculus Pushdown Module

Checking�

Alessandro Ferrante1, Aniello Murano2, and Mimmo Parente1

1 Università di Salerno, Via Ponte don Melillo, 84084 - Fisciano (SA), Italy
2 Università di Napoli “Federico II”, Via Cintia, 80126 - Napoli, Italy

Abstract. The model checking problem for open systems (called mod-
ule checking) has been intensively studied in the literature, both for
finite–state and infinite–state systems. In this paper, we focus on push-
down module checking with respect to μ–calculus enriched with graded
and nominals (hybrid graded μ-calulus). We show that this problem is
decidable and solvable in double–exponential time in the size of the for-
mula and in exponential time in the size of the system. This result is
obtained by exploiting a classical automata–theoretic approach via push-
down nondeterministic parity tree automata. In particular, we reduce in
exponential time our problem to the emptiness problem for these au-
tomata, which is known to be decidable in Exptime. As a key step of
our algorithm, we show an exponential improvement of the construction
of a nondeterministic parity tree automaton accepting all models of a for-
mula of the considered logic. This result, not only allows our algorithm
to match the known lower bound, but it is also interesting by itself, since
it allows investigating decision problems related to enriched μ-calculus
formulas in a greatly simplified manner. We conclude the paper with
a discussion on the model checking w.r.t. μ-calculus formulas enriched
with backward modalities as well.

1 Introduction

In system design, one of the most challenging problems is to check for system cor-
rectness. Model-checking is a formal method that allows us to automatically ver-
ify, in a suitable way, the ongoing behaviors of reactive systems ([CE81, QS81]).
In this verification technique (for a survey, see [CGP99]), the behavior of a sys-
tem, formally described by a mathematical model, is checked against a behavioral
constraint, possibly specified by a formula in an appropriate temporal logic.

In system modeling, we distinguish between closed and open systems [HP85].
While the behavior of a closed system is completely determined by the state of
the system, the behavior of an open system depends on the ongoing interaction
with its environment [Hoa85]. Model checking algorithms used for the verifica-
tion of closed systems are not appropriate for open systems. In the latter case, we

� Work partially supported by MIUR FIRB Project no. RBAU1P5SS and the grant
Metodi per la Verifica di Sistemi Software e Real-Time from University of Salerno.

N. Dershowitz and A. Voronkov (Eds.): LPAR 2007, LNAI 4790, pp. 438–453, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Enriched μ–Calculus Pushdown Module Checking 439

should check the system with respect to arbitrary environments and take into ac-
count uncertainty regarding the environment. In [KVW01], model checking has
been extended from closed finite–state systems to open finite–state systems. In
such a framework, the open finite–state system is described by a labeled state–
transition graph called module whose set of states is partitioned into system
states (where the system makes a transition) and environment states (where the
environment makes a transition). Given a module M, describing the system to
be verified, and a temporal logic formula ϕ, specifying the desired behavior of
the system, the problem of model checking a module, called module checking,
asks whether for all possible environments, M satisfies ϕ. Module checking thus
involves not only checking that the full computation tree 〈TM, VM〉 obtained by
unwinding M (which corresponds to the interaction of M with a maximal en-
vironment) satisfies ϕ (which corresponds to model checking M with respect to
ϕ), but also that all trees obtained from 〈TM, VM〉, by pruning subtrees of envi-
ronment nodes (these trees correspond to all possible choices of the environment
and are collected in exec(M)) satisfy ϕ. To see an example, consider a two-drink
dispenser machine that serves, upon request, tea or coffee. The machine is an
open system and an environment for the system is an infinite line of thirsty peo-
ple. Since each person in the line can prefer both tea and coffee, or only tea, or
only coffee, each person suggests a different disabling of the external nondeter-
ministic choices. Accordingly, there are many different possible environments to
consider. In [KVW01], it has been shown that while for linear–time logics model
and module checking coincide, module checking for specifications given in CTL
and CTL∗ is exponentially harder than model checking. Indeed, CTL and CTL∗

module checking is Exptime–complete and 2Exptime–complete in the size of
the formula, respectively, and both Ptime–complete in the size of the system.

Recently, finite-state module checking has been also investigated with respect
to formulas of the hybrid graded μ–calculus [FM07], a powerful decidable frag-
ment of the fully enriched μ-calculus [BP04, BLMV06]. The μ–calculus is a
propositional modal logic augmented with least and greatest fixpoint operators
[Koz83]. Fully enriched μ–calculus is the extension of the μ–calculus with in-
verse programs, graded modalities, and nominals. Intuitively, inverse programs
allow us to travel backwards along accessibility relations [Var98], nominals are
propositional variables interpreted as singleton sets [SV01], and graded modal-
ities enable statements about the number of successors of a state [KSV02]. By
dropping at least one of the additional constructs, we get a fragment of the fully
enriched μ-calculus. In particular, by inhibiting backward modalities we get the
fragment we call hybrid graded μ-calculus. In [BP04], it has been shown that
satisfiability is undecidable in the fully enriched μ–calculus. On the other hand,
it has been shown in [SV01, BLMV06] that satisfiability for any of its frag-
ments is decidable and Exptime-complete. The upper bound result is based on
an automata–theoretic approach via two-way graded alternating parity tree au-
tomata (2GAPT). Intuitively, these automata generalize alternating automata
on infinite trees as inverse programs and graded modalities enrich the standard
μ–calculus: 2GAPT can move up to a node’s predecessor and move down to

440 A. Ferrante, A. Murano, and M. Parente

at least n or all but n successors. Using these automata, along with the fact
that each fragment of the fully enriched μ-calculus enjoys the quasi-forest model
property1, it has been shown in [SV01, BLMV06] that given a formula ϕ of a
fragment logic, it is possible to construct a 2GAPT accepting all trees encodings
quasi-forests2 modeling ϕ. Then, the exponential-upper bound follows from the
fact that 2GAPT can be exponentially translated in nondeterministic graded
parity tree automata (GNPT), and the emptiness problem for GNPT is solvable
in Ptime [KPV02].

Coming back to the finite-state module checking problem for the hybrid
graded μ–calculus, this problem has been shown in [FM07] to be Exptime–
complete. To see an example of its application, consider the previous two-drink
dispenser machine such that whenever a customer can choose a drink he can
also call a customer service, among k > 1 different services. Suppose also that
by taking a customer service choice the drink-dispenser machine stops dispens-
ing drinks unless the customer service resets the machine. Suppose now we want
to check the property that whenever the customer comes at a choice he can al-
ways choose among k different services. This property can be described using a
formula of the hybrid graded μ–calculus, whose truth depends on the possibility
of jumping to nodes, each labeling the start interaction with a particular service
(using nominals), and having exactly k identical of such nodes (using graded
modalities). Clearly, such an open system does not satisfy this formula. Indeed,
it is not satisfied by the particular behavior that chooses always the same service.

In [BMP05], the module checking technique has been also extended to infinite-
state systems by considering open pushdown systems (OPD , for short). These are
pushdown systems augmented with finite information that allows us to partition
the set of configurations (in accordance with the control state and the symbol on
the top of the stack) into system configurations and environment configurations.
To see an example of an open pushdown system, consider an extension of the
above mentioned two-drink dispenser machine, with the additional constraint
that a coffee can be served only if the number of coffees served up to that time
is smaller than that of teas served. Such a machine can be clearly modeled as an
open pushdown system (the stack is used to guarantee the inequality between
served coffees and teas). In [BMP05], it has been shown that pushdown module
checking is 2Exptime–complete for CTL and 3Exptime–complete for CTL∗.

In this paper, we extend the pushdown module checking problem to the hy-
brid graded μ-calculus and, by exploiting an automata-theoretic approach via
pushdown tree automata, we show that this problem is decidable and solvable
in 2Exptime. In particular, we reduce the addressed problem to the emptiness
problem for pushdown tree automata. The algorithm we propose works as fol-
lows. Given an OPD S, a module M induced by the configurations of S, and
an hybrid graded μ-calculus formula ϕ, we first construct in polynomial time
a pushdown Büchi tree automaton (PD–NBT) AM, accepting exec(M). The

1 A quasi forest is a forest where nodes can have roots as successors.
2 Encoding is done by using a new root node that connects all roots of the quasi-forest

and new atomic propositions which are used to encode programs and jumps to roots.

Enriched μ–Calculus Pushdown Module Checking 441

construction of AM we propose here extends that used in [BMP05] by also tak-
ing into account that M must be unwound in a quasi-forest, rather than a tree,
with both nodes and edges labeled. Thus, the set exec(M) is a set of quasi-
forests, and the automaton AM we construct will accept all trees encodings of
all quasi-forests of exec(M). From the formula side, accordingly to [BLMV06],
we can construct in a polynomial time a GAPT A¬ϕ accepting all models of
¬ϕ, with the intent of checking that no models of ¬ϕ are in exec(M). Thus, we
check that M models ϕ for every possible choice of the environment by checking
whether L(AM) ∩ L(A¬ϕ) is empty. To the best of our knowledge, the latter
problem can only be solved in triple-exponential time. For example, by using a
double-exponential translation of GAPT into nondeterministic parity tree au-
tomata (NPT) [BLMV06, KSV02] and the fact that the emptiness problem for
the intersection of a PD–NBT and an NPT is solvable in Exptime [KPV02].
Here, by showing a non-trivial exponential reduction of 2GAPT into NPT , we
show a 2Exptime upper bound for the addressed problem. Since the pushdown
module checking problem for CTL is 2Exptime-hard, we get that the addressed
problem is then 2Exptime-complete. The exponential improvement on translat-
ing 2GAPT into NPT does not only allow us to match the known lower bound,
but it also turns out to be useful in several automata-theoretic approaches to
system verification. In particular, it also allows us to get results concerning de-
cision problems for the hybrid μ–calculus (such as the satisfiability and module
checking problems [BLMV06, FM07]) in a simplified way.

The rest of the paper is organized as follows. In the next section, we give pre-
liminaries on labeled forests, hybrid graded μ-calculus, open Kripke structures,
and open pushdown systems. In section 3, we recall 2GAPT and NPT . In sec-
tion 4, we show an exponential translation of 2GAPT into NPT . In section 5, we
give the module checking algorithm and conclude in section 6 with a discussion
on model checking w.r.t. fragments of fully enriched μ-calculus also including
the backward modality.

2 Preliminaries

Labeled Forests. For a finite set X , we denote the size of X by |X |, the set
of words over X by X∗, the empty word by ε, and with X+ we denote X∗ \ {ε}.
Given a word w in X∗ and a symbol a of X , we use w · a to denote the word
wa. Let IN be the set of positive integers. For n ∈ IN, let N denote the set
{1, 2, . . . , n}. A forest is a set F ⊆ N

+ such that if x · c ∈ F , where x ∈ N
+

and c ∈ N, then also x ∈ F . The elements of F are called nodes, and words
consisting of a single natural number are roots of F . For each root r ∈ F , the
set T = {r · x | x ∈ N

∗ and r · x ∈ F} is a tree of F (the tree rooted at r). For
x ∈ F , the nodes x · c ∈ F where c ∈ N are the successors of x, denoted sc(x),
and x is their predecessor. The number of successors of a node x is called the
degree of x (deg(x)). The degree h of a forest F is the maximum of the degrees
of all nodes in F and the number of roots. A forest with degree h is an h-ary
forest. A full h-ary forest is a forest having h roots and all nodes with degree h.

442 A. Ferrante, A. Murano, and M. Parente

Let F ⊆ N
+ be a forest, x a node in F , and n ∈ N. As a convention, we take

x · ε = ε ·x = x, (x · c) ·−1 = x, and n ·−1 as undefined. We call x a leaf if it has
no successors. A path π in F is a word π = x1x2 . . . of F such that x1 is a root of
F and for every xi ∈ π, either xi is a leaf (i.e., π ends in xi) or xi is a predecessor
of xi+1. Given two alphabets Σ1 and Σ2, a (Σ1, Σ2)–labeled forest is a triple
〈F, V, E〉, where F is a forest, V : F → Σ1 maps each node of F to a letter in
Σ1, and E : F × F → Σ2 is a partial function that maps each pair (x, y), with
y ∈ sc(x), to a letter in Σ2. As a particular case, we consider a forest without
labels on edges as a Σ1–labeled forest 〈F, V 〉, and a tree as a forest containing
exactly one tree. A quasi–forest is a forest where each node may also have roots
as successors. For a node x of a quasi–forest, we set children(x) as sc(x) \ N.
All the other definitions regarding forests easily extend to quasi–forests. Notice
that in a quasi–forest, since each node can have a root as successor, a root can
also have several predecessors, while every other node has just one. Clearly, a
quasi–forest can always be transformed into a forest by removing root successors.

Hybrid Graded μ–Calculus. Let AP , Var , Prog , and Nom be finite and
pairwise disjoint sets of atomic propositions, propositional variables, (atomic)
programs, and nominals. The set of hybrid graded μ–calculus formulas is the
smallest set such that (i) true and false are formulas; (ii) p and ¬p, for p ∈
AP∪Nom , are formulas; (iii) x ∈ Var is a formula; (iv) if ϕ1 and ϕ2 are formulas,
α ∈ Prog, n is a non negative integer, and y ∈ V ar, then ϕ1 ∨ ϕ2, ϕ1 ∧ ϕ2,
〈n, α〉ϕ1, [n, α]ϕ1, μy.ϕ1(y), and νy.ϕ1(y) are also formulas. Observe that we
use positive normal form, i.e., negation is applied only to atomic propositions.

We call μ and ν fixpoint operators. A propositional variable y occurs free in a
formula if it is not in the scope of a fixpoint operator. A sentence is a formula
that contains no free variables. We refer often to the graded modalities 〈n, α〉ϕ1

and [n, α]ϕ1 as respectively atleast formulas and allbut formulas and assume
that the integers in these operators are given in binary coding: the contribution
of n to the length of the formulas 〈n, α〉ϕ and [n, α]ϕ is �log n� rather than n.

The semantics of the hybrid graded μ–calculus is defined with respect to a
Kripke structure, i.e., a tuple K = 〈W, W0, R, L〉 where W is a non–empty set
of states, W0 ⊆ W is the set of initial states, R : Prog → 2W×W is a function
that assigns to each atomic program a transition relation over W , and L : AP ∪
Nom → 2W is a labeling function that assigns to each atomic proposition and
nominal a set of states such that the sets assigned to nominals are singletons
and subsets of W0. If (w, w′) ∈ R(α), we say that w′ is an α–successor of w.
Informally, an atleast formula 〈n, α〉ϕ holds at a state w of K if ϕ holds in at least
n+1 α–successors of w. Dually, the allbut formula [n, α]ϕ holds in a state w of K
if ϕ holds in all but at most n α–successors of w. Note that ¬〈n, α〉ϕ is equivalent
to [n, α]¬ϕ, and the modalities 〈α〉ϕ and [α]ϕ of the standard μ–calculus can be
expressed as 〈0, α〉ϕ and [0, α]ϕ, respectively.

To formalize semantics, we introduce valuations. Given a Kripke structure
K = 〈W, W0, R, L〉 and a set {y1, . . . , yn} of variables in Var , a valuation V :
{y1, . . . , yn} → 2W is an assignment of subsets of W to the variables y1, . . . , yn.
For a valuation V , a variable y, and a set W ′ ⊆ W , we denote by V [y ← W ′] the

Enriched μ–Calculus Pushdown Module Checking 443

valuation obtained from V by assigning W ′ to y. A formula ϕ with free variables
among y1, . . . , yn is interpreted over K as a mapping ϕK from valuations to
2W , i.e., ϕK(V) denotes the set of points that satisfy ϕ under valuation V . The
mapping ϕK is defined inductively as follows:

– trueK(V) = W and falseK(V) = ∅;
– for p ∈ AP ∪ Nom, we have pK(V) = L(p) and (¬p)K(V) = W \ L(p);
– for y ∈ Var , we have yK(V) = V(y);
– (ϕ1 ∧ ϕ2)K(V) = ϕK1 (V) ∩ ϕK2 (V) and (ϕ1 ∨ ϕ2)K(V) = ϕK1 (V) ∪ ϕK2 (V);
– (〈n, α〉ϕ)K(V) = {w : |{w′ ∈ W : (w, w′) ∈ R(α) and w′ ∈ ϕK(V)}| ≥ n+1};
– ([n, α]ϕ)K(V) = {w : |{w′ ∈ W : (w, w′) ∈ R(α) and w′ �∈ ϕK(V)}| ≤ n};
– (μy.ϕ(y))k(V) =

⋂{W ′ ⊆ W : ϕK([y ← W ′]) ⊆ W ′};
– (νy.ϕ(y))k(V) =

⋃{W ′ ⊆ W : W ′ ⊆ ϕK([y ← W ′])}.

For a state w of a Kripke structure K, we say that K satisfies ϕ at w if w ∈ ϕK.
In what follows, a formula ϕ counts up to b if the maximal integer in atleast and
allbut formulas used in ϕ is b − 1.

Open Kripke Structures. In this paper we consider open systems, i.e., sys-
tems that interact with their environment and whose behavior depends on this
interaction. The (global) behavior of such a system is described by a module
M = 〈Ws, We, W0, R, L〉, which is a Kripke structure where the set of states
W = Ws ∪ We is partitioned in system states Ws and environment states We.

Given a module M, we assume that its states are ordered and the number of
successors of each state w is finite. For each w ∈ W , we denote by succ(w) the
ordered tuple (possibly empty) of w’s α-successors, for all α ∈ Prog. When M is
in a system state ws, then all states in succ(ws) are possible next states. On the
other hand, when M is in an environment state we, the possible next states (that
are in succ(we)) depend on the current environment. Since the behavior of the
environment is not predictable, we have to consider all the possible sub–tuples
of succ(we). The only constraint, since we consider environments that cannot
block the system, is that not all the transitions from we are disabled.

The set of all (maximal) computations of M starting from W0 is described by a
(W, Prog)–labeled quasi–forest 〈FM, VM, EM〉, called computation quasi–forest,
which is obtained by unwinding M in the usual way. The problem of deciding, for
a given branching–time formula ϕ over AP ∪Nom, whether 〈FM, L ◦ VM, EM〉
satisfies ϕ at a root node, denoted M |= ϕ, is the usual model–checking prob-
lem [CE81, QS81]. On the other hand, for an open system M, the quasi–forest
〈FM, VM, EM〉 corresponds to a very specific environment, i.e., a maximal envi-
ronment that never restricts the set of its next states. Therefore, when we exam-
ine a branching–time formula ϕ w.r.t. M, the formula ϕ should hold not only in
〈FM, VM, EM〉, but in all quasi-forests obtained by pruning from 〈FM, VM, EM〉
subtrees rooted at children of environment nodes, as well as inhibiting some of
their jumps to roots, if there are any. The set of these quasi–forests, which
collects all possible behaviors of the environment, is denoted by exec(M) and
is formally defined as follows. A quasi–forest 〈F, V, E〉 ∈ exec(M) iff for each
wi ∈ W0, we have V (i) = wi, and for x ∈ F , with V (x) = w, succ(w) =

444 A. Ferrante, A. Murano, and M. Parente

〈w1, . . . , wn, wn+1, . . . , wn+m〉, and succ(w)∩W0 = 〈wn+1, . . . , wn+m〉, there ex-
ists S = 〈w′1, . . . , w′p, w′p+1, . . . , w

′
p+q〉 sub-tuple of succ(w) such that p + q ≥ 1,

S = succ(w) if w ∈ Ws and the following hold:

– children(x) = {x · 1, . . . , x · p} and, for 1 ≤ j ≤ p, we have V (x · j) = w′j and
E(x, x · j) = α if (w, w′j) ∈ R(α);

– for 1 ≤ j ≤ q, let xj ∈ N such that V (xj) = w′p+j , then E(x, xj) = α if
(w, w′p+j) ∈ R(α).

In the following, we consider quasi–forests in exec(M) as labeled with (2AP∪Nom,
P rog), i.e., the label of a node x is L(V (x)). For a module M and a for-
mula ϕ of the hybrid graded μ–calculus, we say that M reactively satisfies
ϕ, denoted M |=r ϕ, if all quasi-forests in exec(M) satisfy ϕ. The problem
of deciding whether M |=r ϕ is called hybrid graded μ–calculus module
checking.

Open Pushdown Systems (OPD). An OPD over AP ∪ Nom ∪ Prog is a
tuple S = 〈Q, Γ, 	, C0, Δ, ρ1, ρ2, Env〉, where Q is a finite set of (control) states,
Γ is a finite stack alphabet, 	 �∈ Γ is the stack bottom symbol. We set Γ� = Γ ∪{	},
Conf = Q × (Γ ∗ ·) to be the set of (pushdown) configurations, and for each
configuration (q, A · γ), we set top((q, A · γ)) = (q, A) to be a top configuration.
The function Δ : Prog → 2(Q×Γ�)×(Q×Γ∗

�) is a finite set of transition rules
such that 	 is always present at the bottom of the stack and nowhere else (thus
whenever 	 is read, it is pushed back). Note that we make this assumption also
about the various pushdown automata we use later. The set C0 ⊆ Conf is
a finite set of initial configurations, ρ1 : AP → 2Q×Γ� and ρ2 : Nom → C0

are labeling functions associating respectively to each atomic proposition p a
set of top configurations in which p holds and to each nominal exactly one
initial configuration. Finally, Env ⊆ Q × Γ� specifies the set of environment
configurations. The size |S| of S is |Q| + |Δ| + |Γ |.

The OPD moves in accordance with the transition relation Δ. Thus, ((q, A),
(q′, γ)) ∈ Δ(α) implies that if the OPD is in state q and the top of the stack is A,
it can move along with an α–transition to state q′, and substitute γ for A. Also
note that the possible operations of the system, the labeling functions, and the
designation of configurations as environment configurations, are all dependent
only on the current control state and the top of the stack.

An OPD S induces a module MS = 〈Ws, We, W0, R, L〉, where:

– Ws ∪ We = Conf , i.e. the set of pushdown configurations, and W0 = C0;
– We = {c ∈ Conf | top(c) ∈ Env}.
– ((q, A · γ), (q′, γ′ · γ)) ∈ R(α) iff there is ((q, A), (q′, γ′)) ∈ Δ(α);
– L(p) = {c ∈ Conf | top(c) ∈ ρ1(p)} for p ∈ AP ; L(o) = ρ2(o) for o ∈ Nom.

The hybrid graded (μ-calculus) pushdown module checking problem is to de-
cide, for a given OPD S and an enriched μ–calculus formula ϕ, whether
MS |=r ϕ.

Enriched μ–Calculus Pushdown Module Checking 445

3 Tree Automata

Two-way Graded Alternating Parity Tree Automata (2GAPT). These
automata are an extension of nondeterministic tree automata in such a way
that a 2GAPT can send several copies of itself to the same successor (alter-
nating), send copies of itself to the predecessor (two-way), specify a number n
of successors to which copies of itself are sent without specifying which succes-
sors these exactly are (graded), and accept trees along with a parity condition,
cf. [BLMV06]. To give a formal definition, let us start with some technicalities.

For a given set Y , let B+(Y) be the set of positive Boolean formulas over Y
(i.e., Boolean formulas built from elements in Y using ∧ and ∨), where we also
allow the formulas true and false and ∧ has precedence over ∨. For a set X ⊆ Y
and a formula θ ∈ B+(Y), we say that X satisfies θ iff assigning true to elements
in X and assigning false to elements in Y \ X makes θ true. For b > 0, let
〈[b]〉 = {〈0〉, 〈1〉, . . . , 〈b〉}, [[b]] = {[0], [1], . . . , [b]}, and Db = 〈[b]〉 ∪ [[b]]∪ {−1, ε}.

Formally, a 2GAPT on Σ-labeled trees is a tuple A = 〈Σ, b, Q, δ, q0, F〉,
where Σ is the input alphabet, b > 0 is a counting bound, Q is a finite set of
states, δ : Q × Σ → B+(Db × Q) is a transition function, q0 ∈ Q is an initial
state, and F is a parity acceptance condition (see below). Intuitively, an atom
(〈n〉, q) (resp. ([n], q)) means that A sends copies in state q to n + 1 (resp. all
but n) different successors of the current node, (ε, q) means that A sends a
copy (in state q) to the current node, and (−1, q) means that A sends a copy
to the predecessor of the current node. A run of A on an input Σ-labeled tree
〈T, V 〉 is a tree 〈Tr, r〉 in which each node is labeled by an element of T × Q.
Intuitively, a node in Tr labeled by (x, q) describes a copy of the automaton in
state q that reads the node x of T . Runs start in the initial state and satisfy the
transition relation. Thus, a run 〈Tr, r〉 with root z has to satisfy the following:
(i) r(z) = (1, q0) for the root 1 of T and (ii) for all y ∈ Tr with r(y) = (x, q) and
δ(q, V (x)) = θ, there is a (possibly empty) set S ⊆ Db×Q, such that S satisfies
θ, and for all (d, s) ∈ S, the following hold:

– If d ∈ {−1, ε}, then x · d is defined, and there is j ∈ N such that y · j ∈ Tr
and r(y · j) = (x · d, s);

– If d = 〈n〉 (resp., d = [n]), there are at least t = n + 1 (resp., t = deg(x)−n)
distinct indexes i1, . . . , it such that for all 1 ≤ j ≤ t, there is j′ ∈ N such
that y · j′ ∈ Tr, x · ij ∈ T , and r(y · j′) = (x · ij, s).

Note that if θ = true, then y does not need to have successors. This is the
reason why Tr may have leaves. Also, since there exists no set S as required for
θ = false, we cannot have a run that takes a transition with θ = false.

A run 〈Tr, r〉 is accepting if all its infinite paths satisfy the acceptance con-
dition. In the parity acceptance condition, F is a set {F1, . . . , Fk} such that
F1 ⊆ . . . ⊆ Fk = Q and k is called the index of the automaton. An infinite path
π on Tr satisfies F if there is an even i such that π contains infinitely many
states from Fi and finitely many states from Fi−1. An automaton accepts a tree
iff there exists an accepting run of the automaton on the tree. We denote by
L(A) the set of all Σ-labeled trees that A accepts.

446 A. Ferrante, A. Murano, and M. Parente

A 2GAPT is a GAPT if δ : Q × Σ → B+(Db \ {−1} × Q) and a 2APT if
δ : Q × Σ → B+({−1, ε, 1, . . . , h} × Q). Moreover, it is an NPT if δ : Q × Σ →
B+({1, . . . , h} × Q) and the transition relation δ is in disjunctive normal form,
where in each conjunct each direction appears at most once [KVW00]. We now
recall a result on GAPT and hybrid graded μ-calculus formulas.

Lemma 1 ([BLMV06]). Given an hybrid graded μ-calculus sentence ϕ with �
atleast subsentences and counting up to b, it is possible to construct a GAPT with
O(|ϕ|2) states, index |ϕ|, and counting bound b that accepts exactly each tree that
encodes a quasi-forest modeling ϕ having degree at most max{|Nom|+1, �(b+1)}.

Nondeterministic Pushdown Parity Tree Automata (PD–NPT). A
PD–NPT (without ε-transitions), on Σ-labeled full h-ary trees, is a tuple P =
〈Σ, Γ, 	, Q, q0, γ0, ρ,F〉, where Σ is a finite input alphabet, Γ , 	, Γ�, and Q are
as in OPD , (q0, γ0) is the initial configuration, ρ : Q × Σ × Γ� → 2(Q×Γ∗

�)h

is a
transition function, and F is a parity condition over Q. Intuitively, when P is
in state q, reading an input node x labeled by σ ∈ Σ, and the stack contains a
word A ·γ ∈ Γ ∗ · 	, then P chooses a tuple 〈(q1, γ1), . . . , (qh, γh)〉 ∈ ρ(q, σ, A) and
splits in h copies such that for each 1 ≤ i ≤ h, a copy in configuration (qi, γi · γ)
is sent to the node x·i in the input tree. A run of P on a Σ-labeled full h-ary tree
〈T, V 〉 is a (Q × Γ ∗ ·)-labeled tree 〈T, r〉 such that r(ε) = (q0, γ0) and for each
x ∈ T with r(x) = (q, A·γ), there is 〈(q1, γ1), . . . , (qh, γh)〉 ∈ ρ(q, V (x), A) where,
for all 1 ≤ i ≤ h, we have r(x · i) = (qi, γi · γ). The notion of accepting path is
defined with respect to the control states that appear infinitely often in the path
(thus without taking into account any stack content). Then, the notions given
for 2GAPT regarding accepting runs, accepted trees, and accepted languages,
along with the parity condition, easily extend to PD–NPT . We also consider
Büchi condition F ⊆ Q, which simply is a special parity condition {∅,F , Q}.
In the following, we denote with PD–NBT a PD–NPT with a Büchi condition.
The emptiness problem for an automaton P is to decide whether L(P) = ∅. We
now recall two useful results on the introduced automata.

Proposition 1 ([KPV02]). The emptiness problem for a PD–NPT on Σ-
labeled full h-ary trees, having index m, n states, and transition function ρ,
can be solved in time exponential in n · m · h · |ρ|.
Proposition 2 ([BMP05]). On Σ-labeled full h-ary trees, given a PD–NBT
P = 〈Σ, Γ, Q, q0, γ0, ρ, Q〉 and an NPT A = 〈Σ, Q′, q′0, δ,F ′〉, there is a PD–NPT
P ′ such that L(P ′) = L(P) ∩ L(A). Moreover, P ′ has |Q| · |Q′| states, the same
index as A, and the size of the transition relation is bounded by |ρ| · |δ| · h.

4 From 2GAPT to NPT

In this section, we give a nontrivial exponential-time translation from 2GAPT to
NPT . To the best of our knowledge this exponentially improves the known result
from the literature, e.g. using results from [BLMV06, KSV02] one can easily get a

Enriched μ–Calculus Pushdown Module Checking 447

double exponential-time translation. The translation we propose uses the notions
of strategies, promises and annotations, which we now recall.

Let A = 〈Σ, b, Q, δ, q0,F〉 be a 2GAPT with F = 〈F1, . . . , Fk〉 and 〈T, V 〉
be a Σ-labeled tree. Recall that Db = 〈[b]〉 ∪ [[b]] ∪ {−1, ε} and δ : (Q × Σ) →
B+(Db × Q). For each control state q ∈ Q, let index(q) be the minimal i such
that q ∈ Fi. A strategy tree for A on 〈T, V 〉 is a 2Q×Db×Q-labeled tree 〈T, str〉
such that, defined head(w) = {q : (q, d, q′) ∈ w} as the set of sources of w, it
holds that (i) q0 ∈ head(str(root(T))) and (ii) for each node x ∈ T and state q,
the set {(q, q′) : (q, d, q′) ∈ str(x)} satisfies δ(q, V (x)).

A promise tree for A on 〈T, V 〉 is a 2Q×Q-labeled tree 〈T, pro〉. We say that pro
fulfills str for V if the states promised to be visited by pro satisfy the obligations
induced by str as it runs on V . Formally, pro fulfills str for V if for every node x ∈
T , the following hold: “for every (q, 〈n〉, q′) ∈ str(x) (resp. (q, [n], q′) ∈ str(x)),
at least n + 1 (resp deg(x) − n) successors x · j of x have (q, q′) ∈ pro(x · j)”.

An annotation tree for A on 〈T, str〉 and 〈T, pro〉 is a 2Q×{1,...,k}×Q-labeled
tree 〈T, ann〉 such that for each x ∈ T and (q, d1, q1) ∈ str(x) the following hold:

– if d1 = ε, then (q, index(q1), q1) ∈ ann(x);
– if d1 ∈ {1, . . . , k}, then for all d2 ∈ {1, . . . , k} and q2 ∈ Q such that

(q1, d2, q2) ∈ ann(x), we have (q, min(d1, d2), q2) ∈ ann(x);
– if d1 = −1 and x = y · i, then for all d2, d3 ∈ {1, . . . , k} and q2, q3 ∈ Q such

that (q1, d2, q2) ∈ ann(y), (q2, d3, q3) ∈ str(y), and (q2, q3) ∈ pro(x), it holds
that (t, min(index(q1), d2, index(q3)), q3) ∈ ann(x);

– if d1 ∈ [[b]]∪〈[b]〉, y = x·i, and (q, q1) ∈ pro(y), then for all d2, d3 ∈ {1, . . . , k}
and q2, q3 ∈ Q such that (q1, d2, q2) ∈ ann(y) and (q2,−1, q3) ∈ str(y), it
holds that (t, min(index(q1), d2, index(q3)), q3) ∈ ann(x).

A downward path induced by str, pro, and ann on 〈T, V 〉 is a sequence
〈x0, q0, t0〉, 〈x1, q1, t1〉, . . . such that x0 = root(T), q0 is the initial state of A
and, for each i ≥ 0, it holds that xi ∈ T , qi ∈ Q, and ti = 〈qi, d, qi+1〉 ∈
str(xi) ∪ ann(xi) is such that either (i) d ∈ {1, . . . , k} and xi+1 = xi, or (ii)
d ∈ 〈[b]〉 ∪ [[b]] and there exists c ∈ {1, . . . , deg(xi)} such that xi+1 = xi · c and
(qi, qi+1) ∈ pro(xi+1). In the first case we set index(ti) = d and in the second
case we set index(ti) = min{j ∈ {1, . . . , k} | qi+1 ∈ Fj}. Moreover, for a down-
ward path π, we set index(π) as the minimum index that appears infinitely often
in π. Finally, we say that π is accepting if index(π) is even.

The following lemma relates languages accepted by 2GAPT with strategies,
promises, and annotations.

Lemma 2 ([BLMV06]). Let A be a 2GAPT. A Σ-labeled tree 〈T, V 〉 is ac-
cepted by A iff there exist a strategy tree 〈T, str〉, a promise tree 〈T, pro〉 for A
on 〈T, V 〉 such that pro fulfills str for V , and an annotation tree 〈T, ann〉 for A
on 〈T, V 〉, 〈T, str〉 and 〈T, pro〉 such that every downward path induced by str,
pro, and ann on 〈T, V 〉 is accepting.

Given an alphabet Σ for the input tree of a 2GAPT with transition function
δ, let Dδ

b be the subset containing only the elements of Db appearing in δ.

448 A. Ferrante, A. Murano, and M. Parente

Then we denote by Σ′ the extended alphabet for the combined trees, i.e., Σ′ =
Σ × 2Q×D

δ
b×Q × 2Q×Q × 2Q×{1,...k}×Q.

Lemma 3. Let A be a 2GAPT running on Σ–labeled trees with n states, index
k and counting bound b that accepts h-ary trees. It is possible to construct in
exponential-time an NPT A′ running on Σ′–labeled h-ary trees that accepts a
tree iff A accepts its projection on Σ.

Proof. Let A = 〈Σ, b, Q, q0, δ,F〉 with F = 〈F1, . . . , Fk〉. By Lemma 2, we
construct A′ as the intersection of three NPT A′, A′′, and A′′′, each hav-
ing size exponential in the size of A, such that, given a Σ′-labeled tree T ′ =
〈T, (V, str, pro, ann)〉, (i) A′ accepts T ′ iff str is a strategy for A on 〈T, V 〉 and
pro fulfills str for V , (ii) A′′ accepts T ′ iff ann is an annotation for A on 〈T, V 〉,
〈T, str〉 and 〈T, pro〉, and (iii) A′′′ accepts T ′ iff every downward path induced
by str, pro, and ann on 〈T, V 〉 is accepting.

The automaton A′ = 〈Σ′, Q′, q′0, δ′,F ′〉 works as follows: on reading a node
x labeled (σ, η, ρ, ω), then it locally checks whether η satisfies the definition
of strategy for A on 〈T, V 〉. In particular, when A′ is in its initial state, we
check that η contains a transition starting from the initial state of A. Moreover,
the automaton A′ sends to each child x · i the pairs of states that have to be
contained in pro(x · i), in order to verify that pro fulfills str. To obtain this, we
set Q′ = 2Q×Q ∪ {q′0} and F ′ = {∅, Q′}. To define δ′, we first give the following
definition. For each node x ∈ T labeled (σ, η, ρ, ω), we set

S(η) = {〈S1, . . . , Sdeg(x)〉 ∈ (2Q×Q)deg(x) such that
[for each (q, 〈m〉, p) ∈ η there is P ⊆ {1, . . . deg(x)} with |P | = m+ 1
such that for all i ∈ P, (q, p) ∈ Si] and
[for each (q, [m], p) ∈ η there isP ⊆ {1, . . . deg(x)} with |P | = deg(x)−m
such that for all i ∈ P, (q, p) ∈ Si]}

to be the set of all tuples with size deg(x), each fulfilling all graded modalities
in str(x). Notice that |S(η)| ≤ 2hn

2
. Then we have

δ′(q, (σ, η, ρ, ω)) =

⎧⎪⎨
⎪⎩

S(η) if ∀ p ∈ head(η), {(d, p′) | (p, d, p′) ∈ η} satisfies δ(p, σ)

and [(q = q10 and q0 ∈ head(η)) or (q �= q10 and q ⊆ ρ)]
false otherwise.

Hence, in A′ we have |Q′| = 2n
2
, |δ′| ≤ 2n

2(k+1), and index 2.
A′′ = 〈Σ′, Q′′, q′′0 , δ′′,F ′′〉 works in a similar way to A′. That is, for each

node x, it first locally checks whether the constraints of the annotations are
verified; then it sends to the children of x the strategy and annotation associated
with x, in order to successively verify whether the promises associated with the
children nodes are consistent with the annotation of x. Therefore, in A′′ we have
Q′′ = 2Q×D

δ
b×Q × 2Q×{1,...,k}×Q, q′′0 = (∅, ∅), F ′′ = {∅, Q′′}, and for a state

(ηprev, ωprev) and a letter (σ, η, ρ, ω) we have

δ′′((ηprev, ωprev), (σ, η, ρ, ω)) =

⎧⎪⎨
⎪⎩

〈(η, ω), . . . , (η, ω)〉 if the local conditions for the

annotations are verified

false otherwise.

Hence, in A′′ we have |Q′′| ≤ 2n
2(|δ|+k), |δ′′| ≤ h · 2n

2(|δ|+k), and index 2.

Enriched μ–Calculus Pushdown Module Checking 449

Finally, to define A′′′ we start by constructing a 2APT B whose size is polyno-
mial in the size of A and accepts 〈T, (V, str, pro, ann)〉 iff there is a non accepting
downward path (w.r.t. A) induced by str, pro, and ann on 〈T, V 〉. The automa-
ton B = 〈Σ′, QB, qB0 , δB,FB〉 (which in particular does not need direction −1)
essentially chooses, in each state, the downward path to walk on, and uses an
integer to store the index of the state. We use a special state � not belonging
to Q to indicate that B proceeds in accordance with an annotation instead of a
strategy. Therefore, QB = ((Q ∪ {�}) × {1, . . . , k} × Q) ∪ {qB0 }.

To define the transition function on a node x, let us introduce a function f that
for each q ∈ Q, strategy η ∈ 2Q×D

δ
b×Q, and annotation ω ∈ 2Q×{1,...,k}×Q gives

a formula satisfied along downward paths consistent with η and ω, starting from
a node reachable in A with the state q. That is, in each node x, the function f
either proceeds according to the annotation ω or the strategy η (note that f does
not check that the downward path is consistent with any promise). Formally, f
is defined as follows, where index(p) is the minimum i such that p ∈ Fi:

f(q, η, ω) =
∨

(q,d,p)∈ω

d∈{1,...,k}

〈ε, (�, d, p)〉 ∨
∨

(q,d,p)∈η

d∈〈[b]〉∪[[b]]

∨
c∈{1,...,deg(x)}

〈c, (q, index(p), p)〉

Then, we have δB(qB0 , (σ, η, ρ, ω)) = f(q0, η, ω) and

δB((q, d, p), (σ, η, ρ, ω)) =

{
false if q �= � and (q, p) �∈ ρ
f(p, η, ω) otherwise.

.

A downward path π is non accepting for A if the minimum index that appears
infinitely often in π is odd. Therefore, FB = 〈FB

1 , . . . , FB
k+1, Q

B〉 where FB
1 = ∅

and, for all i ∈ {2, . . . , k + 1}, we have FB
i = {(q, d, p) ∈ QB | d = i − 1}. Thus,

|QB| = kn(n + 1) + 1, |δB| = k · |δ| · |QB|, and the index is k + 2. Then, since
B is alternating, we can easily complement it in polynomial-time into a 2APT
B that accepts a tree iff all downward paths induced by str, pro, and ann on
〈T, V 〉 are accepting. Finally, following [Var98] we construct in exponential-time
the desired automaton A′′′. ��

5 Deciding Hybrid Graded Pushdown Module Checking

In this section, we show that hybrid graded pushdown module checking is de-
cidable and solvable in 2Exptime. Since CTL pushdown module checking is
2Exptime-hard, we get that the addressed problem is 2Exptime-complete. For
the upper bound, the algorithm works as follows. Given an OPD S and the mod-
ule MS induced by S, by combining and extending the constructions given in
[BMP05] and [FM07], we first build in polynomial-time a PD–NBT AS accept-
ing each tree that encodes a quasi-forest belonging to exec(MS). Then, given
an hybrid graded μ-calculus formula ϕ, according to [BLMV06], we build in
polynomial-time a GAPT A¬ϕ (Lemma 1) accepting all models of ¬ϕ, with the

450 A. Ferrante, A. Murano, and M. Parente

intent of checking that no models of ¬ϕ are in exec(MS) 3. Then, accordingly
to the basic idea of [KVW01], we check that M |=r ϕ by checking whether
L(AS) ∩ L(A¬ϕ) is empty. Finally, we get the result by using an exponential-
time reduction of the latter to the emptiness problem for PD–NPT , which from
Proposition 1 can be solved in Exptime. As a key step of the above reduc-
tion, we use the exponential-time translation from GAPT into NPT showed in
Section 4.

Let us start dealing with AS . Before building the automaton, there are some
technical difficulties to overcome, which are also new with respect to [BMP05].
First note that since AS is a PD–NBT , it only deals with trees having labels
on nodes, while exec(M) contains quasi-forests with both edges and nodes la-
beled. To solve this problem, for each quasi-forest in exec(M), the automaton
AS accepts a corresponding encoding tree obtained by (i) adding a new root
connecting all roots of the quasi-forest, (ii) moving the label of each edge to the
target node of the edge (using a new atomic proposition pα, for each program α),
and (iii) substituting “jumps to roots” with new atomic propositions ↑αo (repre-
senting an α-labeled jump to the unique root node labeled by nominal o). Let
AP∗ = AP ∪ {pα | α is a program} ∪ {↑αo | α is a program and o is a nominal},
we denote with 〈T, V ∗〉 the 2AP∗∪Nom-labeled tree encoding of a quasi-forest
〈F, V, E〉 ∈ exec(M), obtained using the above transformations.

Another technical difficulty to handle with is related to the fact that quasi-
forests of exec(M) (and thus their encodings) may not be full h-ary, since the
nodes of the OPD from which M is induced may have different degrees. Also,
quasi-forests of exec(M) may not share the same structure, since they are ob-
tained by pruning subtrees from the computation quasi-forest 〈FM, VM, EM〉
of M. Let 〈TM, V ∗M〉 be the h-ary computation tree of M obtained from 〈FM,
VM, EM〉 using the above encoding. By extending an idea of [KVW01, BMP05],
we consider each tree 〈T, V ∗〉, encoding of a quasi-forest 〈F, V, E〉 of exec(M), as
a 2AP

∗∪Nom∪{t}∪{⊥}-labeled full h-ary tree 〈TM, V ∗∗〉 (where ⊥ and t are fresh
proposition names not belonging to AP ∗ ∪ Nom) in the following way: first we
add proposition t to the label of all leaf nodes of the forest; second, for each node
x ∈ TM with p children x ·1, . . . , x ·p (note that 0 ≤ p ≤ h), we add the children
x · (p + 1), . . . , x · h and label these new nodes with ⊥; finally, for each node x
labeled by ⊥ we add recursively h children labeled by ⊥. Thus, for each node
x ∈ TM\{root(TM)}, if x ∈ F then V ∗∗(x) = V ∗(x), otherwise V ∗∗(x) = {⊥}
and therefore the proposition ⊥ is used to denote both “disabled” states and
“completion” states. In this way, all trees encoding quasi-forests belonging to
exec(M) are full h-ary trees, and they differ only in their labeling. Moreover,
the environment can also disable jumps to roots. This is performed by removing
from enabled environment nodes some of the ↑αo labels. Notice that since we
consider environments that do not block the system, nodes associated with envi-
ronment states have at least one successor not labeled by {⊥}, unless they have
↑αo in their labels. Putting in practice the construction proposed above, we obtain
the following result, where êxec(M) is the set of all 2AP

∗∪Nom∪{t}∪{⊥}-labeled

3 For better readability, in the rest of the paper we useM instead of MS .

Enriched μ–Calculus Pushdown Module Checking 451

full h-ary trees obtained from 〈TM, V ∗M〉 in the above described manner (the
detailed construction is reported in the full version of the paper).

Lemma 4. Given an OPD S = 〈Q, Γ, 	, C0, Δ, ρ1, ρ2, Env〉 with branching de-
gree h, we can build a PD–NBT AS = 〈Σ, Γ, 	, Q′, q′0, γ0, δ, Q〉, which accepts
exactly êxec(M), such that Σ = 2AP

∗∪Nom∪{t} ∪ {⊥}, |Q′| = O(|Q|2 · |Γ |), and
|δ| is polynomially bounded by h · |Δ|.
Let us now go back to the hybrid graded μ-calculus formula ϕ. Using Lem-
mas 1 and 3, we get that given an hybrid graded μ-calculus formula ϕ, we can
build in exponential-time an NPT A¬ϕ accepting all models of ¬ϕ. Now, recall
that given a module M induced by an OPD S and the automaton AS accept-
ing all trees encoding of quasi-forests belonging to exec(M) (see Lemma 4), it
is possible to check whether M |=r ϕ by checking whether L(AS) ∩ L(A¬ϕ)
is empty. Also, recall by Proposition 2 that L(AS) ∩ L(A¬ϕ) can be accepted
by a PD–NPT A whose size is exponential in the size of ϕ and polynomial in
the size of S. Finally, by recalling that the emptiness problem for A can be
checked in Exptime (Proposition 1) and that the pushdown module checking
problem for CTL is 2Exptime-hard with respect to the size of the formula and
Exptime-hard in the size of the system [BMP05], we get the following result.

Theorem 1. The hybrid graded μ-calculus pushdown module checking problem
is 2Exptime–complete with respect to the size of the formula and Exptime–
complete with respect to the size of the system.

6 Discussion

As a direct consequence of the algorithm we have proposed, we get that “push-
down model checking” with respect to formulas of the hybrid graded μ-calculus
is also solvable in 2Exptime. Indeed, we recall that model checking a closed sys-
tem is equivalent to check a module in which the maximal environment, which
corresponds to the full computation tree, satisfies the specification. Consider now
the automaton described in Lemma 4. We can easily simplify the construction to
get an automaton that accepts only the full computation tree. Then, by applying
our module checking algorithm we easily get the result.

The above idea can be also extended to other fragments of the fully enriched
μ-calculus. We recall that this calculus extends the hybrid graded one by also
allowing “backward” modalities. Syntactically, it is obtained by allowing a pro-
gram α in atleast and allbut formulas to be either an atomic program a or its
inverse a−. To deal with inverse programs, we also extend R as follows: for
each a ∈ Prog , we set R(a−) = {(v, u) : (u, v) ∈ R(a)}. The semantics given
for hybrid graded μ-calculus extends to fully enriched μ-calculus, accordingly
and in a natural way. We recall that fully enriched μ-calculus is undecidable
(see [BP04]), while any of its fragments is decidable. We argue that also for
those fragments including backwards modalities, the pushdown model checking
is solvable in 2Exptime. The main technical difficulty here is that since we are

452 A. Ferrante, A. Murano, and M. Parente

dealing with a backward modality, the unwinding must take care also of the
past configurations. In particular, since each node in the tree can only have one
parent, we need to simulate in forward all past configurations, but one. This can
be accomplished by inverting the modality (i.e., inverting the program). Using
such an unwinding, along with the above idea of constructing an automaton
(by simplifying that given in Lemma 4) that accepts only the full computation
tree (which now also needs to keep track of the past computations), and the
pushdown module checking algorithm idea, we get the result.

Acknowledgments. We thank the anonymous referee for his useful comments
regarding backward modalities.

References

[BLMV06] Bonatti, P.A., Lutz, C., Murano, A., Vardi, M.Y.: The complexity of en-
riched μ-calculi. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I.
(eds.) ICALP 2006. LNCS, vol. 4052, pp. 540–551. Springer, Heidelberg
(2006)

[BMP05] Bozzelli, L., Murano, A., Peron, A.: Pushdown module checking. In: Sut-
cliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835, pp.
504–518. Springer, Heidelberg (2005)

[BP04] Bonatti, P.A., Peron, A.: On the undecidability of logics with converse,
nominals, recursion and counting. Artif. Intelligence 158(1), 75–96 (2004)

[CE81] Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization
skeletons using branching time temporal logic. In: Kozen, D. (ed.) Log-
ics of Programs. LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982)

[CGP99] Clarke, E.M., Grumberg, O., Peled, D.A.: Model checking. MIT Press,
Cambridge, MA, USA (1999)

[FM07] Ferrante, A., Murano, A.: Enriched μ-calculus module checking. In: FOS-
SACS 2007. LNCS, vol. 4423, pp. 183–197 (2007)

[Hoa85] Hoare, C.A.R.: Communicating sequential processes. Prentice-Hall Inter-
national, Upper Saddle River, NJ, USA (1985)

[HP85] Harel, D., Pnueli, A.: On the development of reactive systems. In: Logics
and Models of Concurrent Systems. NATO Advanced Summer Institutes,
vol. F-13, pp. 477–498. Springer, Heidelberg (1985)

[Koz83] Kozen, D.: Results on the propositional mu-calculus. Theoretical Com-
puter Science 27, 333–354 (1983)

[KPV02] Kupferman, O., Piterman, N., Vardi, M.Y.: Pushdown specifications. In:
Baaz, M., Voronkov, A. (eds.) LPAR 2002. LNCS (LNAI), vol. 2514, pp.
262–277. Springer, Heidelberg (2002)

[KSV02] Kupferman, O., Sattler, U., Vardi, M.Y.: The complexity of the graded
μ-calculus. In: Voronkov, A. (ed.) CADE 2002. LNCS (LNAI), vol. 2392,
pp. 423–437. Springer, Heidelberg (2002)

[KVW00] Kupferman, O., Vardi, M.Y., Wolper, P.: An automata-theoretic approach
to branching-time model checking. J. of ACM 47(2), 312–360 (2000)

[KVW01] Kupferman, O., Vardi, M.Y., Wolper, P.: Module checking. Information &
Computation 164, 322–344 (2001)

Enriched μ–Calculus Pushdown Module Checking 453

[QS81] Queille, J.P., Sifakis, J.: Specification and verification of concurrent sys-
tems in cesar. In: Dezani-Ciancaglini, M., Montanari, U. (eds.) Inter-
national Symposium on Programming. LNCS, vol. 137, pp. 337–351.
Springer, Heidelberg (1982)

[SV01] Sattler, U., Vardi, M.Y.: The hybrid mu-calculus. In: Goré, R.P., Leitsch,
A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 76–91.
Springer, Heidelberg (2001)

[Var98] Vardi, M.Y.: Reasoning about the past with two-way automata. In: Larsen,
K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp.
628–641. Springer, Heidelberg (1998)

Approved Models for Normal Logic Programs

Luís Moniz Pereira and Alexandre Miguel Pinto

Centro de Inteligência Artificial (CENTRIA)
Universidade Nova de Lisboa
2829-516 Caparica, Portugal

{lmp,amp}@di.fct.unl.pt

Abstract. We introduce an original 2-valued semantics for Normal Logic Pro-
grams (NLPs) extending the well-known Argumentation work of Phan Minh
Dung on Admissible Arguments and Preferred Extensions. In the 2-valued Ap-
proved Models Semantics set forth, an Approved Model (AM) correspond to the
minimal positive strict consistent 2-valued completion of a Dung Preferred Ex-
tension. The AMs Semantics enjoys several non-trivial useful properties such as
(1) Existence of a 2-valued Model for every NLP; (2) Relevancy, and (3) Cumu-
lativity. Crucially, we show that the AMs Semantics is a conservative extension to
the Stable Models (SMs) Semantics in the sense that every SM of a NLP is also
an AM, thus providing every NLP with a model: a property not enjoyed by SMs.
Integrity constraints, written in a simpler way, are introduced to identify unde-
sired semantic scenarios, whilst permitting these to be produced nevertheless. We
end the paper with some conclusions and mention of future work.

1 Introduction

This paper introduces a new 2-valued semantics for Normal Logic Programs (NLPs)
based upon and inspired by the previous well-know Argumentation work of Phan Minh
Dung on Admissible Arguments and Preferred Extensions [6].

After introducing in [14] and [12] the new Revised Stable Models semantics for
NLPs (whose complexity has been studied in [11]) further work using the Reductio ad
Absurdum (RAA) principle has been developed, namely the Revised Well-Founded Se-
mantics [15]. Considering an argument-based view of NLPs, we define a new semantics
which inherits the RAA principle studied in [14,12] and apply it to argumentation. In-
deed, NLPs can be viewed as a collection of argumentative statements (rules) based on
arguments (default negated literals) [2,6,4,7].

We start by presenting the general Motivation of this paper and, after introducing
some needed Background Notation and Definitions, the more detailed problem descrip-
tion. We proceed by setting forth our proposal — the Approved Models Semantics —
and show how it extends previous known results.

The Approved Models (AMs) Semantics enjoys several useful properties such as (1)
Existence of a 2-valued Model for every Normal Logic Program; (2) Relevancy, which
allows for the development of purely top-down query-driven proof procedures; and (3)
Cumulativity. Our approach, in accordance with the previous work on Revision Com-
plete Scenarios [13] and taking an argumentation point-of-view, allows one to obtain

N. Dershowitz and A. Voronkov (Eds.): LPAR 2007, LNAI 4790, pp. 454–468, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Approved Models for Normal Logic Programs 455

the Stable Models (SMs) as a special case with the advantage that every NLP has a
model, a property not enjoyed by the SMs Semantics.

Indeed, we show that the Approved Models Semantics is a conservative extension
to the Stable Models Semantics — in the sense that every Stable Model of a Normal
Logic Program is also an Approved Model. This allows us to prove that, for certain
specific types of NLPs, the Approved Models Semantics and the Stable Models Seman-
tics coincide; and, therefore, for those NLPs the Stable Models Semantics also enjoys
guarantee of Existence of a Model, Relevancy and Cumulativity. These important and
useful results about the Stable Models Semantics are in line with those studied before
for the Revised Stable Models Semantics [12,14].

In the quest for finding an Approved Model one can guess it and check its com-
pliance with the properties that characterize Approved Models. Using an innovative
alternative approach, suiting the purposes of a Collaborative Argumentation setting, we
can start with an arbitrary set of hypotheses (default negated literals), which can be
the result of joining together several different alternative sets of hypotheses, calculate
its consequences, and make revisions to the initial assumptions if necessary (when in-
consistencies between the hypotheses and the consequences arise) in order to achieve
positive minimality respecting stratification, 2-valued Completeness and Consistency,
whilst also working toward guaranteeing that the set of negative hypotheses includes a
Preferred Extension.

The set of negative hypotheses is made conflict-free, admissible, and maximal; thus
including a Preferred Extension [6]). This set is then 2-valued consistently completed
with the remaining atoms ensuring the whole 2-valued complete model is approvable
(a notion we will present formally in the sequel).

Finally, integrity constraints are introduced to identify undesired models, whilst per-
mitting these to be produced nevertheless. Conclusions finish the paper.

1.1 Motivation

Ever since the beginning of Logic Programming the scientific community has formally
defined, in several ways, the meaning or semantics of a Logic Program. Several were
defined, some 2-valued, some 3-valued, and even multi-valued semantics. The current
standard 2-valued semantics for NLPs — the Stable Models Semantics [9] — has been
around for almost 20 years now, and it is generally accepted as the de facto standard
for NLPs. This thoroughly studied semantics, however, lacks some important properties
among which the guarantee of Existence of a Model for every NLP.

In [12] we defined a 2-valued semantics — the Revised Stable Models — which ex-
tends the Stable Models Semantics, guarantees Existence of a Model for every Normal
Logic Program, enjoys Relevancy (allowing for top-down query-driven proof-procedu
res to be built) and Cumulativity. Its main drawback is definitely that its definition is
hard to grasp and understand.

Aiming to find a general perspective to seamlessly unify the Stable Models Seman-
tics and the Revised Stable Models Semantics in a clear way, we drew our attention
to Argumentation as a means to achieve it. This is the main motivation of the work
we present in this paper: by taking the Argumentation perspective we intend to show
methods of identifying and finding a 2-valued complete Model for any NLP.

456 L.M. Pereira and A.M. Pinto

In [8], François Fages proved that a NLP might have no Stable Models iff it contains
Odd Loops Over Negation (OLONs)1 and/or Infinite Chains Over Negation (ICONs)2.
Both these notions of OLON and ICON were formally and thoroughly studied in [14,12]
and the original Revised Stable Models Semantics was defined having also the OLONs
and ICONs in mind.

For self-containment and to clarify the context, we now present a few informal moti-
vating examples of OLONs and ICONs and how we solve them, so that every NLP has
a semantics, employing a reasoning by contradiction argument. This kind of reductio
ad absurdum reasoning takes place only when it is absolutely necessary in order to en-
sure 2-valued completeness of the resulting model, this “last resort” flavor of the RAA
coming from the requirement of keeping the semantics maximally skeptical.

Example 1. An invasion problem. Some political leader thinks that “If Iran will have
Weapons of Mass Destruction then we intend to invade Iran”, also “If we do not intend
to invade then surely they will have Weapons of Mass Destruction”, rendered as the
following OLON (where “not ” denotes default negation)

intend_to_invade ← iran_will_have_WMD
iran_will_have_WMD ← not intend_to_invade

The literal involved in the OLON is intend_to_invade which is the literal that de-
pends on itself through and odd number of default negations. The literal
iran_will_have_WMD is just an in between stepping-stone for the OLON.

If we assume that “we do not intend to invade Iran” then, according to this program
we will conclude that “Iran will have Weapons of Mass Destruction” and “we intend
to invade Iran”. These conclusions, in particular “we intend to invade Iran”, contradict
the initial hypothesis “we do not intend to invade Iran”. So, reasoning by Reductio ad
Absurdum in a 2-valued setting, we should “intend to invade Iran” in the first place.

This example gives a hint on how we resolve inconsistent arguments in the remainder
of the paper, further exemplified below.

Example 2. A going-out problem. John likes Mary a lot so he asked her out: he said
“We could go to the movies”. Mary is more of a sports girl, so she replies “Either
that, or we could go to the swimming pool”. “Now, that’s an interesting idea”, John
thought. The problem is that John cannot swim because he hasn’t started learning to.
He now thinks “Well, if I’m going to the swimming pool with Mary, and I haven’t
learned how to swim, I might risk drowning! And if I’m risking drowning then I really
should start learning to swim”. Here is the Normal Logic Program corresponding to
these sentences:

start_learning_to_swim ← risk_drowning
risk_drowning ← go_to_pool , not start_learning_to_swim
go_to_pool ← not go_to_movies
go_to_movies ← not go_to_pool

1 Intuitively, an OLON is just a cycle in the dependency-graph induced by the NLP (an atom a
depends on itself) where there is an odd number of default negations along the cycle.

2 An example of an ICON with the explanation of the concept is presented below.

Approved Models for Normal Logic Programs 457

If John is not willing to go to the swimming pool — assuming not go_to_pool
— he just concludes go_to_movies and maybe he can convince Mary to join him.
On the other hand, if the possibility of having a nice swim with Mary is more tempt-
ing, John assumes he is not going to the movies not go_to_movies and therefore he
concludes go_to_pool. In this case, since John does not know how to swim he could
also assume not start_learning_to_swim. But since John is going to the swimming
pool, he concludes risk_drowning. And because of risk_drowning he also concludes
start_learning_to_swim. That is, he must give up the hypothesis of
not start_learning_to_swim in favour of start_learning_to_swim
because he wants to go to the pool with Mary. As a nice side-effect he no longer risks
drowning.

Example 3. Middle region politics. In a Middle Region two factions are at odds. One
believes that if terrorism does not stop then oppression will do it and hence become
unnecessary.

oppression ← not end_of_terrorism end_of_terrorism ← oppression
The other faction believes that if oppression does not stop then terrorism will do it

and hence become unnecessary.
terrorism ← not end_of_oppression end_of_oppression ← terrorism
According to these rules, if we assume that not end_of_terrorism we conclude

that there is oppression which in turn will cause the end_of_terrorism. So, the
end_of_terrorism should be true in the first place instead of not end_of_terrorism.
The same happens with end_of_oppression. In spite of the peaceful resulting solution
we propose, {end_of_oppression, end_of_terrorism}, there is no Stable Model for
this program.

Example 4. An infinite chain over negation. The classical example of an ICON was
first presented in [8] and is

p(X) ← p(s(X)) p(X) ← not p(s(X))
with a single constant 0 (zero), and so its ground version is
p(0) ← p(s(0)) p(0) ← not p(s(0))
p(s(0)) ← p(s(s(0))) p(s(0)) ← not p(s(s(0)))

...
...

As we can see, the ground version has an Infinitely long descending Chain in the de-
pendency graph for every literal p(X) Over default Negation. In [14] the author proved
that every possible ICON can be reduced to this canonical case, i.e., other ICONs may
exist with more rules besides these, but the main structure (relevant for its properties)
of every ICON relies on the same as the one presented here.

According to the Stable Models semantics this program has no models. But there is
one Approved Model where every p(X) is true. To see this, by reductio ad absurdum,
assume that p(X) was false for some X ; then the two bodies of each clause above would
have to be false, meaning that p(s(X)) would be true by the second one; but then, by
the first one, p(X) would be true as well, thereby contradicting the default assumption.
Hence, by Reductio ad Absurdum reasoning, p(X) must be true, for arbitrary X .

458 L.M. Pereira and A.M. Pinto

1.2 Background Notation and Definitions

Definition 1. Logic Rule. A Logic Rule r has the general form
L ← B1, B2, . . . , Bn, not C1, not C2, . . . , not Cm
where L is an atom h, the Bi and Cj are atoms.

We call L the head of the rule — also denoted by head(r). And body(r) denotes the
set {B1, B2, . . . , Bn, not C1, not C2, . . . , not Cm} of all the literals in the body of r.
Throughout this paper we will use ‘not ’ to denote default negation.

When the body of the rule is empty, we say the head of rule is a fact and we write
the rule just as h or not h. Since we are considering only Normal Logic Programs facts
will never be of the form not h.

Definition 2. Logic Program. A Logic Program (LP for short) P is a (possibly infinite)
set of ground Logic Rules of the form in definition 1.

In this paper we focus solely on Normal LPs (NLPs), those whose heads of rules are
positive literals, i.e., simple atoms; and there is just default negation in the bodies of the
rules. Hence, when we write just “program” or “logic program” we mean a NLP.

We use the notation Atoms(P) to denote the set of all atoms of P ; and not S —
where S is a set of literals (both positive and/or default negated) — to denote the set
resulting from default negating every literal of S. Note that the default negation of an
already default negated literal not a is just the positive literal, i.e., not not a ≡ a.

Definition 3. 2-valued Interpretation. A 2-valued interpretation I = I+ ∪ I− of P
is a set of literals, both positive I+ ⊆ Atoms(P) and negative I− ⊆ not Atoms(P),
such that

– I+ ∩ not I− = ∅ — it is consistent, i.e., there is no atom a of Atoms(P) such that
both a and not a are in I

– I+ ∪ not I− = Atoms(P) — it is 2-valued complete, i.e., there is no atom a of
Atoms(P) such that both a and not a are not in I

Definition 4. � operator. Let P be a NLP and I a 2-valued interpretation of P . P ′ is
the Horn theory obtained from P by replacing every default literal of the form not L in
P by the atom not_L. I ′ is likewise obtained from I using the same replacement rule.
By definition, P ′∪I ′ is a Horn theory, and so it has a least model M ′ = least(P ′∪I ′).
We define � in the following way, where a is any atom of P :

P ∪ I � a iff a ∈ M ′ P ∪ I � not a iff not_a ∈ M ′

In the sequel, we will write M = least(P ∪I) to mean M = {L : P ∪I � L}, where
L is any positive (a) or negative (not a) literal derived from I in P . M corresponds
thus to the result of applying the inverse substitution of literals not_a by not a in M ′.
We will also sometimes refer to least(P ∪ I) as the consequences of I in P .

Definition 5. Internally Consistent 2-valued Interpretation. Let P be a NLP and I a
2-valued interpretation I of P . I is Internally Consistent in P iff least(P ∪ I) ⊆ I .

Since we are considering only NLPs, where there are no negations in the heads of rules,
we can never derive a negative literal by applications of the least operator. Hence, the

Approved Models for Normal Logic Programs 459

literals in least(P ∪ I) — besides including all the literals in I — include only positive
literals (some heads of rules of P). By requiring least(P ∪I) ⊆ I we ensure that all the
literals in least(P ∪ I) do not contradict any of the literals in I−; knowing beforehand
that literals in I+ cannot ever be contradicted by least(P ∪ I) because P is a Normal
Logic Program.

In fact, since I is 2-valued complete, if least(P ∪I) ⊆ I then necessarily least(P ∪
I) = I . Moreover, in [10], the authors prove that if least(P ∪ I−) = I , then I is a
Stable Model of P and vice-versa, with the appropriate language translation. We also
write ΓP (I) as a shorthand notation for least(P ∪ M−) \ M−, i.e., ΓP (M) is just the
positive part of least(P ∪ M−). Hence, M is a Stable Model of P iff ΓP (M) = M .
For any interpretation I , we consider Γ 0

P (I) = I , and Γn+1
P (I) = ΓP (Γn

P (I)).

Definition 6. Approvable Interpretation. Let P be a NLP and I an Internally Con-
sistent 2-valued Interpretation of P . We say I is an Approvable Interpretation of P iff
I is such that I− is set maximal. I.e., there is no other Internally Consistent 2-valued
Interpretation I ′ of P such that I ′− ⊃ I−.

2 The Approved Models Semantics for Normal Logic Programs

The Approved Models Semantics for Normal Logic Programs gets its inspiration from
the Argumentation perspective and also from our previous works [14], [12], and [13].

In [6], the author shows that preferred maximal scenarios (with maximum default
negated literals — the hypotheses) are always guaranteed to exist for NLPs; and that
when these yield 2-valued complete (total), consistent, admissible scenarios, they coin-
cide with the Stable Models of the program. However, preferred maximal scenarios are,
in general, 3-valued. The problem we address now is how to define 2-valued complete
models based on preferred maximal scenarios. In this paper we take a step further from
what we achieved in [6], extending its results. We do so by completing a preferred set of
hypotheses rendering it approvable (as presented above in definition 6), ensuring whole
model consistency and 2-valued completeness.

The resulting semantics thus defined, dubbed Approved Models Semantics, is a con-
servative extension to the widely known Stable Models semantics [9] in the sense that
every Stable Model is also an Approved Model. The Approved Models are guaranteed
to exist for every NLP, whereas Stable Models are not. The concrete examples above
show how NLPs with no Stable Models can usefully model knowledge, as well as pro-
duce additional models, as in Example 2. Moreover, this guarantee is crucial in program
composition (say, from knowledge originating in divers sources) so that the result has
a semantics. It is important too to warrant the existence of semantics after external up-
dating, or in Stable Models based self-updating [1].

Moreover, the Approved Models Semantics enjoys the Relevancy property which
allows for the development of purely top-down, program call-graph based, query driven
methods to determine whether a literal belongs to some model or other. These methods
can thus simply return a partial model, guaranteed extendable to a complete one, there
being no need to compute all models or even to complete models in order to answer a
query. Relevancy is crucial too for modeling abduction, it being query driven. Finally,

460 L.M. Pereira and A.M. Pinto

the Approved Models Semantics enjoys Cumulativity, so lemmas may be stored and
reused.

Before presenting the formal definition of an Approved Model we give a general
intuitive idea to help the reader grasp the concept. For the formal definition of Approved
Models Semantics we will also need some preliminary auxiliary definitions.

2.1 Intuition

In [4] the authors prove that every SM of a NLP corresponds to a stable set of hy-
potheses, and these correspond in turn to a 2-valued complete, consistent, admissible
scenario. In order to guarantee the Existence of a 2-valued total Model for every NLP
we allow in all the negative hypotheses which are self-conflict-free and admissible ([6]),
and include a Preferred Extension [6]. The extra negative hypotheses approved beyond
a Preferred Extension are criteriously allowed (only the approvable ones) to ensure that
the resulting 2-valued completion is consistent.

2.2 Underlying Notions

Most of the ideas and notions underlying the work we now present come from the
Argumentation field — mainly from the foundational work of Phan Minh Dung in
[6] — plus the Reductio ad Absurdum reasoning studied in [14], [12], and [13]. For
self-containment we now present the basic notions of argument (or set of hypotheses),
attack, conflict-free set of arguments, acceptable argument, and admissible set of argu-
ments (all original from [6]).

Definition 7. Argument. In [6] the author presents an argument as

“an abstract entity whose role is solely determined by its relations to other
arguments. No special attention is paid to the internal structure of the argu-
ments.”

In this paper, since we are focusing on NLPs, we will pay attention to the internal
structure of an argument by considering an argument (or set of hypotheses) as a set S of
default negated literals of a NLP P , i.e., S ⊆ not Atoms(P). Thus, a simple argument
not a of S (or simple hypothesis) is just an element of an argument S.

Using these notions of argument and simple argument we can define the set of Ar-
guments of a NLP P — Arguments(P) — as the set of all arguments of P , i.e., the set
of all subsets of not Atoms(P).

Definition 8. Attack — Argument B Attacks simple argument not a in P [6]. In
[6] Dung does not specify what the attacks relationship concretely is, this way ensur-
ing maximal generality of the argumentation framework. In our present work, since we
are considering NLPs, and arguments as sets of default negated literals (each a simple
argument), the attacks relationship corresponds to deriving a positive literal contradict-
ing one simple argument of the attacked argument.

Formally, if P is a NLP, B ∈ Arguments(P), and not a ∈ not Atoms(P), we say
B attacks not a in P iff P ∪B � a, i.e., a ∈ least(P ∪B). For simplicity, we just write
attacksP (B, not a).

Approved Models for Normal Logic Programs 461

Abusing this notation, we also write attacksP (B, A), where both A and B are Ar-
guments of P , to mean that the Argument B attacks Argument A in P . This means that
∃not a∈AattacksP (B, not a).

Definition 9. Conflict-free argument A [6]. An argument A of P is said to be conflict-
free iff there is no simple argument not a in A such that attacksP (A, not a). I.e., A
does not attack itself.

Definition 10. Acceptable argument [6]. An argument A ∈ AR — where AR is a set
of arguments — of P is said to be Acceptable with respect to a set S of arguments iff
for each argument B ∈ AR: if B attacks A then B is attacked by S.

Definition 11. Admissible Argument A of P [6]. A conflict-free argument A is admis-
sible in P iff A is acceptable with respect to Arguments(P). Intuitively, A is admissi-
ble if it counter-attacks every argument B in Arguments(P) attacking A. Formally,

∀B∈Arguments(P)∀not a∈AattacksP (B, not a) ⇒ ∃not b∈BattacksP (A, not b)
This definition corresponds to the definition of Admissible Set presented in [6]. No-

tice that it is not required an attacking set B to be consistent with its consequences, i.e.,
least(P ∪ B) is not required to be consistent.

Definition 12. Preferred Extension[6]. A Preferred Extension is a maximal (with re-
spect to set inclusion) admissible Argument of P .

2.3 Definition of the Approved Models Semantics

Definition 13. Approved Models. Let P be a NLP and M = M+ ∪ M− a 2-valued
interpretation of P . We say M is an Approved Model of P iff:

• M is an Approvable Interpretation of P , and
• M− contains a Preferred Extension of P

We use the notation AMP (M) to mean that M is an Approved Model of P . The
Approved Models Semantics of an NLP P is just the intersection of the positive parts of
all its Approved Models. We write

• AM+(P) to denote the set of atoms of P considered true by the Approved Models
Semantics. This corresponds to the Approved Models Semantics of P , i.e.,
AM+(P) =

⋂
AMP (M) M+

• AM−(P) to denote the set of atoms of P considered false by the Approved Models
Semantics. I.e., AM−(P) = not

⋂
AMP (M) M−

• AMu(P) to denote the set of atoms of P considered undefined by the Approved
Models Semantics. I.e., AMu(P) = Atoms(P) − (

AM+(P) ∪ AM−(P)
)

2.4 Properties of the Approved Models Semantics

Stable Models Extension

Theorem 1. Every Stable Model is also an Approved Model. If P is a NLP, and SM
a Stable Model of P , then M = SM ∪ M−, where M− = not (Atoms(P) \ SM), is
an Approved Model of P .

462 L.M. Pereira and A.M. Pinto

Proof. Let P be a NLP, and SM a Stable Model of P . Since every Stable Model SM
is a Minimal Herbrand Model of P it means that not (Atoms(P) \ SM) is Maximal.
Therefore, we conclude that SM ∪ not (Atoms(P) \ SM) is an Approvable Interpre-
tation of P .

Moreover, since SM is a Stable Model of P we know, by [6], that not (Atoms(P)\
SM) is Admissible in P . Since SM is a SM of P , it is minimal and therefore
not (Atoms(P) \ SM) is maximal. Hence, not (Atoms(P) \ SM) is a Preferred
Extension and SM ∪ not (Atoms(P) \ SM) is an Approved Model of P . ��

Existence

Theorem 2. Every Normal Logic Program has at least one Approved Model.

Proof. Let P be a NLP. In [6] the author proves that every NLP has at least one preferred
extension, and that preferred extensions are Maximal Admissible Arguments. Consider
M ′− ∈ Arguments(P) one such preferred extension. It is always possible to construct
one M− = M ′− ∪ S−, where S− ∈ Arguments(P), such that M = M− ∪M+, and
M+ = Atoms(P)\not M−, is an Approvable Interpretation. The limit case would be
S− = ∅ and M+ = Atoms(P) \ (not M−).

The intuitive idea is that no more simple arguments can be added to a preferred
extension M ′− because, for at least one not s ∈ S−, M ′− ∪ {not s} would not be an
Acceptable Argument in the sense of definition 10, so a corresponding positive atom s
can be added instead, plus a new maximal addition of default atoms as a result of adding
the positive one, for any such positive atom.

The addition of such positive atoms corresponds to resolving an inconsistency that
would follow from adding the corresponding default negation literal, and computing the
semantics according to definition 4. It is thus a form of reasoning by contradiction and
the positive atom can be justified as a positive hypothesis introduced by that reasoning.
Indeed, the reason a preferred extension is not complete is, according to Fage’s result [8],
because there may be some ICONs or OLONs that prevent turning it into an SM. ��
In [13] we showed iterative and incremental methods for calculating the Revision Com-
plete Scenarios. The same methods can be used to calculate the Approved Models
for these coincide with the models yielded by the Revision Complete Scenarios. In a
nutshell, to calculate a Revision Complete Scenario we start with a set of hypothe-
ses which initially is the set of all default negated literals of the program H− =
not Atoms(P). Next, we compute the least model of the program considering those
hypotheses, i.e, least(P ∪H−). Some inconsistencies (pairs l, not l) will be present in
least(P ∪ H−): we select one such l and remove not l from H− thus reducing it. We
repeat this process until there are no more inconsistencies in least(P ∪ H−). At that
point we just add the remaining positive atoms needed in order to ensure 2-valued com-
pleteness and consistency. For greater clarity we show how this process develops with
Example 2:

Example 5. Iteratively calculating an Approved Model. Recall the example 2 with
John, Mary, going to the swimming pool or to the movies.

Approved Models for Normal Logic Programs 463

start_learning_to_swim ← risk_drowning
risk_drowning ← go_to_pool, not start_learning_to_swim
go_to_pool ← not go_to_movies
go_to_movies ← not go_to_pool

For simplicity, we will use abbreviations for the literals. To iteratively calculate the
Approved Models of this program let us do as explained above. First, we start with
H− = not Atoms(P), i.e., H− = {not sls, not rd, not gp, not gm}. Now we com-
pute least(P ∪ H−) = {not sls, sls, not rd, rd, not gp, gp, not gm, gm}. There are
several inconsistencies in least(P ∪H−), we can choose any one default negated literal
participating in one inconsistency and remove it from H−. Take notice that, since we
are removing one not l from H− and in the end we want a 2-valued complete model, we
will necessarily have l as true in that model — we say l was revised from false (not l) to
true (l). Let us choose to revise not gp. H− thus becomes {not sls, not rd, not gm}.
We recompute least(P ∪ H−) = {not sls, not rd, not gm, gp, rd, sls}. We now re-
peat the process of choosing any one assumption not l participating in an inconsistency
to revise it, and update H− accordingly. We now revise not sls. H− is now H− =
{not rd, not gm}. The corresponding Approved Model is M = {not rd, not gm, sls,
gp} which is not a Stable Model. The only other Approved Model is
M ′ = {not rd, gm, not sls, not gp} which is also a Stable Model.

Relevancy

Definition 14. RelP (a) — Relevant part of NLP P for the positive literal a.
The Relevant part of a NLP P for some positive literal a, RelP (a) is defined as

RelP (a) =
{r ∈ P : head(r) = a} ∪ ⋃

x:r∈P∧head(r)=a∧(x∈body(r)∨not x∈body(r)) RelP (x)

Intuitively, the relevant part of a program for some atom a is just the set of rules with
head a and the rules relevant for each atom in the body of the rules for a. I.e., the
relevant part is the set of rules in the call-graph for a.

Definition 15. Relevant Semantics. This definition is taken from [5]. A Semantics
Sem for NLPs is said to be Relevant iff for every program P and positive literal a
of P a ∈ Sem(P) ⇔ a ∈ Sem(RelP (a))

Theorem 3. The Approved Models Semantics is Relevant.
a ∈ AMS(P) ⇔ AMS(RelP (a))

Proof. Let P be a NLP. By definition (see above), the semantics of P according to the
Approved Models Semantics is the intersection of the positive parts of all the Approved
Models of P . I.e., AMS(P) = AM+(P) =

⋂
AMP (M) M+

“⇒” Let a be an atom of P , i.e., a positive literal of P , belonging to AMS(P).
Then, necessarily a ∈ M+ for any AMP (M). We know by definition that a ∈ M+ iff
a ∈ least(P ∪M), and since the least operator just computes the set of heads of rules
whose body is satisfied — in this case by the interpretation M — a is in M because one
of the rules with a as head, i.e. one of the Relevant Rules for a, has its body satisfied by
M . Then, in this case, clearly, a ∈ AMS(RelP (a)).

464 L.M. Pereira and A.M. Pinto

“⇐” Consider now that a ∈ AMS(RelP (a)). For the same reason — knowing that
a ∈ M iff a ∈ least(P ∪ M) — it is easy to see that any rule r ∈ P we might add
to RelP (a) which does not change RelP (a), i.e. r is not Relevant for a in P , will not
affect the fact that a ∈ AMS(RelP (a)) and hence that a ∈ AMS(RelP (a) ∪ {r}).
Therefore we can conclude that a ∈ AMS(P), where P ⊇ RelP (a). ��

Cumulativity

Definition 16. Cumulative Semantics. This definition is taken from [5]. Let P be an
NLP, and Sem a semantics for NLPs. We say the semantics Sem is Cumulative (or
that it enjoys Cumulativity) iff the Semantics of P remains unchanged when any atom
considered true in the Semantics is added to P as a fact

Cumulative(Sem) ⇔ ∀P∀a,ba ∈ Sem(P) ∧ b ∈ Sem(P) ⇒ a ∈ Sem(P ∪ {b})
Theorem 4. The Approved Models Semantics is Cumulative.

∀P∀a,ba ∈ AMS(P) ∧ b ∈ AMS(P) ⇒ a ∈ AMS(P ∪ {b})
Proof. Let P be a NLP. a ∈ AMS(P)∧ b ∈ AMS(P), i.e., both a and b are in all Ap-
proved Models of P . By definition of Approved Model we know that every Approved
Model M of P satisfies M = least(P∪M), and since both a ∈ M and b ∈ M we know
that P ∪M = P ∪M∪{b}. Therefore, least(P ∪M) = least(P ∪M∪{b}) = M � a.
Since this hold for every literal a and b, and for every Approved Model M , it also holds
for their intersection. ��

2.5 Further Requirements: Respecting the Well-Founded Model

Although the Approved Models semantics enjoys already some nice properties as seen
above, it still lacks a feature important for practical implementations and applicability:
the respect for the program’s natural stratification. This is the motivation for the further
requirements we present next. These, when enforced, guarantee that respect which was
already guaranteed by the Revised Stable Models semantics and this is the reason why
we relate the Revised Stable Models semantics and the Approved Models semantics.

Definition 17. Well-Founded Model of a Normal Logic Program P . According to
[3] the true atoms of the Well-Founded Model of P (the irrefutably true atoms of P)
can be calculated as the Least Fixed Point of the Gelfond-Lifschitz operator iterated
twice — Γ 2

P . Formally, WFM+(P) = lfp(Γ 2
P ↑ω (∅)). Also according to [3] the

true or undefined literals of a program can be calculated as the consequences of as-
suming as true the true atoms of the Well-Founded Model. Formally, WFM+u(P) =
ΓP (WFM+(P)) ⊇ WFM+(P). So, the just undefined literals of P are WFMu(P)
= WFM+u(P)\WFM+(P). And finally, the false atoms of the Well-Founded Model
of a Program P (the irrefutably false atoms of P) are, necessarily, the atoms of P which
are neither true nor undefined. Formally, WFM−(P) = Atoms(P) \ WFM+u(P).

Definition 18. Atom a respects the subset S of Atoms of P . Let P be a NLP, a an
atom of P , and S ⊆ Atoms(P) a subset of Atoms of P . We say a respects S in P iff a
remains true or undefined in the Well-Founded Model of P when the context S is added
to P as facts. Formally, RespectsP (a, S) ⇔ a ∈ WFM+u(P ∪ S).

Approved Models for Normal Logic Programs 465

Definition 19. Undefined part of the Model M — Mu. Let P be a NLP, and M an
Approvable Interpretation of P . We write Mu to denote the subset of M+ of which
all atoms are undefined in the Well-Founded Model of P . Formally, Mu = M+ ∩
WFMu(P). These are the only atoms that might come under reductio ad absurdum.

The concept of USP (M, a), presented next, is based on the core idea of finding the
subset of atoms of Mu which influence the truth value of a. To find such set we recur
to the Well-Founded Model calculus because, as it is based upon the Γ 2

P monotonic
operator, it draws conclusions from premises according to the implication-based rules
of the program. Therefore, when an atom a is concluded true by the Well-Founded
Model we know that its truth value was calculated using only the part of the program in
the call-graph for the atom a. We show this and the following concepts in example 6.

Definition 20. Undefined Support of Model M for atom a in P — USP (M, a). Let
P be an NLP, M an Approvable Interpretation of P and a an atom of M+. We write
USP (M, a) to denote the subset of atoms of Mu which support the truth value of a.
Formally,

USP (M, a) = {b ∈ Mu : ∃S⊆Atoms(P)

(
a ∈ WFMu(P ∪ S) ∧ a /∈ WFMu(P ∪

S ∪ {b}))}
By this definition we see b has critical influence on the undefinedness of the truth

value of a under some context S: when b is not added as a fact a remains undefined,
when b is added as a fact a becomes defined (true or false, but no longer undefined).

Next, we present the concept of USSP (M, a). The idea behind it is a stricter form
of the previous one. We want USSP (M, a) to include all the atoms in USP (M, a)
except for those which are in a loop (a call-graph loop) with a. So, roughly, the atoms
in USSP (M, a) are all in strictly lower strata if we considered a kind of stratification
where all the atoms in a loop belong to the same strata. To obtain such a set we remove
from USP (M, a) all the atoms b for which a is an element of USP (M, b). If a depends
on b and b depends on a then there is a loop between a and b.

Definition 21. Undefined Strict Support of Model M for atom a in P —
USSupP (M, a). Let P be an NLP, M an Approvable Interpretation of P and a an
atom of M+. We write USSP (M, a) to denote the subset of atoms of Mu which support
the truth value of a and whose truth value is in turn not influenced by a. Formally,

USSP (M, a) = USP (M, a) \ {b ∈ USP (M, a) : a ∈ USP (M, b)}
In a nutshell, the atoms in USSP (M, a) are guaranteed not to be in a loop with a

— as happens with b in, for example, a program like a ← not b b ← not a.

We wish to assume the literals in I to be true, hence we add them to P as facts obtaining
P ∪ I . Now we want to calculate what is necessarily true and necessarily false in that
resulting program P ∪ I . For that we calculate the Well-Founded Model of P ∪ I ,
namely its Positive and Negative parts. We now say M Respects I iff all the atoms
in the Positive part of the Well-Founded Model of P ∪ I are also considered true by
M , and all the atoms in the Negative part of the Well-Founded Model of P ∪ I are
also considered false by M . So, there are no contradictions between M and the Well-
Founded Model of P ∪ I . This is the rationale behind the next definition.

466 L.M. Pereira and A.M. Pinto

Definition 22. M Respects Interpretation I in P — RespectsP (M, I). Let P be an
NLP, M an Approvable Interpretation of P , and I an arbitrary Interpretation in P .
We say M Respects the Interpretation I in P iff the Positive Part of the Well-Founded
Model of P ∪ I is totally contained in M+, and the Negative Part of the Well-Founded
Model of P ∪ I is totally contained in M−. Formally,

RespectsP (M, I) ⇔ (
M+ ⊇ WFM+(P ∪ I)

) ∧ (
M− ⊇ not WFM−(P ∪ I)

)
Since M+ ∩ M− = ∅ it follows trivially that if RespectsP (M, I) then M+ ∩

WFM−(P ∪ I) = ∅ and (not M−) ∩ WFM+(P ∪ I) = ∅
Example 6. Respect and Dir-Respect for the USSP (M, a). Consider NLP P =

i ← not k t ← a, b a ← not b
k ← not t b ← not a
There are four Approvable Interpretations for P : M1 = {a, k, not b, not t, not i},

M2 = {b, k, not a, not t, not i}, M3 = {a, t, i, not b, not k}, and
M4 = {b, t, i, not a, not k}. Models M1 and M2 are symmetrical on a and b, and the
same happens with M3 and M4. So, we will just examine M1 and M3 without any loss
of information.

Let us calculate the USP (M1, a). Mu
1 = {a, k} = M+

1 . If we add k as a fact
to P , a will remain undefined; however, when we add a as a fact to P , k becomes
defined, in this case true. Since there are no other possible subsets of Mu

1 to con-
sider we have USP (M1, a) = {a} and USP (M1, k) = {a}. It is now simple to
calculate USSP (M1, a) = ∅ and USSP (M1, k) = {a}. Notice that the check for
RespectsP (M1, USSP (M1, a)) is trivial because USSP (M1, a) = ∅. Also,
RespectsP (M1, USSP (M1, k)) holds because, as we have already seen, adding {a} =
USSP (M1, k) to P as a fact renders a true. The case with M3 is quite different.
Mu

3 = {a, t, i}. USP (M3, a) = {a}, USP (M3, t) = {a}, and USP (M3, i) = {a, t}.
USSP (M3, a) = ∅, USSP (M3, t) = {a}, and USSP (M3, i) = {a, t}. Clearly,
RespectsP (M3, USSP (M3, a)) holds. However,
RespectsP (M3, USSP (M3, t)) does not hold. It suffices to check that adding {a} ⊆
USSP (M3, t) to P as a fact, t, which was considered true in M3, becomes now false
in the WFM(P ∪ {a}).
Definition 23. Strict Model M of a program P . Let P be a NLP. An Approvable
Interpretation M is Strict in P iff for any atom a in M+, M Respects its own Undefined
Strict Support, i.e. StrictP (M) ⇔ ∀a∈M+RespectsP (M, USSP (M, a))

Conjecture 1. M+ is a Revised Stable Model [12] of a NLP P iff M is an Approved
Model and a Strict Interpretation of P .

Conjecture 2. M = M+ ∪ M− is an Approved Model of a NLP P iff there is some
Revision Complete Scenario H of P , where H = H+ ∪ H− and H+ ⊆ M+ and
H− = M−.

2.6 Integrity Constraints

Example 7. Middle Region Politics Revisited. Recall the Example 3 presented earlier.
We are now going to add extra complexity to it.

We already know the two factions which are at odds and their thinking.

Approved Models for Normal Logic Programs 467

oppression ← not end_of_terrorism end_of_terrorism ← oppression
terrorism ← not end_of_oppression end_of_oppression ← terrorism

We now combine these two sets of rules with the two following Integrity Constraints
(ICs) which guarantee that oppression and end_of_oppression are never simultane-
ously true; and the same happens with terror:

falsum ← oppression, end_of_oppression
falsum ← terrorism, end_of_terrorism

As the reader can see, we write ICs not as OLONs of length 1 as it is usual in the Stable
Models community, but we write them as simple, normal rules which have as head a
special literal falsum. This literal is “special” not because the Approved Models Se-
mantics treats it in any differently, but just because the programmer writing the rules
uses it only for the purpose of writing ICs, i.e., falsum is not to be used for any other
purposes in the program. So far so good, there is still a single joint set of hypotheses
resulting in a consistent scenario {end_of_oppression, end_of_terrorism}. Still,
there is no SM for this program. But introducing either one or both of the next two
rules, makes it impossible to satisfy the ICs:

oppression ← not terrorism terrorism ← not oppression
In this case all the Approved Models contain the atom falsum. There are still no

Stable Models for the resulting program. The semantics we propose allows two mod-
els for this program, corresponding to the 2-valued complete consistent models, both
containing falsum. We can discard them or examine the failure to satisfy the ICs.

When posing a query to be solved in a top-down call-graph oriented manner, if the
user wants to make sure falsum is not part of the answer, (s)he just needs to conjoin
not falsum to the query conjunction. When using the SMs Semantics, typically ICs are
written as OLONs of length 1 (e.g. falsum ← IC_Body, not falsum). This is done
to take advantage of the characteristics of that semantics, in particular to take advantage
of the fact that the SMs do not deal with OLONs (in the sense that it does not provide a
semantics to them) and, therefore, eliminate the interpretations which would “activate”
the OLON by rendering the IC_Body true. Since the Approved Models Semantics
gives a semantics to all NLPs it has no special features to take advantage from in order
to prune undesired interpretations. The programmer just writes the ICs as depicted in
the example 7 above and, if (s)he wants to, asks for models without the falsum atom.

3 Conclusions

We have presented a new 2-valued semantics for Normal Logic Programs, based upon
the previous work on Argumentation by Phan Minh Dung. This new semantics con-
servatively extends the Stable Models Semantics with the advantage of enjoying three
useful properties: guarantee of model Existence for every NLP; Relevancy, allowing
for top-down query-driven proof-procedures; and Cumulativity. Using our semantics,
we have showed how Integrity Constraints can be written in a simpler way and dealt
with in a very intuitive manner. All previously known results about the Stable Models
Semantics, when it exists, and their good properties are kept intact. The work presented

468 L.M. Pereira and A.M. Pinto

is based upon valuable results of years of effort the scientific community has placed in
studying the Stable Models Semantics and the Argumentation framework of Dung. We
take another step forward, by adding reductio ad absurdum to argumentation in NLPs.

References

1. Alferes, J.J., Brogi, A., Leite, J.A., Pereira, L.M.: Evolving logic programs. In: Flesca, S.,
Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp. 50–61.
Springer, Heidelberg (2002)

2. Alferes, J.J., Pereira, L.M.: An argumentation theoretic semantics based on non-refutable
falsity. In: Dix, J., et al. (eds.) NMELP, pp. 3–22. Springer, Heidelberg (1994)

3. Baral, C., Subrahmanian, V.S.: Dualities between alternative semantics for logic program-
ming and nonmonotonic reasoning. J. Autom. Reasoning 10(3), 399–420 (1993)

4. Bondarenko, A., Dung, P.M., Kowalski, R.A., Toni, F.: An abstract, argumentation-theoretic
approach to default reasoning. Artif. Intell. 93, 63–101 (1997)

5. Dix, J.: A Classification-Theory of Semantics of Normal Logic Programs: I, II. Fundamenta
Informaticae XXII(3), 227–255, 257–288 (1995)

6. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artif. Intell. 77(2), 321–358 (1995)

7. Dung, P.M., Kowalski, R.A., Toni, F.: Dialectic proof procedures for assumption-based, ad-
missible argumentation. Artif. Intell. 170(2), 114–159 (2006)

8. Fages, F.: Consistency of Clark’s completion and existence of stable models. Methods of
Logic in Computer Science 1, 51–60 (1994)

9. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: ICLP/SLP,
pp. 1070–1080. MIT Press, Cambridge (1988)

10. Kakas, A.C., Mancarella, P.: Negation as stable hypotheses. In: LPNMR, pp. 275–288. MIT
Press, Cambridge (1991)

11. Malý, M.: Complexity of revised stable models. Master’s thesis, Comenius University
Bratislava (2006)

12. Pereira, L.M., Pinto, A.M.: Revised stable models - a semantics for logic programs. In:
Bento, C., Cardoso, A., Dias, G. (eds.) EPIA 2005. LNCS (LNAI), vol. 3808, pp. 29–42.
Springer, Heidelberg (2005)

13. Pereira, L.M., Pinto, A.M.: Reductio ad absurdum argumentation in normal logic programs.
In: Argumentation and Non-monotonic Reasoning (ArgNMR 2007) workshop at LPNMR
2007, pp. 96–113 (2007)

14. Pinto, A.M.: Explorations in revised stable models — a new semantics for logic programs.
Master’s thesis, Universidade Nova de Lisboa (February 2005)

15. Soares, L.: Revising undefinedness in the well-founded semantics of logic programs. Mas-
ter’s thesis, Universidade Nova de Lisboa (2006)

Permutative Additives and Exponentials�

Gabriele Pulcini

Laboratoire d’Informatique de l’Université Paris-Nord
99, avenue Jean-Baptiste Clément – 93430 Villetaneuse

gabriele.pulcini@lipn.univ-paris13.fr

Abstract. Permutative logic (PL) is a noncommutative variant of mul-
tiplicative linear logic (MLL) arising from recent investigations concern-
ing the topology of linear proofs. Permutative sequents are structured as
oriented surfaces with boundary whose topological complexity is able to
encode some information about the exchange in sequential proofs. In this
paper we provide a complete permutative sequent calculus by extending
that one of PL with rules for additives and exponentials. This extended
system, here called permutative linear logic (PLL), is shown to be a
conservative extension of linear logic and able to enjoy cut-elimination.
Moreover, some basic isomorphisms are pointed out.

1 Introduction

Linear logic (LL) presents a remarkable skill in emphasizing geometrical fea-
tures of logical proofs. LL comes in fact with a double syntax: the usual one in
terms of sequential rules, and a more geometrical one, constituted by a set of
links which allow to turn sequential proofs into graphs called proof-nets. Proof-
nets quotient on the class of linear demonstrations enabling to avoid pointless
syntactical bureaucracies [9], [7].

Studies on logical noncommutativity take advantage from this more geomet-
rical approach due to the fact that the use of the exchange in a sequential proof
affects the genus of its corresponding net. Cyclic logic (namely, linear logic in
which only cyclic exchanges are allowed) [16] constitutes a limit case in which
cut-free proofs always induce planar proof-nets [1]. This kind of results have
been progressively generalized by topological investigations on linear proofs due
to Bellin, Fleury [6], Melliès [12] and Métayer [13]. In particular, Métayer has
proposed a way to translate any proof-net Π into a (compact and orientable)
surface with boundary S (Π), such that:

– the rank of S (Π) constitutes a lower bound for the complexity of the ex-
change inside the proof π sequentialisation of Π [13];

– S (Π) represents the minimal surface on which Π can be drawn without
crossings [8].

� Research supported by the Regional Council of île-de-France.

N. Dershowitz and A. Voronkov (Eds.): LPAR 2007, LNAI 4790, pp. 469–483, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

470 G. Pulcini

By stressing the fact that topology tells about exchange, the above-mentioned
works have induced the following non-commutative variants of MLL: planar logic
[12], the calculus of surfaces [8] and, later, permutative logic [5]. Such calculi stand
out for dealing with sequents structured as orientable surfaces with boundary.
Being more precise, each sequent turns out indexed by a natural number (count-
ing the handles) and with formulas grouped into disjoint cycles forming in this
way a permutation (denoting, cycle by cycle, each boundary-component). Such
structures (permutations with attached a natural number) have been called q-
permutations [5] and separately studied in [14].

Unlike planar logic and the calculus of surfaces, PL comes with two explicit
structural rules of divide and merge (topologically corresponding to an amal-
gamated sum) and it enjoys the two fundamental proof-theoretical properties
of cut-elimination and focussing. Moreover, thanks to permutative modalities
and constants, PL provides a specific mechanism able to manage (topological)
resources during proof-construction [5].

This paper should be considered as the continuation of the first one in which
the multiplicative fragment of permutative logic has been introduced [5]. We
propose in fact an enrichment of the PL calculus with rules for additives and
exponentials, here called permutative linear logic (PLL). On the one hand, ad-
ditives pose the problem of establishing when two PL sequents can be con-
sidered as having same context with respect to a fixed formula in each one
of them. There are in fact two ways to introduce the &-rule in the context
of PL: either by requiring the two premises to share their permutative struc-
ture or by enabling two premises having different structures to be "mixed".
In accordance with the fact that the &-rule should be negative in sense of
Andreoli’s property of focussing, we decide to "officially" adopt the first so-
lution. Nevertheless, we also propose an alternative version of the &-rule in
which structural rules are compacted and optimized: this version would be use-
ful towards both a semantics and a theory of proof-nets for PL (remark that,
in proof-nets, structural transformations should not explicitly appear). On the
other hand, exponentials are treated in the standard way, i.e. as central el-
ements essentially aside from the inner structure of sequents [15]. The infer-
ence system obtained in this way is shown to be a conservative extension of
LL and able to enjoy cut-elimination. By stressing this latter property, we re-
call the notion of logical isomorphism and we point out some basic permutative
isomorphisms.

The extension we propose in these pages is legitimate by the need of having a
complete counterpart of non-commutative logic [2] in which, instead of the usual
approach rooted in serial and parallel combinators, logical non-commutativity
is approached from the more geometrical point of view afforded by topology.
In our opinion, this change of viewpoint may offer an interesting framework in
which reconsider some of the typical problems related with non-commutativity,
for instance, problems arising in studies on linguistics and concurrency.

Permutative Additives and Exponentials 471

2 Multiplicative Permutative Logic

2.1 The Sequent Calculus

The well-known classification theorem for 2-dimensional surfaces says that any
compact and connected orientable surface turns out to be homeomorphic to a
sphere or to a connected sum of tori possibly with boundary [11]. If we consider
an orientable surface S as the final result of identifying edges having same
label in a set of polygons forming an its topological presentation, we have that
each boundary-component will be formed by at least one edge. Let ∂S be the
set of labels occurring on the boundary of S : since fixed an orientation, we
can notice that S induces a cyclic order on each one of the subsets of ∂S
corresponding to boundary-components. In other words, we obtain nothing else
but a permutation on ∂S . The idea leading to the notion of q-permutation
is that the basic information concerning any orientable connected surface S
can always be encoded by a very easy mathematical structure consisting in
a permutation σ (denoting cycle by cycle the boundary ∂S) together with a
natural number q counting the number of tori in the connected sum forming S .
Remark that the number of connected tori forming a surface S corresponds to
the number of handles appearing on S . In this way, q-permutations are able to
characterize orientable connected surfaces modulo isomorphism, namely modulo
homeomorphisms preserving the inner structure of the boundary together with
an orientation.

Definition 1 (q-permutation, PL sequent). A q-permutation is a triple
(X, σ, p), where X is a finite set, σ is a permutation on X and p ∈ N. A PL
sequent is nothing else, but a q-permutation in which the support X is a set of
linear formulas.

Example 1. It is easy to check that the surface proposedbelow iswell-characterized
by the q-permutation {(a, b, c), (d, e)}, 2.

a b

c

d

e

Notation. – Capital Greek letters Γ , Δ, Λ, . . . denote series of elements,
whereas (Γ) means that the series Γ is taken modulo cyclic exchange; Σ, Ξ,
Ψ , . . . denote sets of cycles. q-permutations are indicated with small Greek
letters α, β, γ, . . . Moreover, |α| and α[a] respectively denote the support of
α and that a ∈ |α|. In the sequel of this paper, it will be useful to adopt
a simplified notation for q-permutations obtained by omitting the support:
(X, σ, p), in which σ = (Γ1)(Γ2) . . . (Γq), will become {(Γ1), (Γ2), . . . , (Γq)}, p.
For any permutation σ, σ• denotes the number of its cycles.

– PL sequents will be denoted in two ways. We write �p (Γ1), (Γ2), . . . , (Γq) for
the PL sequent corresponding to the q-permutation {(Γ1), (Γ2), . . . , (Γq)}, p.

472 G. Pulcini

Otherwise, we directly write � α for indicating the PL sequent corresponding
to a certain q-permutation α.

Thanks to classification theorem, the topological complexity of an oriented sur-
face S can be expressed by a couple of parameters (p, q), called the genus of the
surface, such that p ∈ N is the number of handles of S and q ∈ N the number
of pieces in which its boundary turns out to be decomposed. The rank can be
straightforwardly obtained by the genus: rk(S) = 2p + q − 1, if q is non-zero;
2p, otherwise. Clearly we can associate genus and rank with q-permutations too.

Example 2. If α = {(a, b), (c), (d, e)}, 2, then its genus is given by the couple
(2, 3) and rk(α) = 6.

The multiplicative permutative calculus is recalled in Table 1; moreover, the
involutive duality is given by De Morgan rules:

(A � B)⊥ = B⊥ ⊗ A⊥ (�A)⊥ = #A⊥ �
⊥ = h ⊥⊥ = 1

(A ⊗ B)⊥ = B⊥ � A⊥ (#A)⊥ = �A⊥ h⊥ = � 1⊥ = ⊥.

By the fact that basic commutations are not provable keeping the lowest topo-
logical complexity, PL turns out to be an inference system able to deal with
logical noncommutativity. As suggested by some of the next propositions, basic
commutations can be recovered throughout the two permutative modalities �
and #. It is easy to check in fact that formulas marked with permutative modal-
ities behave as central elements, namely they can be freely moved inside sequents
without any cost in terms of topological complexity.

Notation. A1, . . . , An � B denotes the sequent �0 (A⊥1 , . . . , A⊥n , B) and A �� B
denotes the two sequents A � B and B � A.

Proposition 1. [5] The following sequents are provable in PL:

A � �A �A � A � � �A �� �#A
(A � B) � C �� A � (B � C) ��A �� �A A � �B �� �B � A
A � ⊥ �� A �⊥ �� ⊥ �(A � �B) �� �A � �B
⊥ � A �� A �� �� � �(A � B) �� �(B � A).

We can easily prove that PL without specific constants and modalities and with
indexes fixed in 0, exactly corresponds to Mellies’ planar logic; if we require in
addition the rank of sequents to be null, we just obtain cyclic logic [5].

2.2 Relaxation

We call relaxation the relation induced on q-permutations by the two structural
rules divide and merge. In particular, we say that a q-permutation β relaxes
another q-permutation α, α � β, if α can be rewritten into β throughout a
series of stuctural rules. A more formal definition is provided below.

Permutative Additives and Exponentials 473

Table 1. The sequent calculus of permutative logic

Identities

ax.
�0 (A,A⊥)

�d Σ, (Γ,A) �e Θ, (Δ,A
⊥)

cut �d+e Σ,Θ, (Γ,Δ)

Structural rules

�d Σ, (Γ,Δ)
divide �d Σ, (Γ), (Δ)

�d Σ, (Γ), (Δ)merge
�d+1 Σ, (Γ,Δ)

Logical rules

�d Σ, (Γ,A,B)
� �d Σ, (Γ,A�B)

�d Σ, (Γ,A) �e Θ, (Δ,B)⊗ �d+e Σ,Θ, (Δ,Γ,A⊗B)

�d Σ, (Γ), (A)
� �d Σ, (Γ, �A)

�d Σ, (Γ,A)
�d Σ, (Γ), (#A)

�d+1 Σ, (Γ)
� �d Σ, (Γ, �)

h �1 (h)

�d Σ, (Γ)⊥ �d Σ, (Γ,⊥)
1 �0 (1)

Definition 2. [5] Relaxation is the smallest reflexive transitive relation � on
q-permutations such that:

– divide: (X, σ, p) � (X, σ′, p), where σ′ is obtained from σ dividing one cycle
(Γ, Δ) of σ into two: (Γ) and (Δ);

– merge: (X, σ, p) � (X, σ′, p + 1), where σ′ is obtained by σ merging two
cycles (Γ) and (Δ) of σ into one: (Γ, Δ);

– degenerate merge: (X, σ, p) � (X, σ, p + 1), namely we can always merge an
empty cycle to a cycle of σ increasing of one the number p.

Remark 1. The last point of the previous definition (degenerate merge) is based
on the idea that a PL sequent may be presented in various different ways: �p
Σ, (Γ) as well as �p Σ, (Γ), ().

Remark 2. Any application of a divide or merge (possibly degenerate) rule on a
certain q-permutation increases its rank and this is the reason for which relax-
ation induces a partial order on the set of q-permutations [5].

Theorem 1 (decision of relaxation). [5],[14] For any pair of q-permutations
α = (X, σ, p) and β = (X, τ, q), we have:

α � β ⇔ q − p � n − (σ−1τ)• + σ• − τ•

2
.

474 G. Pulcini

3 Permutative Additives and Exponentials

3.1 The Sequent Calculus

Negative (resp. positive) connectives are those ones having a reversible (resp.
not reversible) introduction rule. These notions arise inside the framework of
Andreoli’s studies on the property of focussing which allow to eliminate redun-
dant non-determinism during proof-construction, by imposing a rigid alternation
between clusters of negative and positive connectives [3]. The introduction of the
basic version of the &-rule in which premises share their permutative structure
(Definition 3), allow to classify the &-connective as a negative one, without al-
tering the fundamental symmetry between negative and positive connectives we
have in linear logic. It is easy to see that structural rules commute with negative
ones; in the perspective of a focussed calculus, this aspect bears out our choice:
it means that structural rules can be relegated between generalized positive and
negative connectives, as a sort of shift rule changing the polarity.

Definition 3 (permutative additives). Rules for additives are introduced as
follows.

�p Σ, (Γ, A) ⊕L�p Σ, (Γ, A ⊕ B)

�p Σ, (Γ, B) ⊕R�p Σ, (Γ, A ⊕ B)

�p Σ, (Γ, A) �p Σ, (Γ, B)
&�p Σ, (Γ, A&B)

true�p Σ, (Γ,
) (no rule for zero).

Definition 4 (permutative exponentials). Rules for permutative exponen-
tials are introduced as follows.

�p Σ, (Γ, A)
dereliction�p Σ, (Γ, ?A)

�p Σ, (Γ)
weakening

�p Σ, (Γ, ?A)

�p Σ, (Γ, ?A), (?A, Δ)
contraction�p Σ, (Γ, ?A), (Δ)

�0?Σ, (?Γ, A)
promotion

�0?Σ, (?Γ, !A)

Remark 3. By making the following two rules of center derivable, contraction
rule induces the following two rules of center.

�p Σ, (Γ, ?A,Δ)
center(1)

�p Σ, (Γ,Δ, ?A)
∼=

�p Σ, (Γ, ?A,Δ)
weak.�p Σ, (Γ, ?A,Δ, ?A)
divide�p Σ, (Γ,Δ, ?A), (?A)
contr.�p Σ, (Γ,Δ, ?A)

�p Σ, (Γ, ?A), (Δ)
center(2)

�p Σ, (Γ), (?A,Δ)
∼=

�p Σ, (Γ, ?A), (Δ)
weak.�p Σ, (Γ, ?A), (?A,Δ)
contr.�p Σ, (Γ), (?A,Δ)

Permutative Additives and Exponentials 475

As for the two permutative modalities � and #, formulas marked with exponen-
tials behave as central elements, in other words they turn out to be essentially
aside from the inner permutative structure of sequents. This is consistent with
the standard treatment of exponentials in non-commutative systems, for instance
in non-commutative logic [15]. In spite of their centrality, permutative modalities
and exponentials remain two distinct logical objects. In fact, unlike permutative
modalities, permutative exponentials allow to recover the basic properties con-
cerning exponentials we have linear logic. In particular, as we will show in the
next theorem, we can provide a proof for �A �?A, but the converse does not
hold.

Theorem 2. The following propositions are provable in PLL.
– Commutations: A&B �� B&A; !A ⊗ B �� B⊗!A; !(A ⊗ B) ��!(B ⊗ A).
– Associativity: A&(B&C) �� (A&B)&C.
– Distributivity: A ⊗ (B ⊕ C) �� (A ⊗ B) ⊕ (A ⊗ C).
– Constants: !
 �� 1; A&
 �� A; A �
 ��
.
– Exponentials: !!A ��!A; !(A&B) �� (!A) ⊗ (!B); ?�A � �?A; �A �?A.

Proof. We respectively report the proofs of the sequents A&B � B&A, !A �
A ⊗ A, ?�A � �?A, !A ⊗ B � B⊗!A and !A � �A.

ax.
�0 (B⊥, B)⊗R �0 (B⊥ ⊕ A⊥, B)

ax.
�0 (A⊥, A) ⊗L

�0 (B⊥ ⊕ A⊥, A)
&�0 (B⊥ ⊕ A⊥, B&A)

ax.
�0 (A⊥, A)

der. �0 (?A⊥, A)

ax.
�0 (A,A⊥)

der.�0 (A, ?A⊥)
div.�0 (A), (?A⊥) ⊗

�0 (?A⊥, A⊗A), (?A⊥)
contr.�0 (?A⊥, A⊗ A)

ax.
�0 (A⊥, A)

der.�0 (A⊥, ?A)
#

�0 (#A⊥), (?A)
!�0 (!#A⊥), (?A)
��0 (!#A⊥, �?A)

ax.
�0 (B⊥, B)

ax.
�0 (A,A⊥)

der.�0 (A, ?A⊥)
!�0 (!A, ?A⊥)
div.�0 (!A), (?A⊥) ⊗

�0 (B⊥, B⊗!A), (?A⊥)
weak.�0 (B⊥, ?A⊥, B⊗!A), (?A⊥)
contr.�0 (B⊥, ?A⊥, B⊗!A)

�
�0 (B⊥

�?A⊥, B⊗!A)

ax.
�0 (A⊥, A)

der.�0 (A⊥, ?A)
#

�0 (#A⊥), (?A)
center(2)

�0 (#A⊥, ?A)

476 G. Pulcini

3.2 Embedding Linear Logic

Definition 5. We define the function "p�" from LL to PL formulas in the fol-
lowing way. If p is an atom or a constant, then pp� = p; moreover:

(A⊥)p� = (Ap�)⊥

(A � B)p� = Ap� � �Bp� (A ⊗ B)p� = #Ap� ⊗ Bp�

(A&B)p� = Ap�&Bp� (A ⊕ B)p� = Ap� ⊕ Bp�

(?A)p� =?Ap� (!A)p� =!Ap�

This function can be extended to sequents by mapping any set of formulas Σ
into the identical permutation, namely: if Σ = A1, A2, . . . , An, then Σp� =
(Ap�

1), (Ap�
2), . . . , (Ap�

n).

Theorem 3. A sequent � Σ is provable in LL if, and only if, �0 Σp� is provable
in PLL.

Proof. (⇒) We proceed by induction on the length of the LL proof π � Σ. The
base is easily verified as follows:

ax.
� A,A⊥

p�−→
ax.

�0 (A,A⊥)
divide�0 (A), (A⊥)

Then we consider some induction steps; the missing cases are immediate.

� Γ,A,B
�� Γ,A�B

p�−→
� Γ p�, (Ap�), (Bp�)

�� Γ p�, (Ap�, �Bp�)
�

� Γ p�, (Ap�
� �Bp�)

� Γ,A � B,Δ ⊗� Γ,A⊗B,Δ
p�−→

�0 Γ
p�, (Ap�)

#
�0 Γ

p�, (#Ap�) �0 (Bp�),Δp�

⊗
�0 Γ

p�, (#Ap� ⊗Bp�),Δp�

� Γ,A � Γ,B
&� Γ,A&B

p�−→ �0 Γ
p�, (Ap�) �0 Γ

p�, (Bp�)
&�0 Γ

p�, (Ap�&Bp�)

� Γ,A
weak.� Γ,A, ?B

p�−→
�0 Γ

p�, (Ap�)
weak.�0 Γ

p�, (?Ap�, ?Bp�)
divide�0 Γ

p�, (?Ap�), (?Bp�)

(⇐) It is sufficient to remark that any PLL proof π �0 Γ p� can be turned into an
LL proof π′ � Γ simply by removing all the superfluous information: structural
rules together with permutative decorations.

Permutative Additives and Exponentials 477

3.3 An Alternative Approach to Additives

In order to perform a &-rule involving two premises having different structures,
we have to relax sequents since we arrive to a compromise, a common form
allowing the application of the basic &-rule. This process of "approaching" se-
quents throughout structural rules is formalized by the set of the nearest common
stops introduced in Definition 7. Before introducing this notion some technics
concerning chains of structural transformations are required.

Notation. Let α and β be two q-permutations such that α � β. With C :
α �d/m β we denote a chain of q-permutations rewriting α into β, such that
each step of C corresponds to an application of either divide or merge rule.

Definition 6 (minimal chain). A chain is said to be minimal, if it consists
in a minimal number of steps.

Procedure 4 (computing chains) [14] Let α and β be two q-permutations
such that α � β We can obtain a chain C : α �d/m β simply by arbitrarily
applying the following three specific versions of divide and merge rules. τ denotes
the permutation of β.

If τ(a) = b :
{Σ, (a, Γ, b, Δ)}, p

divide(1);
{Σ, (a, b, Δ), (Γ)}, p

if Γ is a cycle of τ :
{Σ, (Γ, Δ)}, p

divide(2);
{Σ, (Γ), (Δ)}, p

if τ(a) = b:
{Σ, (Γ, a), (b, Δ)}, p merge.
{Σ, (Γ, a, b, Δ)}, p + 1

Example 3. Procedure 4 is here applied in order to produce a chain C : α �d/m

β.

α = {(a, b, c, d, e)}, 0
divide(1)

{(a, d, e), (b, c)}, 0
divide(2)

{(a, d), (e), (b, c)}, 0 merge
{(a, d), (e, b, c)}, 1

divide(2)
β = {(a, d), (e, b), (c)}, 1

Theorem 5. [14] If C is a chain afforded by Procedure 4, then it is minimal.

If we ignore the superfluous information concerning indexes, the divide\mer-
ge rewriting system can be seen as directly working on permutations. In this
way, any chain of q-permutations C : α �d/m β, where α = (X, σ, p) and β =

478 G. Pulcini

(X, τ, q), is implicitly a chain of permutations σ �d/m τ too. Moreover, remark
that, unlike chains of q-permutations, any chain of permutations σ �d/m τ can
be reversed into a chain τ �d/m σ such that, if σ �d/m τ is minimal, then
τ �d/m σ is minimal too.

Theorem 6. [14] Any chain of permutations implicit into a minimal chain of
q-permutations, is minimal too.

Definition 7 (nearest common stops). Let α and β be two q-permutations
sharing the support. A q-permutation ξ belongs to the set of the nearest common
stops of α and β, denoted with ncs(α, β), if, and only if, α, β � ξ and rk(ξ) is
minimal.

Proposition 2. For any pair of q-permutations α and β sharing the support,
we have:

1. ncs(α, β) = ncs(β, α);
2. ncs(α, β) �= ∅;
3. if ξ, ξ′ ∈ ncs(α, β), then they are incomparable;
4. if α � β, then ncs(α, β) = {β}.

Now we aim to provide an effective procedure able to reach elements in any set
ncs(α, β). For α and β such that α � β, we know that ncs(α, β) = {β}. The
next theorem deals with the case in which α and β are incomparable.

Theorem 7. Consider two incomparable q-permutations α = (X, σ, p) and β =
(X, τ, q), and a third one ξ obtained as follows.

According to Procedure 4, we start rewriting α in order to reconstruct
the permutation τ expressed by β: we call ξ the first q-permutation we
meet such that it relaxes β.

We have that ξ ∈ ncs(α, β).

Proof. Consider three q-permutations α = (X, σ, p), β = (X, τ, q) and ξ obtained
from α and β according to the claim of the theorem. Suppose by absurd that
ξ /∈ ncs(α, β) and consider any θ ∈ ncs(α, β) (by Proposition 2.2, we know that
ncs(α, β) �= ∅). Now consider the chain C : α �d/m β′, where β′ = (X, τ, q+k),
computed in order to obtain ξ. By the fact that θ ∈ ncs(α, β) and rk(θ) < rk(ξ),
there exist two chains C1 : α �d/m θ and C2 : β �d/m θ respectively shorter
than C ′1 : α �d/m ξ and C ′2 : β �d/m ξ. So, we have a chain of permutations
σ �d/m τ shorter than that one implicit in C which is, by Theorem 6, absurd.

Example 4. Consider the following chain performed in order to compute an ele-
ment ξ ∈ ncs(α, β), where α = {(a, b, c, d)}, 0 and β = {(a, d, c), (b)}, 0. The first
line we meet such that it relaxes β is the third one and so ξ = {(a, d, c, b)}, 1.

α = {(a, b, c, d)}, 0
divide{(a, d), (b, c)}, 0 merge

ξ = {(a, d, c, b)}, 1
divide

β′ = {(a, d, c), (b)}, 1

Permutative Additives and Exponentials 479

At this point, we have at disposal a complete technical background for providing
a version of the &-rule, denoted with [&], which enables to mix two premises
having different structures by compacting and optimizing structural rules.

Definition 8. We write α [a′/a] for the q-permutation obtained from α by re-
placing an element a of its support with another one a′. The [&]-rules is here
introduced by indicating sequents as q-permutations.

� α � β
[&], where |α|\{A} = |β|\{B}.

� ξ ∈ ncs(α [A&B/A], β [A&B/B])

Example 5. Below we propose a concrete application of the [&]-rule together
with an its "extracted" version.

�0 (a, b, c, f1) �0 (b), (c, a, f2)
[&]

�1 (c, b, a, f1&f2)
∼=

∼=
�0 (a, b, c, f1)

divide �0 (a, f1), (b, c)merge
�1 (c, b, a, f1)

�0 (b), (c, a, f2) merge
�1 (c, b, a, f2)

&.�1 (c, b, a, f1&f2)

Thanks to the main result provided in the next section (Theorem 8), we can easily
notice that cut-elimination is preserved by replacing the basic version of the &-
rule with that one just provided in Definition 8. Remark that, unlike the basic &,
the [&] connective cannot be catalogued as a negative one because of the fact that
different conclusions may be in accordance with the same pair of premises.

4 Cut Elimination and Isomorphisms

4.1 Cut Elimination

Theorem 8. Any PL proof π �p Σ can be rewritten into a PL proof π′ �p Σ
without cuts.

Proof. Here we extend the proof already provided in [5] for the limited case of
multiplicatives. Our proof is organized in two steps. At first we remark that
cut-elimination for LL [9] implies that any PLL proof π � α can be reduced
into a PLL proof π′ � β without cuts, such that |α| = |β|. In other words, cut-
elimination preserves multisets of formulas. The second step consists in showing
that cut-elimination preserves permutative structures too. It is easy to check;
we illustrate below just some key cases of symmetric reductions.

– Contraction/promotion.

�p Σ, (Γ, ?A), (Δ, ?A)
contr. �p Σ, (Γ, ?A), (Δ)

�0?Ξ, (?Λ,A
⊥)

!�0?Ξ, (?Λ, !A
⊥)

cut�p Σ, ?Ξ, (Γ, ?Λ), (Δ)

�

480 G. Pulcini

�
�p Σ, (Γ, ?A), (Δ, ?A)

�0?Ξ, (?Λ,A
⊥)

!�0?Ξ, (?Λ, !A
⊥)

cut�p Σ, ?Ξ, (Γ, ?Λ), (Δ, ?A)

�0?Ξ, (?Λ,A
⊥)

!�0?Ξ, (?Λ, !A
⊥)

cut�p Σ, ?Ξ, ?Ξ, (Γ, ?Λ), (Δ, ?Λ)
contr.�p Σ, ?Ξ, (Γ, ?Λ), (Δ)

– Weakening/promotion.

�p Σ, (Γ)
weak. �p Σ, (Γ, ?A)

�0?Ξ, (?Δ,A
⊥)

!�0?Ξ, (?Δ, !A
⊥)

cut�p Σ, ?Ξ, (Γ, ?Δ)

� �p Σ, (Γ)
weak.�p Σ, ?Ξ, (Γ, ?Δ)

– &/⊕.

�p Σ, (Γ,A) �p Σ, (Γ,B)
& �p Σ, (Γ,A&B)

�q Ξ, (Δ,B
⊥) ⊕R

�q Ξ, (Δ,B
⊥ ⊕ A⊥)

cut�p+q Σ,Ξ, (Γ,Δ)

�

� �p Σ, (Γ,B) �q Ξ, (Δ,B
⊥)

cut.�p+q Σ,Ξ, (Γ,Δ)

4.2 Some Isomorphisms

Definition 9 (η-expansion). We inductively define the function η which as-
sociates to each PL formula F a PL proof η(F), η-expansion of F .

– For every atom A: η(A) = η(A⊥) = ax.�0 (A, A⊥)

– η(1) = 1�0 (1)

– η(h) = h�1 (h)

– η(
) =
�p Σ, (Γ,
)

– For every formula F : η(F) = η(F⊥) and, if F = ψ(F1, . . . , Fn) with ψ
positive n-ary connective, then:

η(F):

η(F1) . . . η(Fn)
ψ

ψ(F1, . . . , Fn), F⊥1 , . . . , F⊥n
ψ⊥

ψ(F1, . . . , Fn), ψ⊥(F⊥1 , . . . , F⊥n)

Definition 10 (isomorphism). Consider the proofs λ ◦ π �0 (A⊥, A) and π ◦
λ �0 (B⊥, B) obtained from the two proofs π �0 (A⊥, B) and λ �0 (B⊥, A)
respectively by cutting B with B⊥ and A with A⊥. A �� B is said to be an
isomorphism if, and only if, π ◦ λ = η(A) and λ ◦ π = η(B).

Permutative Additives and Exponentials 481

Theorem 9 (multiplicative isomorphisms). The following equivalences are
isomorphisms:

(A � B) � C �� A � (B � C) ��A �� �A A � �B �� �B � A

A � ⊥ �� A �⊥ �� ⊥ �(A � �B) �� �A � �B

⊥ � A �� A �� �� � �(A � B) �� �(B � A)

Proof. We detail below just the case of A� ⊥�� A.

1 �0 (1)
ax.

�0 (A⊥, A) ⊗
�0 (1⊗ A⊥, A)

ax.
�0 (A⊥, A) ⊥�0 (A⊥, A,⊥)

�
�0 (A⊥, A� ⊥)

cut�0 (1⊗A⊥, A� ⊥)

�

�

1 �0 (1)
ax.

�0 (A⊥, A) ⊗
�0 (1⊗ A⊥, A) ⊥�0 (1⊗ A⊥, A,⊥)

�
�0 (1⊗A⊥, A� ⊥)

1 �0 (1)
ax.

�0 (A⊥, A) ⊗
�0 (A, 1⊗ A⊥)

ax.
�0 (A,A⊥) ⊥�0 (A,⊥, A⊥)

�
�0 (A� ⊥,A⊥)

cut�0 (A,A⊥)

�

� ax.
�0 (A,A⊥)

Example 6. �#A �� �A constitutes an example of an equivalence which is not
an isomorphism too. The reduced proof on the right is not an η-expansion of
�#A, in fact it presents an application of the � rule which interrupts a block of
positive rules.

ax.
�0 (A,A⊥)

#
�0 (#A), (A⊥)

#
�0 (#A), (#A⊥)

� �0 (�#A,#A⊥)

ax.
�0 (A,A⊥)

divide�0 (A), (A⊥)
��0 (A), (�A⊥)
#

�0 (A), (#�A⊥)
��0 (�A,#�A⊥)
cut�0 (�#A,#�A⊥)

�

ax.
�0 (A,A⊥)

#
�0 (#A), (A⊥)

��0 (#A), (�A⊥)
#

�0 (#A), (#�A⊥)
��0 (�#A,#�A⊥)

482 G. Pulcini

Theorem 10 (additive and exponential isomorphisms). All the equiva-
lences listed in Theorem 2 are isomorphisms too.

5 Future Work

A focussed version of the PLL calculus should be defined by extending that one
already existing for PL [5].

Semantical issues (phase and denotational semantics) together with possible
topological interpretations of proof-nets with additives are still waiting to be
explored. The alternative approach to additives outlined in Subsection 3.3 would
be useful in both these directions. In particular, in order to translate proof-nets
into topological surfaces [13], we should be able to associate with each link of
the net, its corresponding cell. Because of in proof-nets structural rules do not
explicitly appear, the problem of associating a cell with a &-link requires to take
in account the involved structural rules, exactly what the [&]-rule makes.

Concerning exponentials, the solution proposed in these pages should be con-
sidered as a "minimalist" one, i.e. in Section 3.2 we have showed that, in order
to embed LL into PLL, it is sufficient to consider exponential formulas as es-
sentially gathered into multisets associated with ordinary permutative sequents.
However, it would be worthwhile to define exponentials in a genuine permutative
way, really sharing the permutative structure with other formulas: a deductive
system in which, for instance, rules for duplicating and absorbing formulas work
taking in account their position. In this direction, the main obstacle to overcome
consists in defining a deductive system which is still a conservative extension of
LL. In our opinion, an in-deep investigation on the relations between permutative
modalities and exponentials could be useful. Moreover, in terms of geometry, an
extension of our structures including also non-orientable surfaces might offer a
wider framework in which this kind of problems could be more properly placed.

Acknowledgements

The author wish to thank Christophe Fouqueré, Virgile Mogbil and Paul Ruet
for their support and suggestions.

References

1. Abrusci, V.M.: Lambek calculus, cyclic linear logic, noncommutative linear logic:
language and sequent calculus. In: Proofs and Linguistic Categories. Cooperativa
Libraria Universitaria Editrice Bologna, pp. 21–48 (1997)

2. Abrusci, V.M., Ruet, P.: Non-commutative logic I: the multiplicative fragment.
Annals of Pure and Applied Logic 101(1), 29–64 (2000)

3. Andreoli, J.-M.: Focussing and proof construction. Annals of Pure and Applied
Logic 107, 131–163 (2001)

4. Andreoli, J.-M.: An axiomatic approach to structural rules for locative linear logic.
In: Linear logic in computer science. London Mathematical Society Lecture Notes
Series, vol. 316, Cambridge University Press, Cambridge (2004)

Permutative Additives and Exponentials 483

5. Andreoli, J.-M., Pulcini, G., Ruet, P.: Permutative Logic. In: Ong, L. (ed.) CSL
2005. LNCS, vol. 3634, pp. 184–199. Springer, Heidelberg (2005)

6. Bellin, G., Fleury, A.: Planar and braided proof-nets for multiplicative linear logic
with mix. Archive for Mathematical Logic 37(5-6), 309–325 (1998)

7. Danos, V., Regnier, L.: The structure of multiplicatives. Archive for Mathematical
Logic 28, 181–203 (1989)

8. Gaubert, C.: Two-dimensional proof-structures and the exchange rule. Mathemat-
ical Structures in Computer Science 14(1), 73–96 (2004)

9. Girard, J.-Y.: Linear Logic: its syntax and semantics. In: Advances in Linear Logic.
London Mathematical Society Lecture Note Series, vol. 222, pp. 1–42. Cambridge
University Press, Cambridge (1995)

10. Lambek, J.: The mathematics of sentence structure. American Mathematical
Monthly 65(3), 154–170 (1958)

11. Massey, W.S.: A basic course in algebraic topology. Springer, Heidelberg (1991)
12. Melliés, P.-A.: A topological correctness criterion for multiplicative non-

commutative logic. In: Linear logic in computer science. London Mathematical
Society Lecture Notes Series, vol. 316, Cambridge University Press, Cambridge
(2004)

13. Métayer, F.: Implicit exchange in multiplicative proofnets. Mathematical Struc-
tures in Computer Science 11(2), 261–272 (2001)

14. Pulcini, G.: Computing Relaxation in Permutative Logic. Preprint downloadable
from: http://logica.uniroma3.it/?q=pubblicazioni/Pulcini%2C+Gabriele

15. Ruet, P.: Non-commutative logic II: sequent calculus and phase semantics. Math-
ematical Structures in Computer Science 10(2), 277–312 (2000)

16. Yetter, D.N.: Quantales and (non-commutative) linear logic. Journal of Symbolic
Logic 55(1) (1990)

http://logica.uniroma3.it/?q=pubblicazioni/Pulcini%2C+Gabriele

Algorithms for Propositional Model Counting�

Marko Samer and Stefan Szeider

Department of Computer Science
Durham University, UK

{marko.samer,stefan.szeider}@durham.ac.uk

Abstract. We present algorithms for the propositional model counting prob-
lem #SAT. The algorithms are based on tree-decompositions of graphs associated
with the given CNF formula, in particular primal, dual, and incidence graphs.
We describe the algorithms in a coherent fashion that admits a direct comparison
of their algorithmic advantages. We analyze and discuss several aspects of the
algorithms including worst-case time and space requirements and simplicity of
implementation. The algorithms are described in sufficient detail for making an
implementation reasonably easy.

1 Introduction

Propositional model counting (#SAT) is the problem of determining the number of
satisfying truth assignments (models) of a given propositional formula in conjunctive
normal form (CNF). This problem arises in several areas of artificial intelligence, in
particular in the context of probabilistic reasoning [3,25]. However, since the prob-
lem is #P-complete [28], it is very unlikely that it can be solved in polynomial time.
#SAT remains #P-hard even for monotone 2CNF formulas and Horn 2CNF formulas,
and it is NP-hard to approximate the number of models of a formula with n variables
within 2n

1−ε

for ε > 0. This approximation hardness holds also for monotone 2CNF
formulas and Horn 2CNF formulas [25]. Thus, restricting the syntax of the instances
does not lead to tractability.

An alternative to restricting the syntax is to impose structural restrictions on the
input formulas. Structural restrictions can be applied in terms of certain parameters
(invariants) of graphs or hypergraphs associated with formulas. In this paper we will
mainly consider the following graphs (more exact definitions are given in Section 2.3,
examples are shown in Figure 1). The primal graph has as vertices the variables of the
given formula, two variables are joined by an edge if they occur together in a clause.
Symmetrically, the dual graph has as vertices the clauses of the formula, two clauses
are joined by an edge if they share a variable. Finally, the incidence graph is a bipartite
graph where one vertex class consists of the clauses of the given formula, and the other
vertex class consists of the variables; a clause and a variable are joined by an edge if
the variable occurs in the clause. Primal and incidence graphs have been widely studied
in the literature on satisfiability and constraint satisfaction, whereas dual graphs have
received less attention.
� Research supported by the EPSRC, project EP/E001394/1.

N. Dershowitz and A. Voronkov (Eds.): LPAR 2007, LNAI 4790, pp. 484–498, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Algorithms for Propositional Model Counting 485

y

u

v

w

x

z

G(F)

C2

C5

C4 C3

C1

Gd(F)

C2
z

C5

x

C4
w

C3

v

C1

u

y

G∗(F)

Fig. 1. Graphs associated with the CNF formula F = {C1, . . . , C5} with C1 = {u, ¬v, ¬y},
C2 = {¬u, z}, C3 = {v, ¬w}, C4 = {w, ¬x}, C5 = {x, y, ¬z}; the primal graph G(F), the
dual graph Gd(F), and the incidence graph G∗(F).

We apply structural restrictions on CNF formulas by bounding the graph parameter
treewidth of the associated graphs. Treewidth, a graph parameter introduced by Robert-
son and Seymour in their Graph Minors Project, measures in a certain sense the “tree-
likeness” of a graph. Many otherwise NP-hard graph problems such as Hamiltonicity
and 3-colorability are solvable in polynomial time for graphs of bounded treewidth.
It is generally believed that many practically relevant problems actually do have low
treewidth [4]. Treewidth is based on certain decompositions of graphs, called tree-
decompositions, where sets of vertices (“bags”) of a graph are arranged at the nodes
of a tree such that certain conditions are satisfied (see Section 2.1). If a graph has
treewidth k then it admits a tree-decomposition of width k, i.e., a tree-decomposition
where all bags have size at most k+1. Depending on whether we consider the treewidth
of the primal, dual, or incidence graph of a given CNF formula, we speak of the primal,
dual, or incidence treewidth of the formula, respectively.

Owing to a general result on Monadic Second Order Logic of Courcelle, Makowsky,
and Rotics [9], the model counting problem can be solved in polynomial time for for-
mulas of bounded primal, dual, and incidence treewidth, respectively. However, the
algorithms obtained via this general method are impractical. For getting practical re-
sults, one needs to design tailor-suited algorithms for the particular problem domain.
As the algorithms under consideration are typically exponential in the treewidth, small
improvements can have a strong impact on the practicability.

Contributions of this paper

We propose three efficient model counting algorithms that utilize small primal, dual,
and incidence treewidth of instances, respectively. We present the three algorithms in a
coherent fashion that provides an insight into theoretical advantages and disadvantages
of the three parameters. Furthermore, we describe the algorithms at a level of detail that
makes an implementation reasonably straightforward.

Our three algorithms follow the principle of dynamic programming: we start at leaf
nodes of the tree-decomposition and work our way up in the tree, computing at each
node some information (stored in a table) on the subgraph thus far encountered. More

486 M. Samer and S. Szeider

details on the dynamic programming process and an analysis of space requirements is
given in Section 3.4.

The following table summarizes worst-case runtimes of the three algorithms. Here
k and N denote width and number of nodes of the given tree-decomposition of the
primal, dual, and incidence graph, respectively; d and l denote the maximum number of
occurrences over all variables and the cardinality of a largest clause of the given CNF
formula, respectively. For the bounds on the runtimes we assume arithmetic operations
to have constant runtime; in Section 3 we actually provide a refined analysis based on
bit complexity.

primal graph dual graph incidence graph

O(2kkdN) O(2kklN) O(2kk (l + 2k)N)

Note that all three algorithms are fixed-parameter algorithms with respect to the cor-
responding treewidth parameter. A fixed-parameter algorithm solves instances of size n
and parameter k in time O(f(k)nc) where f denotes a computable function and c de-
notes a constant that is independent of the parameter k [10,12,21]. The main advantage
of fixed-parameter algorithms is that the runtime increases moderately when n becomes
large, in contrast to algorithms with runtime of, say, O(nk).

The incidence treewidth algorithm is superior to the other two algorithms if the input
formula has large clauses and contains variables that occur in many clauses. Such
instances have large primal and large dual treewidth since a clause containing more
than n literals causes the primal treewidth to be at least n, a variable occurring in more
than n clauses causes the dual treewidth to be at least n (this follows from the fact that
if a graph contains a complete subgraph on more than n vertices then the treewidth of
the graph is at least n [17]).

However, our results indicate that the primal treewidth algorithm as well as the dual
treewidth algorithm are exponentially faster then the incidence treewidth algorithm,
imposing an exponential factor of 2k instead of 4k. Thus, although one can simulate
the primal and dual treewidth algorithms by the incidence treewidth algorithm (a CNF
formula of primal or dual treewidth k has incidence treewidth at most k + 1 [19]), such
a simulation increases the runtime exponentially.

We also study space requirements of the three algorithms in terms of maximum num-
ber of tables that need to be kept simultaneously in memory during the dynamic pro-
gramming process. We analyze the table requirements and explain how optimal bottom-
up traversals can be computed efficiently.

In summary, our analysis indicates that each of the three algorithms has its advan-
tages and disadvantages. One needs to choose the right algorithm depending on context
and area of the application under consideration.

Related work

Fischer, Makowsky, and Ravve [11] propose a fixed-parameter algorithm for #SAT with
respect to the incidence treewidth. Their algorithm is based on a recursive splitting of
the given formula according to a tree-decomposition of the incidence graph, making
use of the inclusion-exclusion principle.

Algorithms for Propositional Model Counting 487

Branchwidth is a graph parameter that is related to treewidth by a constant fac-
tor [24]. Bacchus, Dalmao, and Pitassi [3] propose an algorithm that solves #SAT in
time nO(1)2O(k) for formulas with n variables whose formula hypergraphs have branch-
width k. The algorithm is based on the DPLL procedure and uses caching techniques
for an efficient reuse of solutions for sub-problems; the branch-decomposition provides
an ordering of the variables as processed by the DPLL procedure. A fixed-parameter
algorithm for SAT with respect to primal treewidth has previously been proposed by
Gottlob, Scarcello, and Sideri [15].

A different approach for solving #SAT was presented by Nishimura, Ragde, and
Szeider [22]. They developed a fixed-parameter algorithm for computing strong back-
door sets with respect to cluster formulas, which yields a fixed-parameter algorithm
for #SAT. In terms of generality, the corresponding parameter clustering-width is in-
comparable with incidence treewidth.

The clique-width of directed incidence graphs of CNF formulas provides a parame-
terization that is strictly more general than the treewidth parameters considered above.
The directed (or signed) incidence graph is obtained from the incidence graph by indi-
cating positive or negative occurrences of variables by the orientation of the correspond-
ing edge. Fixed-parameter tractability of #SAT follows via the meta-theorem of Cour-
celle, Makowsky, and Rotics [8] on counting problems expressible in a certain frag-
ment of Monadic Second Order Logic (MSO1), yielding an algorithm that is double-
exponential in the width of the clique-width decomposition. A single-exponential algo-
rithm is due to Fisher, Makowsky, and Ravve [11]. However, both algorithms rely on
Oum and Seymour’s approximation algorithm for clique-width [23] which is of limited
practical value in view of its runtime of O(n9 log n) and the exponential approximation
error of 23k+2 − 1.

The various treewidth parameters can be defined analogously for instances of the
constraint satisfaction problem (CSP), considering constraints (i.e., relations) instead of
clauses. From the work of Gottlob et al. [15] it follows that the Boolean CSP is fixed-
parameter tractable with respect to the parameter primal treewidth. In contrast to SAT
and #SAT, this result cannot be generalized to the more general parameter incidence
treewidth (subject to a complexity theoretic assumption): Samer and Szeider [26] have
shown that the Boolean CSP (also known as Generalized Satisfiability) parameterized
by the incidence treewidth is W[1]-hard. W[1] is a complexity class in parameterized
complexity theory; there is strong theoretical evidence that W[1]-hard problems are not
fixed-parameter tractable [10].

In the context of constraint satisfaction several hypergraph parameters have
been considered, such as hypertree-width [14], spread-cut width [7], and fractional
hypertree-width [16]. For instances of unbounded arity (i.e., the associated hypergraphs
have hyperedges of arbitrary size) these parameters are strictly more general than in-
cidence treewidth. In the following paragraph we provide arguments that indicate that
these hypergraph parameters have no apparent significance for CNF satisfiability.

A hypergraph is acyclic if there is a tree-decomposition (of its primal graph) whose
number of nodes equals the number of hyperedges and for each hyperedge there is a
tree-node that contains exactly the vertices of the hyperedge in its bag (cf. Gottlob et
al. [14]). Note that if a hyperedge contains all the vertices of a hypergraph, then the

488 M. Samer and S. Szeider

hypergraph is acyclic and all the above mentioned hypergraph parameters equal 1.
In the following we show that satisfiability remains NP-hard for CNF formulas with
acyclic associated hypergraphs. In particular, let F be an arbitrary CNF formula and let
x be a new variable not occurring in F . Now consider the CNF formula F ′ obtained
from F by adding the clause C = var (F) ∪ {x}. Since x is a pure literal, F and
F ′ are equivalent with respect to satisfiability. The primal hypergraph of F ′, obtained
by dropping negations and considering clauses as hyperedges, is acyclic. Hence sat-
isfiability remains NP-hard for instances with acyclic primal hypergraphs. A similar
construction can be applied with respect to the dual hypergraph whose vertices are the
clauses and which contains for every variable y a hyperedge consisting of all the clauses
that contain y or ¬y. Again, let F be an arbitrary CNF formula. Take a new variable x
and obtain from F the formula F ′ by replacing every clause C with C′ = C ∪ {x} and
by adding the unit clause {¬x}. Clearly F and F ′ are equivalent with respect to satisfi-
ability. The dual hypergraph of F ′ is acyclic. Hence satisfiability remains NP-hard for
instances with acyclic dual hypergraphs.

2 Preliminaries

2.1 Tree-Decompositions

Let G be a graph, T a tree, and χ a labeling of the vertices of T by sets of vertices of G.
We refer to the vertices of T as “nodes” to avoid confusion with the vertices of G. The
tuple (T, χ) is a tree-decomposition of G if the following three conditions hold:

1. For every vertex v ∈ V (G) there exists a node t ∈ V (T) such that v ∈ χ(t).
2. For every edge vw ∈ E(G) there exists a node t ∈ V (T) such that v, w ∈ χ(t).
3. For any three nodes t1, t2, t3 ∈ V (T), if t2 lies on the path from t1 to t3, then

χ(t1) ∩ χ(t3) ⊆ χ(t2) (“Connectedness Condition”).

The width of a tree-decomposition (T, χ) is defined by maxt∈V (T) |χ(t)| − 1. The
treewidth tw(G) of a graph G is the minimum width over all its tree-decompositions.
For constant k, there exists a linear-time algorithm that checks whether a given graph
has treewidth at most k and, if so, outputs a tree-decomposition of minimum width [5].
However, the huge constant factor in the runtime of this algorithm makes it practically
infeasible. For our purposes, however, it suffices to obtain tree-decompositions of small
but not necessarily minimal width. There exist several powerful tree-decomposition
heuristics that construct tree-decompositions of small width for many cases that are
relevant in practice [6,20].

In this paper we also consider a special type of tree-decompositions. The triple
(T, χ, r) is a nice tree-decomposition of G if (T, χ) is a tree-decomposition, the tree T
is rooted at node r, and the following three conditions hold [17]:

1. Every node of T has at most two children.
2. If a node t of T has two children t1 and t2, then χ(t) = χ(t1) = χ(t2); in that case

we call t a join node.
3. If a node t of T has exactly one child t′, then exactly one of the following prevails:

Algorithms for Propositional Model Counting 489

(a) |χ(t)| = |χ(t′)|+ 1 and χ(t′) ⊂ χ(t); in that case we call t an introduce node.
(b) |χ(t)| = |χ(t′)| − 1 and χ(t) ⊂ χ(t′); in that case we call t a forget node.

It is known that one can transform efficiently any tree-decomposition of width k of a
graph with n vertices into a nice tree-decomposition of width at most k and at most 4n
nodes [17].

Let (T, χ, r) be a nice tree-decomposition of a graph G. For each node t of T let Tt
denote the subtree of T rooted at t; furthermore, let Gt denote the subgraph of G that
is induced by the set Vt =

⋃
t′∈V (Tt)

χ(t′) of vertices. Observe that (Tt, χ|V (Tt), t) is a
nice tree-decomposition of Gt.

2.2 Propositional Formulas

We consider propositional formulas F in conjunctive normal form (CNF) represented
as set of clauses. Each clause in F is a finite set of literals, and a literal is a negated or
unnegated propositional variable. For example,

F = {{¬x, y, z}, {¬y,¬z}, {x,¬y}}

represents the propositional formula (¬x∨y∨z)∧(¬y∨¬z)∧(x∨¬y). For a clause C
we denote by var(C) the set of variables that occur (negated or unnegated) in C; for a
formula F we put var(F) =

⋃
C∈F var (C). The size of a clause is its cardinality.

A truth assignment is a mapping τ : X → {0, 1} defined on some set X of variables.
We extend τ to literals by setting τ(¬x) = 1 − τ(x) for x ∈ X . A truth assignment
τ : X → {0, 1} satisfies a clause C if for some variable x ∈ var(C) ∩ X we have
x ∈ C and τ(x) = 1, or ¬x ∈ C and τ(x) = 0. A truth assignment τ : X →
{0, 1} falsifies a clause C if var (C) ⊆ X and for every variable x ∈ var (C) we have
x ∈ C and τ(x) = 0, or ¬x ∈ C and τ(x) = 1. An assignment satisfies (resp.
falsifies) a set A of clauses if it satisfies (resp. falsifies) every clause in A. A set A
of clauses is satisfiable (resp. falsifiable) if there exists a truth assignment that satisfies
(resp. falsifies) A; otherwise F is unsatisfiable (resp. unfalsifiable). Note that a set A
of clauses is unfalsifiable if and only if the union of A contains a complementary pair
of literals. For a formula F , we call a truth assignment τ : var (F) → {0, 1} a model
of F if τ satisfies F . We denote by #(F) the number of models of F . Thus, F is
satisfiable if and only if #(F) ≥ 1. The propositional satisfiability problem SAT is the
problem of deciding whether a given propositional formula in CNF is satisfiable. The
propositional model counting problem #SAT is the problem of computing #(F) of a
given propositional formula F in CNF.

2.3 Primal, Dual, and Incidence Treewidth

The primal graph G(F) of a CNF formula F is the graph with vertex set var (F); two
variables x, y are joined by an edge if and only if x, y ∈ var (C) for some clause C ∈
F . The primal treewidth (or treewidth, for short) tw(F) of a CNF formula F is the
treewidth of its primal graph, that is tw(F) = tw(G(F)).

The dual graph Gd(F) of a CNF formula F is the graph with vertex set F ; two
clauses C, C′ are joined by an edge if and only if var (C) ∩ var(C′) �= ∅. The

490 M. Samer and S. Szeider

dual treewidth twd(F) of a CNF formula F is the treewidth of its dual graph, that
is twd(F) = tw(Gd(F)).

The incidence graph G∗(F) of a CNF formula F is the bipartite graph with vertex
set F ∪ var(F); a variable x and a clause C are joined by an edge if and only if
x ∈ var(C). The incidence treewidth tw∗(F) of a CNF formula F is the treewidth of
its incidence graph, that is tw∗(F) = tw(G∗(F)).

3 The Fixed-Parameter Algorithms

Since the number of models of a CNF formula can be exponential in the number of
its variables (and thus may become too large to be stored in a single data word), we
consider in the following the bit complexity of our algorithms, i.e., instead of assuming
that arithmetic operations have constant runtime we bound their runtime by the number
of bit operations (cf. Aho, Hopcroft, and Ullman [1], pages 22–23). To this aim, we
introduce δ to denote the runtime of multiplying two n-bit integers, the computation-
ally most expensive arithmetic operation in our algorithms. In the literature there exist
several algorithms for multiplying two n-bit integers; we refer the interested reader to
Knuth’s in-depth overview [18]. One of the most prominent of these algorithms is due
to Schönhage and Strassen [18,27] and runs in time O(n log n log log n). Thus, we
can assume that δ = O(n log n log log n), where n is the number of variables of the
given CNF formula. Recently, Fürer [13] presented an even faster algorithm for integer
multiplication. If arithmetic operations are assumed to have constant runtime, that is,
δ = O(1), we easily obtain the runtimes listed in the introduction.

Due to space restrictions, proofs of the lemmas in this section have been omitted.

3.1 Parameter Primal Treewidth

For this section, let (T, χ, r) be a nice tree-decomposition of the primal graph G(F) of
a CNF formula F . Let k denote the width of (T, χ, r) and let t be a node of T . For each
truth assignment α : χ(t) → {0, 1} we define N(t, α) as the set of truth assignments
τ : Vt → {0, 1} for which the following two conditions hold:

1. τ(x) = α(x) for all variables x ∈ χ(t).
2. There is no clause in F that is falsified by τ .

We represent the values of n(t, α) = |N(t, α)| for all α : χ(t) → {0, 1} by a
table Mt with |χ(t)| + 1 columns and 2|χ(t)| rows. The first |χ(t)| columns of Mt

contain Boolean values encoding α(x) for variables x ∈ χ(t). The last entry of each
row contains the integer n(t, α).

Lemma 1. Let t be a join node of T with children t1, t2. Then, for each truth assign-
ment α : χ(t) → {0, 1}, we have

n(t, α) = n(t1, α) · n(t2, α).

Algorithms for Propositional Model Counting 491

Lemma 2. Let t be an introduce node with child t′ and χ(t) = χ(t′) ∪ {x} for a
variable x. Then, for each truth assignment α : χ(t) → {0, 1}, we have

n(t, α) =

{
0 if α falsifies some C ∈ F ;

n(t′, α|χ(t′)) otherwise.

Lemma 3. Let t be a forget node with child t′ and χ(t) = χ(t′) \ {x} for a variable x.
Then, for each truth assignment α : χ(t) → {0, 1}, we have

n(t, α) = n(t′, α ∪ {(x, 0)}) + n(t′, α ∪ {(x, 1)}).

Lemma 4. Let t be a leaf node. Then, for each truth assignment α : χ(t) → {0, 1}, we
have

n(t, α) =

{
0 if α falsifies some C ∈ F ;

1 otherwise.

By using these equalities, we can now construct the tables Mt from the leaves to the
root according to the following lemma.

Lemma 5. Let t be a node of T . Given the tables of the children of t, we can compute
the table Mt in time O(2k(kd + δ)), where d is the maximum number of occurrences
over all variables.

Theorem 1. Given a nice tree-decomposition of the primal graph of a CNF formula F ,
we can compute #(F) in time O(2k(kd + δ)N); d denotes the maximum number of
occurrences over all variables in F , k denotes the width and N the number of nodes of
the tree-decomposition.

Proof. Let (T, χ, r) be a nice tree-decomposition of the primal graph of F ; let k and N
be the width and number of nodes of (T, χ, r) respectively. Starting from the leaf nodes
of T , we compute the tables Mt for all nodes t of T in a bottom-up ordering. Each table
can be computed by Lemma 5 in time O(2k(kd + δ)). Since we have

#(F) =
∑

α:χ(r)→{0,1}
n(r, α),

we can read off #(F) from the table Mr at the root r. �
An example of this algorithm on the tree-decomposition of the primal graph in Figure 1
is shown in Figure 2. Note that, for simplicity, we have omitted those rows from the
tables where n(t, α) = 0. From table Mt0 we can read off that there are exactly 1+1+
2 + 2 + 2 + 1 + 2 + 1 = 12 models of the corresponding CNF formula. Let us remark
that our above algorithm is related to Yannakakis’ algorithm [29] for deciding whether
an acyclic constraint satisfaction instance has a solution.

492 M. Samer and S. Szeider

v, x, y, z
t1

0 0 0 0

0 0 1 0

0 0 1 1

0 1 0 0

0 1 1 0

0 1 1 1

1 0 0 0

v x y z

2

1

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 1

2

1

1

1

1

2

1

2

1

1

0 1 0 1

n

t2 v, x, y, z

0 0 0 0

0 0 1 0

0 0 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 0 1

v x y z

1 1 1 0

1 1 1 1

1

1

1

1

1

1

1

1 0 1 0

n

2

2

2

v, y, z
t3

0 0 0

0 0 1

v x y

1

n

1 0 0

1 0 1

1 1 0

1 1 1

1

2

2

1

1

t4 v, x, y

0 0 0

0 0 1

v y z

1

n

0 1 0

0 1 1

1 0 0

1 0 1

2

1

2

1

2

11 1 1

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

u v y z n

1

1

1

1

1

1

1

1

1

1

v, x, y, zt0

0 0 0 0

0 0 1 0

0 0 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 1

v x y z n

1

1

2

2

2

1

2

1

0 0 0

1 0 0

1 1 0

1 1 1

v w x

1

n

1

1

1

t7 v, w, x

u, v, y, z
t5 t6 v, x

v x

0 0

n

1

2

1 1 1

1 0

Fig. 2. Solving #SAT on a nice tree-decomposition of the primal graph

3.2 Parameter Dual Treewidth

For this section, let (T, χ, r) be a nice tree-decomposition of the dual graph Gd(F) of a
CNF formula F . Let k denote the width of (T, χ, r) and let t be a node of T . For each
subset A ⊆ χ(t) we define N(t, A) as the set of truth assignments τ : var(Vt) → {0, 1}
for which the following two conditions hold:

1. Every clause in A is falsified by τ .
2. Every clause in Vt \ χ(t) is satisfied by τ .

We represent the values of n(t, A) = |N(t, A)| for all A ⊆ χ(t) by a table Mt with
|χ(t)| + 1 columns and 2|χ(t)| rows. The first |χ(t)| columns of Mt contain Boolean
values encoding membership of C in A for clauses C ∈ χ(t). The last entry of each
row contains the integer n(t, A).

Lemma 6. Let t be a join node of T with children t1, t2. Then, for each set A ⊆ χ(t),
we have

n(t, A) =
n(t1, A) · n(t2, A)
2|var(χ(t))\var(A)| .

Algorithms for Propositional Model Counting 493

Lemma 7. Let t be an introduce node with child t′ and χ(t) = χ(t′) ∪ {C} for a
clause C. Then, for each set A ⊆ χ(t), we have

n(t, A) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0 if A is unfalsifiable;

n(t′, A) · 2|var(C)\var(χ(t′))| otherwise, if C /∈ A;
n(t′, A \ {C})

2|var(C)∩(var(χ(t′))\var(A\{C}))| otherwise, if C ∈ A.

Lemma 8. Let t be a forget node with child t′ and χ(t) = χ(t′) \ {C} for a clause C.
Then, for each set A ⊆ χ(t), we have

n(t, A) = n(t′, A) − n(t′, A ∪ {C}).
Lemma 9. Let t be a leaf node. Then, for each set A ⊆ χ(t), we have

n(t, A) =

{
0 if A is unfalsifiable;

2|var(χ(t))\var(A)| otherwise.

By using these equalities, we can now construct the tables Mt from the leaves to the
root according to the following lemma.

Lemma 10. Let t be a node of T . Given the tables of the children of t, we can compute
the table Mt in time O(2k(kl + δ)), where l is the size of a largest clause.

Theorem 2. Given a nice tree-decomposition of the dual graph of a CNF formula F ,
we can compute #(F) in time O(2k(kl + δ)N); l denotes the size of a largest clause,
k denotes the width and N the number of nodes of the tree-decomposition.

Proof. Let (T, χ, r) be a nice tree-decomposition of the dual graph of F ; let k and N
be the width and number of nodes of (T, χ, r) respectively. Starting from the leaf nodes
of T we compute the tables Mt for all nodes t of T in a bottom-up ordering. Each table
can be computed by Lemma 10 in time O(2k(kl + δ)). Now we show how to compute
#(F) from table Mr at the root r. To this aim, recall that n(r, A) is the number of truth
assignments τ : var(F) → {0, 1} such that every clause in A is falsified by τ and
every clause in F \ χ(r) is satisfied by τ . Thus, it is easy to see that we can compute
the number of models of F from the entries of Mr in the following way:

#(F) =
|χ(r)|∑
i=0

(
(−1)i

∑
A⊆χ(r), |A|=i

n(r, A)
)

We can do this by going through all at most 2k+1 choices of A ⊆ χ(r): Starting with
an initial value of 0, we add or subtract n(r, A), depending on whether the cardinality
of A is even or odd. This can be done in time O(2k(k + δ)). �
An example of this algorithm on the tree-decomposition of the dual graph in Figure 1
is shown in Figure 3. Note that, for simplicity, we have omitted those rows from the
tables where n(t, A) = 0. From table Mt0 we can read off that there are exactly
36 − 6 − 12 − 8 + 2 = 12 models of the corresponding CNF formula.

494 M. Samer and S. Szeider

C1, C4, C5 C1, C4, C5

C1, C4, C5

C1 C4 C5 n
0 0 0 48

0 0 1 8

0 1 0 12

1 0 0 8

1 1 0 2

C1 C4 C5 n
0 0 0 48

0 1 0 16

0 0 1 6

1 0 0 8

1 1 0 2

C1, C4C1, C5
0 1 4

1 0 4

C1 C5 n

0 0 24
0 1 8

1 0 4

C1 C4 n

0 0 24

1 1 1

C1, C3, C4C1, C2, C5

C1 C2 C5 n
0 0 0 32

0 0 1 4

1 0 0 4

0 1 0 8

C1 C3 C4 n
0 0 0 32

0 0 1 8

1 0 0 4

1 0 1 1

0 1 0 8

C1 C4 C5 n

0 0 1 6

1 0 0 8

1 1 0 2

0 1 0 12

0 0 0 36

t0

t1 t2

t3

t6t5

t4

Fig. 3. Solving #SAT on a nice tree-decomposition of the dual graph

3.3 Parameter Incidence Treewidth

For this section, let (T, χ, r) be a nice tree-decomposition of the incidence graph G∗(F)
of a CNF formula F . Let k denote the width of (T, χ, r).

For each node t of T , let Ft denote the set consisting of all the clauses in Vt, and let
Xt denote the set of all variables in Vt, i.e., Ft = Vt ∩ F and Xt = Vt ∩ var(F). We
also use the shorthands χc(t) = χ(t) ∩ F and χv(t) = χ(t) ∩ var (F) for the set of
variables and the set of clauses in χ(t), respectively.

Let t be a node of T . For each truth assignment α : χv(t) → {0, 1} and subset
A ⊆ χc(t) we define N(t, α, A) as the set of truth assignments τ : Xt → {0, 1} for
which the following two conditions hold:

1. τ(x) = α(x) for all variables x ∈ χv(t).
2. A is exactly the set of clauses in Ft that are not satisfied by τ .

We represent the values of n(t, α, A) = |N(t, α, A)| for all α : χv(t) → {0, 1} and
A ⊆ χc(t) by a table Mt with |χ(t)| + 1 columns and 2|χ(t)| rows. The first |χ(t)|
columns of Mt contain Boolean values encoding α(x) for variables x ∈ χv(t), and
membership of C in A for clauses C ∈ χc(t). The last entry of each row contains the
integer n(t, α, A).

Lemma 11. Let t be a join node of T with children t1, t2. Then, for each truth assign-
ment α : χv(t) → {0, 1} and set A ⊆ χc(t), we have

n(t, α, A) =
∑

A1,A2⊆χc(t), A1∩A2=A

n(t1, α, A1) · n(t2, α, A2).

Lemma 12. Let t be an introduce node with child t′.
(a) If χ(t) = χ(t′)∪{x} for a variable x, then, for each truth assignment α : χv(t′) →
{0, 1} and set A ⊆ χc(t), we have

Algorithms for Propositional Model Counting 495

n(t, α ∪ {(x, 0)}, A) =

⎧
⎪⎨
⎪⎩

0 if ¬x ∈ C for some clause C ∈ A;
∑

B′⊆B
n(t′, α, A ∪ B′)

otherwise, where
B = {C ∈ χc(t) | ¬x ∈ C};

n(t, α ∪ {(x, 1)}, A) =

⎧
⎪⎨
⎪⎩

0 if x ∈ C for some clause C ∈ A;
∑

B′⊆B
n(t′, α, A ∪ B′)

otherwise, where
B = {C ∈ χc(t) | x ∈ C}.

(b) If χ(t) = χ(t′) ∪ {C} for a clause C, then, for each truth assignment α : χv(t) →
{0, 1} and set A ⊆ χc(t), we have

n(t, α, A) =

⎧
⎪⎨
⎪⎩

n(t′, α, A) if C /∈ A and α satisfies C;

n(t′, α, A \ {C}) if C ∈ A and α does not satisfy C;

0 otherwise.

Lemma 13. Let t be a forget node with child t′.
(a) If χ(t) = χ(t′) \ {x} for a variable x, then, for each truth assignment α : χv(t) →
{0, 1} and set A ⊆ χc(t), we have

n(t, α, A) = n(t′, α ∪ {(x, 0)}, A) + n(t′, α ∪ {(x, 1)}, A).

(b) If χ(t) = χ(t′) \ {C} for a clause C, then, for each truth assignment α : χv(t) →
{0, 1} and set A ⊆ χc(t), we have

n(t, α, A) = n(t′, α, A).

Lemma 14. Let t be a leaf node. Then, for each truth assignment α : χv(t) → {0, 1}
and set A ⊆ χc(t), we have

n(t, α, A) =

{
1 if A = {C ∈ χc(t) | α does not satisfy C };
0 otherwise.

By using these equalities, we can now construct the tables Mt from the leaves to the
root according to the following lemma.

Lemma 15. Let t be a node of T . Given the tables of the children of t, we can compute
the table Mt in time O(2k(kl + 2k(k + δ))), where l is the size of a largest clause.

Theorem 3. Given a nice tree-decomposition of the incidence graph of a CNF for-
mula F , we can compute #(F) in time O(2k(kl + 2k(k + δ))N); l denotes the
size of a largest clause, k denotes the width and N the number of nodes of the tree-
decomposition.

Proof. Let (T, χ, r) be a nice tree-decomposition of the incidence graph of F ; let k
and n be the width and number of nodes of (T, χ, r) respectively. Starting from the leaf
nodes of T we compute the tables Mt for all nodes t of T in a bottom-up ordering. Each
table can be computed by Lemma 15 in time O(2k(kl + 2k(k + δ))). Since we have

#(F) =
∑

α:χv(r)→{0,1}
n(r, α, ∅),

we can read off #(F) from the table Mr at the root r. �

496 M. Samer and S. Szeider

w C1 C5 n

0 1 1 1

1 1 0 1

1 1 1 1

w C1 C5 n

0 0 1 1

0 1 1 1

1 1 1 1

w C1 C5 n

0 0 1 1

0 1 1 1

1 1 0 1

1 1 1 1

1 0 1

0 1 1

1 1 2

C1 C5 n

0 1 4

0 0 2

1 0 4

C1 C5 n

1 1 2

y C1 C5 n

0 0 0 6

0 0 1 6

1 0 0 6

1 1 0 6

1 0 1

0 1 1

1 1 1

C1 C5 n

z C1 C5 n

0 1 0 1

1 0 1 1

1 1 1 1

1 0 1

0 1 1

1 1 1

z C1 n

0 1 1

C1 C2 n

1 0 1

z C1 C2 n

0 0 1 1

0 1 0 1

1 0 0 1

1 1 0 1

1 0 1

0 1 1

1 1 1

w C5 n

0 1 1

0 0 1

1 1 1

w C1 n

w x C4 n

0 0 0 1

0 1 1 1

1 0 0 1

1 1 0 1

1 0 1

0 0 1

1 1 1

w x n

w x C5 n

0 0 1 1

1 0 1 1

1 1 0 1

v w C3 n

0 0 0 1

0 1 1 1

1 0 0 1

1 1 0 1

1 0 1

0 0 1

1 1 1

v w n

v w C1 n

0 0 0 1

1 0 1 1

1 1 1 1

0 1 0 1

1 0 1 1

u C1 C2 n

w, C1, C5

w, C1, C5

C1, C5

C1, C5

t0 y, C1, C5

t1

t3

w, C1, C5

t5

t8t7

t2C1, C5

z, C1, C5
t4

z, C1
t6

z, C1, C2

C1, C2

t9

t12

w, C5 w, C1

t10 t11

w, x, C4

w,x

w,x, C5

v, w

v, w, C1

t13 t14

t16 t17

t18 t19

u, C1, C2
t15

v, w, C3

Fig. 4. Solving #SAT on a nice tree-decomposition of the incidence graph

An example of this algorithm on the tree-decomposition of the incidence graph in Fig-
ure 1 is shown in Figure 4. Note that, for simplicity, we have omitted those rows from
the tables where n(t, α, A) = 0. From table Mt0 we can read off that there are exactly
6 + 6 = 12 models of the corresponding CNF formula.

3.4 Space Requirements

When we perform dynamic programming on a nice tree-decomposition we traverse the
nodes of the tree in an arbitrary bottom-up ordering. When we compute the table of a
node we can assume that the tables at its children are already computed and are currently
kept in memory. Once the table of a node is computed, the tables of its children can
be discarded. Thus, at some point, when the table of a node is computed, all tables
of its children are simultaneously in memory; we will refer to this scheme of table
computation as the “simultaneous updating scheme.”

Algorithms for Propositional Model Counting 497

A variant of this scheme was considered by Aspvall, Proskurowski, and Telle [2], not
requiring that the tables of children of a node are present simultaneously; the parent ta-
ble is updated whenever a child table becomes available. We will refer to the scheme of
Aspvall et al. as the “sequential updating scheme.” In view of the updating functions for
join nodes as defined in Lemmas 1, 6, and 11, respectively, one can use the sequential
updating scheme for the primal and dual treewidth algorithms. The incidence treewidth
algorithm, however, requires the simultaneous updating scheme.

The following algorithm carries out the simultaneous updating scheme on a nice tree-
decomposition (T, χ, r); the algorithm also computes for every node t the number ρ(t)
of tables required simultaneously to compute the table Mt. The algorithm is recursive,
initially t = r.

1. Clearly ρ(t) = 1 if t is a leaf; Mt can be computed independently.
2. If t has only one child t′, then recurse on the subtree Tt′ rooted at t′ and compute

the table Mt′ and the number ρ(t′). Now discard all tables of nodes below t′ and
compute the table Mt; then discard Mt′ . This gives ρ(t) = max(2, ρ(t′)).

3. If t has two children t′ and t′′, then compute ρ(t′) and ρ(t′′); w.l.o.g., assume
ρ(t′) ≥ ρ(t′′). First recurse on Tt′ and compute the table Mt′ ; discard all tables
below t′ and keep Mt′ in memory. Next recurse on Tt′′ to compute the table Mt′′ ;
discard all tables below t′′ and keep Mt′′ in memory. Now compute the table Mt

using the tables Mt′ and Mt′′ ; afterwards discard the tables Mt′ and Mt′′ . This
gives ρ(t) = max(3, ρ(t′), ρ(t′′) + 1).

Aspvall et al. [2] show that if T has N nodes than the sequential updating scheme re-
quires not more than �log2

4
3 (N + 1)� tables at any point of the computation. Using a

similar reasoning one can easily show that the simultaneous updating scheme requires
not more than �1 + log2(N + 1)� tables at any point of the computation, in particular
when the algorithm outlined above is applied. Thus the simultaneous updating scheme
requires at most one more table than the sequential one. This result suggests the use of
the simultaneous updating scheme for all three algorithms as it is slightly more conve-
nient to implement without requiring significantly more space.

References

1. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer Algorithms
chapter 1, Models of computation, pp. 1–41. Addison-Wesley, Reading (1974)

2. Aspvall, B., Proskurowski, A., Telle, J.A.: Memory requirements for table computations in
partial k-tree algorithms. Algorithmica 27(3-4), 382–394 (2000)

3. Bacchus, F., Dalmao, S., Pitassi, T.: Algorithms and complexity results for #SAT and
Bayesian inference. In: FOCS 2003, pp. 340–351. IEEE Computer Society Press, Los Alami-
tos (2003)

4. Bodlaender, H.L.: A tourist guide through treewidth. Acta Cybernetica 11, 1–21 (1993)
5. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small

treewidth. SIAM Journal on Computing 25(6), 1305–1317 (1996)
6. Bodlaender, H.L.: Discovering treewidth. In: Vojtáš, P., Bieliková, M., Charron-Bost, B.,

Sýkora, O. (eds.) SOFSEM 2005. LNCS, vol. 3381, pp. 1–16. Springer, Heidelberg (2005)

498 M. Samer and S. Szeider

7. Cohen, D., Jeavons, P., Gyssens, M.: A unified theory of structural tractability for constraint
satisfaction and spread cut decomposition. In: IJCAI 2005, pp. 72–77. Professional Book
Center (2005)

8. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization problems on
graphs of bounded clique-width. Theory of Computing Systems 33(2), 125–150 (2000)

9. Courcelle, B., Makowsky, J.A., Rotics, U.: On the fixed parameter complexity of graph
enumeration problems definable in monadic second-order logic. Discrete Applied Mathe-
matics 108(1-2), 23–52 (2001)

10. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)
11. Fischer, E., Makowsky, J.A., Ravve, E.R.: Counting truth assignments of formulas of

bounded tree-width or clique-width. Discrete Applied Mathematics (in press)
12. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)
13. Fürer, M.: Faster integer multiplication. In: STOC 2007, pp. 57–66. ACM Press, New York

(2007)
14. Gottlob, G., Leone, N., Scarcello, F.: Hypertree decompositions and tractable queries. Jour-

nal of Computer and System Sciences 64(3), 579–627 (2002)
15. Gottlob, G., Scarcello, F., Sideri, M.: Fixed-parameter complexity in AI and nonmonotonic

reasoning. Artificial Intelligence 138(1-2), 55–86 (2002)
16. Grohe, M., Marx, D.: Constraint solving via fractional edge covers. In: SODA 2006, pp.

289–298. ACM Press, New York (2006)
17. Kloks, T.: Treewidth: Computations and Approximations. Springer, Heidelberg (1994)
18. Knuth, D.E.: The Art of Computer Programming. In: Seminumerical Algorithms, chapter

4.3.3 How fast can we multiply? 3rd edn., vol. 2, pp. 294–318. Addison-Wesley, Reading
(1998)

19. Kolaitis, P.G., Vardi, M.Y.: Conjunctive-query containment and constraint satisfaction. Jour-
nal of Computer and System Sciences 61(2), 302–332 (2000)

20. Koster, A.M.C.A., Bodlaender, H.L., van Hoesel, S.P.M.: Treewidth: Computational experi-
ments. Electronic Notes in Discrete Mathematics, 8 (2001)

21. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford
(2006)

22. Nishimura, N., Ragde, P., Szeider, S.: Solving #SAT using vertex covers. In: Biere, A.,
Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 396–409. Springer, Heidelberg (2006)

23. Oum, S., Seymour, P.: Approximating clique-width and branch-width. Journal of Combina-
torial Theory, Series B 96(4), 514–528 (2006)

24. Robertson, N., Seymour, P.D.: Graph minors X. Obstructions to tree-decomposition. Journal
of Combinatorial Theory, Series B 52(2), 153–190 (1991)

25. Roth, D.: On the hardness of approximate reasoning. Artificial Intelligence 82(1-2), 273–302
(1996)

26. Samer, M., Szeider, S.: Constraint satisfaction with bounded treewidth revisited. In: Ben-
hamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 499–513. Springer, Heidelberg (2006)

27. Schönhage, A., Strassen, V.: Schnelle Multiplikation ganzer Zahlen. Computing 7, 281–292
(1971)

28. Valiant, L.G.: The complexity of computing the permanent. Theoretical Computer Sci-
ence 8(2), 189–201 (1979)

29. Yannakakis, M.: Algorithms for acyclic database schemes. In: VLDB 1981, pp. 81–94. IEEE
Computer Society Press, Los Alamitos (1981)

Completeness for Flat Modal Fixpoint Logics

(Extended Abstract)

Luigi Santocanale1,� and Yde Venema2,��

1 Laboratoire d’Informatique Fondamentale de Marseille, Université de Provence,
luigi.santocanale@lif.univ-mrs.fr

2 Institute for Logic, Language and Computation, Universiteit van Amsterdam
yde@science.uva.nl

Abstract. Given a set Γ of modal formulas of the form γ(x,p), where
x occurs positively in γ, the language L�(Γ) is obtained by adding to
the language of polymodal logic K connectives �γ , γ ∈ Γ . Each term �γ
is meant to be interpreted as the parametrized least fixed point of the
functional interpretation of the term γ(x). Given such a Γ , we construct
an axiom system K�(Γ) which is sound and complete w.r.t. the concrete
interpretation of the language L�(Γ) on Kripke frames. If Γ is finite,
then K�(Γ) is a finite set of axioms and inference rules.

Keywords: fixpoint logic, modal algebra, completeness.

1 Introduction

Suppose that we extend the language of basic (poly-)modal logic with a set
{�γ | γ ∈ Γ} of so-called fixpoint connectives, which are defined as follows.
Each connective �γ is indexed by a modal formula γ(x, p) in which x occurs only
positively, and the intended meaning of the formula �γ(p) in a labelled transition
system (Kripke model) is the least fixpoint of the formula γ(x, p),

�γ(p) ≡ μx.γ(x, p).

Many logics of interest in computer science are of this kind, such fixpoint con-
nectives can be found for instance in PDL [6]: 〈a∗〉 = μx.p ∨ 〈a〉x, in CTL [4]:
EU(p, q) = μx.p ∨ (q ∧ �x) and AFp = μx.p ∨ �x, and in LTL. Generalizing
these examples we arrive at the notion of flat modal fixpoint logic. Let L�(Γ)
denote the language we obtain if we extend the syntax of (poly-)modal logic
with a connective �γ for every γ ∈ Γ . The flat modal fixpoint logic induced by
Γ is the set of L�(Γ)-validities, i.e., the collection of formulas in the language
L�(Γ) that are true at every state of every Kripke model.

Clearly, every fixpoint connective of this kind can be seen as a macro over
the language of the modal μ-calculus. Because the associated formula γ of a
� The research of this author supported by the ANR project SOAPDC.

�� The research of this author has been made possible by vici grant 639.073.501 of the
Netherlands Organization for Scientific Research (nwo).

N. Dershowitz and A. Voronkov (Eds.): LPAR 2007, LNAI 4790, pp. 499–513, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

500 L. Santocanale and Y. Venema

fixpoint connective is itself a basic modal formula (which explains our name
flat), it is easy to see that every flat modal fixpoint language corresponds to a
relatively simple alternation-free fragment of the modal μ-calculus [7]. Despite
this restrictive expressive power, flat modal fixpoint logics such as CTL and
LTL are often preferred by end users, because of their transparency and simpler
semantics. In fact, most verification tools implement some flat fixpoint logic
rather than the full μ-calculus.

Up to now however, general investigations of flat modal fixpoint logics have
not been pursued. Our research is driven by the wish to understanding the com-
binatorics of fixpoint logics in their wider algebraic and order theoretic setting.
As such it continues earlier work by the first author [9,10]. In this paper we
move on in this direction by addressing the problem of uniformly axiomatiz-
ing flat fixpoint logics. Concretely, our main contribution concerns an algorithm
that, when given as input a (finite) set of positive formulas Γ , produces a (finite)
axiom system K�(Γ) which is sound and complete w.r.t. the standard interpreta-
tion of the language L�(Γ) in Kripke frames. Note that this result does not follow
from Walukiewicz’ completeness result for the modal μ-calculus [11]. Rather, it
should be interpreted by saying that we add to Walukiewicz’ theorem the ob-
servation that, modulo a better choice of axioms, proofs of validities in a given
flat fragments of the modal μ-calculus can be carried out inside this fragment.

Let us summarize the construction of and the ideas behind the axiom system
K�(Γ). Mimicking Kozen’s axiomatization of the modal μ-calculus, an intuitive
axiomatization would be to add to a standard axiomatization K for (poly-)modal
logic, the axiom and the derivation rule

� γ(�γ(p), p) → �γ(p) , (�γ-prefix)
from � γ(ϕ, p) → ϕ infer � �γ(p) → ϕ , (�γ-least)

for each γ ∈ Γ . These axioms and rules express that �γ(p) is the least prefix-
point of γ(−, p). The proof we present reveals that this is already a complete
axiomatization if all the formulas in Γ are disjunctive or aconjunctive in the
sense of [11,7]. However, as soon as arbitrary formulas are considered, the usual
problems on the use of conjunction within fixpoints arise obstructing the way to
completeness.

The intuitive axiomatization – which we may well call Kozen’s or Park’s [5]
axiomatization – may however be modified, and the Subset Construction [1,
§9.5] suggests how to successfully do it. Roughly speaking, this is a procedure
that transforms a γ ∈ Γ into a disjunctive system of equations – called here
P+(T γ�). It is shown in [1] that on complete lattices, the least solution of P+(T γ�)
is constructible from the least fixed point of γ. The key idea of our axiomatization
K�(Γ) is to force this relation to hold on arbitrary algebraic models, by imposing
P+(T γ�) to have a least solution, constructible from �γ .

While our methodology is based on earlier work by the first author, we extend
the results of [9] in two significant ways. First, the idea to use the subset con-
struction of Arnold & Niwiński to define an axiom system for flat modal fixpoint
logics, is novel. And second, the Representation Theorem presented in Section 6

Completeness for Flat Modal Fixpoint Logics 501

strengthens the main result of [9], which applies to complete algebras only, to a
completeness result for Kripke frames.

2 Preliminaries

We first give a formal definition of the syntax and semantics of flat modal fixpoint
logics. We then discuss the reformulation of modal logic in terms of the cover
modalities ∇i. Finally, we introduce modal �-algebras as the key structures of the
algebraic setting in which we shall prove our completeness result. For background
in the algebraic perspective on modal logic, see [2].

Flat Modal Fixpoint Logic. Throughout this paper we fix a set Γ of (poly-)
modal formulas/terms γ(x, p) where x occurs only positively, i.e. under no nega-
tion. The vector p may be different for each γ, but we decided not to make this
explicit in the syntax, in order not to clutter up notation. We also fix a finite
set I of atomic actions.

Definition 1. The set L�(Γ) of flat modal fixpoint formulas associated with Γ
is defined by the following grammar:

ϕ ::= p | ¬ϕ | ϕ1 ∧ ϕ2 | �iϕ | �γ(ϕ)

where i and γ range over I and Γ , respectively.

We move on to the intended semantics of this language. A labeled transition
system of type I, or equivalently a Kripke model, is a structure S = 〈S, {Ri |
i ∈ I }〉, where S is a set of states and Ri ⊆ S ×S is, for each i ∈ I, a transition
relation. Given a valuation v : P −→ P(S) of propositional variables as subsets
of states, we inductively define the semantics of flat modal fixed point formulas.
Most of the inductive clauses are standard, for instance:

||�iϕ||v = { x ∈ S | ∃y ∈ S s.t. xRiy and y ∈ ||ϕ||v }

In order to define ||�γ(ϕ)||v , let x be a variable which is not free in ϕ and, for
Y ⊆ S, let (v, x → Y) be the valuation sending x to Y and every other variable
y to v(y). We let

||�γ(ϕ)||v =
⋂

{ Y | ||γ(x, ϕ)||(v,x→Y) ⊆ Y } . (1)

By the Knaster-Tarski theorem, Definition (1) just says that the interpretation
of �γ(ϕ) is the least fixed point of the order preserving function sending Y to
||γ(x, ϕ)||(v,x→Y).

The Cover Modalities ∇i. We will frequently work in a reformulation of
the modal language based on the cover modalities ∇i, i ∈ I. These connectives,
taking a set of formulas as their argument, can be defined in terms of the box
and diamond operators:

∇iΦ := �i

∨
Φ ∧

∧
�iΦ,

502 L. Santocanale and Y. Venema

where �iΦ denotes the set {�iϕ | ϕ ∈ Φ}. Conversely, the standard diamond
and box modalities can be defined in terms of the cover modality:

�iϕ ≡ ∇i{ϕ,} �iϕ ≡ ∇i∅ ∨∇i{ϕ},
from which it follows that we may equivalently base our modal language on ∇i as
a primitive symbol. What makes the cover modality so useful is the distributive
law:

∇iΦ ∧∇iΦ′ ≡
∨

Z∈Φ��Φ′
∇i{ϕ ∧ ϕ′ | (ϕ, ϕ′) ∈ Z } , (2)

where Φ �� Φ′ denotes the set of relations R ⊆ Φ × Φ′ that are full in the sense
that for all ϕ ∈ Φ there is a ϕ′ ∈ Φ′ with (ϕ, ϕ′) ∈ R, and vice versa. We mention
two key corollaries of (2), but first we need some definitions.

Definition 2. Let X, Y be sets of variables. Then we define the following sets
of formulas/terms:

1. Lit(X) is the set {x,¬x | x ∈ X} of literals over X,
2. SC (X ; Y) is the set of special conjunctions of the form

∧
Λ ∧ ∧

j∈J ∇jΦj,
where Λ ⊆ Lit(X), J ⊆ I, and Φj ⊆ Y for each j ∈ J .

3. D(X) is the set of disjunctive terms over X given by the following grammar:

ϕ ::= x | ⊥ | ϕ ∨ ϕ

4. DT (X) is the set of distributive terms over X given by the following gram-
mar:

ϕ ::= x | ⊥ | ϕ ∨ ϕ | | ϕ ∧ ϕ

5. MT (X) is the set of modal terms over X given by the following grammar:

ϕ ::= x | ¬x | ⊥ | ϕ ∨ ϕ | | ϕ ∧ ϕ | ∇iΦ
where i ∈ I and Φ ⊆ MT (X).

6. MT∇(X) is the set of terms in ∇-normal form given by the following gram-
mar:

ϕ ::= ⊥ | ϕ ∨ ϕ | ∧
Λ ∧

∧
j∈J

∇jΦj ,

where Λ ⊆ Lit(X), J ⊆ I, and Φj ⊆ MT∇(X) for each j ∈ J .

Note the restricted use of conjunction in terms in ∇-normal form.

Proposition 3. Let P and Φ be sets of proposition letters, and define Y := {yΨ |
Ψ ⊆ Φ}. There is an effective procedure associating with each modal formula
ϕ ∈ DT (SC (P ; Φ)) a formula ϕ∨ ∈ D(SC (P ; Y)) such that ϕ is equivalent to
the formula obtained from ϕ∨ by uniformly substituting each variable yΨ by the
conjunction

∧
Ψ .

Proposition 4. Let X be a set of proposition letters. There is an effective pro-
cedure associating with each modal formula ϕ ∈ MT (X) an equivalent formula
ϕ− ∈ MT∇(X).

Completeness for Flat Modal Fixpoint Logics 503

Modal Algebras. We now move on to the algebraic perspective on flat modal
fixpoint logic. Recall that a modal algebra (of type I) is a structure of the form
A = 〈A,⊥,,¬,∧,∨, {�A

i | i ∈ I}〉, where each �i : A → A preserves all finite
joins of the Boolean algebra 〈A,⊥,,¬,∧,∨〉.
Definition 5. Let A = 〈A,≤〉 and B = 〈B,≤〉 be two partial orders. Suppose
that f : A → B and g : B → A are order-preserving maps such that fa ≤ b iff
a ≤ gb, for all a ∈ A and b ∈ B. Then we call (f, g) an adjoint pair, and say
that f is the left adjoint of, or residuated by, g, and that g is the right adjoint,
or residual, of f . We say that f is an O-adjoint if it satisfies the weaker property
that for every b ∈ B there is a finite set Gf (b) ⊆ A such that

fa ≤ b iff a ≤ a′ for some a′ ∈ Gf (b),

for all a ∈ A and b ∈ B.

It is well known that left adjoint maps preserve all existing joins of a poset.
Similarly, one may prove that O-adjoints preserve all existing joins of directed
sets.

Modal �-Algebras. Given a modal algebra A, a modal formula γ(x, p1, . . . , pn)
is interpreted as a map γA : A × An → A, its term function. Given a vector
b = (a1, . . . , an) ∈ An, we let γAb : A → A denote the map given by

γAb (a) := γA(b, a). (3)

Definition 6. A modal �-algebra is a modal algebra A endowed with an opera-
tion �Aγ for each γ ∈ Γ such that for each b, �Aγ (b) is the least fixpoint of γAb as
defined in (3).

In this paper we will be mainly interested in two kinds of modal �-algebras: the
“concrete” or “semantic” ones that encode a Kripke frame, and the “axiomatic”
ones that can be seen as algebraic versions of the axiom system K� to be defined
in the next section. We first consider the concrete ones.

Definition 7. Let S = 〈S, {Ri | i ∈ I }〉 be a transition system. Define, for each
i ∈ I, the operation 〈Ri〉 by putting, for each X ⊆ S, 〈Ri〉X = { y ∈ S | ∃x ∈
X s.t. yRix }. The �-complex algebra S

� is given as the structure

〈P(S), ∅, S, (·),∪,∩, { 〈Ri〉 | i ∈ I }〉.

We will also call these structures Kripke �-algebras.

Definition 8. Let A = 〈A,≤〉 be a partial order with least element ⊥, and let
f : A → A be an order-preserving map on A. For k ∈ ω and a ∈ A, we inductively
define fka by putting f0a := a and fk+1a := f(fka). If f has a least fixpoint
μ.f , then we say that this least fixpoint is constructive if μ.f =

∨
k∈ω fk(⊥). A

modal �-algebra is called constructive if �Aγ (b) is a constructive least fixpoint, for
each γ ∈ Γ and each b in A.

504 L. Santocanale and Y. Venema

We explain now why O-adjoints are relevant for the theory of the least fixed
point. If f : An −→ A is an O-adjoint, say that V ⊆ A is f -closed if y ∈ V and
a = (a1, . . . , an) ∈ Gf (y) implies ai ∈ V for i = 1, . . . , n. If F is a family of
O-adjoints f : An −→ A, say that V is F -closed if it is f -closed for each f ∈ F .

Definition 9. A family of O-adjoints F = { fi : Ani −→ A | i ∈ I } is said to
be finitary if, for each x ∈ A, the least set F-closed set containing x is finite.
The O-adjoint f : A −→ A is finitary if the singleton { f } is finitary.

Clearly, if f belongs to a finitary family, then it is finitary.

Proposition 10. If f : A −→ A is a finitary O-adjoint, then its least prefixed
point, whenever it exists, is constructive.

3 The Axiomatization

The axiomatization we shall propose depends on what is informally called the
subset construction [1, Theorem 9.3.4]. This transformation takes as input a
set of modal terms and produces a set of modal terms in ∇-normal form that
are equivalent – w.r.t. the respective least prefixed points – to the terms given
in input. Since the transformation plays an essential role both in the proposed
axiomatization as well as in the proof of its completeness, we recall it and, at
the same time, we adapt it to the setting of flat fixpoint logic.

Before carrying on, let us fix some notation. If t ∈ MT (Y ∪ P) and { sy | y ∈
Y } ⊆ MT (X) is a collection of terms indexed by Y , then we shall denote by s
such a collection, and denote by t[s/y] the result of simultaneously substituting
every variable y ∈ Y with the term sy.

In order to obtain the axiomatization, the following steps must be performed,
for each γ(x, p1, . . . , pn) ∈ Γ .

(i) Transform γ into an equivalent guarded formula. We can assume that each
occurrence of x is guarded in γ, that is, each occurrence of x is in the scope of
some modal operator. As a matter of fact, our goal is to axiomatize the least
prefixed point of γ(x). If x is not guarded in γ, then we can find terms γ1, γ2

such that the equation

γ(x, p) = (x ∧ γ1(x, p)) ∨ γ2(x, p) ,

holds on every modal algebra, and x is guarded in both γ1 and γ2. It is easily
seen that, on every modal algebra, γ and γ2 have the same set of prefixed points.
Thus, instead of axiomatizing �γ , we can equivalently axiomatize �γ2 .

(ii) Transform γ into an equivalent system of equations T γ . By Proposition 4,
we can assume that γ ∈ MT∇({ x } ∪ {P }), where P = { p1, . . . , pn }. Let SC γ

denote the set of subformulas of γ that are special conjunctions, i.e., that are of
the form

∧
Λ∧∧

j∈J ∇jΦj where Λ ⊆ Lit({ x }∪P) and J ⊆ I. If ψ ∈ SC γ , then
we modify it as follows: (a) if its set of literals Λ does not contain x, Λ ⊆ Lit(P),
then we let ψ̃ = ψ, (b) otherwise we can write ψ = x ∧ ψ′, where ψ′ is a special

Completeness for Flat Modal Fixpoint Logics 505

conjunction whose set of literals does not contain x, and, in this case, we let
ψ̃ = ψ′. Moreover, we let γ̃ = γ. Let Z = { zψ | ψ ∈ { γ } ∪ SC γ } be a set
of variables, disjoint from { x } and P , in bijection with { γ } ∪ SC γ . Express
each ψ̃, ψ ∈ { γ }∪SC γ , as the result of substituting the modified version of the
special conjunctions into a modal term tzψ

, of modal depth one, whose variables
are among Z and x:

ψ̃ = tzψ
[ϕ̃/zϕ | ϕ ∈ { γ } ∪ SC γ and ϕ is a proper subformula of ψ] .

The reader will have no difficulties verifying that each term tz is a disjunction of
special conjunctions

∧
Λ ∧ ∧

j∈J ∇jTj , where Λ ⊆ Lit(P) and t ∈ DT ({ x } ∪ Z)
whenever j ∈ J and t ∈ Tj. We call T γ = 〈Z, { tz | z ∈ Z }〉 the system
representation of γ.

(iii) Construct the system T γ� . This system is obtained from T γ by substituting
each occurrence of x with zγ . That is, if we let rz = tz[zγ/x], z ∈ Z, then
T γ� = 〈Z, { rz | z ∈ Z }〉. Observe that each term rz is a disjunction of special
conjunctions

∧
Λ∧∧

j∈J ∇jTj with now t ∈ DT (Z) (instead of t ∈ DT ({ x }∪Z)),
for j ∈ J and t ∈ Tj, and, as before, Λ ⊆ Lit(P).

(iv) Construct P+(T γ�), the powerset system of T γ� . Let Y = { yS | S ∈ P+(Z) }
be a set of new variables in bijection with P+(Z), the set of non empty subsets
of Z. For S ∈ P+(Z), let

zyS =
∧
z∈S

z ,

and denote by z the vector of terms { zy | y ∈ Y }.

Lemma 11. A collection of terms { qy | y ∈ Y } can be constructed such that

– each term qy is a disjunction of special conjunctions
∧

Λ∧∧
j∈J ∇jDj, where

Λ ⊆ Lit(P) and d ∈ D(Y) for each d ∈ Dj,
– the equations

∧
z∈S

rz = qyS [z/y] (4)

hold on every modal algebra.

The pair P+(T γ�) = 〈Y, { qy | y ∈ Y }〉 is what we call the powerset system of T γ� .
We remark that the terms qy validating the equations (4) may be constructed
by iteratively applying distributive laws of distributive lattices as well as the
distributive law (2) of the cover modalities.

(v) Produce the axiom system for γ. Recall that ψ̃, ψ ∈ { γ } ∪ SC γ , are the
modified special conjunctions of γ. Let

ψ̃�yS
=

∧
zψ∈S

ψ̃[�γ/x] , S ∈ P+(Z) ,

and, as usual, let ψ̃� be the vector of terms { ψ̃�y | y ∈ Y }.

506 L. Santocanale and Y. Venema

Definition 12. Let K be a standard axiomatization which completely axiom-
atizes the set of polymodal validities. The axiom system K�(γ) is obtained by
adding to K the axiom (�γ-prefix), the derivation rules (�γ-least), the axioms:

� qyS [ψ̃�/y] → ψ̃�yS
, S ∈ P+(Z) ,

as well as the following derivation rule:

from { � qyT [ϕ/y] → ϕyT | T ∈ P+(Z) }

infer � qyS [ψ̃�/y] → ϕyS , S ∈ P+(Z) .

Finally, the axiom system K�(Γ) is obtained as the union of all the axioms
and inferences rules of the axiom systems K�(γ), γ ∈ Γ .

The axioms and derivation rules of the form (�γ-prefix) and (�γ -least) may be
eliminated from the axiom system. We include them mainly for clarity of exposi-
tion. On the other hand, if γ itself is already in ∇-normal form, then the simpler
axiomatization, adding (�γ-prefix) and (�γ-least) to K, already suffices. We can
now formulate the main result of this paper:

Theorem 13. The axiom system K�(Γ) is sound and complete with respect to
the Kripke semantics of L�(Γ).

Soundness will be discussed in the remainder of this section, an overview of the
completeness proof will be given in the next.

Algebraic Interpretation. We elucidate now the algebraic meaning of the
proposed axiomatization. To begin with, let us formally define a modal system
(of equations) as a pair T = 〈Z, { tz }z∈Z〉 where Z is a finite set of variables
and tz ∈ MT (Z ∪ P) for each z ∈ Z. We say that a modal system is pointed
if it comes with a specified variable z0 ∈ Z. Given a modal system T and a
modal algebra A, there exists a unique function TA : AZ × AP −→ AZ such
that, for each projection πz : AZ −→ A, πz ◦ TA = tAz . We shall say that TA

is the interpretation of T in A. Whenever it exists, we shall denote by μZ .TA :
AP −→ AZ the parametrized least prefixed point of TA.

The (directed) graph of a system T has as vertices the variables Z and edges
are of the form z → z′ whenever z′ occurs in tz. We say that T is acyclic if the
graph of T contains no cycle. Let us define the iterates of a modal system by
T 1 = T , and T n+1 = 〈Z, { tz[T n/z] | z ∈ Z }〉. If T is acyclic, then T n+1 = T n

for some n ≥ 1. Let n0 be the least such integer and define S = T n0 = 〈Z, { sz |
z ∈ Z }〉. If the terms in T are not themselves variables, then each term sz of S
is a term in MT (P). If A is an arbitrary modal algebra, let SA : AP −→ AZ be
determined by πz ◦SA = sAz , z ∈ Z. It is easily seen that TA(SA(v), v) = SA(v),
and that SA is the parameterized least prefixed point of TA, SA = μZ .TA. Let
us call S the solution of T .

Let us now fix γ ∈ Γ . When presenting the axiomatization we have introduced
three modal systems T γ , T γ� , and P+(T γ�). Since γ is fixed we shall from now on

Completeness for Flat Modal Fixpoint Logics 507

and later – whenever γ is understood – omit the superscript. T , the system
representation of γ is acyclic. Also, T and T� are modal systems pointed by
zγ . Let in the following A be a fixed but arbitrary modal algebra. Since T is
acyclic let S = { sz | z ∈ Z } be its solution. It is easily argued that sAzψ

= ψ̃A,
hence, in particular, πzγ ◦ SA = sAzγ

= γA. Recall that T� is obtained from
T = 〈Z, zγ , { tz }z∈Z〉 by substituting zγ for x in every term tz. This means that
TA� is the following compose:

TA� : AZ × AP AZ × Ax × AP
〈πZ ,πzγ 〉×AP

�� AZ .
TA

��

The following Lemma shows that, in view of our axiomatizing purposes, it is
equivalent to axiomatize μx.γ or to axiomatize μZ .T�.

Lemma 14. For every modal algebra A and every vector v ∈ AP , the least
prefixed point μZ .TA� (Z, v) exists if and only if the least prefixed point μx.γ

A(x, v)
exists. If existing, they are related as follows:

μZ .TA� (Z, v) = SA(μx.γA(x, v), v) , μx.γ
A(x, v) = πzγ (μZ .TA� (Z, v)) .

The proof of the Lemma is an application of the Bekič and Rolling rules, see for
example [8, §2.3] and [3, §8.29]. It follows that, if A is a modal �-algebra, then
SA(�A(v), v) is necessarily the least fixed point of TA� .

Let us analyse now the role of the system P+(T�). If S ∈ P+(Z) and v ∈ AZ ,
let ιAyS

(v) =
∧
z∈S vz and ιA : AZ −→ AP+(Z) be defined by πyS ◦ ιA = ιAyS

(z),
S ∈ P+(Z). The meaning of the equations (4) is that the diagram

AZ × AP AZ
TA

� ��

AY × AP

ιA×AP

��
AY

P+(T�)
A

��

ιA

��

(5)

commutes. The main statement proved in [1, §9] is the following Proposition.

Proposition 15. If A is a complete modal algebra and v ∈ AP , then

ιA(μZ .TA� (v)) = μY .P+(T�)A(v) . (6)

The proof presented in [1, §1.2.15] that equation (6) holds crucially depends on
A being complete. It is not clear that this equation is derivable only on the basis
that μZ .TA� is the least prefixed point of TA� . However equation (6) holds in every
Kripke model, and if our goal is to collect the formulas valid in every Kripke
model, then we can freely add to a formal system axioms and inference rules
stating that the least solution of P+(T�) is the image by ιA of the least solution
of TA� , that is, ιA(SA(�A(v), v)). This is precisely the goal of the axiom system
K�(γ) as well as of the next Definition.

508 L. Santocanale and Y. Venema

Definition 16. A modal �-algebra A is regular if, for each γ ∈ Γ and each
v ∈ AP , ιA(SγA(�Aγ (v), v)) is the least prefixed point of P+(T γ�)Av :

ιA(SγA(�Aγ (v), v)) = μY .P+(T γ�)A(v) .

From Proposition 15, we obtain the following corollary, implying soundness.

Corollary 17. Every Kripke �-algebra is regular.

4 Overview of the Completeness Proof

Let us recall that f : A −→ B is a modal algebra morphism if the operations
〈⊥,,¬
∧, {�i | i ∈ I }〉 are preserved by f . If A and B are also modal �-algebras
then f is a modal �-algebra morphism if moreover each �γ , γ ∈ Γ , is preserved
by f . This means that

f(�Aγ (v)) = �Bγ (f ◦ v) ,

for each v ∈ AP and γ ∈ Γ . A �-algebra morphism is an embedding if it is
injective. We say that A embeds into B if there exists an embedding f : A −→ B.

Let X be a set of variables. The elements of the Lindenbaum algebra L(X) are
equivalence classes of terms whose variables are contained in X , where two terms
t, s are declared to be equivalent if � t ↔ s is derivable in the system K�(Γ).
This is a standard construction of an algebra from the syntax of the logic [2],
for example we shall have �

L(X)
γ ([t1], . . . , [tn]) = [�γ(t1, . . . , tn)]. By construction,

L(X) is a regular modal �-algebra and there is a canonical interpretation of the
variables in X as elements of L(X), sending the variable x to the equivalence
class [x] of the term x. Moreover, L(X) has the following property: whenever
A is a regular modal �-algebra and v : X −→ A is a valuation of the variables
in x as elements of A, then there exists a unique modal �-algebra morphism
f : L(X) −→ A such that f [x] = v(x) for all x ∈ X . In universal algebraic, or
categorical terms, L(X) is the free regular �-algebra over X . We recall that this
property, freeness, determines L(X) up to isomorphism of modal �-algebras. In
the sequel we shall use the words ’free regular �-algebra’ as a synonym of the
Lindenbaum algebra.

The key to the completeness of the system K�(Γ) is the following Theorem:

Theorem 18. If X is countable, then L(X) embeds in a Kripke �-algebra.

The theorem implies completeness as follows. Let X be the set of variables of a
term/
formula t. If the formula t is valid in every Kripke frame, then the equation
t = holds in every Kripke �-algebra, and thus certainly in the one that L(X)
embeds into. Consequently, the equation t = holds in the Lindenbaum algebra
L(X). This in particular implies [] = [t], that is � ↔ t is derivable in K�(Γ).
As usual, this implies that � t is derivable in K�(Γ).

Completeness for Flat Modal Fixpoint Logics 509

In turn, the proof of Theorem 18 is subdivided in many steps, which we here
collect into two main results, to be proved successively in the next two sections.

Theorem 19. The modal operators �
L(X)
i , i ∈ I, of a Lindenbaum algebra

L(X) are residuated. Moreover, L(X) is constructive.

Theorem 20. If a countable �-algebra A is constructive and its modal operators
�A
i , i ∈ I, are residuated, then A has an embedding into a Kripke �-algebra.

Since L(X) is countable whenever X is countable, Theorem 18 follows.

5 Properties of the Lindenbaum Algebra

The goal of this section is to prove that the Lindenbaum algebra L(X) is con-
structive, cf. Definition 8. We shall obtain this result by subsequently analyzing
properties of this algebra. Let us first say that a modal algebra A generated by
a set X is rigid w.r.t. X if

∧
Λ ∧

∧
j∈J

∇jYj ≤ ⊥ implies
∧

Λ ≤ ⊥ or ∃j ∈ J, y ∈ Yj s.t. y ≤ ⊥

holds in A, where Λ is a finite set of literals, J ⊆ I, and, for each j ∈ J , Yj is a
finite possibly empty set of elements of A.

Theorem 21. The free regular modal �-algebra L(X) is rigid w.r.t. X.

The proof of the Theorem depends on the following construction. If A is any
modal algebra, let us call a pair f = 〈J, { Yj | j ∈ J }〉 – where J ⊆ I and for
each j ∈ J Yj is a finite subset of A – a candidate failure for rigidness if y �≤ ⊥
whenever j ∈ J and y ∈ Yj . Given a candidate failure f, a repair for f is a
collection χ = {χyj : A −→ 2 | j ∈ J, y ∈ Yj } of Boolean algebra morphisms
such that χyj (y) = for each j ∈ J and y ∈ Yj . Observe that, by the prime filter
theorem, such a repair always exists. Define χj(z) =

∨
y∈Yj

χyj (z) if j ∈ J and,
otherwise, χj(z) = ⊥.

Definition 22. The modal algebra Af,χ has as Boolean algebra reduct the prod-
uct Boolean algebra A × 2. For i ∈ I, the modal operators �i are defined by:

�
Af,χ

i (z, w) = (�A
i z, χi(z)) .

Observe that �i are indeed modal operators, since the functions χi preserve finite
joins. The point of considering this construction is the following statement. If
K is a category of modal algebras and modal algebra morphisms, such that
whenever f is a candidate failure in A and χ is some repair of f, then Af,χ (as
well as the projection to A) belongs to K, then a modal algebra FK(X), which
is free within K, is rigid. Thus we prove:

Proposition 23. If A is a �-algebra, then Af,χ is also a �-algebra and the pro-
jection is a �-algebra morphism. If moreover A is regular, then Af,χ is regular.

510 L. Santocanale and Y. Venema

Recall the definition of the cover modalities ∇i, i ∈ I: ∇iY =
∧

�iY ∧�i

∨
Y , for

some set of variables Y . This implies that in order to consider the interpretation
of ∇i in a modal algebra A we need to fix an indexing Y0. Hence, we shall write
∇iAY0

: AY0 −→ A and observe that, using this notation, it is not the case that,
for Y ⊆ Y0, ∇iAY0

is obtained from ∇iAY by precomposing with the projections.

Proposition 24. The Lindenbaum algebra L(X) is such that, for each finite set
{ ki ∈ L(X) | i = 1, . . . , n }, the collection

F = { ki ∧
∧
j∈J

∇jL(X)
Y | i = 1, . . . , n, J ⊆ I, Y ⊆ Y0 }

is a family of finitary O-adjoints. Moreover the modal operators �
L(X)
i , i ∈ I,

are residuated.

The proof, crucially involving Theorem 21, is along the same lines as in [10], see
Propositions 5.1, 6.7, and 7.2. We are ready to state and prove the main goal of
this section.

Proposition 25. The Lindenbaum algebra L(X) is constructive.

Proof. Let us remark first that, for each fixed vector k ∈ L(X)P , the least prex-
ifed point of P+(T�)

L(X)
k : L(X)Y −→ L(X)Y exists by the definition of a regular

modal �-algebra. Let us verify that such a least prefixed point is constructive.
For each S ∈ P+(Z), πyS ◦ P+(T�)

L(X)
k is of the form

∨
j∈JS

kj ∧
∧
i∈Ij

∇iL(X)
Wi

f i

with kj constant and, for each w ∈ Wi, f iw is a join of elements in Y . Since
families of finitary O-adjoints can be closed under joins and substitution, it
follows from Proposition 24 that { πyS ◦ P+(T�)

L(X)
k |S ⊆ P+(Z) } is a family of

finitary O-adjoints. By [10, Proposition 6.3.4], P+(T�)
L(X)
k is itself a finitary O-

adjoint and its least prefixed point, which exists, is constructive. By [10, Lemma
7.4], it follows that the least prefixed point of (TL(X)

�)k is constructive. Finally,

it follows from Lemma 26 below that the least prefixed point of γ
L(X)
k is itself

constructive. ��

We end this section stating the mentioned Lemma, which is an analogous of
Lemma 14 for continuous functions and constructive fixed points.

Lemma 26. Let us suppose that the operations of the �-algebra A are contin-
uous. Let v ∈ AP be arbitrary. The least prefixed point of (TA�)v exists and is
constructive if and only if the least prefixed point of γAv exists and is constructive.

Completeness for Flat Modal Fixpoint Logics 511

6 A Representation Theorem

In this section we shall prove Theorem 20. Let us fix a modal �-algebra A as in
the statement of the Theorem. For simplicity we restrict attention to a language
with a single diamond �, and a single fixpoint connective �. We let γ(x, p) denote
the associated formula of �, where p = (p1, . . . , pn). The main lemma in the proof
of Theorem 20 is the following.

Lemma 27. For each a ∈ A there is a Kripke frame Sa and a modal �-homo-
morphism ρa : A → S�a such that ρa(a) > ⊥.

We shall prove Lemma 27 by a step-by-step approximation process involving
the notion of a network [2]. Let ω∗ denote the set of finite sequences of natural
numbers. We denote concatenation of such sequences by juxtaposition, and write
ε for the empty sequence. If s = tk for some k ∈ ω we say that s is the parent
of t and write either s = t− or s � t. A tree is a subset T of ω∗ which is both
downward and leftward closed; that is, if t �= ε belongs to T , then so does t−,
and if sm ∈ T then sk ∈ T for all k < m. Obviously, a tree T , together with the
relation �, forms a Kripke frame; this frame will simply be denoted as T , and
its complex �-algebra, as T �.

An A-network is a pair N = 〈T, L〉 such that T is a tree, and L : T → P(A)
is some labelling. Such a network N induces a map rN : A → P(T), given by

rN (a) := {t ∈ T | a ∈ L(t)}. (7)

The aim of the proof will be to construct, for an arbitrary nonzero a ∈ A, a net-
work N = 〈T, L〉, with a ∈ L(ε), and such that rN is a modal �-homomorphism
from A to T �. We need some definitions.

A network N = 〈T, L〉 is called locally coherent if
∧

X > ⊥, whenever X is a
finite subset of L(t) for some t ∈ T ; modally coherent if

∧
X ∧ �

∧
Y > ⊥, for

all s, t ∈ T such that s � t and all finite subsets X and Y of respectively L(s)
and L(t); and coherent if it satisfies both coherence conditions. N is prophetic
if for every s ∈ T , and for every �a ∈ L(s), there is a witness t � s such that
a ∈ L(t); decisive if either a ∈ L(t) or −a ∈ L(t), for every t ∈ T and a ∈ A; and
�-constructive if, for every t ∈ T , and every sequence a in A such that �a ∈ L(t),
there is a natural number n such that (γA)na(⊥) ∈ L(t). A network is perfect if
it has all of the above properties.

Lemma 28. If N is a perfect A-network, then rN is a modal �-homomorphism.

Clearly, we shall have that rN (a) �= ∅ for all a ∈ A for which there is a t ∈ T
with a ∈ L(t). From the above proposition it follows that in order to prove
Lemma 27 it suffices to construct, for an arbitrary nonzero a ∈ A, a perfect
network with a ∈ L(ε). Our construction will be carried out in a step-by-step
process, where at each stage we are dealing with a finite approximation of the
final network. Since these approximations are not perfect themselves, they will
suffer from certain defects. We will only be interested in those defects that can

512 L. Santocanale and Y. Venema

be repaired in the sense that the network can be extended to a bigger version
that is lacking the defect.

Formally we define a defect of a network N = 〈T, L〉 to be an object d of one
of the following three kinds:

1. d = (t, a,−), with t ∈ T and a ∈ A such that neither a nor −a belongs to
L(t),

2. d = (t, a, �), with t ∈ T and a ∈ A such that �a ∈ L(t), but there is no
witness s � t such that a ∈ L(s),

3. d = (t, a, �), with t ∈ T and a ∈ An such that �a ∈ L(t), but there is no
n ∈ ω such that (γA)na(⊥) ∈ L(t).

While in principle we could construct a perfect network as a limit of coherent
networks, the networks that we will actually use will in fact satisfy a much
stronger version of coherency. In order to define this notion, we first need to
extend the local labelling function L of the network to a global one. Recall that
the operator of the algebra A is residuated, and hence, conjugated. That is, there
is an operation � : A → A such that

a ∧ �b > ⊥ iff �a ∧ b > ⊥, (8)

for all a, b ∈ A. Using this operation �, we can in fact define the global labelling
map L̃ as follows:

Δ↓(t) :=
∧

L(t) ∧
∧
t�s

�Δ↓(s) , Δ↓,−u(t) :=
∧

L(t) ∧
∧

t�s,s�=u
�Δ↓(s) ,

Δ↑(t) :=

{
 , if t = ε ,

�(Δ↑(t−) ∧ Δ↓,−t(t−)) , otherwise ,

L̃(t) := Δ↓(t) ∧ Δ↑(t) .

The following observation is a consequence of the conjugacy relation (8) and of
the fact that the tree is connected.

Lemma 29. If N is a finite network and s, t ∈ N , then L̃(s) > ⊥ iff L̃(t) > ⊥.

Call a finite network N = 〈T, L〉 globally coherent if L̃(t) > ⊥ for all t ∈ T . We
can now prove our repair lemma. We say that N ′ extends N , notation: N ≤ N ′,
if T ⊆ T ′ and L(t) ⊆ L′(t) for every t ∈ T .

Lemma 30 (Repair Lemma). Let N = 〈T, L〉 be a globally coherent A-
network. Then for any defect d of N there is a globally coherent extension Nd

of N which lacks the defect d.

Proof. We have to take action depending on the type of the defect d. In each case
we will make heavily use of the global extension L̃ of L. For instance, suppose
d = (t, a, �) is a defect of the third kind. By strong coherency, L̃N(t) > ⊥.
Suppose for contradiction that L̃N (t) ∧ (γA)na(⊥) = ⊥ for all numbers n. Then

Completeness for Flat Modal Fixpoint Logics 513

for all n we have (γA)na(⊥) ≤ −L̃N (t), and so by constructiveness of � on A it
follows that �Aa ≤ −L̃N(t). But this contradicts the fact that N is coherent.

It follows that L̃N (t)∧ (γA)na(⊥) > ⊥ for some natural number n. Now define
N ′ := 〈T, L′〉, where L′(s) := L(s) for s �= t, while L′(t) := L(t) ∪ {(γA)na(⊥)}.
It is not difficult to check that N ′ satisfies all the requirements stated in the
Lemma. ��
Lemma 31. Every globally coherent A-network can be extended to a perfect
network.

Proof. On the basis of successive applications of Lemma 30, properly scheduled,
one may define a sequence of networks N = N0 ≤ N1 ≤ N2 ≤ . . . such that
for each i ∈ ω and each defect d of Ni there is a j > i such that d is not a
defect of Nj . Then define N ′ := 〈T ′, L′〉, with T ′ :=

⋃
i<ω Ti and for each t ∈ T ′,

L′(t) :=
⋃
i<ω Li(t). It is then straightforward to verify that N ′ is a perfect

extension of N . ��
Proof of Lemma 27. Consider an arbitrary nonzero element a ∈ A, and let Na be
the network 〈{ε}, La〉, La given by La(ε) := {a}. It is obvious that Na is globally
coherent, so Lemma 27 follows by a direct application of the Lemmas 31 and 28.
Proof of Theorem 20. Let S be the disjoint union of the family {Sa | ⊥ �= a ∈ A},
where the Sas are given by Lemma 27. It is straightforward to verify that A
can be embedded into the product

∏
a�=⊥ S�a, and that this latter product is

isomorphic to S�, the complex �-algebra of S.

References

1. Arnold, A., Niwiński, D.: Rudiments of μ-calculus. Studies in Logic and the Founda-
tions of Mathematics, vol. 146. North-Holland Publishing Co., Amsterdam (2001)

2. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts in Theo-
retical Computer Science, vol. 53. Cambridge University Press, Cambridge (2001)

3. Davey, B.A., Priestley, H.A.: Introduction to lattices and order, 2nd edn. Cam-
bridge University Press, New York (2002)

4. Emerson, E.A.: Temporal and modal logic. In: Handbook of theoretical computer
science, vol. B, pp. 995–1072. Elsevier, Amsterdam (1990)

5. Ésik, Z.: Completeness of Park induction. Theoret. Comput. Sci. 177(1), 217–283
(1997)

6. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)
7. Kozen, D.: Results on the propositional μ-calculus. Theoret. Comput. Sci. 27(3),

333–354 (1983)
8. Santocanale, L.: μ-bicomplete categories and parity games. Theoretical Informatics

and Applications 36, 195–227 (2002)
9. Santocanale, L.: Completions of μ-algebras. In: LICS 2005, pp. 219–228. IEEE

Computer Society, Los Alamitos (2005)
10. Santocanale, L.: Completions of μ-algebras. arXiv:math.RA/0508412 (August

2005)
11. Walukiewicz, I.: Completeness of Kozen’s axiomatisation of the propositional μ-

calculus. Inform. and Comput. 157(1-2), 142–182 (2000) LICS 1995 (San Diego,
CA)

FDNC: Decidable Non-monotonic Disjunctive

Logic Programs with Function Symbols�

Mantas Šimkus and Thomas Eiter

Institut für Informationssysteme, Technische Universität Wien
Favoritenstraße 9-11, A-1040 Vienna, Austria

(simkus,eiter)@kr.tuwien.ac.at

Abstract. Current Answer Set Programming systems are built on non-
monotonic logic programs without function symbols; as well-known, they
lead to high undecidability in general. However, function symbols are
highly desirable for various applications, which challenges to find mean-
ingful and decidable fragments of this setting. We present the class FDNC

of logic programs which allows for function symbols, disjunction, non-
monotonic negation under answer set semantics, and constraints, while
still retaining the decidability of the standard reasoning tasks. Thanks to
these features, they are a powerful formalism for rule-based modeling of
applications with potentially infinite processes and objects, which allows
also for common-sense reasoning. We show that consistency checking and
brave reasoning are ExpTime-complete in general, but have lower com-
plexity for restricted fragments, and outline worst-case optimal reasoning
procedures for these tasks. Furthermore, we present a finite representa-
tion of the possibly infinitely many infinite stable models of an FDNC

program, which may be exploited for knowledge compilation purposes.

1 Introduction

Answer Set Programming (ASP) is a declarative programming paradigm which
has its roots in Logic Programming and Non-monotonic Reasoning. It is well-
suited for modeling and solving problems which involve common sense reasoning,
and has been fruitfully applied to a range of applications including data integra-
tion, configuration, reasoning about actions and change, etc.; see [16].

While Answer Set Semantics, which underlies ASP, was defined in the setting
of a general first-order language, current ASP frameworks and implementations,
like DLV [10], Smodels [15], and other efficient solvers are based on function-free
languages and resort to Datalog with negation and its extensions. However, it
is widely acknowledged that this leads to drawbacks related to expressiveness,
and also to inconvenience in knowledge representation, cf. [2]. Since one is forced
to work with finite domains, potentially infinite processes cannot be represented
naturally in ASP. Additional tools must be used, which may incur high space
requirements.
� Work partially supported by the Austrian Science Funds (FWF) project P17212 and

the EC project REWERSE (IST-2003-506779).

N. Dershowitz and A. Voronkov (Eds.): LPAR 2007, LNAI 4790, pp. 514–530, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

FDNC: Decidable Non-monotonic Disjunctive Logic Programs 515

Function symbols, in turn, are a very convenient means for generating infinite
domains and objects, and allow for more natural representation of problems
on such domains. However, they have been banned in ASP for a good reason,
since they quickly lead to undecidability even for Horn programs, and with
negation under the answer set semantics, they lead to high undecidability, cf.
[11,12]. This raises the challenge to single out meaningful fragments of ASP with
function symbols which allow to model infinite domains while still retaining the
decidability of the standard reasoning tasks. Important work on this is by Bonatti
and his colleagues on their finitary programs and finitely recursive programs[2,1],
which impose syntactic conditions on the groundings of logic programs. However,
the hardness of verifying the satisfaction of the conditions limits the applicability
of the results; see Section 5 for more discussion.

In this paper, we pursue an approach to obtain decidable logic programs with
function symbols by merely constraining the syntax in a way that can be ef-
fectively checked. To this end, we take inspiration from results in automated
deduction and other areas of knowledge representation, where many procedures,
like tableaux algorithms with blocking, or hyper-resolution, have been devel-
oped for deciding satisfiability in various fragments of first-order logic. When
function symbols (or existential quantification) may occur, these procedures are
often sophisticated since they must deal with possibly infinite models. However,
because of the peculiarities of Answer Set Semantics, transferring these results
to logic programs is not straightforward. Reasoning with logic programs needs
to be more refined since only minimal (or stable) models count as models of a
given program. Our main contributions are briefly summarized as follows.

– We introduce the class FDNC of logic programs, which allow for function
symbols, disjunction, constraints, and non-monotonic negation under the
answer set semantics [6]. The restrictions we apply are syntactic and ensure
that programs have a forest-shaped model property. FDNC programs are a
convenient tool for knowledge representation. They allow, e.g., the represen-
tation of an evolving action domain (see Section 3).

– We show that standard reasoning tasks are decidable for FDNC, and are
ExpTime-complete; this includes checking the consistency (i.e., the
existence of a stable model), and brave entailment of ground atomic or
existential atomic queries. Disallowing disjunction and constraints (FN) or
non-monotonic negation (FDC) does not lead to lower complexity, i.e., the
problems considered remain ExpTime-complete. Depending on the reason-
ing task, reasoning is at most PSpace-complete for further restricted classes.

– Noticeably, the hardness proofs for consistency checking in FN, FDC, and
FDNC, are by a reduction from satisfiability testing in the ExpTime-
complete Description Logic ALC. Thus, as a side result we obtain a novel
polynomial time mapping of a well-known Description Logic to logic
programming.

– FDNC programs can have infinitely many and infinitely large stable models,
which therefore can not be explicitly represented. We provide a method to
finitely represent all the stable models of a given FDNC program. This is

516 M. Šimkus and T. Eiter

achieved by a composition technique that allows to reconstruct stable models
as forests, i.e., sets of trees, from knots, which are instances of generic labeled
trees of depth 1. The finite representation technique allows us to define an
elegant decision procedure for brave reasoning in FDNC , and may also be
exploited for offline knowledge compilation to speed up online reasoning, by
precomputing and storing the knots of a program.

Thanks to their features, FDNC programs are a powerful formalism for rule-
based modeling of applications with a potentially infinite domain, which also
accommodates common-sense reasoning through non-monotonic negation. From
a complexity perspective, FDNC and its subclasses offer effective syntax for
encoding problems in PSpace and ExpTime to logic programs with function
symbols.

2 Preliminaries

A disjunctive rule (briefly, rule) is an expression of the form

A1 ∨ . . . ∨ An ← L1, . . . , Lm,

where n+m > 0, A1, . . . , An are atoms and L1, . . . , Lm are literals. The atoms
are from a standard first-order language with countably infinite sets of variables,
constant symbols, and function and predicate symbols of positive arity. A literal
is either an atom A (positive literal), or an expression not A (negative literal).
The atoms A1, . . . , An are head atoms, while L1, . . . , Lm are body literals. For
a rule r, let head(r), body+(r), and body−(r) respectively denote the set of its
head atoms, positive body literals, and negative body literals. We say r is a fact,
if n = 0; a constraint, if m = 0; and positive, if body−(r) = ∅.

A disjunctive logic program (briefly, program) is an arbitrary set of rules. It
is positive (resp., ground), if contains only positive (resp., ground) rules. For
a program P , its Herbrand universe, Herbrand base and its ground instantia-
tion are defined in the standard way, and are respectively denoted by HUP ,
HBP and Ground(P); see [13]. Furthermore, by MM(P) we denote the set of
(Herbrand) interpretations that are (set-inclusion) minimal models of a ground
positive program P .

An interpretation I of a program P is a stable model of P iff I ∈ MM(P I),
where P I is the Gelfond-Lifschitz reduct [6] of P , obtained from Ground(P) by
removing (i) each rule r such that body−(r) ∩ I �= ∅, and (ii) all the negative
literals from the remaining rules. The set of stable models of a program P is
denoted by SM(P).

A program P is consistent, if SM(P) �= ∅. A program P bravely entails a
ground (variable-free) atom A (in symbols, P |=b A), if some stable model I of
P contains A. An existential atomic query is an expression ∃x.A(x), where x
is a n-tuple of variables and A is a predicate symbol of arity n. A program P
bravely entails ∃x.A(x) (in symbols, P |=b ∃x.A(x)), if some stable model I of
P contains a ground atom A(t).

FDNC: Decidable Non-monotonic Disjunctive Logic Programs 517

(1) Change(x, grow(x))←Y oung(x), Warm(x)

(2) Change(x, cell1(x))←Mature(x), Warm(x)

(3) Change(x, cell2(x))←Mature(x), Warm(x)

(4) Change(x, die(x))←Cold(x)

(5) Y oung(cell1(x))←Change(x, cell1(x))

(6) Y oung(cell2(x))←Change(x, cell2(x))

(7) Mature(grow(x))←Change(x, grow(x))

(8) Warm(grow(x)) ∨ Cold(grow(x))←Change(x, grow(x))

(9) Warm(y)←Warm(x), Change(x, y), not Cold(y)

(10) Cold(y)←Cold(x), Change(x, y), not Warm(y)

(11) ←Cold(x), Warm(x)

(12) Y oung(b)←
(13) Warm(b)←

Change

Y oung, Warm
b

grow(b)

cell1(grow(b))
Y oung, Warm

Mature, Warm

Change

Mature, Warm
grow(cell1(grow(b)))

Change

Fig. 1. Example: Evolution of a Cell

3 FDNC Programs

We now introduce the class FDNC of logic programs with function symbols.
The syntactic restrictions that are applied are to ensure the decidability of the
formalism. As we shall see, FDNC programs can have infinitely many possibly
infinite stable models. In this section we analyze the model-theoretic properties of
the formalism and introduce a method for finite representation of those possibly
infinite stable models of a program.

Definition 1. An FDNC program is a finite disjunctive logic program whose
rules are of the following forms:

(R1) A1(x) ∨ . . . ∨An(x) ← (not)B0(x), . . . , (not)Bl(x)

(R2) R1(x, y) ∨ . . . ∨Rn(x, y) ← (not)P0(x, y), . . . , (not)Pl(x, y)

(R3) R1(x, f1(x)) ∨ . . . ∨ Rn(x, fn(x)) ← (not)P0(x, g0(x)), . . . , (not)Pl(x, gl(x))

(R4) A1(y) ∨ . . . ∨An(y) ← (not)B0(Z0), . . . , (not)Bl(Zl), R(x, y)

(R5) A1(f(x)) ∨ . . . ∨An(f(x)) ← (not)B0(W0), . . . , (not)Bl(Wl), R(x, f(x))

(R6) R1(x, f1(x)) ∨ . . . ∨Rn(x, fk(x)) ← (not)B0(x), . . . , (not)Bl(x)

(R7) C1(c1) ∨ . . . ∨ Cn(cn) ← (not)D1(d1), . . . , (not)Dl(dl),

where n, l ≥ 0, each Zi ∈ {x, y}, Wi ∈ {x, f(x)}, and each ci, di is a tuple of
constants of arity ≤ 2. Each rule r is safe, i.e., each of its variables occurs in
body+(r). Moreover, at least one rule is of type (R7) and is a fact.

The fragments obtained from FDNC by disallowing disjunction, constraints or
negative literals are denoted by respectively removing D, C or N from “FDNC”.

The structure of the rules in FDNC syntax, the availability of non-monotonic
negation and function symbols allow us to represent possibly infinite processes
in a rather natural way. We provide here an example from the biology domain.

Example 1. The FDNC program P in Figure 1 represents the evolution of a cell;
its growth and splitting into two cells. The rules (1)-(4) describe changes of a

518 M. Šimkus and T. Eiter

cell. If it is warm, a young cell will grow and a mature cell will split into two cells;
any cell dies if it is cold. The rules (5)-(7) determine whether a cell is young or
mature. The rules (8)-(11) state the knowledge about the temperature. During
the growth (which takes longer time), it might alter, while in the other changes
(which take short time), it stays the same; the latter is expressed by inertia rules
(9) and (10). Finally, (12) and (13) are the initialization facts.

It is easy to see that P is consistent. In fact, it has infinitely many stable mod-
els, corresponding to the possible evolutions of the initial situation. It might have
finite and infinite stable models, as cell splitting might go on forever. The piece
of the stable model that is depicted represents a development where the temper-
ature does not change during the growth of b and its child. Another stable model
is {Y oung(b), Warm(b), Change(b, grow(b)), Cold(grow(b)), Mature(grow(b)),
Change(grow(b), die(grow(b)))} which corresponds to the situation that the
temperature changes and the bacterium dies.

The brave query ∃x.Cold(x) evaluates to true, while it is not the case for
the brave query Change(b, die(b)). Note that the query whether there is some
evolution in which bacteria never die is expressed by adding the constraint ←
Change(x, die(x)) and asking whether the resulting program is consistent.

Example 2. FDNC is well-suited to encode action domain descriptions in
transition-based action formalisms which support incomplete states and nonde-
terministic action effects, like C [7], K [3], or (propositional) situation calculus.

We outline the elements for a possible such encoding. A unary predicate Sit(x)
encodes the situation in which the domain is, where the initial situation is given
by Sit(init) ←. State descriptions are in terms of unary fluent predicates F (x),
which intuitively means that F is true in the state associated with x.

A predicate Trans(x, y) describes the transition from situation x to the next
situation y; for this, the rule Sit(y) ← Trans(x, y) is included. Transitions are
due to actions α1, ..., αk, which can be represented using function symbols fα1 ,
..., fαk

. A rule Trans(x, fα1(x)) ∨ · · · ∨ Trans(x, fαk
(x)) ← Sit(x) may describe

the action execution, while the constraints ← Trans(x, fαi(x)),Trans(x, fαj (x)),
for all different i and j ensure that actions are not concurrent.

Action effects during a transition can be stated by rules, while executability
conditions for actions can be stated by constraints; in particular, inertia for fluent
F can be expressed using the rule F (y) ← F (x),Trans(x, y), not neg F (y) where
neg F (x) is a predicate for the complement of F .

Using these elements, FDNC may be used to represent a number of actions
domains from the literature, e.g., the Yale Shooting, Bomb in the Toilet, and
others cf. [3]; in fact, usually FN is already convenient.

Example 1 shows that in presence of function symbols, an FDNC program may
have infinite stable models. We present in the sequel a method to finitely repre-
sent the possibly infinite stable models. To this end, we first provide a semantic
characterization of the stable models of an FDNC program.

FDNC: Decidable Non-monotonic Disjunctive Logic Programs 519

3.1 Semantic Characterization of Stable Models

Like many decidable logics, including Description Logics, FDNC programs enjoy
a forest-shaped model property. A stable model of an FDNC program can be
viewed as a graph and a set of trees rooted at each of the nodes in the graph.

Proposition 1. An interpretation I is forest-shaped, if the following hold:

(a) Each atom in I is either unary or binary. Additionally, each binary atom is
of the form R(c, d) or R(t, f(t)), where c, d are constants, and t is a term.

(b) If A ∈ I is an atom with a term of the form f(t) occurring as an argument,
then for some binary predicate symbol R, R(t, f(t)) ∈ I.

If H is an arbitrary interpretation for an FDNC program P and J ∈ MM(PH),
then J is forest-shaped. Therefore, every J ∈ SM(P) is forest-shaped.

The methods that we present in this paper are aimed at providing the decidabil-
ity results together with the worst-case optimal algorithms for FDNC. We note,
however, that the decidability of the reasoning tasks discussed in this paper can
be inferred from the results in [5]. The technique in [5] shows how the stable
model semantics for the disjunctive logic programs with functions symbols can
be expressed by formulae in second-order logic, where the minimality of models
is enforced by second-order quantifiers. Due to the forest-shaped model property
one can express the semantics of FDNC programs in monadic second-order logic
over trees SkS which is know to be decidable (see [14] for a related encoding).
Unfortunately, optimal algorithms for such encodings are not apparent.1

The semantic characterization, and the reasoning methods later on, follow
an intuition that stable models for an FDNC program P can be constructed
by the iterative computation of stable models of local programs. During the
construction, local programs are obtained “on the fly” by taking certain finite
subsets of Ground(P) and adding facts (states) obtained in the previous iteration.

For the rest of Section 3, we assume that P is an arbitrary FDNC program.
For the convenience of presentation, for a term t and a set of atoms I, we write
t∈̂I, if there exists an atom in I with t as its argument.

Definition 2. Let t be a term. A state of t is an arbitrary set U t containing
only unary atoms ground with t (i.e., with t as the argument); the superscript t
will be dropped if t is not of particular interest. For a set of atoms I and a term
t∈̂I, we denote by st(I, t) the state of t in I, i.e., the set {A(t) | A(t) ∈ I}.
For a one-variable rule r in FDNC syntax, let r↓t denote the rule obtained by
substituting every occurrence of the variable in r with a term t. Without loss
of generality, we assume that in a two-variable rule, i.e., a rule of type (R2) or
(R4), the tuple of variables in binary atoms is always 〈x, y〉. For such a rule r,
1 Via an encoding into SkS, one can show the decidability of FDNC extended with in-

verse rules of the form R(y, x)←P (x, y), which, together with the rules of type (R4),
allow for bidirectionality of information-passing. Due to more involved minimality-
testing, our techniques cannot be extended easily to handle inverse rules.

520 M. Šimkus and T. Eiter

let r↓s,t denote the rule obtained by substituting every occurrence of x with a
term s and every occurrence of y with a term t.

Definition 3. Let U t be a state. The local program P (U t) is the smallest pro-
gram containing the following rules:

- A(t) ←, for each A(t) ∈ U t,
- r↓t, for each r ∈ P of type (R3), (R5), or (R6),
- r↓t,f(t), for each r ∈ P of type (R2) or (R4) and function symbol f of P , and
- r↓f(t), for each r ∈ P of type (R1) and function symbol f of P .

Suppose I is a forest-shaped interpretation for P , t∈̂I, and U is the state of t
in I, i.e., U = st(I, t). Intuitively, the stable models of P (U) define the set of
possible immediate successor structures for t in I. In other words, if I is a stable
model of P , then I must contain a stable model of P (U). Stable models of local
programs have a simple structural property, captured by the notion of knots.

Definition 4. (Knots) A knot with a root term t is a set of atoms K such
that (i) each atom in K has form A(t), R(t, f(t)), or A(f(t)) where A, R, and
f are arbitrary, and (ii) for each term f(t)∈̂K, there exists R(t, f(t)) ∈ K
(connectedness). Let succ(K) denote the set of all terms f(t)∈̂K.

A knot with a root term t can be viewed as a labeled tree of depth at most 1,
where succ(K) are the leaf nodes. The nodes are labeled with unary predicate
symbols, while the edges are labeled with binary predicate symbols. Note that
∅ is a knot whose root term can be arbitrary.

It is easy to see that due to the structure of local programs, their stable
models satisfy the conditions in the definition of knots, and therefore are knots.
On the other hand, knots are also the structures that appear in the trees of the
forest-shaped interpretations. To “extract” a knot occurring in a forest-shaped
interpretation, the following will be helpful.

For a term t, let HBt denote the set of all atoms that can be built from
unary and binary predicate symbols using t and terms of the form f(t). For any
forest-shaped interpretation I of P and t∈̂I, the set K := I ∩HBt is a knot.

A knot K with a root term t is over (the signature of) P , if each predicate
and function symbol occurring in K also occurs in P (t need not be from HUP).

The following notion is central. The introduced stable knots are self-contained
model building blocks for FDNC programs.

Definition 5. (Stable Knot) Let K be a knot with a root term t and U t =
st(K, t). Then K is stable w.r.t. the program P iff K ∈ SM(P (U t)).

Intuitively, stable knots encode an assumption and a solution. Suppose a knot
K with a root term t is stable w.r.t. P . Moreover, suppose t occurs in a forest-
shaped interpretation I for P , as a “leaf node”, i.e., there are no atoms of
the form R(t, f(t)) in I. Intuitively, if the states of t in I and K coincide, i.e.,
st(I, t) = st(K, t), then K becomes an eligible set of atoms that can be introduced
in I to give t the necessary successors.

After introducing the necessary notions for dealing with the tree-part of forest-
shaped interpretations, we deal with the graph part.

FDNC: Decidable Non-monotonic Disjunctive Logic Programs 521

Definition 6. By PG we denote the program Ground(P ′), where P ′ is obtained
from P by removing all the rules containing function symbols.2

The following theorem characterizes the stable models of P . For an interpretation
I, let Ic be the set of all atoms A(c) ∈ I such that c is a tuple of constants.

Theorem 1. Let I be an interpretation for P . Then I is a stable model of P iff
I is a forest-shaped interpretation such that (i) Ic is a stable model of PG, and
(ii) for each term t∈̂I, I ∩HBt is a knot that is stable w.r.t. P.

3.2 Finite Representation of Stable Models

The semantic characterization of stable models for FDNC programs allows to
view stable models as being constructed of knots, where each of them is stable.
Next, we show that Theorem 1 allows us to provide a finite representation of
those stable models. Roughly, it is based on the observation that although in-
finitely many knots might occur in some stable model of a program, only finitely
many of them are non-isomorphic modulo the root term.

Definition 7. Let K be a knot with a root term t. By K↓u we denote the knot
obtained from K by replacing each occurrence of t in K with a term u.

Indeed, if the program P has an infinite stable model I, then set of knots L :=
{(I ∩ HBt) | t∈̂I} is infinite. However, for a fixed term t, the set L′ := {K↓t |
K ∈ L} is finite due to the fact that there are only finitely many knots with the
root term t over the signature of P . Intuitively, if we view t as a variable, then
each K ∈ L can be viewed as an instance of some knot in L′.

To talk about sets of knots with common root term, we assume a special
constant x not occurring in FDNC programs. We say a set of knots is x-grounded,
if it contains only knots with root term x. The following notion lets us collect
the knots occurring in a stable model and abstract them by substituting with x.

Definition 8. (Scanning) Let I be a forest-shaped interpretation for P . We
define the set of x-grounded knots K(I) := {(I ∩HBt)↓x | t∈̂I}.
In the following we show that x-grounded sets of knots can be used to represent
the stable models of an FDNC program. First, we observe that the stability of a
knot is preserved under substitutions.

Proposition 2. If K is a knot that is stable w.r.t. P , and u is an arbitrary
term, then K↓u is stable w.r.t. P .

We introduce the notion of founded sets of x-grounded knots. The intention is
to capture the properties of the set K(I) when I is a stable model of P . To this
end, we need a notion of state equivalence as a counterpart for substitutions in
knots. Formally, states U t and V s are equivalent (in symbols, U t≈V s), if U t =
{A(t) | A(s) ∈ V s}, i.e., in both states terms satisfy the same unary predicates.

2 Note that P G is finite since its Herbrand universe contains only the constants of P .

522 M. Šimkus and T. Eiter

Definition 9. Let S �= ∅ be a set of states. A set L of x-grounded knots that are
stable w.r.t. the program P is founded w.r.t. P and S, if the following hold:

1. For each U ∈ S, there exists K ∈ L such that U ≈ st(K,x).
2. For each K ∈ L, the following hold:

a. for each s ∈ succ(K), there exists K ′ ∈ L s.t. st(K, s) ≈ st(K ′,x), and
b. there exists a sequence 〈K0, . . . , Kn〉 of knots in L such that:

- Kn = K,
- K0 is such that st(K,x) ≈ U for some U ∈ S, and
- for each 0 ≤ i < n, there exists s ∈ succ(Ki) s.t. st(Ki, s) ≈ st(Ki+1,x).

For an interpretation I, let S(I) denote the set of states of constants occurring
in I, i.e., S(I) := {st(I, c) | c∈̂I is a constant}. The following is easy to verify.

Proposition 3. If I is a stable model of P , then K(I) is a set of knots that is
founded w.r.t. P and S(Ic).

In what follows we provide a construction of stable models out of knots in a
founded set. Moreover, we show that for a given consistent program there exists
a founded set of knots that captures all the stable models.

Generating Stable Models out of Knots. Before describing the construction of
forest-shaped interpretations, we first state the construction of trees, which are
represented in the standard way by prefix-closed sets of words. For a sequence
of elements p = [e1, . . . , en], let τ(p) denote the last element en, and [p|en+1]
denote the sequence [e1, . . . , en, en+1].

Definition 10. (Tree Construction) Let L be a set of knots that is founded w.r.t.
P and a set of states S, and let U t be a state such that U t ≈ V , for some V ∈ S.
A set T of sequences, where each element in a sequence is a tuple of a knot and
a term, is called a tree induced by L starting at U t, if the following hold:

(a) [〈K, t〉] ∈ T , where K ∈ L is s.t. st(K,x) ≈ U t.
(b) If there exists p ∈ T with τ(p) = 〈K, t〉 and f(x) ∈ succ(K), then there exists

[p|〈K ′, f(t)〉] ∈ T , where K ′ is a knot in L s.t. st(K, f(x)) ≈ st(K ′,x).
(c) T is minimal, i.e., each T ′ ⊂ T violates (a) or (b).

We state the transformation of trees into Herbrand interpretations.

Definition 11. Let T be a tree induced by a founded set of knots L starting at
some state. We define the set of atoms T↓ := {K↓t | p ∈ T with τ(p) = 〈K, t〉}.
We generalize the construction of trees to forest-shaped interpretations.

Definition 12. (Forest Construction) Let G be a set of atoms ground with the
constants of P only, and L be a set of knots founded w.r.t. P and a set of states
S ⊇ S(G). Then F(G, L) is the largest set of forest-shaped interpretations

I = G ∪ (T c1)↓ ∪ . . . ∪ (T cn)↓,

where {c1, . . . , cn} is the set of all constants occurring in G and each T ci a tree
induced by L starting at st(G, ci).

FDNC: Decidable Non-monotonic Disjunctive Logic Programs 523

F(G, L) represents all the forest-shaped interpretations that can be build from
G by attaching, for each of the constants, a tree induced by L.

Theorem 2. If G ∈ SM(PG), L is a set of knots that is founded w.r.t. P and
some S ⊇ S(G), then F(G, L) �= ∅ and each I ∈ F(G, L) is a stable model of P .

Proof. Indeed, F(G, L) �= ∅ due to foundedness of L. Assume some I ∈ F(G, L).
Each K ∈ L is stable w.r.t. P . Then due to Proposition 2, for each term t∈̂I,
I ∩ HBt is a knot that is stable w.r.t. P . Keeping in mind that G ∈ SM(PG),
Theorem 1 implies that I is a stable model of P .

We showed that stable model existence can be proved by checking that some
founded set of knots exists. As we see next, the properties of founded sets of knots
imply that we can obtain a set capturing all the stable models of a program.

Capturing Stable Models. We define the set of states that occur in the stable
models of PG as S(P) := {st(G, c) | G ∈ SM(PG) ∧ c∈̂G}.

Definition 13. By KP we denote the smallest set of knots which contains every
set of knots L that is founded w.r.t. P and some S ⊆ S(P).

Proposition 4. For the program P , the following hold:

(a) If KP �= ∅, then KP is founded w.r.t. P and some S ⊆ S(P).
(b) If L is a set of knots that is founded w.r.t. P and some S ⊆ S(P), then KP

is founded w.r.t. P and some S′ ⊇ S.
(c) Each L ⊃ KP is not founded w.r.t. P and any S ⊆ S(P).

Proof. The claim follows from the following property: if L1 and L2 are two sets
of knots founded w.r.t. P and, respectively, sets of states S1 and S2, then L1∪L2

is founded w.r.t. P and S1 ∪ S2.

It is easy to verify that a stable model I can be reconstructed out of knots in
K(I). Naturally, the same holds for any superset of K(I) satisfying Definition 9.

Proposition 5. If I is a stable model of P , then I ∈ F(Ic, L) for each set of
knots L ⊇ K(I) s.t. L is founded w.r.t. P and some set of states S ⊇ S(Ic).

The following will be helpful.

Definition 14. We say KP is compatible with a set of states S, if for each
state U ∈ S, there exists K ∈ KP s.t. U ≈ st(K,x).

The crucial property of KP is that it captures the tree-structures of all the
stable models of P . Together with the stable models of PG, it represents the
stable models of P .

Theorem 3. Let I be an interpretation for P . Then, I ∈ SM(P) iff I ∈
F(G, KP), for some G ∈ SM(PG) s.t. KP is compatible with S(G).

524 M. Šimkus and T. Eiter

Table 1. Complexity of FDNC and Fragments (Completeness Results)

Fragments Consistency P |=b A(t) P |=b ∃x.A(x)

F Trivial P PSpace

FD Trivial ΣP
2 PSpace

FC PSpace PSpace PSpace

FDC, FN, FDNC ExpTime ExpTime ExpTime

Proof. If I ∈ SM(P), then, by Prop. 3, K(I) is founded w.r.t. P and S(Ic). By
definition, K(I) ⊆ KP . By Prop. 4, KP is founded w.r.t. P and some S ⊇ S(Ic).
By Proposition 5, I ∈ F(Ic, KP). The other direction is proved by Theorem 2.

We have obtained a finite representation of stable model of an FDNC program.
Indeed, all of its stable models can be generated out of some stable model of PG

and a set of knots KP .

4 Reasoning and Complexity

The algorithms for consistency check and brave entailment are based on comput-
ing KP . The complexity of these tasks for FDNC and its fragments is compactly
summarized in Table 1. For space reasons, we focus here on FDNC and briefly
discuss the other fragments at the end of this section.

Deriving the Set KP . To derive KP , we proceed in two phases. In the first phase,
we generate the set of knots All(P) that surely contains KP . In the second phase,
we remove knots from it to ensure that it satisfies Definition 13.

To ease presentation, for a knot set L, let states(L) := {st(K, s) | K ∈L,
s∈ succ(K)} be the set of all states of the successor terms of knots in L.

Definition 15. For an FDNC program P , let All(P) be the smallest set of x-
grounded knots obeying the following conditions:

a) If U ∈ S(P) and K ∈ SM(P (U)), then K↓x ∈ All(P).
b) If U ∈ states(All(P)) and K ∈ SM(P (U)), then K↓x ∈ All(P).

By construction, All(P) contains each set of knots which is founded w.r.t. P and
some set of states S ⊆ S(P). The problem is that All(P) might contain a knot
K such that some s ∈ succ(K) has no potential successor knot (see (2.a) in
Definition 9). Such knots should be removed from All(P). In turn, such removal
might leave some knots in All(P) without a potential predecessor (see (2.b) in
Definition 9). The second phase deals with this problem.

Definition 16. For any set of x-grounded knots L and set of states S, reach(L, S)
is the smallest set of knots such that:

a) if U ∈ S, K ∈ L and U ≈ st(K,x), then K ∈ reach(L, S), and
b) if U ∈ states(reach(L, S)), K ∈ L and U ≈ st(K,x), then K ∈ reach(L, S).

FDNC: Decidable Non-monotonic Disjunctive Logic Programs 525

Algorithm Knots
Input: FDNC program P
Output: KP

repeat
L := All(P); S := S(P); Laux := L;
for each K ∈ L and s ∈ succ(K) do

if not ∃K′ ∈ L s.t. st(K, s) ≈ st(K′,x) then L := L \ {K};
L := reach(L, S)

until Laux = L
return L

Fig. 2. Algorithm for computing KP of an FDNC program

Intuitively, reach(L, S) are the knots in L reachable from the states in S. Thus, if
reach(L, S) = L, then L fulfills the condition (2.b) of Definition 9 to be founded
w.r.t. S.

The cleaning of All(P) involves removing each knot violating (2.a) or (2.b) in
Definition 9. Figure 2 shows an algorithm for computing KP which elaborates
on this.

Soundness and Completeness. We must verify that Knots(P) satisfies the con-
dition in Definition 13, i.e., Knots(P) is the single (set-inclusion) minimal set
which contains each set L of knots that is founded w.r.t. P and some S ⊆ S(P).

Indeed, L ⊆ All(P) by construction. In the computation of Knots(P) no knot
in L can be removed from All(P), i.e., L ⊆ Knots(P). Suppose Knots(P) is
not minimal. Hence, some N ⊂ Knots(P) contains every knot set L which is
founded w.r.t. P and some S ⊆ S(P). Then Knots(P) must be nonempty, and
it holds that Knots(P) is founded w.r.t. P and some S ⊆ S(P). Roughly, this is
because the algorithm ensures that every knot in Knots(P) is stable w.r.t. P , has
proper successors to satisfy (2.a) in Definition 9, and has a proper sequence of
predecessors to satisfy (2.b) reaching a state in S(P). By assumption on N and
foundedness of Knots(P), we have Knots(P) ⊆ N . This, however, contradicts
N ⊂ Knots(P). Thus Knots(P) satisfies Definition 13, i.e., Knots(P) = KP .

Complexity. The procedure Knots(P) runs in time single exponential in the size
of P . The claim follows from the following observations:

- The number of x-grounded knots over P , max, is bounded by single exponen-
tial in the size of P ; more precisely, max ≤ 2n+k·(n+m), when P has k function,
n unary, and m binary predicate symbols.

- Computing All(P) requires adding at most max x-grounded knots. Each such
knot has polynomial size and its stability is verifiable using an NPNP oracle.
Thus, All(P) is computable in time single exponential in the size of P .

- Computing reach(L, S) is polynomial in the combined size of L and S.
- The size of S(P) is bounded by a single exponential in the size of P .
- Knots(P) runs in time that is polynomial in the size of All(P) and S(P).

Consistency Check. Theorems 2 and 3 imply the following characterization.

526 M. Šimkus and T. Eiter

Theorem 4. An FDNC program P is consistent iff KP is compatible w.r.t.
S(G), for some G ∈ SM(PG).

Compatibility of KP w.r.t. S(G), for G∈SM(PG), is decidable in time polyno-
mial in n + m, where m is the size of KP and n is the size of SM(PG). This is
single exponential in the size of P , since both m and n are single exponential in
the size of P . Since SM(PG) is computable in single exponential time, Theorem 4
implies that consistency checking in FDNC is feasible in single exponential time.
In the full paper, by a reduction of satisfiability testing in the ExpTime-hard
DL ALC, we show that consistency check is ExpTime-hard already for FDC.
Thus, the algorithm emerging from Theorem 4 is worst-case optimal.

Theorem 5. Deciding whether a given FDNC program is consistent, i.e., has
some stable model, is ExpTime-complete.

Brave Entailment. We can also exploit KP for brave reasoning in FDNC. We
focus here on unary atomic queries; binary queries are easily reduced to this
case. The idea is to perform “back-propagation” of unary predicate symbols in a
founded set of knots. For a set of x-grounded knots L, we call K ′ ∈L a possible
successor of K ∈L if st(K ′,x)≈ st(K, s) for some s ∈ succ(K).

Definition 17. Let L be a set of knots founded w.r.t. an FDNC program P and
a set of states S. Let C be the set of unary predicate symbols occurring in P . By
EL we denote the smallest relation over L × C closed under the following rules:

(a) if K ∈ L and some A(x) ∈ K, then 〈K, A〉 ∈ EL, and
(b) if K ′∈ L is a possible successor of K ∈ L s.t. 〈K ′, A〉 ∈ EL, then 〈K, A〉 ∈ EL.

Intuitively, 〈K, A〉 ∈ EL means that starting from K a sequence of possible suc-
cessor knots will eventually reach a knot containing A(x). We have the following:

Theorem 6. Let P be an FDNC program. Then, P |=b ∃x.A(x) iff (�) for some
G∈SM(PG), (a) KP is compatible w.r.t. S(G), and (b) there exist a constant c
and K ∈KP such that st(G, c) ≈ st(K,x) and 〈K, A〉 ∈ EKP .

Condition (�) is verifiable in time (single) exponential in the size of P . Indeed,
computing EKP requires time quadratic in the size of KP , or exponential in the
size of P . Once KP , EKP , and SM(PG) are computed, the conditions in (�) are
verifiable in time polynomial in the combined size of KP , EKP , and SM(PG).

Via this algorithm, we obtain that brave reasoning for existential unary queries
in FDNC is in ExpTime. In the full paper we show that the algorithm is worst-
case optimal (by reducing consistency to brave entailment in FDNC), and that
this result extends to binary existential queries.

Theorem 7. Deciding P |=b ∃x.A(x) is ExpTime-complete for FDNC.

The method for deciding brave entailment of ground unary queries is based on
an adaptation of the algorithm for the existential queries.

FDNC: Decidable Non-monotonic Disjunctive Logic Programs 527

Definition 18. Let q = A(t) be a ground atom and L be a set of knots founded
w.r.t. an FDNC program P and a set of states S. Let T be the set of subterms
of the term t. Then GqL is the smallest relation over L×T such that:

(a) if K ∈ L and A(x) ∈ K, then 〈K, t〉 ∈ GqL, and
(b) if there exist (i) K ∈ L with f(x) ∈ succ(K) and (ii) K ′ ∈ L s.t. st(K, f(x)) ≈

st(K ′,x) and 〈K ′, f(v)〉 ∈ GqL, then 〈K, v〉 ∈ GqL.

Suppose we have a ground query q = A(f(g(f(c)))) and a knot K in L such that
〈K, c〉 ∈ GqL. Roughly, it means that we can construct a tree with root term c
containing a node f(g(f(c))) labeled with A. The following is easily verified.

Theorem 8. For any FDNC program P and ground query q, P |=b q iff (��) for
some G ∈ SM(PG), (a) KP is compatible w.r.t. S(G), and (b) some K ∈ KP

exists s.t. st(G, c) ≈ st(K,x) and 〈K, c〉 ∈ Gq
KP

, where c is the constant in q.

By similar arguments as for existential queries, we can see that checking con-
dition (��) is feasible in time single exponential in the size of P . Note that
computing Gq

KP
requires time that is polynomial in the size of KP , or single

exponential in the size of P . Once KP , Gq
KP

, and SM(PG) are computed, the
conditions in (��) can be verified in time polynomial in the combined size of KP ,
Gq

KP
, and SM(PG), each of which is single exponential in the size of P .

We thus have an algorithm for deciding P |=b A(t) in exponential time.
The full paper shows that it is worst-case optimal, by providing an ExpTime-
hardness result, and extends the result to binary ground queries.

Theorem 9. Deciding P |=bA(t), for ground t, is ExpTime-complete for FDNC.

The remaining entries in Table 1 are briefly explained as follows. F and FD

programs are trivially consistent. For an FC program P, consistency can be de-
cided by checking if each constant c in the single stable model G of PG (if it
exists) has a set of knots founded w.r.t. P and {st(G, c)}. This can be refuted by
nondeterministically constructing stepwise a sequence of at most exponentially
many knots which leads to inconsistency. This is feasible in polynomial space,
and since NPSpace = PSpace, consistency checking is in PSpace. Matching
PSpace-hardness is shown by a generic Turing machine reduction, where a sim-
ple constraint of form ← A(x) is sufficient to show the hardness.

The PSpace-hardness of P |=b ∃x.A(x) for F is immediate from the fact
P |=b ∃x.A(x) holds iff P∪{← A(x)} is inconsistent. The problem is in PSpace,
since we can nondeterministically construct a sequence of at most exponentially
many knots until A occurs. For FD, this can be decided similarly; for FC, an
additional consistency check has to be made, but polynomial space is sufficient.

In case of ground entailment P |=b A(t), membership of A(t) in the single
stable model of an F or FC program is witnessed by a sequence of knots that
is fully determined by t and computable in polynomial time. For FC, the con-
sistency check of P remains to be done. In case of FD, we still need to guess
knots, guided by t, and verify their stability; this is feasible in ΣP

2 . Matching
ΣP

2 -hardness follows from propositional logic programs [4].

528 M. Šimkus and T. Eiter

Finally, ExpTime-completeness of the reasoning tasks for FN is proved by a
polynomial reduction of consistency check in FDC to consistency check in FN.

5 Related Work

Our FN programs are decidable Finitely Recursive Programs (FRPs) [2,1], which
are normal logic programs P with function symbols where in the grounding of
P , each atom depends only on finitely many atoms; disjunction and constraints
are not allowed. For FRPs, inconsistency checking is r.e.-complete and brave
ground entailment is co-r.e.-complete [1]; for FN and our full class FDNC, which
implicitly obeys the condition of FRPs, these problems are ExpTime-complete.
On the other hand, FN is not a subclass of the Finitary Programs (FPs) [2], which
are those RFPs in whose grounding only finitely many atoms occur in odd cycles.
For FPs, consistency checking is decidable, and brave and cautious entailment
are decidable for ground queries but r.e.-complete for existential atomic queries.
Note that for FN, all these problems are decidable in exponential time. Finally,
the explicit syntax of FN and our other fragments of FDNC allows to effectively
recognize such programs. FRPs and FPs, instead, suffer the undecidability of the
conditions that define them, i.e., FRPs and FPs cannot be effectively recognized.

Related to our work are Local Extended Conceptual Logic Programs (LECLPs)
[9], which evolved from [8]. These programs are function-free but have answer
sets over open domains, i.e., of the grounding of a program with any superset
of its constants. LECLPs are syntactically restricted to ensure the forest-shape
model property of answer sets. Deciding consistency of an LECLP P is feasible
in nondeterministic triple exponential time, as one can ground P with double
exponentially many constants in the size of P , and then use standard ASP. For
FDNC, deciding the consistency is ExpTime-complete and thus less complex.

Comparing the expressiveness of LECLPs and FDNC is intricated due the
different settings. At least, both formalisms can encode certain description logics
(e.g., ALC). LECLPs may be more expressive than FDNC programs, since the
expressive DL ALCHOQ is reducible to satisfiability in LECLPs. On the other
hand, LECLPs undermine the general intuition behind minimal model semantics
of logic programs. So-called free rules of the form p(x) ∨ not p(x) ←; allow to
unfoundedly add atoms in an answer set. FDNC, instead, has no free rules, and
each atom in a stable model of P must be justified from the very facts of P .

6 Discussion and Conclusion

In line with efforts to pave the way for effective Answer Set Programming engines
with function symbols [2,1], we presented FDNC programs as a decidable class of
disjunctive logic programs with function symbols under stable model semantics.
They are a tool for knowledge representation and reasoning for some applications
involving infinite processes and objects, like evolving action domains. From our
results on consistency checking and brave entailment of ground and existential
atomic queries q, one can easily determine the complexity of cautious entailment

FDNC: Decidable Non-monotonic Disjunctive Logic Programs 529

P |=c q, i.e., whether q is true in all stable models of P . The results in Table 1 for
brave entailment carry over to cautious entailment except for FD; here, P |=c

A(t) is coNP-complete and P |=c ∃x.A(x) is ExpTime-complete. Intuitively,
the former is because minimality of models is irrelevant for inference of an atom
A(t), and the latter because consistency checking with constraints ← B(x) can
be reduced to cautious inference with rules A(x) ← B(x).

FDNC programs can be easily extended with strong negation ¬p(x) [6], which
can be expressed in the language as usual (view ¬p as a predicate symbol and
add constraints ← p(x),¬p(x)). Implementation of FDNC programs is another
subject of future work. To this aim, recent extensions of the DLV system like
DLVHEX (http://con.fusion.at/dlvhex/) might be exploited.

Acknowledgments. We thank a reviewer for pointing out the decidability of
FDNC (even with inverse rules) via monadic second-order logic over trees.

References

1. Baselice, S., Bonatti, P.A., Criscuolo, G.: On Finitely Recursive Programs. In: Dahl,
V., Niemelä, I. (eds.) ICLP 2007, September 8-13. LNCS, vol. 4670, pp. 89–103.
Springer, Heidelberg (2007) http://dx.doi.org/10.1007/978-3-540-74610-2 7

2. Bonatti, P.A.: Reasoning with infinite stable models. Artif. Intell. 156(1), 75–111
(2004)

3. Eiter, T., Faber, W., Leone, N., Pfeifer, G., Polleres, A.: A Logic Programming
Approach to Knowledge-State Planning: Semantics and Complexity. ACM Trans-
actions on Computational Logic 5(2), 206–263 (2004)

4. Eiter, T., Gottlob, G.: On the Computational Cost of Disjunctive Logic Pro-
gramming: Propositional Case. Annals of Mathematics and Artificial Intelli-
gence 15(3/4), 289–323 (1995)

5. Eiter, T., Gottlob, G.: Expressiveness of stable model semantics for disjuncitve
logic programs with functions. J. Log. Program. 33(2), 167–178 (1997)

6. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Generation Comput. 9(3/4), 365–386 (1991)

7. Giunchiglia, E., Lifschitz, V.: An Action Language Based on Causal Explanation:
Preliminary Report. In: AAAI 1998. Proceedings of the Fifteenth National Con-
ference on Artificial Intelligence, pp. 623–630 (1998)

8. Heymans, S.: Decidable Open Answer Set Programming. PhD thesis, Theoretical
Computer Science Lab (TINF), Department of Computer Science, Vrije Univer-
siteit Brussel, Pleinlaan 2, B1050 Brussel, Belgium (February 2006)

9. Heymans, S., Nieuwenborgh, D.V., Vermeir, D.: Nonmonotonic ontological and
rule-based reasoning with extended conceptual logic programs. In: Gómez-Pérez,
A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 392–407. Springer, Hei-
delberg (2005)

10. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.:
The DLV system for knowledge representation and reasoning. ACM Transactions
on Computational Logic 7(3), 499–562 (2006)

11. Marek, V.W., Remmel, J.B.: On the expressibility of stable logic programming. In:
LPNMR, pp. 107–120 (2001)

http://con.fusion.at/dlvhex/
http://dx.doi.org/10.1007/978-3-540-74610-2_7

530 M. Šimkus and T. Eiter

12. Marek, W., Nerode, A., Remmel, J.: How Complicated is the Set of Stable Models
of a Recursive Logic Program? Annals of Pure and Applied Logic 56, 119–135
(1992)

13. Minker, J. (ed.): Foundations of Deductive Databases and Logic Programming.
Morgan Kaufmann, San Francisco (1988)

14. Motik, B., Horrocks, I., Sattler, U.: Bridging the Gap Between OWL and Relational
Databases. In: Proc. of WWW 2007, pp. 807–816 (2007)

15. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model
semantics. Artificial Intelligence 138, 181–234 (2002)

16. Woltran, S.: Answer Set Programming: Model Applications and Proofs-of-Concept.
Technical Report WP5, Working Group on Answer Set Programming (WASP, IST-
FET-2001-37004) (July 2005), available at
http://www.kr.tuwien.ac.at/projects/WASP/report.html

http://www.kr.tuwien.ac.at/projects/WASP/report.html

The Complexity of Temporal Logic with Until

and Since over Ordinals�

Stéphane Demri1 and Alexander Rabinovich2

1 LSV, ENS Cachan, CNRS, INRIA
demri@lsv.ens-cachan.fr

2 Tel Aviv University, Ramat Aviv
rabinoa@post.tau.ac.il

Abstract. We consider the temporal logic with since and until modali-
ties. This temporal logic is expressively equivalent over the class of ordi-
nals to first-order logic thanks to Kamp’s theorem. We show that it has a
pspace-complete satisfiability problem over the class of ordinals. Among
the consequences of our proof, we show that given the code of some
countable ordinal α and a formula, we can decide in pspace whether the
formula has a model over α. In order to show these results, we intro-
duce a class of simple ordinal automata, as expressive as Büchi ordinal
automata. The pspace upper bound for the satisfiability problem of the
temporal logic is obtained through a reduction to the nonemptiness prob-
lem for the simple ordinal automata.

1 Introduction

The main models for time are 〈N, <〉, the natural numbers as a model of discrete
time and 〈R, <〉, the real line as the model for continuous time. These two models
are called the canonical models of time. A major result concerning linear-time
temporal logics is Kamp’s theorem [Kam68, GHR94] which says that LTL(U, S),
the temporal logic having “Until” and “Since” as only modalities, is expressively
complete for first-order monadic logic of order over the class of Dedekind com-
plete linear orders. The canonical models of time are indeed Dedekind-complete.
Another important class of Dedekind-complete orders is the class of ordinals, see
e.g. an axiomatization of LTL(U, S) over ordinals in [Ven93].
In this paper the satisfiability problem for the temporal logic with until and
since modalities over the class of ordinals is investigated. Our main results are
the following: the satisfiability problem for LTL(U, S) over the class of ordinals
is pspace-complete and a formula φ in LTL(U, S) has some α-model for some
ordinal α iff it has an β-model for some β < ω|φ|+2 where |φ| is the size of φ.

In order to prove these results we use an automata-based approach [VW94].
In Section 3, we introduce a new class of ordinal automata which we call simple
ordinal automata. These automata are expressive equivalent to Büchi automata
� Partially supported by an invited professorship from ENS de Cachan and project

AutoMathA (ESF).

N. Dershowitz and A. Voronkov (Eds.): LPAR 2007, LNAI 4790, pp. 531–545, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

532 S. Demri and A. Rabinovich

over ordinals [BS73]. However, the locations and the transition relations of these
automata have additional structures as in [VW94, Roh97]. In particular, a loca-
tion is a subset of a base set X . Herein, we provide a translation from formulae
in LTL(U, S) into simple ordinal automata that allows to characterize the com-
plexity of the satisfiability problem for LTL(U, S). However, the translation of
the formula φ into the automaton Aφ provides an automaton of exponential size
in |φ| but the base of Aφ has a cardinality linear in |φ|.
Section 4 contains our main technical lemmas. We show there that every run
in a simple ordinal automaton is equivalent to a short run. Consequently, we
establish that a formula φ ∈ LTL(U, S) has an α-model iff it has a model of
length trunc|φ|+2(α) where trunc|φ|+2(α) is a truncated part of α strictly less
than ω|φ|+2 × 2 (see the definition of truncation in Section 4).
In Section 5 we present two algorithms to solve the nonemptiness problem for
simple ordinal automata. The first one runs in (simple) exponential time and
does not take advantage of the short run property. The second algorithm runs
in polynomial space and the short run property plays the main role in its design
and its correctness proof.

In Section 6 we investigate several variants of the satisfiability problem and
show that all of them are pspace-complete. Section 7 compares our results with
related works. The satisfiability problem for LTL(U, S) over ω-models is pspace-
complete [SC85]. Reynolds [Rey03, Rey] proved that the satisfiability problem
for LTL(U, S) over the reals is pspace-complete. The proofs in [Rey03, Rey] are
non trivial and difficult to grasp and it is therefore difficult to compare our proof
technique with those of [Rey03, Rey] even though we believe cross-fertilization
would be fruitful. We provide uniform proofs and we improve upper bounds for
decision problems considered in [Cac06, DN07, Roh97]. We also compare our
results and techniques with Rohde’s thesis [Roh97]. Finally we show how our
results entail most of the results from [DN07] and we solve some open problems
stated there.

2 Temporal Logic with Until and Since

The formulae of LTL(U, S) are defined as follows:

φ ::= p | ¬φ | φ1 ∧ φ2 | φ1Uφ2 | φ1Sφ2

where p ∈ PROP for some set PROP of atomic propositions. Given a formula
φ in LTL(U, S), we write sub(φ) to denote the set of subformulae of φ or their
negation assuming that ¬¬ψ is identified with ψ. The size of φ is defined as
the cardinality of sub(φ) and therefore implicitly we encode formulae as DAGs.
This feature will be helpful for defining translations that increase polynomially
the number of subformulae but for which the tree representation might suffer
an exponential blow-up. We use the following abbreviations Gφ = φ∧¬(�U¬φ)
and Fφ = ¬G¬φ that do cause only a polynomial increase in size.

The satisfaction relation is inductively defined below where σ is an α-model
of the form α → P(PROP) for some ordinal α > 0 (β < α):

The Complexity of Temporal Logic with Until and Since over Ordinals 533

– σ, β |= p iff p ∈ σ(β),
– σ, β |= ¬φ iff not σ, β |= φ, σ, β |= φ1 ∧ φ2 iff σ, β |= φ1 and σ, β |= φ2,
– σ, β |= φ1Uφ2 iff there is γ ∈ (β, α) such that σ, γ |= φ2 and for every

γ′ ∈ (β, γ), we have σ, γ′ |= φ1,
– σ, β |= φ1Sφ2 iff there is γ ∈ [0, β) such that σ, γ |= φ2 and for every

γ′ ∈ (γ, β), we have σ, γ′ |= φ1.

The satisfiability problem for LTL(U, S) consists in determining, given a for-
mula φ, whether there is a model σ such that σ, 0 |= φ.

We recall that well orders are particular cases of Dedekind complete linear
orders. Indeed, a chain is Dedekind complete iff every non-empty bounded subset
has a least upper bound. Kamp’s theorem applies herein.

Theorem 1. (I) [Kam68] LTL(U, S) over the class of ordinals is as expressive
as the first-order logic over the class of structures 〈α, <〉 where α is an ordinal.
(II) [BS73] The satisfiability problem for LTL(U, S) over the class of ordinals is
decidable.

Hence, LTL(U, S) is a fundamental logic to be studied. Moreover, another key
result is the pspace-completeness of LTL(U, S) restricted to ω-models [SC85].

We recall below a definability result that will be used in Sections 6 and 7.
Ordinals strictly below ωω can be defined in LTL(U, S) with the truth constant
� (no propositional variable).

Lemma 2. Given an ordinal 0 < α = ωk1ak1 + · · ·ωkmakm < ωω with k1 >
. . . > km ≥ 0, ak1 , . . . akm > 0, there is a formula defα in LTL(U, S) of linear
size in Σi(ki × aki) such that for any model σ, we have σ, 0 |= defα iff σ is of
length α.

3 Translation from Formulae to Simple Ordinal
Automata

In Section 3.1, we introduce a new class of ordinal automata which we call simple
ordinal automata. These automata are expressive equivalent to Büchi automata
over ordinals [BS73]. However, the locations and the transition relations of these
automata have additional structures. In Section 3.2, we provide a translation
from LTL(U, S) into simple ordinal automata which assigns to every formula
in LTL(U, S) an automaton that recognizes exactly its models. We borrow the
automata-based approach for temporal logics from [VW94, KVW00].

3.1 Simple Ordinal Automata

Definition 3. A simple ordinal automaton A is a structure 〈X, Q, δnext, δlim〉
such that

– X is a finite set (the basis of A), Q ⊆ P(X) (the set of locations),
– δnext ⊆ Q × Q is the next-step transition relation,
– δlim ⊆ P(X) × Q is the limit transition relation.

534 S. Demri and A. Rabinovich

A can be viewed as a finite directed graph whose set of nodes is structured.
Given a simple ordinal automaton A, an α-path (or simply a path) is a map
r : α → Q for some α > 0 such that

– for every β + 1 < α, 〈r(β), r(β + 1)〉 ∈ δnext,
– for every limit ordinal β < α, 〈always(r, β), r(β)〉 ∈ δlim where

always(r, β) def= {a ∈ X : ∃ γ < β such that a ∈ ∩γ′∈(γ,β) r(γ′)}.

The set always(r, β) contains exactly the elements of the basis that belong to
every location from some γ < β until β. We sometimes write always(r) instead
of always(r, α) when α is a limit ordinal or always(r) instead of always(r, α− 1)
when α is a successor ordinal and α − 1 is a limit ordinal.

Given an α-path r, for β, β′ < α we write

– r≥β to denote the restriction of r to positions greater or equal to β,
– r≤β to denote the restriction of r to positions less or equal to β,
– r[β,β′) to denote the restriction of r to positions in [β, β′) (half-open interval).

A simple ordinal automaton with acceptance conditions is a structure of the
form 〈X, Q, I, F,F , δnext, δlim〉 where

– I ⊆ Q is the set of initial locations,
– F ⊆ Q is the set of final locations for accepting runs whose length is some

successor ordinal,
– F ⊆ P(X) encodes the accepting condition for runs whose length is some

limit ordinal.

Given a simple ordinal automaton with acceptance conditions, an accepting run
is a path r : α → Q such that r(0) ∈ I and

– if α is a successor ordinal, then r(α − 1) ∈ F ,
– otherwise {a ∈ X : ∃ γ < α such that a ∈ ∩γ′∈(γ,α) r(γ′)} ∈ F .

The nonemptiness problem for simple ordinal automata consists in checking
whether A has an accepting run.

Our current definition for simple ordinal automata does not make them lan-
guage acceptors since they have no alphabet. It is possible to add in the definition
a finite alphabet Σ and to define the next-step transition relation as a subset of
Q×Σ×Q. If we do so, our model of automata can recognize the same languages
as the usual ordinal automata with Muller acceptance conditions in the limit
transitions. The proof is not very difficult. Additionally, the current definition
can be viewed as the case either when the alphabet is a singleton or when the
read letter is encoded in the locations through the dedicated elements of the
basis. This second reading will be in fact used implicitly in the sequel.

We also write A to denote either a simple ordinal automaton or its extension
with acceptance conditions.

The Complexity of Temporal Logic with Until and Since over Ordinals 535

3.2 Translation from LTL(U, S) Formulae to Simple Ordinal
Automata

As usual, a set Y is a maximally Boolean consistent subset of sub(φ) when the
following conditions are satisfied: for every ψ ∈ sub(φ), ¬ψ ∈ Y iff ψ �∈ Y and
for every ψ1 ∧ ψ2 ∈ sub(φ), ψ1 ∧ ψ2 ∈ Y iff ψ1, ψ2 ∈ Y . Given a formula φ, the
simple ordinal automaton Aφ = 〈X, Q, I, F,F , δnext, δlim〉 is defined as follows:

– X = sub(φ).
– Q is the set of maximally Boolean consistent subsets of sub(φ).
– I is the set of locations that contain φ and no since formulae.
– F is the set of locations with no elements of the form ψ1Uψ2.
– F is the set of sets Y such that {ψ1,¬ψ2, ψ1Uψ2} �⊆ Y , for every ψ1Uψ2 ∈ X .
– For all q, q′ ∈ Q, 〈q, q′〉 ∈ δnext iff the conditions below are satisfied:

(nextU) for ψ1Uψ2 ∈ sub(φ), ψ1Uψ2 ∈ q iff either ψ2 ∈ q′ or ψ1, ψ1Uψ2 ∈ q′,
(nextS) for ψ1Sψ2 ∈ sub(φ), ψ1Sψ2 ∈ q′ iff either ψ2 ∈ q or ψ1, ψ1Sψ2 ∈ q.

– For all Y ⊆ X and q ∈ Q, 〈Y, q〉 ∈ δlim iff the conditions below are satisfied:
(limU1) if ψ1,¬ψ2, ψ1Uψ2 ∈ Y , then either ψ2 ∈ q or ψ1, ψ1Uψ2 ∈ q,
(limU2) if ψ1, ψ1Uψ2 ∈ q and ψ1 ∈ Y , then ψ1Uψ2 ∈ Y ,
(limU3) if ψ1 ∈ Y , ψ2 ∈ q and ψ1Uψ2 is in the basis X , then ψ1Uψ2 ∈ Y ,
(limS) for every ψ1Sψ2 ∈ sub(φ), ψ1Sψ2 ∈ q iff (ψ1 ∈ Y and ψ1Sψ2 ∈ Y).

Even though the conditions above can easily be shown correct, at this stage it
might sound mysterious how they have been made up. For some of them, their
justification comes with the proof of Lemma 4.

Let σ be an α-model and φ be a formula in LTL(U, S). The Hintikka sequence
for σ and φ is an α-sequence Hσ,φ defined as follows: for every β < α,

Hσ,φ(β) def= {ψ ∈ sub(φ) : σ, β |= ψ}.
Now we can state the correctness lemma.

Lemma 4

(I) If σ, 0 |= φ, then Hσ,φ is an accepting run of Aφ.
(II) If r is an accepting run of Aφ, then there is a model σ such that σ, 0 |= φ

and r is the Hintikka sequence for σ and φ.
(III) φ is satisfiable iff Aφ has an accepting run.

4 Short Run Properties

Let A be a simple ordinal automaton and Y be a subset of its basis. Y is said
to be present in A iff there is a limit transition of the form 〈Y, q〉 in A. Given
a set Y present in A, its weight, noted weight(Y), is the maximal l such that
Y1 ⊂ Y2 ⊂ · · · ⊂ Yl is a sequence of present subsets in A and Y1 = Y . Obviously,
weight(Y) ≤ |X | + 1.

Given a path r : α → Q in A with α ≥ ω+1, its weight, noted weight(r), is the
maximal value in the set {weight(always(r, β)) : β < α, β is a limit ordinal}.

536 S. Demri and A. Rabinovich

By convention, if a path is of length strictly less than ω + 1, then its weight
is zero (no limit transition is fired). Furthermore, we write exists(r) to denote
the set

⋃
β<α r(β) and all(r) to denote the set

⋂
β<α r(β). For example, all(r)

corresponds to the set of elements from the basis that are present in all locations
of the run r. Let r, r′ be two paths of respective length α+1 and α′+1, we say that
they are congruent (noted r ∼ r′) iff the conditions below are meet: r(0) = r′(0),
r(α) = r′(α′), exists(r) = exists(r′) and all(r) = all(r′). We can easily adapt the
congruence relation to runs r and r′ of length some limit ordinal by requiring
that always(r) = always(r′) instead of the condition on final locations for runs
of length some successor ordinal.

Let r1 be a path of length α + 1 and r2 be a path of length β such that
r1(α) = r2(0). The concatenation r1 · r2 is the path r of length α + β such that
for γ ∈ [0, α], r(γ) = r1(γ) and for γ ∈ [0, β), r(α+γ) = r2(γ). For every ordinal
α, the concatenation of α-sequences of paths is defined similarly. The relation ∼
can be viewed as a congruence for the concatenation operation on paths.

Lemma 5

(I) Let r · r0 · r′, r1 be two paths such that r0 ∼ r1. Then, r · r1 · r′ is a path that
is congruent to r · r0 · r′.

(II) Let r0
0 , r

1
0 , r

2
0 , . . . and r0

1 , r
1
1 , r

2
1 , . . . be two ω-sequences of pairwise consecu-

tive paths such that for i ≥ 0, ri0 ∼ ri1 and their length is a successor ordinal.
If r · r0

0 · r1
0 · r2

0 · . . . · r′ is a path, then it is congruent to r · (r0
1 · r1

1 · r2
1 · . . .) · r′.

The proof of the above lemma is by an easy verification.

Lemma 6. Let r : α → Q be a path in A. Then, there is a path r′ : α′ → Q
such that α′ < ωweight(r)+1 and r ∼ r′.

Lemma 6 states a crucial property for most of complexity results established
in the sequel. Indeed, for usual ordinal automata, it is not possible to get this
polynomial bound as an exponent of ω for the length of the short paths. Actually,
the exponent is linear in the cardinal of its basis and can be logarithmic in
the number of locations for large automata. By combination of Lemma 4 and
Lemma 6, we obtain the following interesting result.

Corollary 7. If φ is satisfiable, then φ has an α-model with α < ω|φ|+2.

This can be still be refined a little more by observing that for each ωi × a
occurring in the Cantor normal form of the length of a small model of φ (strictly
less than ω|φ|+2), a is bounded by 2|φ|−1 since the cardinal of the set of locations
of Aφ is bounded by 2|φ|−1.

For n ∈ N, let truncn be the function that assigns to every ordinal α > 0 an
ordinal in (0, ωn2) as follows. α can be written in the form α = ωnγ + β with
β ∈ [0, ωn). Then truncn(α) = ωn × min(γ, 1) + β.

Lemma 8. Let A be a simple ordinal automaton.

(I) If r is a path of length ωweight(r)+1 × α for some countable ordinal α > 0,
then there is a path r′ of length ωweight(r)+1 such that r ∼ r′.

The Complexity of Temporal Logic with Until and Since over Ordinals 537

(II) If a path r has length ωweight(r)+1, then for every ordinal α > 0, there is a
path r′ of length ωweight(r)+1 × α such that r ∼ r′.

(III) If r is a path of length α and β ≈|X|+1 α, then there is a path r′ of length
β such that r ∼ r′.

Only in (I), α is supposed to be countable. Because of the translation from
formulae to automata, we can also establish a pumping lemma at the level of
formulae.

Lemma 9

(I) Let A be a simple ordinal automaton with acceptance conditions and α, β
be ordinals such that α ≈|X|+1 β. Then, A has an accepting run of length α
iff A has an accepting run of length β.

(II) Let φ be a formula in LTL(U, S) and α, β be ordinals such that α ≈|φ|+2 β.
Then φ has an α-model iff φ has a β-model.

Proof. (I) Direct consequence of Lemma 6 and Lemma 8 since accepting runs
can be viewed as paths.

(II) By Lemma 4, φ has an α-model iff Aφ has an accepting run r of length
α. Since |φ| + 1 bounds the weight of any path in Aφ and by (I), we get that
Aφ has an accepting run r of length α iff Aφ has an accepting run r of length
β. Equivalently, φ has a β-model. ��

5 Checking Nonemptiness of Simple Ordinal Automata

In this section, we provide algorithms to check whether a simple ordinal au-
tomata admits accepting runs. The first one is in exptime. Our optimal algo-
rithm runs in polynomial space in the size of the basis.

Let A be a simple ordinal automaton 〈X, Q, I, F,F , δnext, δlim〉. We provide
below an algorithm to check given q, q′ ∈ Q and n ∈ N whether there is path
r : α + 1 → Q such that r(0) = q, r(α) = q′ and α < ωn. Given an (α + 1)-path
we write abs(r) to denote the quadruple 〈r(0), exists(r), all(r), r(α)〉. We define
a family of relations containing the quadruples of the form abs(r). Each relation
Ri below is therefore a subset of Ri ⊆ Q × P(X)2 × Q.

– R0 = {〈q, q ∪ q′, q ∩ q′, q′〉 : 〈q, q′〉 ∈ δnext},
– For i ∈ N,

R′i = {〈q0,

m⋃
i=0

Ei,

m⋂
i=0

Ai, qm+1〉 :

∃〈q0, E0, A0, q1〉Ri〈q1, E1, A1, q2〉Ri · · ·Ri〈qm, Em, Am, qm+1〉}
– For i ∈ N, Ri+1 is defined from R′i as follows: 〈q, E, A, q′〉 ∈ Ri+1 iff

• either 〈q, E, A, q′〉 ∈ R′i
• or there exist a limit transition 〈Y, q′〉 ∈ δlim and a path

〈q0, E0, A0, q1〉Ri〈q1, E1, A1, q2〉Ri · · ·Ri〈qm, Em, Am, qm+1〉

538 S. Demri and A. Rabinovich

such that
(a) q0 = qm+1, (b)

⋂m
i=0 Ai = Y , (c) 〈q, E′, A′, q0〉 ∈ R′i for some E′, A′,

(d) E = (E′ ∪ q′) ∪ ⋃m
i=0 Ei, A = (A′ ∩ q′) ∩ ⋂m

i=0 Ai.

Because Ri ⊆ Ri+1 for all i, for some N ≤ 24×|X| + 1, RN+1 = RN . The bound
24×|X| + 1 takes simply into account that Q ⊆ P(X).

Lemma 10. (I) If 〈q, E, A, q′〉 ∈ Rn, then there is an (α + 1)-path such that
abs(r) = 〈q, E, A, q′〉 and α < ωn. (II) Conversely, let r : α + 1 → Q be a path
such that α < ωn. Then abs(r) ∈ R′n.

We provide below a first complexity result.

Lemma 11. The nonemptiness problem for simple ordinal automata with ac-
ceptance conditions can be checked in exponential time in |X |.
Proof. Let A be of the form 〈X, Q, I, F,F , δnext, δlim〉. A has an accepting run iff
either (A) there are q0 ∈ I, qf ∈ F and E, A ⊆ X such that 〈q0, E, A, qf 〉 ∈ R′n
for some n or (B) there are q0 ∈ I, and a run r from q0 such that always(r) ∈ F .
(A) deals with accepting runs of length some successor ordinal, whereas (B) deals
with accepting runs of length some limit ordinal.

By Lemma 6 and Lemma 10(II), in order to check (A), it is sufficient to test for
〈q0, E, A, qf 〉 ∈ I × P(X)2 × F whether 〈q0, E, A, qf 〉 ∈ R′|X|+2 ⊆ R|X|+3. Since
|Q| is in O(2|X|), computing R|X|+3 takes |X |+3 steps that requires polynomial
time in |A| and exponential time in |X |, we obtain the desired result. Observe
that we can take advantage of the fact that computing the transitive closure
of a relation and the maximal strongly connected components can be done in
polynomial time in the size of the relations.

By Ramsey theorem, (B) is equivalent to the following condition: there are
q ∈ Q, E, E′, A ⊆ X , A′ ∈ F and runs r1 and r2 such that abs(r1) = 〈q0, E, A, q〉
and abs(r2) = 〈q, E′, A′, q〉.

Hence. in order to check these, it is enough to check whether there are q0 ∈ I,
q ∈ Q and E, A ⊆ X such that 〈q0, E, A, q〉 ∈ R′|X|+2, 〈q, E′, A′, q〉 ∈ R′|X|+2 and
A′ ∈ F . This can be done in exponential time as for (A). ��
The proof of Lemma 11 mentions Lemma 6 but the exponential time upper
bound can be obtained by observing that an exponential number of steps, such
as 24×|X| + 1 would provide the same bound in the worst case. As a corollary
of Lemma 11, satisfiability for LTL(U, S) is in exptime. Moreover, this can be
improved as shown in the proof of Theorem 13 presented in Section 6.

We improve below the bound in Lemma 11.

Theorem 12. The nonemptiness problem for simple ordinal automata can be
checked in polynomial space in |X |.
Proof. Following the proof of Lemma 11, A has an accepting run iff (A) there are
q0 ∈ I, qf ∈ F and E, A ⊆ X such that 〈q0, E, A, qf 〉 ∈ R|X|+3 or (B) there are
q0 ∈ I, q ∈ Q and E′, A′ ⊆ X such that 〈q0, E

′, A′, q〉 ∈ R|X|+3, 〈q, E′, A′, q〉 ∈

The Complexity of Temporal Logic with Until and Since over Ordinals 539

R|X|+3 and A′ ∈ F . X denotes the basis of A. In order to check (A), the non-
deterministic algorithm guesses q0 ∈ I, qf ∈ F and E, A ⊆ X (encoded in
polynomial space in O(|X |) and test whether PATH(A, 〈q0, E, A, qf 〉, |X | + 3)
returns true. Condition (B) admits a similar treatment. The non-deterministic
algorithm PATH defined below works in polynomial space in |X | assuming that
the last argument is polynomial in |X | which is the case with |X | + 3. Figure 1
contains the definition of the function PATH (some details are omitted).

In (2.), guessing on-the-fly a long sequence means that only two consecutive
quadruples are kept in memory at any time. We need a counter to guarantee that
m < 24×|X|+1 and it requires only space in O(|X |). Moreover, in order to check
E =

⋃
j Ej and A =

⋂
j Aj we need two auxiliary variables that bookkeep the Ej

and Aj so far respectively. Similar techniques are used in (3.) to guarantee that
this non-deterministic algorithm requires only polynomial space in O(|X | + N)
(we only need more variables and steps). It is straightforward to show that

PATH(A, 〈q, E,A, q′〉, N)

– If N = 0 then (if (either E �= q ∪ q′ or A �= q ∩ q′ or 〈q, q′〉 �∈ δnext) then abort else
return �);

– If N > 0 then go non-deterministically to 1.,2. or 3.
(1.) Return PATH(A, 〈q, E,A, q′〉, N − 1)
(2.) Guess on-the-fly a sequence

〈q0, E0, A0, q1〉, 〈q1, E1, A1, q2〉, . . . , 〈qm, Em, Am, qm+1〉
such that
• m < 24×|X|+1 + 1,
• for 0 ≤ i ≤ m, PATH(A, 〈qi, Ei, Ai, qi+1〉, N − 1) returns �,
• E =

⋃
j Ej and A =

⋂
j Aj

• q = q0, q
′ = qm+1;

(3.) We guess here two long sequences:
(3.1) Guess on-the-fly a sequence

〈q0, E0, A0, q1〉, 〈q1, E1, A1, q2〉, . . . , 〈qm, Em, Am, qm+1〉
such that
• m < 24×|X|+1 + 1,
• for 0 ≤ i ≤ m, PATH(A, 〈qi, Ei, Ai, qi+1〉, N − 1) returns �,
• E′ =

⋃
j Ej and A′ =

⋂
j Aj ;

• q0 = q;
(3.2) Guess a limit transition 〈Y, q′〉 ∈ δlim and on-the-fly a sequence
〈q′0, E′

0, A
′
0, q

′
1〉, 〈q′1, E′

1, A
′
1, q

′
2〉, . . . , 〈q′m, E′

m′ , A′
m′ , q′m′+1〉 such that

• m′ < 24×|X|+1,
• for 0 ≤ i ≤ m′, PATH(A, 〈q′i, E′

i, A
′
i, q

′
i+1〉, N − 1) returns �,

• E = (E′ ∪ q′m′+1) ∪
⋃

j E
′
j ,

• A = (A′ ∩ q′m′+1) ∩
⋂

j A
′
j , Y =

⋂
j A

′
j , q

′
0 = qm+1;

– Return �.

Fig. 1. Algorithm PATH

540 S. Demri and A. Rabinovich

PATH(A, 〈q, E, A, q′〉, N) has a computation that returns � (all the guesses were
correct) iff 〈q, E, A, q′〉 ∈ RN . Finally Savitch’s Theorem allows to conclude that
nonemptiness can be checked in deterministic polynomial space in |X |. ��

6 Complexity of Satisfiability Problems

We establish new complexity results for problems related to LTL(U, S) satisfia-
bility thanks to the intermediate results we have established so far.

6.1 Complexity of LTL(U, S)

Here is the main result of the paper.

Theorem 13. The satisfiability problem for LTL(U, S) over the class of ordinals
is pspace-complete.

Proof. By Lemma 4, given a formula φ in LTL(U, S), there is an automaton
Aφ whose accepting runs correspond exactly to models of φ. In order to check
nonemptiness of Aφ, we do not build it explicitly (as usual) but we run the
algorithm from the proof of Theorem 12 and we compute the locations, and
transition relations of Aφ on demand. Hence, we obtain a polynomial space
non-deterministic algorithm since the basis of Aφ has a cardinality in O(|φ|)
and checking whether a subset of X is a location of Aφ or 〈q, q′〉 ∈ δnext or
〈Y, q〉 ∈ δlim can be done in polynomial space in O(|φ|). Again by Savitch’s
Theorem, we get that the satisfiability problem for LTL(U, S) is in pspace. The
pspace lower bound can be easily shown inherited from LTL. ��
Thanks to Kamp’s theorem, we get the following corollary.

Corollary 14. Let LTL(U, S, O1, . . . , Ok) be an extension of LTL(U, S) with k
first-order definable temporal operators. Then the satisfiability problem for the
logic LTL(U, S, O1, . . . , Ok) over the class of ordinals is in pspace.

Indeed, every formula Oi(p1, . . . , pni) encoded as a DAG can be translated into
an equivalent formula in LTL(U, S) encoded as a DAG over the propositional
variables p1, . . . , pni . Since O1, . . . , Ok and their definition in LTL(U, S) are con-
stant of LTL(U, S, O1, . . . , Ok) we obtain a translation in polynomial-time (with
our definition for the size of formulae).

6.2 A Family of Satisfiability Problems

The satisfiability problem for LTL(U, S) asks for the existence of a model for
a given formula. A natural variant of this problem consists in fixing the length
of the models in advance as for LTL. The satisfiability problem for LTL(U, S)
over α-models, noted SAT(α, LTL(U, S)), is defined as follows: given a formula
φ in LTL(U, S), is φ satisfiable over an α-model? In this subsection we prove
that SAT(α, LTL(U, S)) is in pspace for every countable ordinal α. First we
consider the case of ordinals strictly less than ωω. Recall that for every α < ωω

there is a formula defα in LTL(U, S) such that for every β-model σ, we have
σ, 0 |= defα iff β = α.

The Complexity of Temporal Logic with Until and Since over Ordinals 541

Corollary 15. For every α < ωω, the problem SAT(α, LTL(U, S)) is in pspace.

Proof. φ has a α-model iff ψ = φ ∧ defα is satisfiable over the class of ordinals.
Thanks to Lemma 2 and Theorem 13, we obtain the pspace upper bound. ��
Now we consider the case of a countable ordinal α ≥ ωω. Let α′ be the unique
ordinal strictly less than ωω such that α = ωω × γ + α′ for some ordinal γ. Note
that for every k, trunck(α) = trunck(ωk + α′) < ωω. By Lemma 9, φ has an α-
model iff φ has a α|φ|-model with α|φ| = trunc|φ|+2(α) = trunc|φ|+2(ω|φ|+2 +α′).
Hence, φ has an α-model iff φ∧ defα|φ| is satisfiable (over the class of countable
ordinals). Since the size of defα|φ| is polynomial in the size of φ, we derive from
Theorem 13 the following result.

Corollary 16. For every countable α ≥ ωω, the problem SAT(α, LTL(U, S)) is
in pspace.

Corollaries 15, 16 and the arguments similar to the arguments in the proof of
Corollary 14 imply the result below.

Theorem 17. For every finite set {O1, . . . , Ok} of first-order definable temporal
operators and every countable ordinal α, the satisfiability problem for the logic
LTL(O1, . . . , Ok) restricted to α-models is in pspace.

Observe that (1) if α is finite, then SAT(α, LTL(O1, . . . , Ok)) is np-complete
whereas (2) if α is infinite, then pspace-hardness for SAT(α, LTL(U, S)) follows
from the pspace-completeness of SAT(ω, LTL(U, S)).

6.3 Uniform Satisfiability

Büchi (see, e.g., [BS73]) has shown that there is a finite amount of data con-
cerning any countable ordinal that determines its monadic theory.

Definition 18 (Code of an ordinal). Let α be a countable ordinal and let m
be in [1, ω].

1. Write α = ωmα′ + ζ with ζ < ωm (this can be done in a unique way), and
let

pm(α) :=
{−2 if α′ = 0
−1 if 0 < α′ < ω1

.

2. If ζ �= 0, write ζ =
∑

i≤n ωn−i · an−i where ai ∈ ω for i ≤ n and an �= 0
(this can be done in a unique way), and let tm(α) := (an, . . . , a0). If ζ = 0,
let t(α) = −3.

3. The m-code of α is the pair (pm(α), tm(α)).

The following is implicit in [BS73].

Theorem 19 (Code Theorem). There is an algorithm that, given a monadic
second-order sentence φ and the ω-code of a countable ordinal α, determines
whether 〈α, <〉 |= φ.

542 S. Demri and A. Rabinovich

Lemma 9 can be rephrased as “the (|φ| + 2)-code of an ordinal α determines
whether φ has a model of length α”.

Let C = (b, an, . . . a0) be an m-code. Its size is defined as n+a0+a1+· · ·+an. It
is clear that for m1 < m2 the m2-code of an ordinal determines its m1-code and
there is a linear time algorithm, that given m2-code of an ordinal and m1 < m2

computes the m1-code of the ordinal.
The arguments used in the proof of Corollary 16 show the following theorem.

Theorem 20 (Uniform Satisfiability)

(I) There is a polynomial-space algorithm that, given an LTL(U, S) formula φ
and the ω-code of a countable ordinal α, determines whether φ has an α-
model.

(II) There is a polynomial-space algorithm that, given an LTL(U, S) formula φ
and the (|φ|+ 2)-code of a countable ordinal α, determines whether φ has an
α-model.

7 Related Work

In this section, we compare our results with those from the literature. Because
of lack of place, we omit to cite works in which models of length higher than ω
are considered for formal verification of computer systems, see e.g. [GW94].

7.1 Comparison with Rohde’s Thesis

In [Roh97], it is shown that an uniform satisfiability problem for temporal logic
with until (and without since) can be solved in exponential-time. The inputs of
this problem are a formula in LTL(U) and the representation of an ordinal. The
satisfiability problem is also shown in exptime. In order to obtain this upper
bound, formulae are shown equivalent to alternating automata and a reduction
from alternating automata into a specific subclass of non-deterministic automata
is given. Finally, a procedure for testing nonemptiness is provided. Here are the
similarities between [Roh97] and our results.

1. We follow an automata-based approach and the class of non-deterministic
automata in [Roh97] and ours have a structured set of locations and limit
transitions use elements that are true from some position.

2. Existence of α-paths in the automata depends on some truncation of α.
3. The logical decision problems can be solved in exponential-time.

However, our work improves considerably some results from [Roh97].

1. Our temporal logic includes the until and since operators (instead of until
only) and it is therefore as expressive as first-order logic.

2. We establish a tight pspace upper bound (instead of exptime) thanks to
the introduction of a class of simple ordinal automata.

3. Our proofs are much shorter and transparent (instead of the lengthy devel-
opments from [Roh97]).

The Complexity of Temporal Logic with Until and Since over Ordinals 543

Consequently, the developments from [Roh97] and ours follow the same ap-
proach with different definitions for automata, different intermediate lemmas
and distinct final complexity bounds. On the other hand, the structure of the
whole proof to obtain the main complexity bounds is similar.

7.2 Comparison with Reynolds’ Results

Even though the results for linear-time temporal logics from [Rey03, Rey] involve
distinct models, our automata-based approach has similarities with these works
that uses a different proof method, namely mosaics. Indeed, equivalence classes
of the relation ∼ between runs of length a successor ordinal roughly correspond
to mosaics from [Rey03]. We recall the main results below.

Theorem 21. (I) The satisfiability problem for the temporal logic with until
and since over the reals is pspace-complete. (II) The satisfiability problem for
LTL(U) over the class of all linear orders is pspace-complete.

The proofs in [Rey03, Rey] are much more involved than our proofs since the
orders are more complex than the class of ordinals. Unfortunately, we do not
understand these proofs fully and find it difficult to compare to our proof.

7.3 Quantitative Temporal Operators

In this section, we show that the main results from [DN07] are subsumed by the
current paper. We also solve an open problem from [Cac06, DN07]. For every
fixed countable ordinal α ≤ ω, let us introduce the logic LTL(Oα) where the set
of temporal operators Oα is defined as follows: {Xβ : β < ωα} ∪ {Uβ : β ≤ ωα}.
The models of LTL(Oα) as those of LTL(U, S) and the formulae of LTL(Oα) are
precisely defined by: φ ::= p | ¬φ | φ1 ∧ φ2 | Xβφ | φ1U

β′
φ2. The size

of a formula φ is the number of subformulae occurring in φ plus the sum of all
the natural numbers occurring in φ either as a coefficient or as an exponent of
ω. The satisfaction relation is inductively defined below where σ is a model for
LTL(Oα) (we omit the obvious clauses):

– σ, β |= Xβ
′
φ iff β + β′ is a position of σ and σ, β + β′ |= φ,

– σ, β |= φ1U
β′

φ2 iff there is 0 < γ < β′ such that β + γ is a position of σ,
σ, β + γ |= φ2 and for every 0 < γ′ < γ, we have σ, β + γ′ |= φ1.

The satisfiability problem for LTL(Oα) consists in determining, given a for-
mula φ, whether there is a model σ such that σ, 0 |= φ. The main results
of [Cac06, DN07] are the following: for every k ≥ 1, the satisfiability problem
for LTL(Ok) restricted to models of length ωk is pspace-complete and LTL(Oω)
restricted to models of length ωω is decidable.

Observe that LTL(Ok) cannot express the temporal operator U over the class
of countable ordinals but it can do it on models of length ωk. Hence, each logic
LTL(Ok) is less expressive than LTL(U, S).

544 S. Demri and A. Rabinovich

Moreover, it is easy to show that for every α ≤ ω, the logic LTL(Oα) is
expressive equivalent (over the class of countable ordinals) to its sublogic over
the following set O′α of temporal operators:

O′α = {Xωi

: ωi < ωα, i ∈ N} ∪ {Uωβ

: ωβ ≤ ωα, β ≤ ω}.
This set is finite when α is finite. Moreover, there is a linear time (and logarithmic
space) meaning preserving translation from LTL(Oα) into LTL(O′α).

We obtain alternative proofs for known results and we get new results.

Theorem 22. For every k ≥ 1,

(I) the satisfiability problem for LTL(Ok) over ωk-models is in pspace,
(II) the satisfiability problem for LTL(O′k) restricted to ωk-models is pspace-

complete,
(III) for every countable infinite ordinal α, the satisfiability problem for LTL(O′k)

restricted to α-models is pspace-complete.

(III) is an instance of Theorem 17. (II) is an instance of (III). (I) can be shown
by observing that there is logarithmic space meaning preserving translation from
LTL(Ok) to LTL(O′k). (I) is the main result of [DN07] with the unary encoding
of natural numbers occurring in ordinal expressions.

Finally, the corollary below improves the non-elementary bounds obtained
in [Cac06, DN07] for LTL(Oω) by reducing this temporal logic to the monadic
second-order logic, and then to Büchi ordinal automata.

Corollary 23. Satisfiability for LTL(Oω) over the class of ωω-models is
pspace-complete.

8 Conclusion

In the paper, we have shown that the linear-time temporal logic with until and
since over the class of ordinals, namely LTL(U, S) has a pspace-complete satis-
fiability problem. Thanks to Kamp’s theorem [Kam68], we know that LTL(U, S)
is a fundamental temporal logic since it is as expressive as first-order logic over
the class of ordinals. In order to establish this tight complexity characterization,
we have introduced the class of simple ordinal automata. This class of automata
is more structured than usual ordinal automata and the sets of locations have
some structural properties, typically it is a subset of the powerset of some set
(herein called the basis). As a consequence, we are also able to improve some
results from [Roh97, DN07]. For instance the uniform satisfiability problem is
pspace-complete and we obtain alternative proofs for results in [DN07].

Extensions of our results include that the satisfiability problem for the lan-
guage LTL(O1, . . . , Ok) where the Ois form a finite set of MSO definable tem-
poral operators is in pspace by adapting the developments from [VW94] and
showing that our simple ordinal automata augmented with alphabet has the ex-
pressive power of standard ordinal automata. Furthermore, our results can be

The Complexity of Temporal Logic with Until and Since over Ordinals 545

extended to scattered linear orderings, see e.g. [BC07]. Indeed, one should add
right limit transitions, using the terminology from [BC07] and adapt the devel-
opments herein.

Acknowledgments. We would like to thank the anonymous referees for helpful
suggestions and remarks.

References

[BC07] Bruyère, V., Carton, O.: Automata on linear orderings. Journal of Com-
puter and System Sciences 73, 1–24 (2007)

[BS73] Büchi, J.R., Siefkes, D.: The monadic second order theory of all count-
able ordinals. Lecture Notes in Mathematics, vol. 328. Springer, Heidelberg
(1973)

[Cac06] Cachat, T.: Controller synthesis and ordinal automata. In: Graf, S., Zhang,
W. (eds.) ATVA 2006. LNCS, vol. 4218, pp. 215–228. Springer, Heidelberg
(2006)

[DN07] Demri, S., Nowak, D.: Reasoning about transfinite sequences. International
Journal of Foundations of Computer Science 18(1), 87–112 (2007)

[GHR94] Gabbay, D., Hodkinson, I., Reynolds, M.: Temporal Logic - Mathematical
Foundations and Computational Aspects, vol. 1. OUP, Oxford (1994)

[GW94] Godefroid, P., Wolper, P.: A partial approach to model checking. I &
C 110(2), 305–326 (1994)

[Kam68] Kamp, J.: Tense Logic and the theory of linear order. PhD thesis, UCLA,
USA (1968)

[KVW00] Kupferman, O., Vardi, M.Y., Wolper, P.: An automata-theoretic approach
to branching-time model checking. J. ACM 47(2), 312–360 (2000)

[Rey] Reynolds, M.: The complexity of the temporal logic over the reals. Under
submission

[Rey03] Reynolds, M.: The complexity of the temporal logic with until over general
linear time. Journal of Computer and System Sciences 66(2), 393–426 (2003)

[Roh97] Rohde, S.: Alternating Automata and The Temporal Logic of Ordinals.
PhD thesis, University of Illinois (1997)

[SC85] Sistla, A., Clarke, E.: The complexity of propositional linear temporal logic.
J. ACM 32(3), 733–749 (1985)

[Ven93] Venema, Y.: Completeness via completeness: Since and until. In: de Rijke,
M. (ed.) Diamonds and Defaults, pp. 279–286. Kluwer Academic Publishers,
Dordrecht (1993)

[VW94] Vardi, M., Wolper, P.: Reasoning about infinite computations. I & C 115,
1–37 (1994)

ATP Cross-Verification of the

Mizar MPTP Challenge Problems

Josef Urban1,� and Geoff Sutcliffe2

1 Dep’t of Theoretical Computer Science, Charles University in Prague
2 Dep’t of Computer Science, University of Miami

Abstract. Mizar is a proof assistant used for formalization and mechan-
ical verification of mathematics. The main use of Mizar is in the devel-
opment of the Mizar Mathematical Library (MML), in which proofs are
verified by the Mizar proof checker. The Mizar proof checker has a quite
complex implementation, and also lacks the ability to print out detailed
atomic proof steps in a format that is easy to verify by an independent
proof-checking tool. This can raise concerns about the correctness of the
MML. This paper describes how a Mizar-to-ATP translation (the MPTP
system), ATP verification tools (the GDV system), and Automated The-
orem Proving (ATP) systems, have been used for an independent cross-
verification of a part of the MML.

1 Introduction, Motivation, and Related Work

Mizar [Rud92, RT99] is a proof checker based on first-order classical logic and set
theory. The main use of Mizar is in the development of the Mizar Mathematical
Library (MML)1, a large library of formally verified mathematics, allowing the
formalization of more and more advanced mathematical theories.

1.1 Motivation: Verification of Mizar Proofs

Starting in the 1990s with John Harrison’s Mizar Mode for HOL [Har96], var-
ious versions of the Mizar declarative proof formalism have been developed
[Zam99, Sym99, Wen99]. However, so far, there has been no independent ver-
ification of Mizar proofs. This (among other effects) prevents trusted semantic
communication between Mizar and other systems. Such inter-system commu-
nication is useful for very large formalization efforts, e.g., the verification of
the proof of Kepler Conjecture [Hal04]. In this context, communication between
LCF-based systems has recently become popular [OS06, McL06].

While Mizar’s reasoning formalism is quite simple and intuitive, it is mainly
Mizar’s implementation of its “atomic inference step”2 that makes Mizar em-
ulation complicated. Although the basic idea motivated by the notion of obvi-
ousness [Rud87, Dav81] is relatively easy to explain [Wie00], and has even been
� Supported by a Marie Curie International Fellowship within the 6th European Com-

munity Framework Programme.
1 http://mizar.uwb.edu.pl/library/
2 Denoted with the keyword by in Mizar proofs - see Section 2.2.

N. Dershowitz and A. Voronkov (Eds.): LPAR 2007, LNAI 4790, pp. 546–560, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://mizar.uwb.edu.pl/library/

ATP Cross-Verification of the Mizar MPTP Challenge Problems 547

re-implemented in Harrison’s Mizar Mode for HOL, there have been a number of
additions in Mizar (e.g., interaction with Mizar’s type system, built-in computer
algebra [NB02, NB04], etc.) that make even a Mizar implementation of a detailed
documentation mode for this procedure quite expensive. On the other hand,
Mizar’s classical first-order foundations are very close to the formalism used in
today’s efficient Automated Theorem Proving (ATP) systems. Translation of
the MML to ATP formats (like TPTP [SS98]) is the goal of the MPTP (Mizar
Problems for Theorem Proving) project. First experiments [Urb06a, Urb04] in-
dicated that current ATP systems are able to verify an overwhelming majority
of Mizar’s atomic inference steps – above 99% of 18,429 problems generated
from 48 initial Mizar articles [Urb06a] – without any low-level guidance. Given
this capability for verification of atomic inference steps, the next logical step
(described in this paper) is to develop techniques extending this to ATP-based
verification of whole (sometimes quite long) Mizar proofs, with the potential
target of ATP-based verification of the whole MML.

This paper describes how the Mizar-to-ATP translation has been enhanced
(Section 2.2) so that the translated Mizar atomic inference steps of a Mizar
proof are linked together to form a TPTP format derivation that reflects the
the higher-level (natural deduction) Mizar reasoning structure. The derivation
can then be verified using tools for verification of ATP systems’ derivations,
to provide verification of the Mizar proof. As necessary byproducts, the TPTP
language has been extended for encoding derivations containing assumptions
(Section 2.1), correctness conditions for such derivations have been designed
and implemented in the GDV verification tool (Section 3), and an explanation
of the Mizar natural deduction constructs has been provided in terms of this
simpler formalism.

1.2 Related Verification Work

A list of previous mutual proof assistant verifications would probably be quite
long (the translations between HOL Light and Isabelle are cited above). However,
they are usually done on systems with low-level “proof object” capabilities, or
systems in which addition of such capability is relatively easy, thanks to their
“minimal logical kernel” design. The Otter ATP system has the “detailed proof
object” option, and the generated Otter proof objects can be verified by the IVY
system [MS00]. A recent notable use of ATP systems for certification of safety
properties of NASA software is described in [DFS06].

1.3 Target: Verification of the MPTP Challenges

The methods developed for the ATP verification of Mizar theorems have one
immediate application and nontrivial target: The set of ATP problems serving
as the MPTP Challenges.3 This is a set of 252 related mathematical problems
translated from the Mizar library by the MPTP system, to create a benchmark
for measuring the capability of ATP systems to work in large theories. Some
3 http://www.cs.miami.edu/∼tptp/MPTPChallenge/

http://www.cs.miami.edu/~tptp/MPTPChallenge/

548 J. Urban and G. Sutcliffe

of these problems have quite long Mizar proofs, making their direct solution
by ATP systems quite difficult. As of May 2007, only 199 of the 252 problems
(79%) have been solved by any ATP system,4 leaving open questions about the
provability of the remaining 53 problems. Since errors have been encountered
before, both in the Mizar verifier and in the MPTP translation, an independent
verification of the problems would be useful. This has been carried out and is
discussed in Section 4.

2 Translation of Mizar Proofs to TPTP Derivations

2.1 Extending the TPTP Format for Assumptions

Assumptions (suppositions in the original Jaskowski’s [Jas34] terminology) are
unproved propositions introduced (assumed to be true) locally at some part
of a proof, coupled with an elimination (discharge) rule for making the results
of such subproofs unconditionally valid. A common implicit use of these in-
troduction/discharge rules in refutational ATP systems is the introduction of
the negated conjecture, the derivation of a contradiction, and the discharge of
the negated conjecture at that point, i.e., the argument that “∼conjecture
|- $false” is equivalent to “|- ∼conjecture => $false”, and hence to “|-
conjecture”. Other examples from the ATP world include explicit (SPASS-like)
splitting [WBH+02], and the formalisms used in tableaux systems.

In order to record information about the use of assumptions in derivations,
a new formulae role assumption has been added to the TPTP language, and
a semantic grammar rule has been added for the source information recorded
with every inferred formula. The semantic grammar rule specifies how an arbi-
trary list (treated as set by the GDV checks, see Section 3) of assumptions can
be recorded with a formula, to keep track of the assumptions upon which the
formula depends. The existing semantic grammar rules were already sufficient
for recording the discharge of an arbitrary list of assumptions. These semantic
grammar rules make it possible to record and verify that a derivation is indepen-
dent of any assumptions introduced in it. These changes are part of the TPTP
language specification in TPTP v3.3.0. An example of an assumption introduced
into a derivation, an inferred formula that depends on recorded assumptions, and
an inference involving the discharge of assumptions (modified from an MPTP
challenge problem), are:

fof(e1,assumption, subset(c1,c2), introduced(assumption)).

fof(i3,plain, c2 = set_union2(c1,set_diff(c2,c1)),

inference(conclusion,[status(thm),assumptions([dt_c1,e1])],[e3,i4])).

fof(i2,plain, (subset(c1,c2) => c2 = set_union2(c1,set_diff(c2,c1))),

inference(discharge_asm,[status(thm),assumptions([dt_c1]),

discharge_asm(discharge,[e1])], [e1,i3])),

4 See http://www.cs.miami.edu/∼tptp/MPTPChallenge/Results/SVGResults.html

http://www.cs.miami.edu/~tptp/MPTPChallenge/Results/SVGResults.html

ATP Cross-Verification of the Mizar MPTP Challenge Problems 549

This “recording” approach is more effective than adding assumptions as an-
tecedents of implications to their descendants. Adding assumptions as
antecedents would significantly increase the difficulty of the ATP problems built
from the Mizar atomic inference steps, possibly preventing completion of the
cross-verification. These syntactic additions are sufficient for translation of Mizar
proofs into efficiently verifiable TPTP derivations (see Section 2.2). The conse-
quence of this decision is a need to ensure that recorded assumptions are correctly
propagated and discharged. This is done by GDV, as described in Section 3.

2.2 Mizar Natural Deduction

Quite often it is claimed that Mizar uses Jaskowski-style natural deduction. Even
though Jaskowski’s formalism is certainly related to the Mizar formalism, there
are too many differences to take Jaskowski’s original paper [Jas34] (or its more
accessible version [Pel99]) as an accurate account of the Mizar formalism that
could be used for explaining its translation to classical first-order logic form.
Quite a precise overview of the Mizar formalism is given in [Har96], for the pur-
pose of its implementation in HOL. In what follows the use of Gentzen-like in-
troduction/elimination terminology, and comparison with various Gentzen-style
calculi, is avoided. This is mainly to keep the exposition simple, and to avoid
possible confusion caused by different flavors and semantics of those calculi used
in different systems (the interested reader is referred to the detailed overview of
these issues in [Pel99]).

The Mizar parser translates Mizar articles into a semantic XML format
[Urb06b], which is used internally by the Mizar proof checker, and also by various
external tools such as the Mizar-to-TPTP (MPTP) translator. The XML format
is specified in the RELAX NG schema language.5 The XML format specification
is always up-to-date, because it is generated in a semi-automated way from the
Mizar source code, and because XML validation can be used to check the XML
representation of articles. For these reasons, the XML format specification has
been used in this work as a complete up-to-date abstract syntax for the Mizar
formalism.6 The part of the XML format specification describing Mizar natural
deduction proofs is (with minor simplification) as follows:

Theorem as a proposition with justification.

JustifiedTheorem = element JustifiedTheorem {Proposition, Justification}

Justification = (Inference | Proof | SkippedProof)

By and From encode the atomic inference steps done by Mizar.

Inference = (By | From | element ErrorInf { empty })

By encodes one simple justification from zero or more references.

By = element By { Ref* }

From encodes a simple justification involving Mizar schemes

From = element From { Ref* }

Proofs (of BlockThesis) encode ND reasonings consisting of many steps.

Proof = element Proof {BlockThesis, Reasoning }

Reasoning is a series of skeleton and auxiliary items (steps)

5 http://relaxng.org/
6 Available at ftp://mizar.uwb.edu.pl/pub/version/doc/xml/Mizar.html

http://relaxng.org/
ftp://mizar.uwb.edu.pl/pub/version/doc/xml/Mizar.html

550 J. Urban and G. Sutcliffe

optionally finished by reasoning per cases.

Reasoning = ((SkeletonItem | AuxiliaryItem)*, PerCasesReasoning?)

Skeleton items are the steps that change the current thesis, the

new Thesis is printed explicitly after them.

SkeletonItem = ((Let|Conclusion|Assume|Given|Take|TakeAsVar), Thesis)

Auxiliary items are items which do not change thesis.

AuxiliaryItem = (JustifiedProposition|Consider|Set|Reconsider|

DefFunc|DefPred)

The By and From justifications denote atomic inference steps that are simple
enough for the Mizar proof checker. There is no substructure to atomic inference
steps, and they are translated directly as first-order inferences, e.g.,

A1: p; fof(a1,plain,p).

A2: p implies q; fof(a2,plain,p => q).

A3: q by A1, A2; fof(a3,plain,q,inference(by,[status(thm)],[a1,a2])).

The Mizar inferences on the left translate into the TPTP format derivation
on the right. (The translation can also add parent formulae that encode “back-
ground” information used implicitly by the Mizar proof checker, e.g., the Mizar
type hierarchy.) The interesting case is when a full Proof is used in Mizar. This
is done when the Mizar proof checker (used for the By and From constructs) is
not strong enough, and the goal (thesis in Mizar terminology) either needs to
be simplified by various natural deduction steps (Let, Conclusion, Assume,
Given, Take, TakeAsVar, PerCasesReasoning), or the proof context needs
to be augmented by a new lemma (JustifiedProposition), a new constant
satisfying some property (Consider, Reconsider), or a useful macro (Set,
DefFunc, DefPred). The following subsections explain these parts of Mizar
reasoning in more detail.

Explanation of the Mizar Assumption and Conclusion steps

;; Example 1 (Mizar code)

Lemma1: p implies q; ;; this has been proved already

Lemma2: q implies r; ;; this has been proved already

Goal1: p implies q & r

proof ;; (Proof) thesis (Goal1) is: p implies q & r

assume E1: p; ;; (Assumption) thesis (T1) is: q & r

thus E2: q by Lemma1,E1; ;; (Conclusion) thesis (T2) is: r

thus E3: r by Lemma2,E2; ;; (Conclusion) thesis (T3) is: verum

end;

An Assume (keyword assume) step is used when the thesis can be considered to
be an implication. Very much like in the original Jaskowski’s formalism, it adds
the antecedent (p in Example 1) of the thesis (p implies q & r) to the list of
valid propositions available for further use in this block, and changes the thesis
of the block to its consequent (q & r). As can be seen from Example 2, the Mizar
notion of normalization (see, e.g., [Wie00] for details) is quite strong. It identifies
the proposition “not p” with the proposition “p implies contradiction”. In
this feature Mizar certainly differs from Jaskowski’s original treatment. The

ATP Cross-Verification of the Mizar MPTP Challenge Problems 551

advantage is that it turns a proof by contradiction into just a special case of
proof by supposition.

;; Example 2 (Mizar code)

Lemma3: p implies q; ;; this has been proved already

Lemma4: not q; ;; this has been proved already

Goal2: not p;

proof ;; (Proof) thesis (Goal2) is: not p

assume E1: p; ;; (Assumption) thesis (T1) is: contradiction

E2: q by E1, Lemma3; ;; (JustifiedProposition) thesis unchanged

thus E3: contradiction ;; (Conclusion) thesis (T2) is: verum

by E2,Lemma4;

end;

The Conclusion (keyword thus) step is used to prove (a part of) the current
thesis. Mizar checks that the proposition that is proved is either equal (in a
normalized form) to the current thesis (this is the E3 case in the first example),
or a conjunct of the current thesis (this is the case E2 in the first example). This
way, the thesis is reduced by each Conclusion step, and upon encountering
the end keyword, Mizar checks that the thesis is just verum (true). It should
be noted that here again the Mizar normalization is responsible for seemingly
unrelated deconstructions of the thesis. For example, if the thesis is “p iff q”,
a Conclusion step proving “p implies q” is legal, transforming the thesis to
“q implies p”.

Translation of the Mizar Assumption and Conclusion steps

%% Translation of Example 1 into extended TPTP derivation

fof(lemma1,plain, p => q).

fof(lemma2,plain, q => r).

fof(e1,assumption,p,introduced(assumption)).

fof(e2,plain,q,

inference(mizar_by,[status(thm),assumptions([e1])],[lemma1,e1])).

fof(e3,plain,r,

inference(mizar_by,[status(thm),assumptions([e1])],[lemma2,e2])).

fof(t3,plain,$true,introduced(tautology)).

fof(t2,plain,r,

inference(conclusion,[status(thm),assumptions([e1])],[t3,e3])).

fof(t1,plain,q & r,

inference(conclusion,[status(thm),assumptions([e1])],[t2,e2])).

fof(goal1,plain,p => q & r,

inference(discharge_asm,[status(thm),discharge_asm(discharge,[e1])],

[e1,t1])).

The translation of Example 1 to a TPTP derivation is quite straightforward.
Note that the theses are collected in a backwards manner and used to justify
their thesis-predecessors, either by a Conclusion inference (usually involving
some other lemmas), or by a discharge asm inference involving a assumption.

552 J. Urban and G. Sutcliffe

This ends at the top-most thesis, i.e., the goal of the proof. The bottom-most
$true thesis could be trivially removed, but retaining it makes the translated
proofs more faithfully correspond to their Mizar counterparts. Note how the
assumptions are propagated and finally discharged.

Explanation of the Mizar Let, Consider, and Take Steps

;; Example 3 (Mizar code)
Lemma1: for x being set holds p(x) ;; this has been proved already
Lemma2: for x being set holds p(x) => q(x) ;; this has been proved already
Goal1: for x being set holds q(x)
proof ;; (Proof) thesis (Goal1) is: for x being set holds q(x)

let new_constant be set; ;; (Let) thesis (T1) is: q(new_constant)
E1: p(new_constant) by Lemma1; ;; (JustifiedProposition) thesis unchanged
thus E2: q(new_constant) by Lemma2,E1; ;; (Conclusion) thesis (T2) is: verum ($true)

end;

;; Example 4 (Mizar code)
Lemma3: ex x being set st p(f(x)) ;; this has been proved already
Lemma4: for x being set holds p(x) => q(x) ;; this has been proved already
Goal2: ex x being set st q(x);
proof ;; (Proof) thesis (Goal1) is: ex x being set st q(x)

consider new_constant being set such ;; (Consider) thesis unchanged, adds new_constant
that E1: p(f(new_constant)) by Lemma3; ;; of type set and proposition p(f(new_constant))

take f(new_constant); ;; (Take) thesis (T1) is: q(f(new_constant))
thus E2: q(f(new_constant)) by E1, Lemma4; ;; (Conclusion) thesis (T2) is: verum ($true)

end;

A Let (keyword let) step is used when the normalized form of thesis is a
universally quantified formula. This step introduces a new constant of the proper
type (set is used above), which is available from then on in the proof block. (In
Mizar the new constants are numbered serially, so instead of the new constant
used in Example 3, it would be just, e.g., c1) The thesis is instantiated with this
new constant (to q(new constant) above). This corresponds to the common
mathematical expression “let’s have an arbitrary but fixed x”, and provided that
the constant is fresh (which is guaranteed in Mizar by the serial numbering), the
original universally quantified thesis follows from the instantiated thesis. (This
is the standard theorem about constants in Hilbert’s predicate calculus.)

The Consider (keyword consider) step has no effect on the proof thesis,
although it is in some sense dual to the Let construct. Given a normalized
existentially quantified statement (like Lemma3 in Example 4), Mizar creates
a fresh constant of the appropriate type and instantiates with it the existential
statement. The new constant and the instance are available for further use in the
proof block. Provided that the constant is fresh, this is again just a conservative
extension of the original theory.

The Take (keyword take) step is used to select a suitable term for
instantiating an existentially quantified thesis (f(new constant) is taken in
Example 4). The type of the term has to correspond to the type of the exis-
tential variable. The original thesis then follows from the instantiated one. A
minor variant of this syntax is the TakeAsVar step (in Example 4 it would be
“take another new constant = f(new constant);”), which additionally cre-
ates a fresh constant of the same type as the selected term, adds their equality
to the proof context, and instantiates the thesis with this fresh constant.

ATP Cross-Verification of the Mizar MPTP Challenge Problems 553

Translation of the Mizar Let, Consider, and Take Steps

%% Translation of Example~3 into extended TPTP derivation

fof(lemma1,plain, ![X]: (set(X) => p(X))).

fof(lemma2,plain, ![X]: (set(X) => (p(X) => q(X)))).

fof(henkin_ax1, plain, (set(new_constant) => q(new_constant)) =>

![X]: (set(X) => q(X)),

introduced(definition, [new_symbol(new_constant)])).

fof(type_ass1, assumption, set(new_constant), introduced(assumption)).

fof(e1,plain, p(new_constant), inference(mizar_by,[status(thm),

assumptions([type_ass1])],[type_ass1,lemma1])).

fof(e2,plain, q(new_constant), inference(mizar_by,[status(thm),

assumptions([type_ass1])],[type_ass1,e1,lemma2])).

fof(t2,plain, $true,introduced(tautology)).

fof(t1,plain, q(new_constant),

inference(conclusion,[status(thm),assumptions([type_ass1])],[t2,e2])).

fof(t1_1,plain, set(new_constant) => q(new_constant),

inference(discharge_asm, [status(thm),

discharge_asm(discharge, [type_ass1])], [type_ass1, t1])).

fof(goal1,plain, ![X]: (set(X) => q(X)),

inference(let, [status(thm)], [t1_1, henkin_ax1])).

This translation of Example 3 demonstrates that it is necessary to deal with
Mizar’s typed language, which is done through relativization to the untyped for-
malism used by ATP systems. The method of translating the Let inference step is
the introduction of a Henkin (sometimes also called Skolem) axiom (henkin ax1
above) partially defining the new constant. These additional axioms are gen-
erated by the MPTP translation system from the known (instantiated) the-
sis (say “T(constant)”) as the corresponding implications (“T(constant) =>
![X]:T(X)”). Axioms of this form (as well as of the dual form used for transla-
tion of the Consider constructs, i.e., ‘?[X]:T(X) => T(constant)”) extend the
existing theory conservatively, provided that the constant is really new. To check
this (a bit metalogical) fact (i.e., that Mizar always generates a fresh constant
name here), the “introduced(definition, [new symbol(...)])” TPTP sta-
tus is used for these axioms. This tells GDV to carry out this check independently
(see the description of leaf checks in Section 3.2). GDV does not yet implement
a structural check verifying that these are really Henkin axioms, i.e., that they
have the required form of an instance implying the universal formula (or of
the dual existential form). Their correctness is “by construction” in the MPTP
translation system, which is quite obvious from the following core of the Prolog
code used for this:

%% given a Const-ant, and the Instance, generate a Henkin

%% axiom introducing Const

create_henkin_axiom_let(+Const,+Instance,-Henkin_Ax):-

apply_const_subst((Const/NewVar), Instance, GenInst),

Henkin_Ax = (Instance => (! [NewVar] : GenInst)).

%% replace atom Const everywhere in Fla with Var, yielding Fla1

apply_const_subst(+(Const/Var),+Fla,-Fla1):-

... [code skipped] ...

554 J. Urban and G. Sutcliffe

Given that the relativization method is used for type translation, the Let steps
additionally have to be complemented by the assumption and corresponding
discharge of the new constant’s type (see the translation example above).

The translation of Example 4 is not shown here because of space restrictions.
The translation of the Consider construct is very similar to Let – again a cor-
responding Henkin axiom is added by the MPTP translation system, but the
constant’s type is derived instead of assumed. The translation of the Take (or
TakeAsVar) steps is straightforward, as they only justify an existential thesis
from its instance (which is a standard first-order inference).

Translation of the other Mizar reasoning constructs
The remaining Mizar reasoning constructs not explained so far are: Given,
PerCasesReasoning, JustifiedProposition, Reconsider, Set, DefFunc, and
DefPred. The Set, DefFunc, and DefPred constructs define macros (shorthands
for terms and formulae) that are automatically expanded during the translation
of formulae, and therefore the macros themselves do not have to be translated.7

A JustifiedProposition is an arbitrary lemma introduced in the reasoning,
and it (similarly to JustifiedTheorem) can be justified either by atomic in-
ference steps, or by its own subproof. The Given step is a compressed syntax
for an Assume step followed by a Consider step. PerCasesReasoning allows
several logically complementary alternatives to be explored in Mizar, and it is
translatable using the TPTP assumption format. Reconsider is used to justify
that a term has a certain type, and it introduces a new constant (with the new
type) as a shortcut for the term. This is translated as a corresponding equality
introducing the new constant (its freshness is again checked by GDV), and a
(provable) proposition stating the typing of the new constant. The translation
of all these constructs does not require any more extensions of the TPTP for-
malism, or any new kinds of axioms, and given the explanations in the previous
sections, their translation becomes quite routine. Due to the space restrictions,
we therefore do not provide detailed examples of translations of these constructs
here. Interested readers can consult the MizarTPTP web page (explained in
more detail in [UTSP07]), where all (ca. 40000) Mizar theorems are linked to
their corresponding TPTP derivations.8

3 The GDV Derivation Verifier

GDV [Sut06] is a tool for verifying derivations in the TPTP format. GDV uses
structural and semantic techniques. Structural verification checks that infer-
ences have been done correctly in the context of the derivation, e.g., checking
that the derivation is acyclic. Semantic verification checks the required semantic
properties of inference steps, e.g., checking that an inferred formula is a logical
consequence of its parents. As [Sut06] already provides comprehensive coverage
of the design and implementation of many aspects of GDV, this section provides
7 ATP systems’ clausifiers often use similar shortcuts to improve the resulting CNF.
8 http://www.cs.miami.edu/∼tptp/MizarTPTP/

http://www.cs.miami.edu/~tptp/MizarTPTP/

ATP Cross-Verification of the Mizar MPTP Challenge Problems 555

an overview of the GDV process, and details of new aspects of GDV that were
used in this work.

3.1 Structural Verification

The structural verifications done by GDV are, for the most part, quite simple.
The most basic checks are made first: checking that all the nodes in the deriva-
tion DAG are distinctly named, checking that all inference steps are adequately
documented and the named parents exist, checking that the derivation is acyclic,
i.e., the derivation is a DAG, and checking that refutations have (only) false
roots. More complex structural checks are made after that: checking that proofs
by contradiction are well formed, checking that split refutations are not mutu-
ally dependent, and checking that inference chains with assumptions have been
recorded correctly.

Other than the checking of assumptions, all the structural checks listed are
described in [Sut06]. The checking of inference chains with assumptions was
added to GDV for this work - it was not needed previously because GDV had
been used only to check derivations from refutation based ATP systems, which
do not use assumptions9, while the natural deduction style of MML proofs makes
extensive use of assumptions. The structural checking of inference chains with
assumptions has two aspects. First it is necessary to check that assumptions are
propagated from parents to inferred formulae, modulo discharged assumptions.
This is done by ensuring that the set of assumptions of the parents, i.e., the
parents that are assumptions plus the recorded assumptions of the parents, are
a subset of the union of the discharged and recorded assumptions of the inferred
formula. Second it is necessary to check that all assumptions are discharged.
This is done by checking that no root of the DAG has any remaining recorded
assumptions.

Note that these structural checks on assumptions make no examination of
the logical formulae involved, so that they do not ensure that the discharges do
correctly remove dependence on the assumptions. Semantic verification is used
to check that, as is described in Section 3.2.

3.2 Semantic Verification

The technique used in semantic verification is to encode the required semantic
relationship between each inferred formula and its parent formulae into logical
obligations, in the form of ATP problems. The obligations are discharged by
having trusted ATP systems solve the ATP problems. The required semantic
relationship between an inferred formula and its parent formulae depends on the
intent of the inference rule used. Most commonly an inferred formula is intended
to be a theorem (logical consequence) of its parent formulae, but in other cases,
e.g., Skolemization and splitting, the inferred formula has a weaker relationship
with its parents. This intent is recorded as an SZS [SZS04] status annotation

9 However, it is planned to convert the checking of the negated conjectures in refuta-
tions to the checking of assumptions form.

556 J. Urban and G. Sutcliffe

in the inference record of each inferred formula in a TPTP format derivation,
e.g., in the second formulae in Section 2.1 the SZS status is thm, which indicates
that the inferred formula is required to be a theorem of its parents. GDV’s
semantic verification has three phases: leaf verification, rule specific verification,
and general semantic verification.

There are two types of leaves in a derivation - leaves that come from the
problem solved by the derivation, and leaves that were introduced by the ATP
system. Verification of leaves that come from the problem is described fully in
[Sut06], based on the idea that leaf axioms must be derivable from problem ax-
ioms, and a leaf conjecture must be able to derive the problem conjecture. Leaves
are introduced into derivations by ATP systems for a variety of (legitimate) rea-
sons. For this work the reasons that occur are the introduction of tautologies,
the introduction of definitions, and the introduction of assumptions. Tautologies
are verified by proving (using a trusted ATP system, as explained above) them.
Definitions and assumptions do not produce a verification obligation, but defini-
tions are checked to ensure that the defined symbol does not occur in any other
non-introduced leaf.

Rule specific verification deals with explicit splitting, as implemented in the
ATP system SPASS [WBH+02], pseudo-splitting, as implemented in Vampire
[RV02] and E [Sch02], application of definitions as implemented in E, and dis-
charging assumptions as found in the MPTP derivations that are the focus of this
work. The verification of splitting is dealt with in [Sut06], and the application
of definitions does not arise in this work. To verify that assumptions have been
discharged, the assumptions must be added as conditions on the non-assumption
parents, forming an implication from the conjunction of the assumptions to the
parents. The inferred formula must then be proved (the SZS status must be thm)
from this implication. In GDV this overall verification obligation is broken down
into an equivalent set of small verification obligations, to prove the inferred
formula from each of the negated assumptions, and from the non-assumption
parents. The benefit of breaking down this verification into the individual com-
ponents is that a failure to discharge any of these verification obligations provides
precise information regarding the fault in the derivation.

General semantic verification has not been modified from that described in
[Sut06]. The most common type of verification obligation that must be dis-
charged is, as explained above, to prove that the inferred formula is a theorem
of its parents (SZS status thm). While this can always be directly attempted by
a trusted ATP system, depending on the nature of the inference step the obli-
gation problem might be quite difficult, and the discharge attempt might fail
due to resource limits. In these cases GDV tries to disprove the obligation using
model finding ATP systems, to establish that the inference is really faulty. Two
other types of obligations that arise are to prove that the inferred formula is a
countertheorem of it’s parents (SZS status cth), e.g., in the case of a negated con-
jecture, and to prove a satisfiability-bijection between the parents and inferred
formula, e.g., in Skolemization steps. At this stage GDV does only incomplete
verification of satisfiability-bijection inferences. Such steps are therefore avoided

ATP Cross-Verification of the Mizar MPTP Challenge Problems 557

in the translation of Mizar proofs, and the additional Henkin axioms are used
instead for Mizar steps (Let, Consider) analogous to ATP Skolemization.

4 Verification of the MPTP Challenge Problems

The MPTP system was used to generate the derivations corresponding to the
252 problems in the bushy division of the MPTP challenge (the chainy division
problems simply add redundant lemmas to the bushy versions). The derivations,
together with the corresponding MPTP challenge problems, were given to GDV
for verification. GDV was configured to use E 0.99 [Sch02] for finding proofs, and
Paradox 2.0b [CS03] for disproofs. A 10s time limit was imposed on each E and
Paradox run. All the structural checks (notably the propagation of assumptions)
were successful, verification of leaves (checking that they either correspond to the
problem, or are introduced definitions, tautologies, or assumptions) was success-
ful, and all the (1303) ATP problems originating from checking the correctness
of discharging assumptions were successfully proved.

From the 6765 ATP tasks corresponding to the Mizar atomic inference steps,
60 could not be solved in the 10s time limit by E, but none were found to be
countersatisfiable by Paradox. Such timeouts can often be resolved by heuristic
pruning of the (potentially superfluous) background formulae added as axioms
by the MPTP translation. Therefore the MaLARea system, developed for doing
such heuristic pruning along with time limit manipulations in a systematic and
automated way [Urb07], was used. The 60 unsolved ATP tasks came from 27
derivations, i.e., at this point 225 of the problems had been verified. To create
a wide training set for MaLARea’s machine learning based heuristic pruning of
axioms, all 759 of the ATP tasks generated by GDV during verification of the 27
derivations were put into the MaLARea’s initial set of problems. MaLARea was
then run with the maximal time limit set to 64 seconds, and the maximal axiom
limit set to 64 axioms (these values were estimated empirically). The result of the
MaLARea run was the solution of 742 tasks (this took about 4 hours), solving
43 of the 60 previously unsolved tasks, and leaving 17 tasks unsolved. This was
a sufficiently low number to inspect the remaining problems manually.

One task contained quite large formulae, and could be solved easily by run-
ning E with more aggressive introduction of definitions during clausification.
Thirteen tasks were solved by inspecting the original Mizar proofs and pruning
unnecessary axioms by hand. It turns out that the 3 remaining ATP tasks (all
coming from checking the derivation of Theorem 29 in Mizar article YELLOW 0)
might be countersatisfiable. This was traced back to a very rare case when the
MPTP algorithm for addition of background formulae was incomplete. Once one
additional background formula was added manually to these three ATP tasks, all
of them became easily provable. Also when this additional background formula
was added to the original MPTP challenge problem, it became solvable directly
by some ATP systems. This means that the original challenge problem is very
likely countersatisfiable – this would have to be confirmed by finding a model.
The original Mizar proof cannot be used to guide a proof due to the missing

558 J. Urban and G. Sutcliffe

background formula, and the problem does not seem to have alternative solu-
tion without it. The remaining 251 MPTP Challenge problems were thus shown
to be solvable, i.e., it has been verified that the problem conjectures really are
theorems of the problem axioms. Detailed documentation of all the steps of the
verification process described here is available online.10

5 Conclusions and Future Work

We have defined and implemented a translation of the Mizar natural deduction
formalism to a simpler sequent-like formalism, encoded in the TPTP language
(which required a mild extension to deal with assumptions). Proofs of all MML
theorems have been exported into this format. The GDV verification tool has
been extended to fully verify these derivations. Together with GDV’s check-
ing of the introduced derivation leaves, and a simple “correct by construction”
argument about the introduced Henkin axioms, this provides a framework for
full independent verification of the translated MML proofs. The framework was
tested on 252 problems selected for the MPTP challenge, verifying the structural
correctness of all the translated derivations, and using the E 0.99 system to auto-
matically verify over 99% of the proof obligations coming from the atomic infer-
ence steps. 72% (43) of the remaining obligations were solved by the MaLARea
system, 23% (14) were solved by expert advice, and 5% (3) were found to be
very likely to be countersatisfiable, uncovering a rare case where the MPTP
translation did not add enough Mizar background axioms for solution of the
corresponding ATP problems. The result is a verification of 251 of the MPTP
challenge problems, and a verification of the remaining problem corrected by
addition of the missing background axiom.

An obvious future step is to verify the whole MML from its axioms. This will
require some extensions of the MPTP system, so that the background theories
are correctly introduced (most of them have to be proved in Mizar before they
can be used), and not treated as just additional axioms. It would be generally
hard for other proof assistants (such as HOL Light and Isabelle) to import
and verify the translated derivations, because their automated theorem proving
is quite weak. However, it is likely that these systems will be able to check
the detailed proof objects created by ATP systems such as E and Otter. So
other future work is to instruct ATP systems to create detailed proof objects
during the GDV verification, and use them afterwards for refining the translated
derivations to the point where other proof assistants will be able to import them.
A similar import of the ATP proofs back to Mizar would also be useful (a basic
translator for detailed Otter proof objects has been around since 2003). The
imported proofs could be cross-verified by the Mizar proof checker to strengthen
the confidence (which is necessarily empirical) in the translation and verification
processes. Finally, it is planned to make this this verification process available
as a push-button tool for Mizar authors.

10 http://lipa.ms.mff.cuni.cz/∼urban/MPTPChallengeVerification.tar.gz

http://lipa.ms.mff.cuni.cz/~urban/MPTPChallengeVerification.tar.gz

ATP Cross-Verification of the Mizar MPTP Challenge Problems 559

References

[BDH+99] Bertot, Y., Dowek, G., Hirschowitz, A., Paulin, C., Théry, L. (eds.):
TPHOLs 1999. LNCS, vol. 1690. Springer, Heidelberg (1999)

[CS03] Claessen, K., Sorensson, N.: New Techniques that Improve MACE-style Fi-
nite Model Finding. In: Baumgartner, P., Fermueller, C. (eds.) Proceedings
of the CADE-19 Workshop: Model Computation - Principles, Algorithms,
Applications (2003)

[Dav81] Davis, M.: Obvious logical inferences. In: Hayes, P.J. (ed.) IJCAI, pp. 530–
531. William Kaufmann (1981)

[DFS06] Denney, E., Fischer, B., Schumann, J.: An empirical evaluation of auto-
mated theorem provers in software certification. International Journal on
Artificial Intelligence Tools 15(1), 81–108 (2006)

[FS06] Furbach, U., Shankar, N. (eds.): IJCAR 2006. LNCS (LNAI), vol. 4130,
pp. 17–20. Springer, Heidelberg (2006)

[Hal04] Hales, T.C.: Formalizing the proof of the kepler conjecture. In: Slind, K.,
Bunker, A., Gopalakrishnan, G.C. (eds.) TPHOLs 2004. LNCS, vol. 3223,
p. 117. Springer, Heidelberg (2004)

[Har96] Harrison, J.: A Mizar Mode for HOL. In: von Wright, J., Harrison, J.,
Grundy, J. (eds.) TPHOLs 1996. LNCS, vol. 1125, pp. 203–220. Springer,
Heidelberg (1996)

[Jas34] Jaskowski, S.: On the rules of suppositions. Studia Logica, 1 (1934)

[McL06] McLaughlin, S.: An interpretation of Isabelle/HOL in HOL Light. In: Fur-
bach and Shankar [FS06], pp. 192–204

[MS00] McCune, W., Shumsky, O.: System description: IVY. In: McAllester, D.
(ed.) Automated Deduction - CADE-17. LNCS, vol. 1831, pp. 401–405.
Springer, Heidelberg (2000)

[NB02] Naumowicz, A., Bylinski, C.: Basic elements of computer algebra in
MIZAR. Mechanized Mathematics and Its Applications 2 (2002)

[NB04] Naumowicz, A., Bylinski, C.: Improving mizar texts with properties and
requirements. In: Asperti, A., Bancerek, G., Trybulec, A. (eds.) MKM
2004. LNCS, vol. 3119, pp. 290–301. Springer, Heidelberg (2004)

[OS06] Obua, S., Skalberg, S.: Importing HOL into Isabelle/HOL. In: Furbach
and Shankar [FS06], pp. 298–302

[Pel99] Pelletier, F.J.: A brief history of natural deduction. History and Philosophy
of Logic 20, 1–31 (1999)

[RT99] Rudnicki, P., Trybulec, A.: On equivalents of well-foundedness. J. Autom.
Reasoning 23(3-4), 197–234 (1999)

[Rud87] Rudnicki, P.: Obvious inferences. J. Autom. Reasoning 3(4), 383–393
(1987)

[Rud92] Rudnicki, P.: An overview of the Mizar project. In: 1992 Workshop on
Types for Proofs and Programs, Chalmers University of Technology, Bas-
tad, pp. 311–332 (1992)

[RV02] Riazanov, A., Voronkov, A.: The design and implementation of VAMPIRE.
Journal of AI Communications 15(2-3), 91–110 (2002)

[Sch02] Schulz, S.: E – a brainiac theorem prover. Journal of AI Communica-
tions 15(2-3), 111–126 (2002)

[SS98] Sutcliffe, G., Suttner, C.B.: The TPTP problem library: CNF release
v1.2.1. Journal of Automated Reasoning 21(2), 177–203 (1998)

560 J. Urban and G. Sutcliffe

[Sut06] Sutcliffe, G.: Semantic Derivation Verification. International Journal on
Artificial Intelligence Tools 15(6), 1053–1070 (2006)

[Sym99] Syme, D.: Three tactic theorem proving. In: Bertot et al. [BDH+99], pp.
203–220

[SZS04] Sutcliffe, G., Zimmer, J., Schulz, S.: TSTP Data-Exchange Formats for
Automated Theorem Proving Tools. In: Sorge, V., Zhang, W. (eds.) Dis-
tributed and Multi-Agent Reasoning. Frontiers in Artificial Intelligence
and Applications, IOS Press, Amsterdam (2004)

[Urb04] Urban, J.: MPTP - motivation, implementation, first experiments. Journal
of Automated Reasoning 33(3-4), 319–339 (2004)

[Urb06a] Urban, J.: MPTP 0.2: Design, implementation, and initial experiments. J.
Autom. Reasoning 37(1-2), 21–43 (2006)

[Urb06b] Urban, J.: XML-izing Mizar: making semantic processing and presentation
of MML easy. In: Kohlhase, M. (ed.) MKM 2005. LNCS (LNAI), vol. 3863,
pp. 346–360. Springer, Heidelberg (2006)

[Urb07] Urban, J.: MaLARea: a metasystem for automated reasoning in large the-
ories. In: Sutcliffe, G., Urban, J., Schulz, S. (eds.) ESARLT: Empirically
Successful Automated Reasoning in Large Theories. CEUR Workshop Pro-
ceedings. CEUR, vol. 257, pp. 45–58 (2007)

[UTSP07] Urban, J., Trac, S., Sutcliffe, G., Puzis, Y.: Combining Mizar and
TPTP semantic presentation tools. In: Proceedings of the Mathematical
User-Interfaces Workshop 2007 (2007),
http://www.activemath.org/workshops/MathUI/07/proceedings/

Urban-etal-MizarIDV.html

[WBH+02] Weidenbach, C., Brahm, U., Hillenbrand, T., Keen, E., Theobald, C.,
Topic, D.: SPASS version 2.0. In: CADE, pp. 275–279 (2002)

[Wen99] Wenzel, M.: Isar - a generic interpretative approach to readable formal
proof documents. In: Bertot et al. [BDH+99], pp. 167–184

[Wie00] Wiedijk, F.: CHECKER - notes on the basic inference step in Mizar (2000),
available at http://www.cs.kun.nl/∼freek/mizar/by.dvi

[Zam99] Zammit, V.: On the implementation of an extensible declarative proof
language. In: Bertot et al. [BDH+99], pp. 185–202

http://www.activemath.org/workshops/MathUI/07/proceedings/Urban-etal-MizarIDV.html
http://www.activemath.org/workshops/MathUI/07/proceedings/Urban-etal-MizarIDV.html
http://www.cs.kun.nl/~freek/mizar/by.dvi

Author Index

Abadi, Aharon 17
Abate, Pietro 32
Akbarpour, Behzad 47
Axelsson, Roland 62

Baaz, Matthias 77
Baelde, David 92
Bertossi, Leopoldo 107
Bezem, Marc 123
Blanqui, Frédéric 138
Bonichon, Richard 151
Brandt, Sebastian 166
Bravo, Loreto 107

Chevalier, Yannick 181
Ciabattoni, Agata 77
Cortier, Véronique 196

Dargaye, Zaynah 211
de Groote, Philippe 273
Dechesne, Francien 226
Delahaye, David 151
Delaune, Stéphanie 196, 242
Demri, Stéphane 531
Denecker, Marc 378
Doligez, Damien 151
Dubois, Catherine 288

Eiter, Thomas 514

Fermüller, Christian G. 77
Ferrante, Alessandro 438

Giordano, Laura 257
Gliozzi, Valentina 257
Goré, Rajeev 32

Hach, Faraz 423

Jaeger, Éric 288
Jouannaud, Jean-Pierre 138

Kazakov, Yevgeny 303
Kieroński, Emanuel 318
Krisnadhi, Adila 333

Lange, Martin 62
Langholm, Tore 123
Leroy, Xavier 211
Lin, Hai 242
Ludwig, Michel 348
Lugiez, Denis 181
Lutz, Carsten 333
Lynch, Christopher 242

Maarek, Sarah 273
Maieli, Roberto 363
Makowsky, Johann A. 1
Mariën, Maarten 378
Mazza, Damiano 393
Miličić, Maja 408
Miller, Dale 92
Mitchell, David G. 423
Mohebali, Raheleh 423
Mousavi, MohammadReza 226
Murano, Aniello 438

Olivetti, Nicola 257
Orzan, Simona 226

Pagani, Michele 393
Parente, Mimmo 438
Paulson, Lawrence C. 47
Pereira, Lúıs Moniz 454
Pinto, Alexandre Miguel 454
Pozzato, Gian Luca 257
Pulcini, Gabriele 469

Rabinovich, Alexander 17, 531
Rubio, Albert 138
Rusinowitch, Michaël 181

Sagiv, Mooly 17
Samer, Marko 2, 484
Santocanale, Luigi 499
Sattler, Ulrike 303
Šimkus, Mantas 514
Sutcliffe, Geoff 546
Szeider, Stefan 484

Tendera, Lidia 318

Urban, Josef 546

562 Author Index

Veith, Helmut 2
Venema, Yde 499

Waldinger, Richard 15
Waldmann, Uwe 348
Walicki, Micha�l 123

Widmann, Florian 32
Wittocx, Johan 378

Yoshinaka, Ryo 273

Zolin, Evgeny 303

	Front Matter
	On the Notion of Vacuous Truth
	Whatever Happened to Deductive Question Answering?
	Decidable Fragments of Many-Sorted Logic
	One-Pass Tableaux for Computation Tree Logic
	Extending a Resolution Prover for Inequalities on Elementary Functions
	Model Checking the First-Order Fragment of Higher-Order Fixpoint Logic
	Monadic Fragments of Gödel Logics: Decidability and Undecidability Results
	Least and Greatest Fixed Points in Linear Logic
	The Semantics of Consistency and Trust in Peer Data Exchange Systems
	Completeness and Decidability in Sequence Logic
	HORPO with Computability Closure: A Reconstruction
	Zenon : An Extensible Automated Theorem Prover Producing Checkable Proofs
	Matching in Hybrid Terminologies
	Verifying Cryptographic Protocols with Subterms Constraints
	Deciding Knowledge in Security Protocols for Monoidal Equational Theories
	Mechanized Verification of CPS Transformations
	Operational and Epistemic Approaches to Protocol Analysis: Bridging the Gap
	Protocol Verification Via Rigid/Flexible Resolution
	Preferential Description Logics
	On Two Extensions of Abstract Categorial Grammars
	Why Would You Trust B ?
	How Many Legs Do I Have? Non-Simple Roles in Number Restrictions Revisited
	On Finite Satisfiability of the Guarded Fragment with Equivalence or Transitive Guards
	Data Complexity in the EL Family of Description Logics
	An Extension of the Knuth-Bendix Ordering with LPO-Like Properties
	Retractile Proof Nets of the Purely Multiplicative and Additive Fragment of Linear Logic
	Integrating Inductive Definitions in SAT
	The Separation Theorem for Differential Interaction Nets
	Complexity of Planning in Action Formalisms Based on Description Logics
	Faster Phylogenetic Inference with MXG
	Enriched µ –Calculus Pushdown Module Checking
	Approved Models for Normal Logic Programs
	Permutative Additives and Exponentials
	Algorithms for Propositional Model Counting
	Completeness for Flat Modal Fixpoint Logics
	\mathbbFDNC: Decidable Non-monotonic Disjunctive Logic Programs with Function Symbols
	The Complexity of Temporal Logic with Until and Since over Ordinals
	ATP Cross-Verification of the Mizar MPTP Challenge Problems
	Back Matter

