
Equational and Cap Unification
for Intrusion Analysis

S. ANANTHARAMAN, LIFO, Orléans (Fr.)
H. LIN, Clarkson University, Potsdam, USA

C. LYNCH, Clarkson University, Potsdam, USA
P. NARENDRAN, University at Albany-SUNY, USA

M. RUSINOWITCH, INRIA-Lorraine, Nancy (Fr.)

Rapport No 2008-03



Equational and Cap Unification

for Intrusion Analysis

Siva Anantharaman1, Hai Lin2, Christopher Lynch2,
Paliath Narendran3, and Michael Rusinowitch4

1 Université d’Orléans, France
2 Clarkson University, Potsdam, NY 13699-5815, USA

3 University at Albany-SUNY, USA
4 Loria-INRIA Lorraine, Nancy, France

Abstract. We address the insecurity problem for cryptographic pro-
tocols, for an active intruder and a bounded number of sessions. By
modeling each protocol step as a rigid Horn clause, and the intruder
abilities as an equational theory over a convergent rewrite system, the
problem of active intrusion is formulated as a Cap Unification problem.
Cap Unification is an extension of Equational Unification: we look for a
cap to be placed on a given set of terms, so that it unifies with a given
term modulo the equational theory. We give a decision procedure for Cap
Unification when the convergent system defining the intruder abilities is
dwindling, with some additional assumptions satisfied by usual proto-
cols. We also present briefly a possible way of extending the approach to
the (non-dwindling) theory of Homomorphic Encryption (HE) for which
passive deduction is known to be decidable. Unification modulo HE is
shown to be decidable in the Appendix.

Keywords: Rewriting, Unification, Protocol, Secrecy Analysis.

1 Introduction

Many automated reasoning systems have been designed for representing cryp-
tographic protocols and verifying that they satisfy security properties such as
secrecy and authenticity, or to discover bugs. Such systems are often based
on model-checking, modal logics, equational reasoning, and resolution theorem-
proving (e.g., [17, 3]). Reducing the security problem to a constraint solving
problems in a term algebra (modulo an equational theory) is among the most
successful approaches: this reduction has proved to be quite effective on stan-
dard benchmarks and has also permitted the discovery of new flaws in several
protocols (see e.g., [4]).

In particular it is possible to model encryption and decryption operations
by collapsing (right-hand sides are variables) convergent rewrite systems, that
express simply that decryption cancels encryption, when provided with the right
key. Then, extensions of narrowing techniques for semantic unification [12] can
be applied to solve the constraints derived from the cryptographic protocol and

2



the secrecy property that one wants to check. But in general, the procedures for
solving protocol insecurity problems modulo rewrite properties of cryptographic
operators are involved and/or ad-hoc.

In this paper, we present a novel approach that is simple, in the sense that
it is closer to standard unification procedures. Standard equational unification
actually turns out to be a particular case of Cap Unification, which is the basis
for our inference system for active deduction; we prove that it is sound and
complete for dwindling intruder theories, under some minor conditions, met by
all usual protocols.

The paper is structured as follows: The preliminaries are presented in Section
2. We introduce, in Section 3, the notions of Cap Constraints and Cap Unifi-
cation, and present, in Section 4, the inference system which reduces the active
deduction problem to one of solving a set of cap constraints, based on a notion of
narrowing with abstraction. The technique is somewhat similar to – but simpler
than – those used in [5, 6]. We come up with a decision procedure for solving
these cap constraints, by showing its soundness, termination and completeness,
for convergent, dwindling, constructor intruder theories under some restrictions.
Section 5 presents briefly a possible way of adapting our inference system to the
case where the intruder capabilities are modeled as the Homomorphic Encryp-
tion theory, which is no longer dwindling, but for which passive deduction is
known to be decidable ([1]), as well as equational unification, cf. Appendix.

2 Setting the Stage

As usual, Σ will stand for a ranked signature, and X a countably infinite set
of variables. T = T (Σ,X ) is the algebra of terms over this signature; terms in
T will be denoted as s, t, . . ., and variables as u, v, x, y, z, . . ., all with possible
suffixes. If f is a member of Σ with at least one argument, then f is a function
symbol; and if f has no arguments, it is a constant. A rewrite rule is a pair of
terms (l, r) such that l � r, for some given reduction ordering � on terms; it will
be represented as usual, as l → r. A rewrite system R is a finite set of rewrite
rules. The notions of reduction and normalization of a term by R are assumed
known, as well as those of termination and of confluence of the reduction relation
defined by R on terms. R is said to be convergent iff the reduction relation it
defines on the set of terms is terminating and confluent; R is said to be dwindling
iff the right hand side (rhs) of any rule in R is a subterm of its left hand side
(lhs). Clearly, in a dwindling system R, if the left hand side of a rule in R is
reduced by R, then the right hand side must be too.

In this paper, we are concerned with the insecurity problem of protocols, i.e.,
the problem where a message intended as secret is captured or deduced by an
intruder. We model the intruder capabilities as a convergent rewrite system R.
In particular, we will consider rewrite systems for which the signature Σ can be
divided into two disjoint subsets ΣD and ΣC , where Σ = ΣD ∪ ΣC . Symbols
in ΣD are called defined symbols, and symbols in ΣC are called constructors.
The system R is called a constructor system if the top symbols of all left hand

3



sides of its rules are defined symbols, and all the other symbols are constructors.
The protocol itself is modeled as a set of Horn clauses, referred to as protocol
rules or protocol clauses, that we shall formally define farther down. Protocol
insecurity is modeled in two different ways: passive, or active, deduction. Passive
deduction models the intruder knowledge evolution without interaction with the
protocol sessions, e.g. via eavesdropping. More precisely, it consists in forming
the cap closure, in the sense of the following definition – by instantiating SYM
as a suitable subset of the symbols in Σ – of a finite set of terms S that models
the ‘current’ intruder knowledge; and adding further terms to this knowledge,
via certain R-narrowing steps on the terms of this closure:

Definition 1. Let S be a given set of terms, and SYM a set of function symbols.
Then Cap(S, SY M) is the set of terms defined as follows:

– S ⊆ Cap(S, SYM)
– If ti ∈ Cap(S, SYM), for all 1 ≤ i ≤ n, and f ∈ SYM is of arity n, then

f(t1, t2, . . . , tn) ∈ Cap(S, SYM).

An inference system, called saturation of the cap closure, was given in [1] for
passive deduction, and was shown to be complete for a class of intruder theories,
strictly including the class of dwindling theories, and covering in particular the
theory of Homomorphic Encryption (“Encryption distributes over pairs”).

For modeling active intruder deduction, we need to account for the intruder
interactions with the protocol steps. With that purpose, we first model the pro-
tocol as a set of protocol rules or protocol clauses (also called deduction rules in
the literature); these are defined as follows:

Definition 2. A protocol rule is a pair ({t1, . . . , tn}, t) where the ti’s and the t
are all terms; it will be denoted as {t1, . . . , tn} � t

Semantics: if σ is a substitution such that the terms tiσ, 1 ≤ i ≤ n, are already
part of the intruder knowledge, then (s)he can deduce the term tσ.

If R is a given convergent constructor system, and E the associated equational
theory, a protocol rule {t1, . . . , tn} � t is said to be an R- or E-constructed
protocol rule if no function symbol in the rule is a defined symbol of E.

Protocol rules are used to simulate a protocol step in a protocol session. We
only consider the analysis of one protocol session, since the case of several sessions
can be reduced to a single session, via standard techniques [10]. Thus, every
protocol rule is used only once; and when the variables of a rule are instantiated,
their values are propagated to all the other rules; the variables of a protocol rule
are thus considered as rigid variables.

Our next step will be to reduce every protocol clause to a Cap Constraint, and
propose a technique of Cap Unification to solve the set of all such constraints.

3 Cap Constraints and Cap Unification

For the developments of this section, R is any given, convergent, rewrite system
over some signature Σ, and E the associated equational theory; SYM stands for
any given set of symbols in Σ.

4



For instance, for the Dolev-Yao model with ΣDY = {p, d, e, π1, π2}, where ‘p’
means pair, ‘e’ is encryption, ‘d’ is decryption, ‘π1’ (resp. ‘π2’) is the projection
onto the left (resp. right) component of a pair, the theory E is the one defined
by the following convergent, dwindling, constructor system DY :

π1(p(x, y)) → x
π2(p(x, y)) → y

d(e(x, y), y) → x

A DY -constructed protocol will not contain the symbols d, π1 and π2.

Definition 3. A cap constraint is a constraint written in the form S �(SYM,E) t,
where S is a set of terms, and t is a term. A constraint S �(SYM,E) t is solvable
iff there exists some s ∈ Cap(S, SYM) and substitution σ s.t. sσ = tσ mod E.

An E-equation (or just ‘equation’) is, as usual, an equality constraint of
the form s =E t, where s and t are (usual) terms. For ease and uniformity of
presentation, we agree to identify it with the ‘special’ cap constraint s �(SYM,E)

t, whose lhs is now the term s (not a set of terms); if we also agree to set
Cap(s, SYM) = {s}, then obviously solving the special cap constraint reduces
to unifying s and t mod E.

Definition 4. Let {Si �(SYM,E) ti, 1 ≤ i ≤ n}, be any given set of cap con-
straints (some may be special). A substitution σ is a solution to this set iff:

• σ solves each cap constraint Si �(SYM,E) ti, 1 ≤ i ≤ n.
• Suppose a variable x is in the rhs of the constraints: Sik

� tik
, 1 ≤ k ≤ r.

Then xσ ∈ Cap(Sik
σ, SYM) for every k ∈ {1, . . . , r}.

The Reduction to Cap Constraints: We show here how to generate a set of
cap constraints from the protocol rules such that an intruder can deduce some
message m iff the set of cap constraints is solvable. We use a simple example to
illustrate the idea. Suppose we are given the following set of protocol rules:

{s1, s2} � t1

{s3} � t2

{s4} � t3

In these protocol rules, each si and tj is a term, possibly containing variables, and
as we said before each occurrence of any variable cannot be instantiated more
than once. The intruder’s initial knowledge is {a, b}, and the goal is to check if an
intruder can deduce the secret message m. First, we nondeterministically guess
a sequence of numbers; for example, 1 and 3, meaning the first then the third
protocol rules are used by the intruder. Then the following set of cap constraints
are generated (where Σ is a superset of the symbols appearing in E):

{a, b} �(Σ,E) s1

{a, b} �(Σ,E) s2

{a, b, t1} �(Σ,E) s4

{a, b, t1, t3} �(Σ,E) m

5



The lhs of each constraint indicates the knowledge of the intruder at some given
instant, and the rhs the knowledge that (s)he can deduce from the protocol step.
For all sets S of cap constraints that we will consider in this paper, there will
be a way of ordering its constraints, such that:

- The intruder loses no information, at any instant.
- Any variable x that appears in the lhs of some constraint, must also

appear in the rhs of a preceding constraint in S.
(cf. Definition 8). In particular, this will imply that the terms representing the
intruder’s initial knowledge can only be ground.

3.1 Cap Unification - Empty Theory

Our objective is to give an algorithm for solving cap constraints over some spe-
cific equational theories. Before doing that, we first give an algorithm for solving
cap constraints in the empty theory. This algorithm Cap Unification will be
a generalization of the standard unification algorithm for syntactic unification,
that accounts for the caps on terms. In order to solve one cap constraint modulo
the empty theory, we will transform it to a set of cap constraints and equations.
In the algorithm given below, Γ represents (to the rest of this subsection) a set
of cap constraints and (usual) equations modulo the empty theory.

We first formulate the ‘standard’ inference rules dealing with usual unifica-
tion, We refer to these rules, respectively, as Trivial, Noncap Decomposition,
Orient, Variable Substitution, Clash, and Occur Check. The last two rules
are to detect failure.

1. Γ � {t = t} ⇒ Γ

2. Γ � {f(s1, s2, . . . , sm) = f(t1, t2, . . . , tm)} ⇒
Γ � {s1 = t1} � {s2 = t2} � . . . � {sm = tm}

3. Γ � {t = x} ⇒ Γ � {x = t}
if x is a variable and t is not a variable.

4. Γ � {x = t} ⇒ Γσ � {x = t}
if x is not a proper subterm of t, x occurs in Γ , σ is the substitution [x 
→ t].

5. Γ � {f(s1, s2, . . . , sm) = g(t1, t2, . . . , tm)} ⇒ fail
if f �= g (both f and g can be a function symbol or a constant).

6. Γ � {x = t} ⇒ fail
if x is a proper subterm of t.

The additional inference rules for cap unification are defined as transfor-
mations of sets of cap constraints and equations, for any set SYM of function
symbols, and over some theory: E.

The simplest case would be: One of the elements in S is unifiable with s, and
this gives the following Decomposition rule:

– Γ � {S �(SYM,E) f(t1, t2, . . . , tm)} ⇒ Γ � {si = f(t1, t2, . . . , tm)}, 1 ≤ i ≤ n.

6



We use the following Cap Decomposition rule to take care of the fact that
the intruder is able to build up terms using any symbol in SYM :

– Γ � {S �(SYM,E) f(t1, t2, . . . , tm)} ⇒
Γ � {S �(SYM,E) t1} � {S �(SYM,E) t2} � . . . � {S �(SYM,E) tm}, if f ∈ SYM .

The two decomposition rules allow us to break down a cap constraint of the
form S �(SYM,E) t to a (possibly empty) set of cap constraints, all of the form
S �(SYM,E) x1 � · · · � S �(SYM,E) xn. In other words, the constraints resulting
from this process contain the same set on the left hand side as the original set,
and they each contain a single variable on the right hand side.

Suppose we have S �(SYM,E) x, then all we can say about x is that x ∈
Cap(S, SYM), then we create an equation x = S; so we have the following
Create Set Equation rule:

– Γ � {S �(SYM,E) x} ⇒ Γ � {x = S}

This leads us to a definition:

Definition 5. {t1, t2, . . . , tn} is a set-term iff t1, t2, . . . , tn are (usual) terms.

So we have two kinds of terms: usual terms and set-terms, in the last three
inference rules. But set-terms are allowed only to the left of cap constraints, and
to the right of equality constraints whose lhs are variables. We allow variables
to be substituted by set-terms. For example, we could apply x = {t1, t2} to
f(x), and the result is f({t1, t2}). which is an abbreviation for the set-term
{f(t)|t ∈ Cap({t1, t2}, SYM)}. Similar to usual terms, a set-term is ground iff
there is no variable in it.

The Cap Unification procedure is defined by all the above rules. As usual,
we write: Γ ⇒ Γ ’ if the constraint set Γ ′ is derived from the constraint set Γ
by applying one of the inferences. In a set of equality constraints, a variable x is
said to be solved iff x appears only once, and as the lhs of an equation of the form
x = t with t a term, or set-term. We define a normal form Γ of cap unification
to be a set of equalities {x1 = t1, · · · , xn = tn, y1 = S1, · · · , ym = Sm}, where
each xi is a solved variable, each ti is a usual term, each yj is a variable, and
each Sj is a set-term. Note that the yj variables are allowed to be repeated.

Just like usual syntactic unification, cap unification (over the empty theory)
always terminates:

Lemma 1. There is no infinite chain of cap unification inferences.

Proof. Given a set of cap constraints Γ , define a measure μ(Γ ) as the 4-tuple
(p, q, r, s), where p is the number of unsolved variables in Γ , q is the number of
symbols in Γ , r is the number of (“reversed”) equations in Γ of the form t = x
where x is a variable, and s is the number of constraints in Γ of the form S � x
where x is a variable. The ordering, with p, q, r, s compared lexicographically, is
well-founded. If Γ1 ⇒ Γ2 then μ(Γ1) > μ(Γ2): This is because Variable Substi-
tution reduces the first component of the measure; Orient reduces the third and

7



does not increase the others; Create Set Equation reduces the fourth and does
not increase any others; all the others decrease the second component and do
not increase the first. ��

Cap unification is sound (by inspection of the transformation rules):

Lemma 2. Let σ be a (usual) term substitution. If Γ1 ⇒ Γ2 and σ is a solution
for Γ2, then σ is also a solution for Γ1.

Cap unification is complete:

Lemma 3. Let σ be a (usual) term substitution. If σ is a solution of Γ1, then
there exists a Γ2 such that Γ1 ⇒ Γ2 and σ is a solution of Γ2.

Proof. Consider any unsolved constraint c in Γ1. If c is a cap constraint of the
form S �t where t is not a variable, then a suitable Noncap or Cap Decomposition
rule can be applied to Γ1, so as to preserve the solution. If the rhs t of the
constraint c is a variable, then only the Make Set Equation rule is applicable,
and this obviously preserves the solution. Similarly, in the case where c is an
equation s = t, where s is a usual term that is not a solved variable, some
transformation applies and preserves the solution. ��

So we have shown that a satisfiable Cap unification problem can always
be reduced to an equivalent normal form, and an unsatisfiable one cannot be
reduced to normal form. Given a satisfiable set of constraints Γ , let nf(Γ ) =
{x1 = t1, · · · , xn = tn, y1 = S1, · · · , ym = Sm} be a normal form for Γ , produced
by Cap unification. We then define a notion of mgcu(nf(Γ )) as follows. Let σ0

be a most general solution for the part {x1 = t1, · · · , xn = tn} formed of the
usual equalities in nf(Γ ); then σ0 is first extended as a substitution σ′ assigning
set-terms to the other variables yj in nf(Γ ), under the following condition:

• For every j, 1 ≤ j ≤ m, yjσ
′ = S′

j is the smallest (non-empty) sub-set-term
of Sjσ0 such that S′

j ⊂ Cap(Siσ0, SYM) for every i with yi = yj .

Since the underlying equational theory is empty, and since the set-terms consid-
ered are all finite, this is a finitary notion. We then set σ to be the set-term sub-
stitution obtained by fully developing σ′ (i.e., fully instantiating all the variables
in its range), and define: mgcu(Γ ) = mgcu(nf(Γ )) = σ. Such a substitution is
said to be ground iff its range has no variables. Note that, when all the Si’s are
single terms, mgcu coincides with mgu.

In addition, for some of the proofs of Section 4.2, we will be needing the
notion of a restricted solution for Γ :

Definition 6. A restricted solution for a set of constraints in normal form
Γ = {x1 = t1, · · · , xn = tn, y1 = S1, · · · , ym = Sm} is a substitution σ of the
form [x1 
→ t1, · · · , xn 
→ tn, yj 
→ t, 1 ≤ j ≤ m], where the t1, · · · , tn are usual
ground terms, and t is a ground term in

⋂
1≤j≤m Sj.

8



4 Inference System for the Dwindling Case

In this section, we extend the Cap Unification inference system over the empty
theory, given in the preceding section, by adding a set of inference rules for
solving cap constraints modulo a non-empty equational theory E defined by a
convergent, dwindling, constructor system R, under typical conditions met by
all usual protocols. We will show that this extended inference system is sound
and complete for such theories. For the rest of the section, SYM will stand for
sig(E), the set of all symbols in the signature of E.

In these inference rules, any constraint set (in the premises or conclusions)
is divided into a cap constraint part denoted Γ , and an equality constraint part
denoted C. We represent it in the form Γ �C�. We apply our inferences to the cap
constraint part, and the equational part will represent the results of solving the
cap unification problems in the inferences. Initially, the equational part will be
the empty. (This is similar to Basic Narrowing, where the unification problems
are saved instead of being applied to the narrowing problem.) As above, set-
terms may appear to the left of cap constraints, and to the right of equality
constraints whose lhs are variables. Before introducing our inference rules, we
need the following definition.

Definition 7. We define a function SetUsualT erms(t) inductively as follows:
SetUsualT erms(t) = {t}, if t is a usual term.
SetUsualT erms(t) = t if t = {t1, . . . , tn} is a set-term, i.e. a set of usual terms.
SetUsualT erms(t) = SetUsualT erm(t1) ∪ · · · ∪ ToUsualT erms(tn),

if t = f(t1, t2, . . . , tn) and some subterm of t is a set-term.

The inference system will be denoted as ID. In addition to the inference rules
above, for Cap Unification, it will contain the following inference rules:

Γ � {S �(SYM,E) t}�C1�
(Cap Narrowing)

Γ ∪ {S � {x} �(SYM,E) t}�nf(C1 � {x = t′} � {S �(SYM,∅) s′})�

if: (i) s′ → t′ ∈ R; (ii) There exists a v′ ∈ SetUsualT erms(t′σ) s.t. v′ is not a
superterm of any v ∈ SetUsualT erms(sσ), for s ∈ S, and σ = mgcu(S � s′); and
(iii) For every variable y ∈ S, (y)mgcu(C1) is ground. (The x in the conclusion
is a fresh variable.)

Γ � {S �(SYM,E) t} �C1�
(Cap Unification)

Γ �nf(C1 � {S �(SYM,∅) t})�
if S and t are cap unifiable (over the empty theory).

The following rule is essential for termination, thus is used eagerly.

Γ � {S � {x} �(SYM,E) t}�C1�
(Variable Elimination)

Γ � {S �(SYM,E) t}�C1�

if some equality constraint x = T is already present in C1.

9



We often write an inference as a transformation P ⇒ID C where P is the
premise and C is the conclusion. The inference rules are applied nondeterminis-
tically, except for Variable Elimination which is applied eagerly: meaning it must
be applied whenever applicable. We must show that the rules terminate and are
sound; and also show that they are complete, i.e., that if σ solves a constraint
Γ then that there is some derivation from Γ to ∅�C�, where C is satisfiable.

Example. To give an example of our inference system, suppose that E con-
tains the rule d(e(h(z), y), y) → h(z), and suppose that S is the set of terms
{e(h(a), b), b}. We want to show that {S �(SYM,E) h(a)}. This can be solved
by a sequence of two inferences. The first inference is a Cap Narrowing infer-
ence, whose result is {S � {x} �(SYM,E) h(a)} �{x = h(a), z = a, y = b}�.
The set {x = h(a), z = a, y = b} is the normal form of {x = h(z), S �(SYM,∅)
d(e(h(z), y), y)}, which is obtained by Cap Unification. The steps for solving
Cap Unification are as follows. First Cap Decomposition is applied, resulting
in {x = h(z), S �(SYM,∅) e(h(z), y), S �(SYM,∅) y}. Next, Decomposition gives us
{x = h(z), h(a) = h(z), b = y, S �(SYM,∅) y}. After a few standard unification
steps, we get {x = h(a), z = a, y = b, S �(SYM,∅) b}. Finally, one more De-
composition step gives us {x = h(a), z = a, y = b}. This Cap Narrowing Step
is applicable because h(a) is not a superterm of any term in S, so condition
(ii) applies; and all the variables in S are ground so condition (iii) also ap-
plies. After the Cap Narrowing Step, one inference of Cap Unification gives us
∅ �{x = h(a), z = a, y = b}�, and the problem is now solved.

4.1 Termination

For termination and for completeness, there are certain typical protocol prop-
erties that will be required. The properties that we formulate now, are true for
standard protocols; they will be preserved under the inference rules of ID.

Definition 8. Let Γ = {S1 �(SYM,E) t1, · · · , Sm �(SYM,E) tm}�C� be an ordered
set of cap constraints.

1. The No Information Loss property: Let 1 ≤ i < j ≤ m, and σ any ground
substitution. If ti ∈ Cap(Siσ, SYM) then there exists a t′j ∈ Cap(Sjσ, SYM),
such that ti = t′j modulo E.

2. The Variable Introduction property: Let 1 ≤ j ≤ m, σ = mgcu(C), and x
any variable appearing in Sjσ; then there exists i, 1 ≤ i < j, such that x is
already in tiσ.

3. The Nonempty Knowledge property: S1 contains some ground constant.
4. The Constructor property: No defined symbol of R appears in Γ .
5. The Derivable Set property: Let 1 ≤ i, j ≤ m be such that x ∈ Sj, and the

constraint C contains the equality x = Si; then all the t ∈ Si are also in
Cap(Sj − {x}, SYM).

Any given constraint set Γ is said to have these properties iff its cap con-
straints can be ordered in some way to satisfy all these properties. Together, these
properties are called the Standard Protocol Property for Γ .

10



We assume that the initial cap constraint sets derived from protocol rules
have the Standard Protocol Property: No information loss means that once the
intruder knows something, (s)he will not forget it. Variable introduction means
that a principal’s actions are determined by the messages it receives or deduces.
Nonempty knowledge means that the intruder knows something. The constructor
property says that the protocol clauses do not contain functions that destruct
data. The derivable set property is trivially true, because initially there are only
cap constraints (no equality constraints).

The inference process is modeled by ID-derivation sequences:

Definition 9. Let Γ0�C0� be a set of cap constraints. An ID-derivation sequence
from Γ0�C0�, is a sequence of the form Γ0�C0�, Γ1�C1�, . . . , Γn�Cn� where, for
all 1 ≤ i ≤ n, Γi�Ci� is obtained from Γi−1�Ci−1� by an inference rule of ID.

Our purpose in this subsection is to show the termination of any ID-derivation.
For that we need to show that ID-derivation sequences preserve the Standard
Protocol Property; and for this, we shall assume as we may, that if Γ �C� is an or-
dered set of cap constraints, and if Γ �C� ⇒ID Γ ′�C′�, then the latter constraint
set is ordered ‘in the same way’ as the former (any new inferred constraint takes
the place of the constraint on which the inference is performed).

Lemma 4. Let Γ0�∅�, Γ1�C1�, . . . , Γn�Cn� be an ID-derivation, where Γ0�∅� has
the Variable Introduction property. Then Γn�Cn� also has the Variable Introduc-
tion property.

Proof. We will show that if Γ �C� ⇒ID Γ ′�C′�, and Γ �C� has the Variable
Introduction property, then so does Γ ′�C′�.

Let σ = mgcu(C), and σ′ = mgcu(C′). Suppose S′
j � t′j is a constraint in Γ ′,

and suppose S′
j contains some term s′ such that a variable x appears in s′σ′.

Now, the constraint S′
j � t′j must come from some Sj � tj in Γ .

If the term s′ appears already in Sj then there is a variable y in s′σ such that
yσ′ contains x. By assumption, Γ �C� has the Variable Introduction property, so
there is a 1 ≤ k < j and a cap constraint Sk � tk in Γ such that y is already in
tkσ. But then there is a corresponding S′

k � t′k in Γ ′ with x appearing in tkσ′.
The only other case – that need not be considered – would be that x is a

new variable created by Cap Narrowing: in that case, xσ′ would be ground. ��

Corollary 1. Let Γ0�∅�, Γ1�C1�, . . . , Γn�Cn� be an ID-derivation. Let for any
i, 0 ≤ i ≤ n, τi = mgcu(Ci); then Γiτi is ground (i.e., all of its terms and
set-terms are ground).

Proof. Follows from the above lemma, and the fact that the first cap constraint
in the ordering can only have ground terms to the left. ��

Lemma 5. Let Γ0�∅�, Γ1�C1�, . . . , Γn�Cn� be an ID-derivation, where Γ0�∅� has
the No Information Loss and Derivable Set properties. Then Γn�Cn� also has the
No Information Loss and the Derivable Set properties.

11



Proof. We will show that if Γi�Ci� has the No Information loss and Derivable
Set property, then so does Γi+1�Ci+1�.

By definition, Cap Narrowing and Variable Elimination preserve the No infor-
mation Loss. Cap Unification also preserves it, because Γi�Ci� has the Derivable
Set property.

We now have to show that Γi+1�Ci+1� also has the Derivable Set property.
Consider then a variable x, and an equality x = t – where t is a set-term or term
– that appears in Ci+1. If this equality appears already in Ci, then the fact that
Γi�Ci� has the Derivable Set property implies that Γi+1�Ci+1� must also. On
the other hand, if the equality x = t does not appear in Ci, that means it got
created in Ci+1, by a Cap Narrowing or Cap Unification inference; but then, t
must have appeared in some cap constraint in the constraint set Γi where x was
some t′. Because of the No Information Loss property, this implies the Derivable
Set property for Γi+1�Ci+1�. ��

Lemma 6. Let Γ0�∅�, Γ1�C1�, . . . , Γn�Cn� be an ID-derivation, where Γ0�∅� has
the Nonempty Knowledge property. Then Γn�Cn� also has the Nonempty Knowl-
edge property.

Proof. We have to show that if Γi�Ci� has the Nonempty knowledge property,
then so does Γi+1�Ci+1�. The only problem would be if an inference made the
initial knowledge given by the ground constants of Γ0 disappear. The No Infor-
mation Loss property implies that this is not so. ��

Lemma 7. Let E be a constructor system. Suppose Γ0�∅�, Γ1�C1�, . . . , Γn�Cn�
is an ID-derivation, where Γ0�∅� has the Constructor property. Then Γn�Cn�
also has the Constructor property.

Proof. We have to show that if Γi�Ci� has the Constructor property, then so
does Γi+1�Ci+1�. But, because the rules in the system R are all constructor
rules, there is no way to create a new defined symbol in an inference. ��

Proving Termination: We need to find a well-founded measure which is de-
creased by the inferences. For defining a termination measure, and for some of
the proof details to come, it will be convenient to have a notion of cap-term:

Definition 10. A cap-term is defined inductively as follows:
(i) S is a cap-term if S is a set-term.
(ii) f(s1, s2, . . . , sn) is a cap-term if, f ∈ SYM , and for 1 ≤ i ≤ m, si is either
a cap-term, or si ∈ sj, for some 1 ≤ j ≤ m, j �= i.

Let t be any ‘term’ possibly containing cap-subterms. A cap-term is said to
be maximal in t if none of its superterms in t is a cap-term; in other words, any
superterm of a maximal cap-term in t has at least one usual term as argument
or subterm. For defining our measure, we will be using a transformation function
on ‘terms’ possibly containing cap-subterms, that we define as follows:

Let w denote a fixed new constant. For any ‘term’ t possibly containing a
cap-subterm, w(t) will denote the usual term obtained by replacing all maximal

12



cap-subterms of t by w. This function is extended, in a natural manner, to cap
constraints and sets of cap constraints. Based on this function, we now define
two functions Kpos and T for any cap constraint set Γ �C�, as follows:

Kpos(Γ �C�) is the number of non-variable positions in the cap constraint
part of Γ .

Given any set of usual terms S, let Sub(S) denote the set of all usual subterms
of terms in S, and Diff(S) = Sub(S) � S. We then set:

T (Γ �C�) is the multiset {Diff(Sσ) | S � t ∈ Γ, σ = mgu(w(C))}
We define now the measure as: M(Γ �C�) = (Kpos(Γ �C�), T (Γ �C�), which

is compared lexicographically. This measure is well-founded. We show that it is
reduced by each inference:

Lemma 8. Suppose Γ �C� has the Standard Protocol property. If Γ �C� ⇒ID

Γ ′�C′�, then M(Γ ′�C′�) < M(Γ �C�).

Proof. For Cap Unification, the first component of the measure always decreases.
Since the Variable Elimination inference rule is applied eagerly, there will be no
variable in the set on the left hand side of a cap constraint. So the number of
nonvariable positions in S is decreased by Cap Unification.

For Variable Elimination, we cannot increase the first component of the mea-
sure, but the second measure is decreased.

Suppose we do Cap Narrowing on some constraint Si � ti and s′ → t′, σ =
mgcu(Si � s′). We consider s′σ. There are three cases.

Case 1: Suppose s′σ is some ground term t, where no subterm of t is a
set-term. E being dwindling, the result of Cap Narrowing can only be a sub-
term, otherwise, the result is already in Cap(S, SYM); so the inference is not
performed.

Case 2: Suppose s′σ is some ground cap-term t. According to the definition
of cap-term. For all t′ ∈ SetUsualT erms(t), there exists some Sj s.t. j ≤ i
and t′ ∈ SetUsualT erms(Sj). Because of the No Information Loss Property,
t′ ∈ SetUsualT erms(Si). Therefore, Cap Narrowing is not allowed because of
the second condition for Cap Narrowing.

Case 3: Suppose s′σ is a ground term u[t], where t is a a cap-term, and u[t]
is not a cap-term. Let w(v) be the function (defined above) that replaces every
maximal cap-subterm in any ‘term’ v by the new constant w. Then w(u[t]) =
u[w], and the result of Cap Narrowing would be u′[w], a subterm of u[w]. ��
Theorem 1. Suppose Γ �∅� is a constraint set satisfying the Standard Protocol
property. Then every ID-derivation sequence from Γ �∅� is finite.

Proof. The measure M decreases at each inference, and M is well-founded. ��

4.2 ID is Sound and Complete

In this section, we prove that our inference system ID is sound and complete
for convergent, dwindling, constructor systems). We thus get - in combination
with termination proved above - a decision procedure for solving Cap Unification
modulo such systems. We first prove soundness of ID.

13



Theorem 2. Let Γ0�∅� be a constraint set satisfying the Standard Protocol prop-
erty. Suppose Γ0�∅�, Γ1�C1�, . . . , Γn�Cn� is an ID-derivation, and σ a restricted
ground substitution (cf. Definition 6) that satisfies Γn�Cn�; then σ satisfies Γ0.

Proof. Assuming σ satisfies Γi+1�Ci+1�, we prove that σ also satisfies Γi�Ci�.
This is true, since no inference rule, from step i to step i+1, adds any constraint
that can be inconsistent with Γi�Ci�. ��

We now prove completeness of ID.

Theorem 3. Let Γ0 be a set of cap constraints, C0 = ∅, and suppose Γ0�C0�
satisfies the Standard Protocol property. Let σ be a restricted ground substitution
satisfying Γ0. Then there is an ID-derivation sequence Γ0�C0�, . . . , Γn�Cn� such
that Γn = ∅ and σ satisfies Cn.

Proof. We assume that σ satisfies Γi�Ci� with Γi �= ∅ and show that there is an
inference step Γi�Ci� ⇒ID Γi+1�Ci+1� such that σ satisfies Γi+1�Ci+1�.

Since σ satisfies Γi�Ci�, then for each of its cap constraints S �(SYM,E) t, we
know that there is some s ∈ Cap(S, SYM) with sσ = tσ modulo R. This means
that tσ has an R-rewrite proof to sσ↓R. Let S �(SYM,E) t be the first constraint
in Γi�Ci� for the ordering from the Standard Protocol property. Since Γi�Ci�
obeys the Variable Introduction property, we know that Γiτ must be ground,
where τ = mgcu(Ci), cf. Corollary 1.

Suppose there are no steps in the rewrite proof: meaning tσ is identical to sσ;
then there is a Cap Unification inference giving Γi+1�Ci+1�, and the assertion on
σ is immediate. So suppose the rewrite proof to be non-trivial, and consider the
first step in that proof. This step must take place in the cap part of tσ, because
E is a constructor theory and Γi�Ci� obeys the constructor property; and this
rewrite step can be lifted to a Cap Narrowing step since Γiτ is ground. ��

5 Extension to Other Theories

It is natural to ask if the approach presented above can be extended to the-
ories defined by rewrite systems R that are not convergent, dwindling, and
constructor-based. Since (basic) R-narrowing is essential in our approach, it
seems necessary to assume at least that R is convergent. On the other hand, the
decidability of R-unification is necessary, in order that active deduction modulo
R be decidable, cf. e.g. [9]. So any attempted extension should either be built
over such an assumption, or should provide an implicit proof for the decidability
of R-unification.

The Dolev-Yao system DY is the very basic intruder theory for which our
preceding approach applies. Homomorphic Encryption (HE) is the theory that
just extends DY by specifying that encryption distributes over pairs. HE can be

14



defined by the following system, which is no longer convergent, nor dwindling,
nor a constructor system:

π1(p(x, y)) = x
π2(p(x, y)) = y
d(e(x, y), y) = x

e(p(x, y), z) = p(e(x, z), e(y, z)) (Ehomo)
d(p(x, y), z) = p(d(x, z), d(y, z)) (Dhomo)

The idea is to apply the inference rules exactly as before for the DY part of
the theory, but to treat the Ehomo∪Dhomo part of the theory using goal directed
inference rules, as is done in syntactic theories:
Homomorphic Deduction

Γ � {S � {e(s1, t1), e(s2, t2), . . . , e(sn, tn)} �(SYM,HE) e(s, t)}�C�

(Γ � {{s1, s2, . . . , sn} �({p,π1,π2},∅) s}�C�)σ

where σ is the most general unifier of {t1 = t}∪{t2 = t}∪, . . . ,∪{tn = t} modulo
the HE theory. None of our terms will contain a symbol π1, π2 or d, so this in
effect means these equations only need to be solved modulo the equation Ehomo,
which itself forms a syntactic theory. Unification has been shown to be decidable
for the convergent extension of HE containing an additional rule e(d(x, y), y) = x,
in [2]; but unification modulo Ehomo is easier. As in syntactic theories, we will
just need an explicit Decomposition rule and an explicit Cap Decomposition rule
in our inference system.

A further point on the Homomorphic Deduction rule is that the conclusion of
the inference requires solving a Cap unification problem where the only symbols
allowed to be used for caps are π1, π2 and p. The same inference rules as above
(for the cap constraints under the full signature) can be used to solve these cap
constraints. The main difficulty of such an inference system is that, after the
Homomorphic Deduction rule, the No Information Loss property may not be
true anymore. This means that equational constraints in normal form may not
always have a solution. So some additional inference rules will be required to
solve equational constraints in normal form. This is part of our on-going work;
the details will appear elsewhere.

Note also that passive deduction is known to be decidable for (the convergent
extension of) HE, as well as for all dwindling convergent systems, without ex-
ception, cf. [1]. Getting rid of the constructor assumption on dwindling systems
that we have made in this paper, is an issue that is being looked into in [13].

6 Related Work, Conclusion

Several protocol decision procedures have been designed for handling equational
properties [14, 8, 7] of the cryptographic primitives. Some works have tried to
derive generic decidability results for some specific class of intruder theories.
Delaune and Jacquemard [10] consider the class of public collapsing theories.
These theories have to be presented by rewrite systems where the rhs of every
rule is a ground term or a variable. Some results assume that the rhs of any
rule is only a subterm of the lhs. [6] gives some results for related theories. The

15



procedure in [5] is more general, but more complex than ours; more importantly,
it is not clear if it can be extended to the theory of homomorphic encryption.

Concerning theories with a homomorphism operator, beside a few results
for passive intruders (e.g. [1]), the only work for active intruders is [11], which
presents decidability results for a class of monoidal theories containing exclusive
or, in combination with the homomorphism axiom. Their approach follows a
classical schema for cryptographic protocol analysis, which proves first a locality
result. The insecurity problem is then reduced to solving some linear Diophantine
equations in a suitable algebra.

References

1. S. Anantharaman, P. Narendran, M. Rusinowitch. “Intruders with Caps”. In Proc.
Int. Conf. RTA’07 , LNCS 4533, pp.20–35, Springer-Verlag, June 2007.

2. S. Anantharaman, H. Lin, C. Lynch, P. Narendran, M. Rusinowitch. “Equa-
tional and Cap Unification for Intrusion Analysis”. LIFO-Research Report,
www.univ-orleans.fr/lifo/prodsci/rapports/RR/RR2008/RR-2008-03.pdf

3. A. Armando, L. Compagna. SATMC: a SAT-based Model Checker for Security
Protocols, In Proc. of JELIA 2004 , LNCS 3229, pp. 730–733, Springer-Verlag, 2004.

4. D. Basin, S. Mödersheim, and L. Viganò. An On-The-Fly Model-Checker for Secu-
rity Protocol Analysis. In Einar Snekkenes and Dieter Gollmann, editors, Proceedings
of ESORICS’03, LNCS 2808, pages 253–270. Springer-Verlag, 2003.

5. M. Baudet. “Deciding security of protocols against off-line guessing attacks”. In
Proc. of ACM Conf. on Computer and Communications Security, 2005, pp. 16-25.

6. Y. Chevalier, M. Kourjieh. “Key Substitution in the Symbolic Analysis of Cryp-
tographic Protocols”. In Proc. Int. Conf FSTTCS’07 , LNCS 4855, pp. 121–132,
Springer-Verlag, December 2007.

7. Y. Chevalier, R. Küsters, M. Rusinowitch, M. Turuani. “An NP Decision Procedure
for Protocol Insecurity with XOR”. In Proceedings of the Logic In Computer Science
Conference, LICS’03, pages 261–270, 2003.

8. H. Comon-Lundh and V. Shmatikov. Intruder Deductions, Constraint Solving and
Insecurity Decision in Presence of Exclusive or. In Proceedings of the Logic In Com-
puter Science Conference, LICS’03, pages 271–280, 2003.

9. V. Cortier, S. Delaune, P. Lafourcade. “A Survey of Algebraic Properties Used in
Cryptographic Protocols”. In Journal of Computer Security 14(1): 1–43, 2006.

10. S. Delaune and F. Jacquemard. A decision procedure for the verification of security
protocols with explicit destructors. In Proceedings of the 11th ACM Conference
on Computer and Communications Security (CCS’04), pages 278–287, Washington,
D.C., USA, October 2004. ACM Press.

11. S. Delaune, P. Lafourcade, D. Lugiez, and R. Treinen, Symbolic protocol analysis
for monoidal equational theories, Information and Computation, 2008. To appear.

12. J.M. Hullot. Canonical Forms and Unification. CADE 1980: 318-334
13. H. Lin. PhD Thesis, Clarkson University, Potsdam, NY (USA), To appear (2008).
14. C. Meadows and P. Narendran. A unification algorithm for the group Diffie-

Hellman protocol. In Workshop on Issues in the Theory of Security (in conjunction
with POPL’02), Portland, Oregon, USA, January 14-15, 2002.

15. P. Narendran, F. Pfenning, R. Statman. On the unification problem for cartesian
closed categories. In Proc. of the Logic in Computer Science Conference LICS’93,
pages 57–63, 1993.

16



16. O. Pereira and J.J. Quisquater On the perfect encryption assumption. In: P.
Degano, Editor, Workshop on Issues in the Theory of Security (WITS 2000), Geneva,
Switzerland (2000), pp. 42-45.

17. C. Weidenbach. Towards an automatic analysis of security protocols. In Proc. of
16th International Conference on Automated Deduction, CADE-16 , LNAI 1632 (H.
Ganzinger, ed.), Springer-Verlag, pages 378–382, 1999.

7 Appendix

The following convergent rewrite system defines the theory of Homomorphic
Encryption (HE):

p1(x . y) → x
p2(x . y) → y
enc(dec(x, y), y) → x
dec(enc(x, y), y) → x

enc(x . y, z) → enc(x, z) . enc(y, z))
dec(x . y, z) → dec(x, z) . dec(y, z))

Theorem 4. Unification modulo the theory HE is decidable.

For the proof, we shall be applying several reductions on the given unification
problem. To start with, we shall assume (via usual arguments, and reasoning mod
HE) that the given unification problem P is in a standard form, in the following
sense: each of its equations to solve, modulo HE, is assumed to have one of the
following forms:

Z = T , Z = X.Y , Z = enc(X, Y ), Z = const.,
where the T, X, Y, Z, . . . stand for variables, and const is any free ground con-
stant. (If an equation in P is given in the form U = dec(V, W ), it is rewritten
mod HE as V = enc(U, W ).) The equations in P of the first (resp. second) form
are said to be ‘equalities’ (resp. ‘pairings’), those of the third form are said to be
of the enc type, and the last ones of the ‘constant’ type. The second arguments
of enc, in the equations of P , are referred to as the key variables of P .

The conjugate of any enc equation Z = enc(X, Y ) in P , is defined as the equa-
tion X = dec(Z, Y ), said to be of the ‘dec’ type. For every key variable/constant
Y occurring in P , let hY (resp. hY ) denote the homomorphism enc(−, Y ) (resp.
dec(−, Y )) defined on terms. An enc equation Z = enc(X, Y ) can thus be written
as Z = hY (X), and its conjugate as X = hY (Z). Let n be the number of distinct
key variables/constants appearing in P , and let H stand for the set of all homo-
morphisms (2n in number), thus associated with these key variables/constants.

We construct next a graph of dependency G = GP between the variables of
the problem P . Its nodes will be the variables (or constants) of P . From a node
Z on G, there is an oriented arc to a node X iff the following holds:

a) P has an equation of the form Z = hi(X), or Z = hi(X), for some i ∈
{1, . . . , n}; the arc is then labeled with the symbol hi (resp. with hi);

b) P has an equation of the form Z = X.V (resp. Z = V.X): the arc is then
labelled with p1 (resp. with p2).

17



Semantics: If G contains an edge of the form Z →h X , then Z can be evaluated
by applying the homomorphism h to the evaluation of X .

With a view to eliminate redundancy on the graph, it is explicitly assumed
that variables which are ‘equal’ in P have exactly one representative node on G;
consequently, G will have no equality edges.

For solving P , we shall make a few assumptions which express necessary
conditions for the problem P to admit a solution in normal form modulo HE .
The first among them is the following, that results from the so-called Perfect
Encryption hypothesis:
(SNF): For any loop γ on G from some node Z to itself, the word formed by the
symbols labeling the arcs composing γ must simplify to the empty word, under
the following set of rules:

(#) hihi → ε, hihi → ε, 1 ≤ i ≤ n.
A problem P (in standard form) will be said to be admissible iff it satisfies

SNF. The problems we consider will all be assumed to be admissible (a justifi-
cation for this, based on algebraic considerations, can be found in Section 7.1).
For such problems P , it follows in particular from SNF, that:

· there can be no loop containing an arc labeled with a p1 or p2, from any
node to itself, on the graph G = GP (“the pairing operator is free in HE”).

Several reductions, called trimming, will be applied to our problems P . Some
of them result from the Perfect Encryption assumption; but their prinicipal aim
is to ensure that the non-key variables of P do not get split into pairs.

We define two relations on the set of variables X = X (P) of P :
- Z ≈ X iff one can go from Z to X by using only the equalities of P , and

the enc or dec arcs of GP ;
- Z � X iff there is a loop-free path from Z to X (on the graph of P), with

at least one of its arcs labeled with p1 or p2.

Rules for Trimming: We denote by Eq (resp. Pair,Enc) the set of equalities
(resp. pairings, the enc-equations) in P , respectively.
Rule 1. (Perfect Encryption)

a)
Eq; Pair; Enc � {Z = enc(X, Y ), Z = enc(V, Y )}

Eq ∪ {V = X}; Pair; Enc � {Z = enc(X, Y )}

b)
Eq; Pair; Enc � {Z = enc(X, Y ), Z = enc(X, T )}

Eq ∪ {T = Y }; Pair; Enc � {Z = enc(X, Y )}

Rule 1’. (Variable Elimination)

a)
{U = V } �Eq; Pair; Enc

{U = V } ∪ [V/U ](Eq); [V/U ](Pair); [V/U ](Enc)

Rule 2. (Pairing is free in HE)

a)
Eq; Pair � {Z = U1.U2, Z = V1.V2}; Enc

Eq ∪ {V1 = U1, V2 = U2};Pair � {Z = U1.U2}; Enc

18



b)
Eq; Pair; Enc; Z ≈ Z ′ and Z � Z ′

FAIL

Rule 3. (Split on Pairs)

a)
Eq; Pair; Enc � {Z = enc(X, Y )}; Z = Z1.Z2 ∈ Pair

Eq; ; Pair � {X = X1.X2}; Enc � {Z1 = enc(X1, Y ), Z2 = enc(X2, Y )}

b)
Eq; Pair; Enc � {Z = enc(X, Y )}; X = X1.X2 ∈ Pair

Eq; Pair � {Z = Z1.Z2}; Enc � {Z1 = enc(X1, Y ), Z2 = enc(X2, Y )}
(The X1, X2 in rule 3a, and the Z1, Z2 in rule 3b, are fresh variables – as

indicated by the notation.) At any stage of the inference process, Rule 1′ is meant
to keep the graph of the ‘current’ problem irredundant, and Rule 2b checks for
the SNF assumption. The inference rules 1,1’, 2 are all to be applied eagerly; if
rule 2b leads to ‘FAIL’, then the procedure stops. At any stage of the process, all
the inferences under 1a, 1b and 2a are to be derived ‘in block’, i.e., in parallel.

We must show that such an inference procedure terminates on any admissible
problem. For that purpose, we need to define certain notions.

(1): For any problem P that satisfies SNF, the relation � defined above on
its set of variables X , is a well-defined, strict, partial order on X . For any such
problem P , and for any given Z ∈ X , the sp-depth of Z – denoted as spd(Z) –
is defined as the maximum number of p1- or p2-labeled arcs along the loop-free
paths from Z to all possible X ∈ X .

(2): Let P be any given admissible problem. We introduce a binary (infix)
operator ‘◦’ (representing pairs, but denoted differently, to avoid confusion); and
define Tp(P) = Tp as the set of all terms formed over X , the symbol ‘◦’, and the
set of all homomorphisms hT – where T runs over all the key variables of P .

- Any pairing X = X1.X2 in P , is seen as a rewrite rule: X → X1 ◦ X2;
- Any equation Z = enc(X, T ) in P gives rise to two rewrite rules:

Z →hT X , and X →hT Z.
Rules of the former type will be called pairing rules; those of the latter type will
be respectively called h-rules or h-rules, with key T , and with target X for the
first among them, and Z for the second. We define RP to be the rewrite system
formed of all such rules. By a critical configuration wrt RP , we mean any given
pair of distinct rewrite rules of RP such that:

- both rules have the same variable X ∈ XP to their left;
- if one of them is a h-rule (resp. h-rule), then the other rule must be a

pairing rule or a h-rule (resp. pairing rule or a h-rule);
- if both are h-rules (or h-rules), they have the same key or the same target.
The common lhs variable of a critical configuration is referred to as its peak.
(3): To any critical configuration wrt RP (for any given problem P), with

X ∈ X as the peak, we associate an integer called its weight, as follows:

Type i) the rules in the configuration are both pairing rules:
the weight here is defined as spd(X), the sp-depth of the peak.

19



Type ii) one rule is a pairing rule, and the other is a h- or h-rule:
the weight here is spd(X).

Type iii) the rules in the configuration are both h-rules (resp. both h-rules):
the weight is nX , where nX is the number of nodes
to which there is a loop-free, non-empty path from X ,
formed only of enc-arcs (resp. formed only of dec-arcs).

Lemma 9. Trimming terminates on (admissible) problems.

Proof. To any given admissible problem P , we associate its set CC(P) of all the
critical configurations over RP ; and define a measure m(P), as the lexicographic
combination of 3 components: m1 = m1(P), m2 = m2(P), m3 = m2(P), where:

- m1 is the number of distinct key variables appearing in P ;
- m2 is the multiset of weights of configurations of Type i) and ii) in CC(P);
- m3 is the multiset of weights of the configurations of Type iii) in CC(P).
Consider then any inference on P , by a rule other than 2b (which – applied

whenever applicable – would yield ‘FAIL’). Inference rule 1b lowers m1, and
leaves m2, m3 unchanged. Inference rules 1a and 2a will leave m1 unchanged,
will decrease m3, and will either either leave unchanged, or decrease, m2 (in
particular, because such inferences are all to be derived ‘in block’, i.e., simulta-
neously.) And the two inference rules 3a, 3b will also leave m1 unchanged, will
decrease m2, and will either leave unchanged, or decrease, m3. ��

The problem P is said to be trimmed iff it is saturated under rules 1, 2 and
3. Such a problem P gets actually divided into two sub-problems which can be
treated ‘almost’ separately (as we shall be seeing farther down): one containing
only the pairings and equalities of P , and the other containing only its enc
equations; this latter sub-problem will be referred to as the simple kernel – or
just kernel – of P . A problem P will be said to be simple iff it is its own kernel.

Example 1. i) The following problem is not in standard form:
Z = T , Z = enc(X, Y ), X = dec(T, Y ), X = U.V , Y = Y1.Y2, Y2 = a;
we first put it in standard form:
Z = T , Z = enc(X, Y ), T = enc(X, Y ), X = U.V , Y = Y1.Y2, Y2 = a.
Under redundancy elimination, we first get:
T = Z, Z = enc(X, Y ), X = U.V , Y = Y1.a, Y2 = a;
which has one critical configuration, namely: Z ←hY X → U.V .

Only a splitting inference is applicable (on Z), and the final trimmed equi-
valent is the following problem:

Z = T , Z = Z1.Z2, X = U.V , Y = Y1.a, Y2 = a,
Z1 = enc(U, Y ), Z2 = enc(V, Y ).

ii) The following problem:
Z = enc(X, Y ), Y = enc(Z, T ), T = enc(Z, W ), Y = Y1.Y2.

is in standard form, but not trimmed: we have one critical configuration, namely:
Z ←hT Y → Y1.Y2, with peak at Y . Now spd(Y ) = 1, but nY = 3 (we can go
from Y to T, X, Z using only enc/dec arcs); so m2 here is {3}, and the measure
m(P) of the problem is (3, {3},−).

20



Trimming needs here several splitting steps. We first write Z = Z1.Z2, and
replace the second enc equation by the 2 equations: Y1 = enc(Z1, T ), Y2 =
enc(Z2, T ); we get a problem with two critical configurations, both with peak at
Z, spd(Z) = 1 and nZ = 2; so the measure is lowered to (3, {2, 2},−). Next, we
write X = X1.X2 and replace the first enc equation by: Z1 = enc(X1, Y ), Z2 =
enc(X2, Y ), and get a problem with measure (3, {1},−). Finally, we write T =
T1.T2 and replace the last enc equation by: T1 = enc(Z1, W ), T2 = enc(Z2, W ).
We thus get the following trimmed equivalent, with measure (3,−,−):

Z1 = enc(X1, Y ), Z2 = enc(X2, Y ),
Y1 = enc(Z1, T ), Y2 = enc(Z2, T ),
T1 = enc(Z1, W ), T2 = enc(Z2, W ),

Y = Y1.Y2, , Z = Z1.Z2, X = X1.X2, T = T1.T2.

Remark 1. i) It is not hard to see, that if m is the number of equations in P , and
n the sum of the lengths of oriented loop-free paths on the dependency graph
of P , then trimming P terminates in at most 2 mn steps. However, the number
of equations in the trimmed equivalent, derived at the end, can be exponential
wrt m; a typical illustrative example is the following:

X1 = enc(X2, U1)
X1 = X11.X12

X11 = enc(X12, U2)
X11 = X111.X112

X111 = enc(X112, U3)
X111 = X1111.X1112

ii) In view of the lemma above (and our non-redundancy assumption on the
dependency graph), a trimmed problem is essentially an admissible problem P
(with no critical configurations on pairings alone), such that:
• There is no node Z on the dependency graph of P from which there is an

outgoing ‘enc’ or ‘dec’ arc, as well as an outgoing arc labeled with a p1 or p2.
• If X, V are any two distinct nodes on the graph of P , then the equality

X = V is not an equality in P .
iii) As a consequence, solving a trimmed problem P essentially reduces to

solving its kernel P ′: any variable to the left of a pairing gets its solution by
substituting from the solutions for the variables of the kernel.

iv) Observe that the key variables in any admissible problem P , in standard
form, remain as they are under splitting (as the Y, T, W in Example 1.ii) above);
so their number remains unaffected by trimming. ��

7.1 Solving a Simple Problem:

We henceforth assume all our problems P to be trimmed; and P ′ will stand for
the kernel of P . Our objective now is to conceive an algorithm for solving P ′.
Note that the labels on the arcs of the sub-graph G′ (of GP) of dependency for
the problem P ′, are all in H. Note also that, thanks to the SNF assumption
on P , there is a uniquely determined, loop-free, oriented path from any given
node on G′, to any other node on G′. An oriented path on G′ will be said to
be maximal, iff it cannot be extended to the left or to the right, i.e., it is not a
proper sub-path of another oriented path of greater length. For solving P ′, we
shall be using the maximal paths γ (on the connected components of G′), based
(but only partly) on the following idea:

21



- first choose an end-node V on the path γ, and assign some value v to V ;
- then, to every other node X along γ, assign the value derived by ‘propagating

that value from V to X ’; i.e., assign to X the value α(v) where α is the word
over H that labels the oriented path from X to the chosen end-node V.

Such an idea has to be used, however, with some restrictive assumptions on
γ. A first assumption we make is that a variable X of P ′ may not be ‘evaluated’
by using a word over H already containing hX or hX ; this corresponds to the
‘occur-check’ assumption in usual unification, over the empty theory.

Definition 11. i) A maximal (oriented) loop-free path γ, on the dependency
graph of G′, is said to satisfy the condition Occur-Check-Path – or is said to
pass the test OCP – if and only if the following holds:
(OCP): For any arc U →h V on G′ composing γ, with label h = hY or hY ,
none of the nodes traversed by γ prior to U , is Y or a factor of Y for pairing.

However, checking for OCP along all the maximal paths – or their reversed
paths – does not suffice give a complete procedure for solving simple problems,
as is illustrated by several of the examples given below. We need a much more
complex approach.

Let P be any ‘simple’ problem, with no pairing equations. We know that
solving P amounts to solving the unification problem modulo the convergent
system R formed of the following two rules:

enc(dec(x, y), y) → x, dec(enc(x, y), y) → x.
We may assume, wlog, that the key-variables of P are all distinct (more

precisely: are assumed ‘unequal’) modulo R. We also assume, as we may, that
the graph of P is connected.

Let a, ā be rational numbers such that: aā = 1, with a �= −1. We set then:
b = −a, b̄ = 1, and model the algebra of terms modulo R as the algebra M =
MP of linear polynomial expressions over the variables of P , with coefficients in
the ring Λ = Z[a, ā], where the homomorphisms via enc and dec are interpreted
respectively as the morphisms:

hV (x) = a x + b V , hV (x) = ā x + b̄ V .

From the assumption that the key-variables of P are different mod R, we
then get the following consequences:

• Any given solution P (if there is one) can be seen as a substitution in the
algebra M, that solves for the non-key variables as polynomial expressions over
the key-variables, with coefficients in the ring Λ.

• The key-variables of P are linearly independent over Λ, when seen as ele-
ments of the algebra M.

Based on the latter fact, we derive an algebraic formulation for a criterion
called occur-check-graph – referred to as OCGr below – for the problem P to be
solvable. We start with the following observation: Let γ be any (loop-free) path
on the graph G = GP , from a node X to some node Y on G, and let α be the
word over the alphabet H, labeling the arcs along the path γ; if the occur-check
condition OCP holds along γ, then neither α nor any of its sub-words (seen

22



as morphisms on the algebra M) can induce a non-trivial linear dependency
between the key-variables of P . Here is an illustrative example:

Example 2a. Consider the following problems:
Z = enc(X, X), Z = dec(T, V )

Indeed, OCP does not fail along the (maximal) path from T to X ; the first of
the two equations solves for the non-key variable Z in terms of the key X , as
Z = hX(X), and the second then solves for the non-key variable T as T =
hV (Z) = hV (hX(X)). To this ‘corresponds’ the fact that on the polynomial
algebra M, we get the following solutions for the non-keys Z, T , without inducing
any dependency on the keys X, V :

Z = ā X + b̄ X = ā X + X , and
T = aaX + abX + bV = aaX − aaX − aV = −aV . ��
It is important to note now, in addition, that if the word α, labeling a path

from a node X to some node Y on G = GP , is such that neither α nor any of
its sub-words induces non-trivial linear dependencies between the keys on the
algebraic model MP , then the same is true also for the reverse word α−1, that
labels the reverse path from Y to X on the graph G.

This leads us to the following algebraic formulation of the criterion OCGr,
for a simple problem P to be solvable, under the assumption that its keys are to
be unequal modulo the rewrite system R:

• (OCGr): let γ be any maximal loop-free path on G = GP and let X and
Y be its end-nodes; write X = α(Y ), α being the word over H labeling (the arcs
along) γ from X to Y ; then neither α, nor any of its sub-words, may induce a
non-trivial dependency between the key-variables of P , as a morphism on MP .

From our considerations above, it follows that OCGr is a necessary condition
for a simple problem P to admit a solution with all its key-variables unequal
modulo R.

Example 2b. Consider the following problems:

(i) P1: Y = enc(Z, X), X = enc(Z, Y )
(ii) P2: Z = enc(X, X), Z = dec(T, T )
(iii) P3: U = enc(X, Z), Z = enc(U, Y ), Y = enc(U, X)

(i) P1 is unsolvable: otherwise we would have a solution, say satisfying Y =
hXhY (X), which gives – when seen as a morphism over the algebra M:

Y = aāX + ab̄Y + bX = X + aY − aX
which would be a non-trivial linear dependency on the keys X and Y that we
have assumed to be unequal.

(ii) Problem P2 is unsolvable too: There is a path from X to T on the graph
of the problem, labeled with word α = hXhT . (Both T and X are keys, only Z
is not a key.) Under the morphism over the algebra M, we derive:

T = hXhT (X) = āāX + āb̄T + b̄X = āāX + āT + X ,
which gives a linear dependency between T and X .

23



(iii) P3 is again unsolvable: each one of the 3 (maximal) paths between the
key-variable nodes X, Y, Z is labeled by a word over H, that would lead to a
non-trivial dependency between these keys.

We assume henceforth that our simple problems P satisfy the criterion OCGr.
Under the already made assumption that the keys of P are to be unequal modulo
R, and the graph of P is connected, we then propose a method for solving P .

We begin by defining a relation between the variables of such a P – denoted
as �k, and called key dependency – as follows:

• Y �k X iff Y �= X and the (unique, loop-free) path from Y to X on the
graph GP contains an arc labeled with hX or hX . We then have the following:

Lemma 10. If P is simple (with keys all unequal) satisfying OCGr, and if GP
is connected, then there can be no key dependency cycle on G: i.e., there cannot
exist two distinct nodes X, Y on G such that Y �k X as well as X �k Y .

Proof. If G contains a key dependency cycle, say between two distinct nodes
X, Y – which are then both keys as well as nodes–, then one can check (without
difficulty) that the the word labeling the (unique, loop-free) path from X to Y
would create a dependency involving the two keys X and Y , as a morphism on
the algebra MP ; that would contradict the assumption OCGr. ��

Definition 12. Let P be simple (with keys all unequal) and satisfying OCGr,
γ any maximal loop-free path on GP and X ′, X ′′ its end-nodes. A node Y on
γ is said to be a base-node for γ iff the occur-check condition OCP is satisfied
along γ, from X ′ as well as from X ′′, towards the node Y .

Lemma 11. If P is simple (with keys all unequal) and satisfies OCGr, then
every maximal path γ on the graph of P admits at least one base-node.

Proof. If every node Y on γ fails to be a base-node for γ, then it is not hard
to show that there is a sub-path of γ between two nodes X and Y , such that
Y �k X as well as X �k Y , which contradicts the previous lemma. ��
Example 3. Consider the following problem:

(P): X = enc(U, V ), U = enc(V, T ), V = enc(Y, U)
where U, T, V are the keys, and X, Y are not. The graph is connected with one
maximal (loop-free) path γ going between the end-nodes X and Y ; and it does
not satisfy the OCP condition in either direction. However, γ does satisfy the
OCGr condition: neither the word hV hT hU nor any of its sub-words, leads to
a dependency relation between the keys. This problem P is actually solvable:
suffices, for instance, to set:

V = hT (U), Y = hU (V ) = hUhT (U), taking U (and T ) to be arbitrary,
and subsequently solve for X as: X = hV (U).

This solution has been obtained by taking U as a base-node for γ.
Suppose now, that we replace the key T by the key Y ; then, the problem thus

modified would be unsolvable: indeed, in that case, the sub-path going from U to
Y would be labeled by the word hY hU ; so a likely solution would have to satisfy
U = hY hU (U); on the algebra MP we would then get: U = aaU + abU + bY =

24



aaY − aaU − aY = −aY , giving a dependency between the keys U and Y ; so γ
in this case would fail to satisfy OCGr. ��
Remark 2. A maximal path γ can (obviously) have more than one base-node.
But if Y ′, Y ′′ are two base-nodes for γ, then they can be seen as ‘equivalent’ in
the following sense:

- the occur-check condition OCP is satisfied along γ, from Y ′ towards Y ′′,
as well as from Y ′′ towards Y ′;

- the keys of the arcs on the sub-path of γ between Y ′ and Y ′′ are not nodes
outside this sub-path.

It follows then, that any intermediary node on the sub-path between Y ′ and Y ′′

is also a base-node for γ.
We extend now the notion of base-node, to that of a cbase-node (meaning

“covering base-node”) for a set of nodes:

Definition 13. Let P be simple (with keys all unequal) satisfying OCGr, Y
any node on the graph G = GP , and S a given set of nodes on G (on the same
connected component as Y ). Then Y is said to be a cbase-node for the set S, iff:

(i) Y is a base-node for some maximal path on G; and
(ii) for any X ∈ S, Y is also a base-node for the maximal path on G passing
through X and Y .

For instance, for the simple problem: Z = enc(X, Y ), Y = enc(Z, T ), T =
enc(Z, W ) studied in detail in Example 4 below, the node T is a cbase-node for
the set of all nodes on the graph of the problem.

Now, given a problem P as above, let S = SP denote the set of all nodes Y
on its graph, such that Y is a cbase-node for some non-empty set SY of nodes
on G. The set S is non-empty: it contains all the base-nodes for the maximal
paths on G. We define then a partial order � on the set S by setting: U � V iff
SU ⊆ SV . We have then the following:

Lemma 12. Let P be simple (with keys all unequal) satisfying OCGr, and let
Y be any node in the set S = SP , on some connected component Γ of GP , such
that SY is �-maximal in S; then SY = Γ .

Proof. Let Y be �-maximal in S, and assume that there is a node X ∈ Γ that is
not in SY . Let γ be a maximal path on Γ for which Y is a base-node. Since Γ is
connected, there is a unique path of minimal length that joins X to some node
W on γ; let W0 be the other end-node of a maximal path extending the (unique)
path from V0 to X (or from V1 to X), in the notation of the figure below:

Y

V0

V1

W

X

W0

γ

25



Since Y is a base-node for γ, the occur-check-path condition OCP is satisfied
from V0 and from V1 towards Y , along γ. On the other hand, the maximal
path from V0 to W0 also admits a base-node W ′ (by Lemma 11), and the only
case to consider would be when this base-node W ′ is not on γ itself, i.e., lies
somewhere between W and W0, and is not W . This in particular implies that
OCP is satisfied from Y towards W , so we may assume wlog that Y = W .

Now, if OCP is also satisfied from W ′ to W = Y , then SY = SW would
contain the node W ′, so would also contain the node X , contrary to what we
assumed. So, OCP must fail from W ′ towards W . But W ′ is a base-node for the
path from V0 to W0, so along this path OCP must hold from V0 towards W ′,
which means that SW ′ contains in particular W = Y , so contains strictly SY ;
but this would contradict the �-maximality of the cbase-node Y . ��

Definition 14. Let Γ be any connected component on the graph G of a simple
problem P, and V0 ∈ SP such that SV0 = Γ . Then V0 is called a base-variable
for P on the connected component Γ .

Corollary 2. If P is simple, (with keys all unequal) and satisfies OCGr, then,
P is solvable.

Proof. On every given connected component Γ of the graph G = GP of P , we
choose some base-variable V ; by definition of base-variable, for any given node
X on Γ , the unique path on G from X to V must satisfy the condition OCP;
we solve for X by propagating to X any value v that is assignable to the chosen
base-variable V : i.e., we set X = αXV (v), where αXV is the word over H labeling
the path from X to V . ��

We are in a position, now, to formulate a non-deterministic decision proce-
dure for solving any HE-unification problem, given in standard form.

7.2 Solving a Problem in Standard Form: The Algorithm A
Given: P = a HE-unification problem P , given in standard form.

G = the dependency graph for P .

1a. If G does not satisfy SNF, or contains two equations of the form
Z = a, Z = b, where a, b are two different constants, exit with ‘Fail’.

1b. Guess (non-deterministically) a set of equal keys, and
assume all the other key-variables of P to be ‘unequal’ mod HE.

1c. Apply the Trimming Inferences to P ; if this leads to FAIL, exit with ‘Fail’;
1d. Else replace P by a trimmed equivalent;

P ′ = the kernel of P ; G′ = the sub-graph of G for P ′.
2a. Check for the criterion OCGr on every connected component of G′;
2b. If OCGr is unsatisfied on some component, exit with ‘Fail’;
3a. For each connected component Γ of G′, guess a base-variable Vγ .
3b. Build a substitution for the variables on each component Γ : assign to Vγ some

term, then to every other node X ∈ Γ the value derived by propagation from
Vγ to X . Let σ′ be the substitution, solution for P ′, thus obtained.

26



4. Propagate the values deduced from σ′ to the variables (of the equalities and
pairings) of G, that are not in G′;

- if inconsistency, exit with ‘Fail’;
- else return σ = substitution thus obtained, as solution to P .

The algorithm A is of cost NP with respect to the number of equations of the
simple kernel P ′ of the problem P ; this is so, because the failure of the OCGr
criterion on some path can be guessed in time NP wrt the number nodes on G′.
The soundness of the algorithm A follows from the fact that each of its steps is
syntactically coherent with P ; and its completeness results from the fact that the
OCGr criterion is a condition necessary for any simple problem to be solvable
(when the distinct key variables of P are all assumed unequal modulo HE).

7.3 Some Illustrative Examples

Note first that the substitution that the algorithm A returns as a solution for
a problem P , is built “in a lazy style” in its steps 3a through 4: the variables
are left uninstantiated, in general; they get instantiated only if/when needed (cf.
e.g., Example 4 below).

Example 4. Consider the following problem:
(P ′): Z = enc(X, Y ), Y = enc(Z, T ), T = enc(Z, W ).

The problem is simple, and its dependency graph is connected:

Y
Z

Y T

X
hY

hW

hT hWhT

h

Node Y cannot be a base-variable, since the path from T to Y contains an arc
labeled with hT ; similarly, X cannot be a base-variable. We have node T as the
only base-variable here. We solve for Z and Y , along the path from Y to T (that
satisfies OCP, by definition): namely Y →hT Z →hW T ; choosing arbitrarily
T, W we get Z = hW (T ), Y = hT hW (T ) as solutions for Z, Y ; and for the
variable X , connected to this path at Z, we deduce get X = hY (Z) = hY hW (T ).
(Note: the base-variable T has not been assigned any specific term here.)

Suppose now, the problem (P ′) is the kernel of a non-simple problem, e.g.:
(P): Z = enc(X, Y ), Y = enc(Z, T ), T = enc(Z, W ). X = a

Then, for the above solution for its simple kernel to be valid, we need to check if
a = hY hW (T ) holds; this can be done by instantiating T now, as hY hW (a). ��
Example 5. The following two problems are simple:

i) X = enc(Y, X), Y = enc(Z, Z)

27



ii) X = enc(Y, T ), Y = enc(Z, X), Z = enc(W, V ), W = enc(V, S)
and their graphs are connected.

Problem i) is unsolvable: one cannot have dec(X, X) = enc(Z, Z) modulo
HE, whatever be X, Z. But this unsolvability can also be checked by observing
that the condition OCGr cannot be satisfied.

Problem ii) is unsolvable too; and it is not hard to check that it will fail to
satisfy OCGr, no matter which keys are ‘made equal’. ��

28


