
Encoding First Order Proofs in SMT

Jeremy Bongio1 Cyrus Katrak2 Hai Lin3 Christopher Lynch4

Ralph Eric McGregor5

Mathematics and Computer Science Department, Clarkson University, Potsdam, NewYork,
United States

Abstract

We present a method for encoding first order proofs in SMT. Our implementation, called
ChewTPTP-SMT, transforms a set of first order clauses into a propositional encoding (modulo
theories) of the existence of a rigid first order connection tableau and the satisfiability of unifica-
tion constraints, which is then fed to Yices. For the unification constraints, terms are represented
as recursive datatypes, and unification constraints are equations on terms. The finiteness of the
tableau is encoded by linear real arithmetic inequalities.
We compare our implementation with our previous implementation ChewTPTP-SAT, encoding
rigid connection tableau in SAT, and show that for Horn clauses many fewer propositional clauses
are generated by ChewTPTP-SMT, and ChewTPTP-SMT is much faster than ChewTPTP-SAT.
This is not the case for our non-Horn clause encoding. We explain this, and we conjecture a rule
of thumb on when to use theories in encoding a problem.

Keywords: SMT, first-order, tableau, Yices

1 Introduction

Recent techniques in SAT solving have resulted in extremely fast proce-
dures for solving propositional satisfiability problems[8], based on the DPLL
method[4]. As an application of these techniques, we have developed an au-
tomated theorem prover called ChewTPTP-SAT[6], which encodes rigid first

1
Email:bonjiojp@clarkson.edu

2
Email:katrakc@clarkson.edu

3
Email:linh@clarkson.edu

4
Email:clynch@clarkson.edu

5
Email:mcgregre@clarkson.edu

Electronic Notes in Theoretical Computer Science 198 (2008) 71–84

1571-0661 © 2008 Elsevier B.V. 

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2008.04.081
Open access under CC BY-NC-ND license.

mailto:bonjiojp@clarkson.edu
mailto:katrakc@clarkson.edu
mailto:linh@clarkson.edu
mailto:clynch@clarkson.edu
mailto:mcgregre@clarkson.edu
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/


order theorem proving problems as SAT problems, and solves those SAT prob-
lems using Minisat[8].

Rigid unsatisfiability has been studied as early as [3,1]. A set of first
order clauses is rigidly unsatisfiable if and only if there exists a closed rigid
connection tableau for that set of clauses[10]. Our encoding uses this fact and
solves the satisfiability of a set of rigid clauses by encoding the existence of a
rigid connection tableau in SAT.

A set of Horn clauses is encoded by creating propositional clauses repre-
senting the following requirements of a tableau T : (1) The root of the tableau
must be a clause with only negative literals. (2) If a clause is in the tableau,
then all its negative literals are in the tableau. (3) If a negative literal is in
the tableau, then it must be extended by some clause. (4) If a negative literal
¬A is extended by a clause C, then A must unify with the positive literal in
C. (5) All unifications must be consistent with each other. (6) The tableau
must be finite, i.e., there is no cycle.

For connection tableaux for non-Horn clauses, literals are either extended
or complementary to an ancestor literal in its branch. For efficiency rea-
sons, we choose to encode a clause tableau as a DAG. So there may be many
branches from the root to a node. Therefore, we encode the fact that each
literal L in the tableau must either be extended or all paths from the root to
that node must contain a literal complementary to L. A tableau may have the
same clause on different branches, and those branches may be closed with dif-
ferent literals. Therefore, we may have to add more instances of clauses to find
a closed tableau. This cannot be avoided, since rigid Horn clause satisfiabil-
ity is NP -complete, but rigid non-Horn clause satisfiability is Σp

2
-complete[9].

However, because of the DAG structure, we can often encode many instances
of a clause with just one instance.

Since we encode rigid proofs, the proof of unsatisfiability of a set of clauses
may require repeating the encoding with fresh variants of each clause. How-
ever, there are also applications which really require rigid proofs[5].

Our original ChewTPTP-SAT implementation[6] performed well on some
problems, but some of the encodings created huge sets of clauses. Some parts
of our encoding represented choices made, such as which clause to extend each
literal with. But other parts of our encoding represented deterministic proce-
dures, such as deciding the consistency of unification constraints and deciding
the acyclicity of the DAG, which verifies that a particular property holds of the
DAG. Furthermore, in experimental results with Horn clauses, approximately
99% of the clauses generated were encoding the determinstic procedures, and
only about 1% represented the choices. We had an eager encoding of unifica-
tion and acyclicity. We decided the implementation would be more efficient if

J. Bongio et al. / Electronic Notes in Theoretical Computer Science 198 (2008) 71–8472



unification and acyclicity were encoded lazily and implemented these changes
in ChewTPTP-SMT. It makes sense to expresses choices involved in building
the tableau using SAT, and verifcation of unification and acyclicity using un-
derlying theories. Therefore, we chose to encode our problem as Satisfiability
modulo Theories[12], and we replaced Minisat[8] with Yices[7].

Yices has a theory for recursive datatypes, which can be used to represent
terms. A term can be defined by using function symbols as constructors. Each
function symbol of arity n is a constructor with n arguments. Constants are
constructors with no arguments. Predicate symbols are viewed the same as
function symbols. Variables are instances of terms. Then unification is repre-
sented as equality of terms. We represent acyclicity using linear arithmetic.
Consider a graph G = (V, E). If an edge (u, v) exists in E, then we assert an
inequality xu < xv for some real numbers xu and xv. Then G is acyclic if and
only if the set of inequalities is consistent.

In this paper, we describe our implementation of ChewTPTP-SMT, and
compare our results with ChewTPTP-SAT. We show that in the Horn encod-
ing, ChewTPTP-SMT produces far fewer clauses than ChewTPTP-SAT. The
time needed to decide the satisfiability is also drastically reduced. This is not
the case for non-Horn clauses. We explain why this is the case and give a rule
of thumb for when theories should be used for encoding.

2 Clausal Tableau

See [2] for a detailed description of first order logic and a background discussion
on the validity of a first order logic formula.

We use the following definition of tableau [10].

Definition 2.1 Clausal tableaux are trees with nodes labeled with literals and
branches labeled either open or closed. Clausal tableaux are inductively defined
as follows. Let S = {C1...Cn} be a set of clauses. If T is a tree consisting
of a single unlabeled node N then T is a clausal tableau for S. The branch
consisting of only the root node N is open. If N is a leaf node on an open
branch B in the tableaux T for S and one of the following inference rules are
applied to T then the resulting tree is a clausal tableaux for S.

(Expansion rule) Let Ck be a clause in S. Replace each variable in Ck

with a new variable not appearing in T . Suppose Lk1 ∨ ... Lki is the resulting
clause. Construct a new tableaux T ′ by adding i nodes as children of N and
labeling them Lk1 through Lki. Label each of the i branches open. T ′ is a
clausal tableaux for S.

(Closure rule) Suppose Lij is the literal at N and for some predecessor
node with literal Lpq such that Lij and ¬Lpq are unifiable. Construct T ′ from

J. Bongio et al. / Electronic Notes in Theoretical Computer Science 198 (2008) 71–84 73



T by applying the unifier to T and labeling the branch containing Lij as closed.
T ′ is a clausal tableaux for S.

A clause which is added to the root node is called the start clause and we
say that a clause is in a tableaux if the clause was used in an application of
the expansion rule.

Definition 2.2 A clausal tableaux is tightly connected if each clause (except
the start clause) in the tableaux contains some literal which is unifiable with
the negation of its predecessor.

Connected clausal tableaux use an additional rule called extension rule.

Definition 2.3 (Extension Rule) Let N be a node in the tableau T and let
Ck be a clause in S such that there exists a literal Lik in Ck which is unifiable
with the negation of N . Apply the expansion rule with Ck and immediately
apply the closure rule with Lik.

Definition 2.4 The calculus for connection tableaux consists of the expansion
rule (for the start clause only), the closure rule, and the extension rule.

We call a tableau closed if each leaf node has been closed by an application
of the closure rule. By [11] we can require that the start clause is a negative
clause since there exists a negative clause in any minimally unsatisfiable set.

2.1 Rigid Unsatisfiability

The main problem in Automated Theorem Proving is to determine if a set of
hypotheses implies a conclusion, or equivalently that a formula F is unsatisfi-
able. We will assume that F is in CNF. The problem of rigid unsatisfiability
of F is to determine whether there exists a ground instance of F which is
unsatisfiable. A rigid tableau is a tableau in which multiple instances of a
clause appearing in the tableau are identical copies of the clause appearing
in F . One result of Tableaux Theory is the completeness and soundness of
closed connection tableaux.

Theorem 2.5 There exists a closed connection (rigid) tableau for F iff F is
(rigidly) unsatisfiable[10].

3 Tableau Encoding

Our method to determine the rigid unsatisfiability of F generates a set S of
propositional logic clauses modulo the theories of unification and arithmetic
for F which encodes a rigid closed connection tableau for F and tests the
satisfiability of S with a SMT solver.

J. Bongio et al. / Electronic Notes in Theoretical Computer Science 198 (2008) 71–8474



We provide two encodings, the first for problems containing only Horn
clauses and the second for those containing non-Horn clauses. Given F we
enumerate each of the clauses in F and each of the literals in each clause. We
denote clause i by Ci and denote the jth literal in clause i by Lij . We denote
Aij to be the atom of Lij . Therefore Lij is either of the form Aij or ¬Aij .

3.1 Encoding for Horn Clauses

Let F be a set of first order logic formulas.

We define a set of propositional variables cm, lmn, emnq, disjoint from the
symbols in F , as follows: Define cm = T iff Cm appears in the tableau. Define
lmn = T iff Lmn is an internal node in the tableau. Define emnq = T iff Cq is
an extension of Lmn. For each pair of clauses Ci and Cj we define xi < xj = T

(where xi and xj do not exist in F ) iff there exists a path from Ci to Cj . For
each pair of atoms Ai and Aj in F , we define (Ai = Aj) = T iff Ai and Aj are
the two atoms involved in an application of the closure rule.

Below we list the set of clauses that we generate and provide their meaning.

At least one clause containing only negative literals appears in the tableau:∨

Cm is a negative clause

cm(1)

If Cm appears in the tableau and Lmn is a negative literal then Lmn is an
internal node in the tableau:

cm ⇒ lmn(2)

If Lmn is an internal node in the tableau then for some qj, Cqj
is an exten-

sion of Lmn:

lmn ⇒ (emnq1
∨ ... ∨ emnqk

)(3)

where {Cq1
...Cqk

} represent the set of all clauses whose positive literals
are unifiable with Lmn

If Cq is an extension of Lmn then Cq exists in the tableau:

emnq ⇒ cq(4)

If Cq is an extension of Lmn and Lqr is the positive literal in Cq then Amn

and Aqr are unifiable:

emnq ⇒ (Amn = Aqr)(5)

If Cq is an extension of Lmn then there is a path from Cm to Cq:

emnq ⇒ (xm < xq)(6)

The encoding is satisfiable if and only if the original set of first order
Horn clauses is rigidly unsatisfiable. We encode non-rigid unsatisfiability by
continually adding new instances of each clause, renamed apart.

J. Bongio et al. / Electronic Notes in Theoretical Computer Science 198 (2008) 71–84 75



3.2 Encoding for Non-Horn Clauses

For non-Horn problems we use a different set of variables and generate a
different set of clauses. Note: we say that two literals are complementary if
they have opposite signs and their atoms are unifiable.

We define the variables, disjoint from the symbols in F, sm, cmn, lmn, emnqj ,
oijkl and qmnij as follows: Define sm = T iff Cm is the start clause. Define
cmn = T iff Cm appears in the tableau and Lmn is complementary to its parent.
Define lmn = T iff Lmn is a node in the tableau and is not a leaf node created
by an application of the extension rule. Define emnqj = T iff Cq is an extension
of Lmn and Lqj is the complement of Lmn. Define oijkl = T iff Lij and Lkl are
a pair of literals used in a closure but not by the extension rule. If a path to
a node N contains the complement of N , then we say that the path is closed.
Define qmnij = T iff Lmn is a leaf and Lij is a node on a path from the root
node to Lmn and every path from the root to Lij contains a complement of
Lmn. For each pair of clauses Ci and Cj we define xi < xj = T (where xi and
xj do not exist in F ) iff there exists a path from Ci to Cj. For each pair of
atoms Ai and Aj in F , we define (Ai = Aj) = T iff Ai and Aj are the two
atoms involved in an application of the closure rule.

The clauses are as follows.

There exists a start clause in the tableau which only contains negative
literals: ∨

sm is a negative clause

sm(7)

If Cm is the start clause in the tableau then each literal Lmn of Cm is in
the tableau:

sm ⇒ lmn(8)

If Ci appears in the tableau and Lij is the complement of a literal in its
parent then all other literals of Ci are in the tableau:

cij ⇒ lik where j �= k(9)

If Lij exists in the tableau and is not a leaf node created by an application
of the closure rule then either every branch ending at Lij is closed or there is
an extension of Lij:

lij ⇒ (qijij ∨ (
∨

k,l

eijkl))(10)

If Lij is extended with Ck then Ck is in the tableau and some Lkl of Ck is
the complement of Lij :

eijkl ⇒ ckl(11)

J. Bongio et al. / Electronic Notes in Theoretical Computer Science 198 (2008) 71–8476



If clause Cm is an extension of Lij and literals Lij and Lml are complements
then Aij and Aml are unifiable.

eijml ⇒ (Aij = Aml)(12)

If Lij and Lkl are a pair used in a closure then they must be unifiable:

oijkl ⇒ (Aij = Akl)(13)

If Lij has the same sign as Lkl or their respective atoms are not unifiable
then they are not complements:

¬oijkl where Lij and Lkl are not unifiable(14)

If every path through Lkl to leaf Lij is closed and Ck is an extension of
Lmn then either Lij is a complement of Lmn or every path through Lmn to Lij

is closed:

qijkl ⇒ (emnkp ⇒ (oijmn ∨ qijmn))(15)

If Ck is an extension of Lij then there is a path from clause Ci to clause
Ck:

eijkl ⇒ (xi < xk)(16)

If Ci is the start clause then there are no inferences into any of the literals
in Ci:

si ⇒ ¬eklij(17)

If Ci is the start clause, Lmn is a leaf, and all paths that traverse Lij to
Lmn are closed, then Lij and Lmn are complementary:

si ⇒ (qmnij ⇒ omnij)(18)

We represent our tableau as a DAG, so there is some structure sharing.
But even with the structure sharing, a non-Horn clause tableau may need
more than one instance of the same clause. Rigid unsatisfiability could be
determined by continually adding identical instances of a clause. Non-Horn
encoding could also be extended to the non-rigid case in the same way as the
Horn encoding.

4 Implementation and Experimental Results

We have implemented our tableau encoding in our theorem prover
ChewTPTP-SMT, which is an extension of ChewTPTP-SAT[6]. In
ChewTPTP-SAT, instead of using theories, we encoded the consistency of
the unifiers and the acyclicity of the tableau with additional propositional
clauses. To encode the consistency of the unifiers, we encoded the equations
that would be created if a unification algorithm was run. We do not know

J. Bongio et al. / Electronic Notes in Theoretical Computer Science 198 (2008) 71–84 77



ahead of time which unifiers we will have to create, so we encode everything
that can possibly occur when the unification algorithm is run. To encode the
absence of a cycle, we encode the existence of a path from one clause to an-
other and the fact that there is no path from a clause to itself. This requires
encoding all possible transitivity and irreflexivity axioms that may occur.

Our implementation allows the user to decide whether ChewTPTP encodes
the problem as a SAT problem or an SMT problem. If the user chooses
SMT, our implementation uses Yices to test the satisfiability of the encoding.
If the user chooses SAT, then the user can also choose whether to test the
satisfiability using Yices or Minisat, with a DIMACS encoding of SAT.

We tested our prover in all three settings on a subset of TPTP[13] prob-
lems. Tables 1-4 provide empirical data from these tests.

SMT-Y denotes our prover run in SMT mode, SAT-Y is SAT mode using
Yices, and SAT-M is SAT mode using Minisat. For Horn clauses, we ran
ChewTPTP on all the Horn problems in the TPTP database, but for non-
Horn we only had time to run it through the GRP problems. We report all
problems that both provers solved within five minutes but SAT-M took greater
than one second. We believe the problems in these tables are representative
of the overall results. Columns in the table show the running time of each
method, the clause generation time rounded off to the nearest second, the
number of clauses generated, and the number of variables generated for each
method. We also show whether or not the problem is rigidly satisfiable. For
these experiments, we only tested rigid satisfiability with one instance of each
clause.

We wanted to see if working modulo theories would improve the perfor-
mance of ChewTPTP. In the Horn case the running time was reduced signif-
icantly, except for a small percentage of exceptions. In the non-Horn case,
working modulo theories often increased the running time. Generally, Yices
was faster than Minisat on SAT problems without theories.

We believe we have an explanation for our results. In the Horn problems
the number of clauses is reduced by an order of magnitude, whereas in the non-
Horn problems the number of clauses is not reduced by much. This implies
that working modulo theories is only useful when the clauses size is reduced
significantly.

In the Horn encoding, everything can be encoded in O(n2) except for the
encoding of unification and acyclicity, which require O(n3) space. When we
remove the clauses used to represent unification and acyclicity, the number
of clauses is now O(n2). However, for the encoding of non-Horn clauses, we
must encode the fact of a leaf node having a complementary literal as an
ancestor. This encoding is O(n3). We do not know how to encode this using

J. Bongio et al. / Electronic Notes in Theoretical Computer Science 198 (2008) 71–8478



Table 1
ChewTPTP Times For Horn Problems

SAT-M/Y SMT-Y SAT-M SAT-Y SMT-Y

Name Clause Gen Clause Gen Total Total Total

PUZ008-1.p 1 0 1.06 0.89 0.11

NLP106-1.p 2 0 1.8 1.9 0.06

NLP104-1.p 2 0 1.82 1.9 0.05

NLP105-1.p 2 0 1.83 1.89 0.06

NLP107-1.p 2 0 2.47 1.99 0.06

GRP033-3.p 1 0 2.48 1.8 0.28

NLP109-1.p 1 0 2.49 1.99 0.05

NLP113-1.p 2 0 2.51 2.01 0.06

NLP110-1.p 2 0 2.74 1.84 0.07

NLP112-1.p 2 0 2.92 1.92 0.07

NLP111-1.p 1 0 2.94 1.93 0.06

NLP108-1.p 2 0 2.94 1.94 0.07

PUZ036-1.005.p 3 0 4.33 2.92 0.03

RNG037-2.p 4 0 5.33 5.35 6.2

RNG038-2.p 4 0 5.34 3.89 19.94

RNG001-5.p 4 0 6.93 5.32 0.84

SWV015-1.p 9 0 9.64 10.08 0.08

SWV017-1.p 11 0 10.82 11.27 0.1

RNG006-2.p 7 0 11.19 7.53 6.03

the theories of Yices, so we have kept the propositional encoding. Therefore,
when we remove the encoding of unification and acyclicity, the entire coding
of the problem is still O(n3). We conjecture a good rule of thumb for deciding
when it is useful to encode properties using theories. We conjecture that if the
number of clause can be reduced by a factor of n, then the coding is useful,
but if the asymptotic complexity remains the same, then it is not a good idea.

J. Bongio et al. / Electronic Notes in Theoretical Computer Science 198 (2008) 71–84 79



Table 2
ChewTPTP Clause and Variable Count For Horn Problems

SAT-M/Y SMT-Y SAT-M/Y SMT-Y Result

Name Cls Ct Cls Ct Var Ct Var Ct

PUZ008-1.p 52957 323 207608 216 sat

NLP106-1.p 130174 338 513774 392 unsat

NLP104-1.p 130724 344 515712 398 unsat

NLP105-1.p 130724 344 515712 398 unsat

NLP107-1.p 137380 315 542996 370 unsat

GRP033-3.p 115013 737 445065 383 sat

NLP109-1.p 137380 315 542996 370 unsat

NLP113-1.p 137897 319 544836 374 unsat

NLP110-1.p 128150 296 506951 350 unsat

NLP112-1.p 135667 287 537099 342 unsat

NLP111-1.p 135667 287 537099 342 unsat

NLP108-1.p 135667 287 537099 342 unsat

PUZ036-1.005.p 185292 45 729464 91 unsat

RNG037-2.p 221760 1524 876393 714 sat

RNG038-2.p 230063 1522 910786 718 sat

RNG001-5.p 258888 1527 1026821 725 sat

SWV015-1.p 559284 1047 2105121 532 unsat

SWV017-1.p 625119 1137 2354882 578 unsat

RNG006-2.p 432194 2058 1702459 925 sat

5 Conclusion

We have given an application of SMT to theorem proving in first order logic
by encoding the existence of a rigid connection tableau in SMT. We have im-
plemented the SMT encoding in our theorem prover ChewTPTP-SMT. We
compared it with our initial version of ChewTPTP-SAT, where a rigid con-
nection tableau was encoded in SAT.

J. Bongio et al. / Electronic Notes in Theoretical Computer Science 198 (2008) 71–8480



Table 3
ChewTPTP Times For Non-Horn Problems

SAT-M/Y SMT-Y SAT-M SAT-Y SMT-Y

Name Clause Gen Clause Gen Total Total Total

ANA025-2.p 1 0 1.02 1.04 2.43

COL121-2.p 0 1 1.02 0.92 1.41

ANA004-4.p 1 0 1.33 1.87 2.77

GRA001-1.p 2 2 1.92 1.74 4.08

ANA029-2.p 2 2 2.05 2.08 4.68

ANA005-2.p 2 1 2.38 2.31 4.72

ANA004-2.p 2 1 2.39 2.3 5.06

ANA003-2.p 3 1 2.96 2.81 5.53

GRP123-1.003.p 3 2 3.41 3.76 18.11

ANA001-1.p 4 2 4 3.84 7.94

GRP123-2.003.p 4 3 5.55 5.37 17.66

ANA002-2.p 5 3 5.73 5.34 10.56

ANA002-1.p 5 3 6.17 5.67 11.84

GRP124-2.004.p 9 6 10.51 11.4 43.91

GRP033-3.p 15 6 20.11 15.69 23.18

GRP123-3.003.p 28 20 30.63 30.73 80.84

ALG002-1.p 1 1 43.51 64.92 75.33

ANA004-5.p 2 1 47.25 21.5 83.54

GRP124-3.004.p 46 31 88.23 83.83 171

COM003-2.p 82 49 88.72 84.54 168.1

Compared to our encoding in SAT, the encoding in SMT is more natural
and more efficient. As part of our encoding, we need to encode the solving of
unification problems and the acyclicity of the tableau. In SAT, it was necessary
to add cubically many clauses to encode the solving of unification. In addition,
it was necessary to add cubically many clauses to encode the acyclicity of the

J. Bongio et al. / Electronic Notes in Theoretical Computer Science 198 (2008) 71–84 81



Table 4
ChewTPTP Clause and Variable Count For Non-Horn Problems

SAT-M/Y SMT-Y SAT-M/Y SMT-Y Result

Name Cls Ct Cls Ct Var Ct Var Ct

ANA025-2.p 41129 36020 2655 2286 sat

COL121-2.p 47725 20335 2322 1538 sat

ANA004-4.p 44142 36844 3160 2631 sat

GRA001-1.p 64222 60849 3292 3161 sat

ANA029-2.p 79860 66884 4107 3388 sat

ANA005-2.p 93806 68206 4907 3802 unsat

ANA004-2.p 93806 68206 4907 3802 unsat

ANA003-2.p 114945 78930 5654 4243 unsat

GRP123-1.003.p 111866 94335 4589 3596 unsat

ANA001-1.p 154246 113596 6680 5185 unsat

GRP123-2.003.p 180783 154243 6723 5450 unsat

ANA002-2.p 226149 151313 7457 5436 unsat

ANA002-1.p 229871 151313 7544 5437 unsat

GRP124-2.004.p 339070 283967 10854 8953 unsat

GRP033-3.p 699160 301901 15989 8961 sat

GRP123-3.003.p 1003831 934044 17763 15377 unsat

ALG002-1.p 54559 32731 3524 2460 unsat

ANA004-5.p 101166 44953 4981 3196 unsat

GRP124-3.004.p 1596801 1468732 25314 21981 unsat

COM003-2.p 2920669 2365922 46818 36051 sat

tableau. However, when encoding this information in SMT, there was no
need to encode the solving of unification, since this was accomplished directly
with the Yices recursive datatype theory. The number of unification clauses
was reduced from a cubic to a quadratic number. Similarly for acyclicity of
tableau, we did not need to encode the transitivity and irreflexivity of the path

J. Bongio et al. / Electronic Notes in Theoretical Computer Science 198 (2008) 71–8482



relation. We only needed to express edges in the tableau as inequalities. The
number of clauses to represent acyclicity also dropped from a cubic number
to a quadratic number.

In the Horn encoding, all the other information in the tableau can also be
encoded with a quadratic number of clauses. Therefore the entire encoding of
the existence of a tableau dropped from a cubic number of clauses in SAT to
a quadratic number in SMT. This drastically reduced the number of clauses,
and simultaneously decreased the time needed to decide the satisfiability of
the clauses. There was only a small reduction in number of clauses for non-
Horn clauses, because we still need to encode the fact that all paths in the
tableau can be closed. Therefore the entire encoding is still cubic, and the
running time was actually worse. We conjecture a rule of thumb saying that
it is worthwhile to use theories if the number of clauses is reduced by a factor
of n, but not worthwhile if the asymptotic number remains the same.

For future work, we hope to be able to use SMT to further reduce the
representation for non-Horn clauses, ideally cutting it down to a quadratic
number of clauses. It would be possible to define a theory to do this directly,
but we have not yet figured out how to do it with the existing theories in
Yices. In addition, in order to prove the general first order problem we also
need to find a good way to decide exactly which clauses should be copied. We
would like a method to decide satisfiability from rigid satisfiability. It would
be useful to have an encoding of rigid clauses modulo a non-rigid theory, as
discussed in [5]. This way, we could immediately identify some clauses as
non-rigid, and work modulo those clauses.

This paper shows the usefulness of SMT to theorem proving in first order
logic. We suspect there are other logics which could also be solved efficiently
using SMT.

Acknowledgement

We would like to thank to Leonardo de Moura for his explanation of how to
express unification problems in Yices using recursive datatypes.

References

[1] Andrews P. B. [1981], Theorem Proving via General Matings, Journal of the Association for
Computing Machinery, Vol. 28, No. 2, pp.193-214

[2] Bell J.L. and Slomson A.B. [1969], Models and Ultraproducts, An Introduction, Dover

[3] Chang, C. and Lee, C.R. [1973], Symbolic Logic and Mechanical Theorem Proving. Academic
Press New York and London.

J. Bongio et al. / Electronic Notes in Theoretical Computer Science 198 (2008) 71–84 83



[4] Davis M., Logemann D. and Loveland D. [1962], A Machine Program For Theorem Proving,
Communications of the ACM, Volume 5, Issue 7, pp. 394-397

[5] Delaune S., Lin H. and Lynch C. [2007], Protocol Verification Via Rigid/Flexible Resolution,
submitted

[6] Deshane T., Hu W., Jablonski P., Lin H., Lynch C. and McGregor R.E. [2007], CADE, Lecture
Notes in Computer Science, Springer, Vol. 4603, pp. 476-491

[7] Dutertre B. and deMoura L., Yices, http://yices.csl.sri.com

[8] Eén N. and Sörensson N. [2003], An Extensible Sat-Solver, In SAT, pp. 502-518

[9] Goubault J. [1994], The Complexity of Resource-Bounded First-Order Classical Logic, Lecture
Notes In Computer Science, Proceedings of the 11th Annual Symposium on Theoretical Aspects
of Computer Science, Vol. 775, Springer-Verlag, pp. 59-70

[10] Hähnle R. [2001], Tableaux and Related Methods, in A. Robinson and A. Voronkov, eds,
’Handbook of Automated Reasoning’, Vol. 1, Elsevier Science, chapter 3, pp. 101-177

[11] Letz R. and Gernot S. [2001], Model Elimination and Connection Tableau Procedures, in A.
Robinson and A. Voronkov, eds, ’Handbook of Automated Reasoning’, Vol. 2, Elsevier Science,
chapter 28, pp. 2015-2113

[12] Nieuwenhuis R., Oliveras A. and Tinelli C. [2006], Solving SAT and SAT Modulo Theories:
From an Abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T), Journal of the
ACM, 53(6), 937-977, November 2006.

[13] Sutcliffe G. and Suttner C.B. [1998], The TPTP Problem Library: CNF Release v1.2.1, Journal
of Automated Reasoning, Vol. 21, No. 2, pp. 177-203

J. Bongio et al. / Electronic Notes in Theoretical Computer Science 198 (2008) 71–8484


	Introduction
	Clausal Tableau
	Rigid Unsatisfiability

	Tableau Encoding
	Encoding for Horn Clauses
	Encoding for Non-Horn Clauses

	Implementation and Experimental Results
	Conclusion
	Acknowledgement 
	References

