
On the Relative Soundness of the Free

Algebra Model for Public Key Encryption

Christopher Lynch1 ,2

Department of Mathematics and Computer Science
Clarkson Universtity

Potsdam, NY 13699-5815

Catherine Meadows3

Naval Research Laboratory
Center for High Assurance Computer Systems

Code 5543
Washington, DC 20375

Abstract

Formal systems for cryptographic protocol analysis typically model cryptosystems in terms of free
algebras. Modeling the behavior of a cryptosystem in terms of rewrite rules is more expressive,
however, and there are some attacks that can only be discovered when rewrite rules are used.
But free algebras are more efficient, and appear to be sound for “most” protocols. In [9] Millen
formalizes this intuition for shared key cryptography and provides conditions under which it holds;
that is, conditions under which security for a free algebra version of the protocol implies security of
the version using rewrite rules. Moreover, these conditions fit well with accepted best practice for
protocol design. However, he left public key cryptography as an open problem. In this paper, we
show how Millen’s approach can be extended to public key cryptography, giving conditions under
which security for the free algebra model implies security for the rewrite rule model. As in the
case for shared key cryptography, our conditions correspond to standard best practice for protocol
design.

Keywords: Cryptographic Protocol Verification.

1 This work was done while the author was visiting the Naval Research Laboratory
2 Email: clynch@clarkson.edu
3 Email: meadows@itd.nrl.navy.mil

Electronic Notes in Theoretical Computer Science 125 (2005) 43–54

1571-0661 © 2005 Published by Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2004.05.018
Open access under CC BY-NC-ND license.

mailto:clynch@clarkson.edu
mailto:meadows@itd.nrl.navy.mil
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/


1 Introduction

In most formal systems for cryptographic protocol analysis, it is typical to
represent encryption operations in terms of a free algebra. Encryption, for
example, may be represented as e(K,X), where K is the key and X is the
plaintext. Decryption, however, is represented implicitly. For example, one
may include a rule that says that if a principal knows the shared/symmetric
key K and e(K,X), then it can also learn X.

Another approach is to represent both encryption and decryption explic-
itly. Encryption is represented, say, by e(K,X), while decryption is repre-
sented by d(K,X). The fact that decryption undoes encryption can be repre-
sented by a cancellation rule d(K,e(K,X)) = X. Since the decryption operator
can also be used on unencrypted data, and the operations also cancel out when
applied in reverse, we can also include the rule e(K,d(K,X)) = X.

This explicitness leads to a greater expressiveness, both in protocol repre-
sentation and in constructing attacks. For example, in [5] Meadows analyzes
a protocol that could not have been specified in the free algebra model, since
it requires the application of the decryption operator to unencrypted data.
Even when protocols do not require explicit representation of the decryption
operator in this way, it is still possible that they may be subject to attacks
that require its use. For example, in [9] Millen gives an example of a protocol
that is secure in the free algebra model but insecure in the decrypt-extended
model.

However, explicit representation of cancellation, although more expressive,
can lead to a less efficient analysis. Moreover, many practical protocols appear
to be immune to cancellation based attacks. Techniques such as recognizable
formatting, probabilistic encryption, and so forth, appear to make unantici-
pated application of cancellation rules unlikely. Thus, most formal systems for
cryptographic protocol analysis make use of the free algebra model, although
they provide little formal justification for that approach.

In [9] Millen addresses this problem by giving necessary and sufficient
conditions on protocols using symmetric encryption, under which if the secrecy
property holds for a protocol in the free algebra model, then it also holds in
the decrypt-extended model. The condition is specified on protocols written in
a model based on parametric strand spaces and pattern matching. It has two
subconditions. The first, called purity says that the decryption operator should
not appear in the protocol specification. The second, called EV-freeness, says
that there must be no application of an encryption operator to a variable in a
specification. The EV-free property essentially says that a principal should not
apply an encryption operator to a term unless it has been able to verify that

C. Lynch, C. Meadows / Electronic Notes in Theoretical Computer Science 125 (2005) 43–5444



that term has some kind of structure, so that it is not unknowingly applying
the encryption operator to the result of applying a decryption operator. Since
it is generally considered good practice to apply encryption only to data about
which one knows something (e.g. it is data that satisfies certain formatting
conventions, or data that one has created oneself), it is reasonable to expect
that most cryptographic protocols will satisfy EV-freeness.

Although Millen conjectured that similar results might hold for public key
cryptography, he left it as an open question. As in shared key cryptography, it
is possible to construct protocols vulnerable to attacks that rely on cancellation
rules. Consider for example, a cryptosystem such as RSA in which signing
and decryption are the same operation. In that case we have the identity
pke(privkey(U), pke(pubkey(U), X)) = X, where pke is public encryption,
pubkey(U) is U ’s public encryption key, and privkey(U) is both U ’s private
signature key and its private decryption key. Consider now a simple notary
public protocol in which a server is willing to sign any message it gets. Suppose
that someone encrypts a message m with the server’s public key and sends
it. An intruder can send pke(pubkey(s), m) to the server, which will output
pke(privkey(s), pke(pubkey(s), m)) = m.

Such an attack relies on the cancellation properties of public key encryp-
tion, and can’t be represented without it. But it is also the case that most
practical protocols using public key cryptography are immune to this type
of attack. Typically, public key pairs for signing are different from the pairs
used for encryption, and digital signatures are applied to a one-way hash of
a message, not the message itself. Finally, it is considered sound procedure
never to sign a message that is entirely supplied by another party. Instead, a
principal is usually required to add some material of its own before signing.

Such observations led us to believe that it should be possible to extend
Millen’s results to public key cryptography, basing our restrictions on the
commonly accepted design principles described above. Our first, public key
purity, which is analogous to Millen’s purity, is that different key pairs should
be used for encryption/decryption and signing/verification, even when the
same algorithm is used for both signing and encryption, and that the private
decryption key and the public signature verification key never appear in the
protocol specification. The second of these, analogous to EV-freedom, called
PEV-freedom, is that no occurrence of an encryption or signing operator con-
tains a variable as an argument. We also introduce a third condition, called
structure, which is sufficient without the other two, which says that no occur-
rence of an encryption or signing operator contains as an argument a variable
or a term rooted with a public key operator. Note that the requirement that
different key pairs be used for different types of operations assumes that prin-

C. Lynch, C. Meadows / Electronic Notes in Theoretical Computer Science 125 (2005) 43–54 45



cipals know which key pairs are intended for what, and so rules out protocols
that include the distribution of public keys. This is not the case when we
require structure only, however.

The rest of the paper is organized as follows. In Section 2 we introduce the
model. In Section 3 we prove the soundness results for public key pure, PEV-
free protocols. In Section 4 we describe our plans for further work and make
some conjectures. Due to page limits, we were unable to include much of the
technical material for this paper. All of the proofs were left out, and all of the
material on structured protocols was left out. The full paper with all of that
material can be found at www.clarkson.edu/~clynch/papers/pubfree.ps/

2 Protocol Model

2.1 Millen and Shmatikov’s Constraint Model and its Application to the Free

Algebra Model in Single Key Cryptography

Like Millen, we use a model based on parametric strands as used by Cervesato
et al. in [1] and Song et al. in [12], and constraint solving as developed by
Millen and Shmatikov in [10]. We refer the reader to [3] for a definition of
strand spaces. In a parametric strand, message terms may contain variables.
A variable will correspond to a subterm of a message term appearing in a
negative node for which the receiver can verify no properties; thus any terms
can be used to substitute for it. Variables can also appear in positive nodes
of a strand, but only if they appeared earlier in a negative node.

Definition 2.1 A constraint is a pair m : T where m is a term and T is a term
set. A set of constraints C is satisfied by a substitution σ if, for all m : T ∈ C,
the intruder can derive mσ from Tσ.

A set of constraints and term sets can be constructed from a sequence of
positive and negative nodes in a semibundle B that is compatible with the
partial order imposed by the bundle ordering. Each positive node expands
the last term set by the message it contains, while each negative node creates
a constraint m : T where m is the message in the node and T is the last term
set, and the first term set is the set of terms known initially by the intruder.
Such a constraint set is satisfied by a substitution σ, if and only if, for each
initial sequence s of the constraint immediately preceding a negative node m,
the intruder can generate mσ from the positive nodes in sσ. In other words,
the constraint set is satisfied by σ if and only if the intruder can generate a
message expected by an honest principal from all the previous messages sent
by honest principals and all the information known initially by the intruder.
This, of course, is exactly how we use strand spaces to construct an attack on

C. Lynch, C. Meadows / Electronic Notes in Theoretical Computer Science 125 (2005) 43–5446



a protocol.

This makes it possible to define a bundle in a sense compatible with con-
straints.

Definition 2.2 A semibundle is a set of parametric strands. A total order <

on nodes in a semibundle is compatible with the semibundle if whenever N1

precedes N2 on a strand, then N1 < N2.

Definition 2.3 A bundle is a semibundle B such that there exists a total
order < on nodes compatible with B such that the set of constraints produced
by the sequence of nodes induced by < is satisfied. A semibundle is solvable

if there is some bundle in which some ground instance of the semibundle is
embedded.

In [9] Millen describes two constraint systems. One is based on a free al-
gebra, with intruder operators consisting of concatenation, deconcatenation,
encryption, and reversal of encryption. The other is based on an algebra
(called the decrypt-extended algebra) that includes cancellation rules describ-
ing the effects of encryption and decryption on each other, and penetrator
operators consisting of concatenation, deconcatenation, encryption, reversal
of encryption, and the application of the decryption operator. The main theo-
rem of that paper is that, given certain conditions, any bundle that is solvable
in the second system is solvable in the first system. This boils down to show-
ing under what conditions a constraint m : T from the free algebra that is
solvable in the cancellation algebra is also solvable in the free algebra. In [9]
these conditions are that the protocol from which the constraints are derived
should not contain any explicit use of the decryption operator (purity), and
that it should contain no case of an encryption operator applied to a variable
(EV-freeness). Note that solvability in the free algebra always gives us solv-
ability in the decrypt-extended algebra, so that the result is an if-and-only-if.
Moreover, the solution for the decrypt-extended algebra induced by the one
for the free algebra introduces no strands belonging to honest principals. This
has a result on the type of theorems we can prove, as we will see below.

Millen describes in [9] how this result can be used for proving that the
free algebra is sound with respect to the decrypt-extended algebra for secrecy
properties. One can create a special strand that describes the intruder learning
a specified secret, such as a key. One can use his theorem to show that
purity and EV-freeness implies that the intruder strand is solvable in the
cancellation algebra if and only if it is solvable in the free algebra. Millen
also mentions that the result could be used to prove soundness with respect
to some authentication properties, although he does not go into detail about
this.

C. Lynch, C. Meadows / Electronic Notes in Theoretical Computer Science 125 (2005) 43–54 47



We would like to characterize the types of attacks for which Millen’s result
and our results apply. To this end, we define a specification of an attack below.

Definition 2.4 We define an attack specification to be two sets of parametric
strands, called the positive and the negative set. A ground attack specification

is an attack specification in which all terms are ground.

Briefly, the positive set of an attack specification gives the strands that
should be in the bundle, and the negative set gives the strands that should
not be in the bundle. Thus, a specification of an attack on the secrecy of a key
accepted by an initiator could be given in terms of a positive set containing
two strands: an initiator strand in which the key is represented by the variable
K, and a special intruder strand of the sort described by Millen in which the
datum learned by the intruder is also represented by K. The negative set
would be empty. However, a specification of an authentication protocol would
include the authenticated strand in the positive set and the authenticating
strand in the negative set.

The notion of attack specification is not explicitly set out in [10], but our
definition captures the essence of the kinds of attacks Millen and Shmatikov
handle in their constraint system. We note, however, that Millen and Shmatikov
restrict themselves to ground attack specifications, or at least attack specifi-
cations in which all terms in the positive set are ground. We believe that it
should be straightforward to extend their notion of an attack to non-ground
attack specifications. This would allow us to characterize attacks in a some-
what more general way. However, when rewrite rules are used to describe the
properties of a cryptosystem, the problem becomes a little more complex, since
we need to keep track of which terms in an attack specification are assumed to
be irreducible, and which terms may be allowed to be reducible. Though this
would not necessarily be difficult to do (something like this is already done
for the specification of insecure states in the NRL Protocol Analyzer) it could
be tedious and somewhat beside the main goal of this paper. Thus we treat
it as outside the scope of the paper and leave it for further work.

Millen’s result, and our result as well, extends easily to any grounded
attack specification with an empty negative set. It may not always extend
to the case of a non-empty negative set, however, since the transformation
that maps the cancellation algebra to the free algebra is not necessarily the
identity, and it is possible that a strand that appears in an attack in the free
algebra could be sent into the negative set by the transformation.

C. Lynch, C. Meadows / Electronic Notes in Theoretical Computer Science 125 (2005) 43–5448



2.2 Free and Extended Algebras for Public Key Cryptography

As in Millen’s case, our result is stated in terms of two term algebras. These
are defined as follows:

Definition 2.5 The free algebra FA contains

(i) constants pub, priv, enc and sig. It also contains a set of names, a set of
messages, and a set of nonces.

(ii) a pairing operator [X, Y ] and a public key encryption operator pe(X, Y ).
The first argument to pe is the key, which we represent as pk(N, P, S),
where
• N is the name of the key (usually the principal who uses this key),
• P can be either pub or priv, indicating whether this is a public key or

a private key, and
• S can be either enc or sig, indicating whether the key is used for en-

cryption or for signing.
The second argument to pe is the message.

For example, the term pe(pk(A, pub, enc), pe(pk(B, priv, sig), m)) repre-
sents message m, signed with B’s private key and then encrypted with A’s
public key. We use this notation to enforce the assumption that no key will
be used for both signing and encryption in a protocol.

We only consider protocols where the second and third arguments of a pk

operator are not variables. This reflects the assumption that keys have a fixed
purpose, it is not possible to change that purpose, and all principals will rec-
ognize what the purpose of a key is. This would hold, for example, in cases in
which public and private keys are distributed beforehand by some trusted pro-
tocol. Since this is an assumption under which much cryptographic protocol
analysis is done, we consider it reasonable, at least as a first approximation.

Definition 2.6 The extended algebra EFA, besides the above, includes the
following set of equations E:

E1 pe(pk(K, pub, enc), pe(pk(K, priv, enc), X)) = X

E2 pe(pk(K, priv, enc), pe(pk(K, pub, enc), X)) = X

E3 pe(pk(K, pub, sig), pe(pk(K, priv, sig), X)) = X

E4 pe(pk(K, priv, sig), pe(pk(K, pub, sig), X)) = X

This set E models the properties of the encryption and signature opera-
tions. Let R be the rewrite system which results from orienting these equations
from left to right as rewrite rules. This can be shown to be a confluent and
terminating rewriting system representing E, using techniques similar to those

C. Lynch, C. Meadows / Electronic Notes in Theoretical Computer Science 125 (2005) 43–54 49



in [5]. This means that two terms are equivalent modulo E if and only if they
have the same unique normal form modulo R. We define t ↓R to be the normal
form of t modulo R.

Let D be the following derivation rules:

D1 (X, Y ) � X

D2 (X, Y ) � Y

D3 X, Y � (X, Y )

D4 pe(pk(K, pub, enc), X), pk(K, priv, enc) � X

D5 pe(pk(K, priv, sig), X), pk(K, pub, sig) � X

D6 X, pk(K, pub, enc) � pe(pk(K, pub, enc), X)

D7 X, pk(K, priv, sig) � pe(pk(K, priv, sig), X)

The list D expresses the ways in which the intruder can derive information
in the free algebra FA.

We next construct a set of derivation rules DE which expresses what the
intruder can learn in the equational extension EFA of the free algebra. We let
DE be the set containing the derivation rules of D, not including rules D4

and D5, plus the additional rules

DE1 X, pk(K, priv, enc) � pe(pk(K, priv, enc), X)

DE2 X, pk(K, pub, sig) � pe(pk(K, pub, sig), X)

If T is a set of terms, then we define DerivD(T ) to be the set of terms that
can be derived from T using the derivation rules of D. We define DerivDE(T )
as the set of terms that can be derived from T using the derivation rules DE.

The derivations of DerivDE take place modulo the equational theory E.
In other words, given a derivation rule, t1 · · · tn � t and a set of terms s1 · · · sn,
then we can derive a new term s if s = tσ and si =E tiσ for all i with 1 ≤ i ≤ n.
We assume that the substitution σ used in a derivation is irreducible by R.
(If it were not, it could always be replaced by its reduced form.) After each
derivation rule, we reduce the new term s by R.

Note that these derivation rules are analogous to the derivation rules given
by Millen[9] for his result for secret keys. We only differ from them in that
in DE, we do not explicitly add a rule to say that if a privately encrypted
message is known, and if the corresponding key is known, then the message
is known. We do not add this because it is a consequence of a derivation rule
and a reduction rule. Similarly for messages publicly signed.

Any term that can be derived by D can also be derived by DE. The only
thing that is not obvious is for rules 4 and 5 of D that do not exist in DE.
But these rules are simulated by a derivation of DE plus a reduction with R.

C. Lynch, C. Meadows / Electronic Notes in Theoretical Computer Science 125 (2005) 43–5450



2.3 Syntactic Properties of Protocol Specifications

We now define some basic syntactic properties of protocols which we will use
to prove our results.

Definition 2.7 We call a term t structured if whenever the operator pe ap-
pears in t, the second argument of pe is not a variable or rooted with the
operator pe.

An example of a structured term would be a tagged message such as in [4],
in which every term is preceded by a tag describing its type. Another example
would be a pair of terms.

Definition 2.8 We call a term t public key pure (or pk-pure) if it does not
contain any term pk(k, priv, enc) or pk(k, pub, sig) where k may be any term.
A set of terms is pk-pure if all its elements are pk-pure. A protocol is considered
to be pk-pure if all terms appearing in the protocol are pk-pure.

Note that all pk-pure terms are irreducible by R.

Definition 2.9 A protocol is considered to be PEV-free if no occurrence of
pe contains a variable as an argument.

3 pk-Purity and PEV-freeness Imply Soundness

We will only consider pk-pure protocols in this section, because we wish to
model real protocols where decryptions are implicit. Similarly, the recognition
of signatures is also implicit.

We will show that, if a protocol is pk-pure and PEV-free, and if T is pk-
pure, then we will show that DerivDE(T ) ⊆ DerivD(T ), which implies that
DerivDE(T ) = DerivD(T ). This will imply that the free algebra model finds
all attacks that the extended model does.

First we will need a lemma that says that if a pk-pure irreducible term is
PEV-free, then it remains irreducible after applying an irreducible substitu-
tion.

Lemma 3.1 Let t be a pk-pure PEV-free term, and σ be a substitution such

that σ is irreducible by R. Then tσ is irreducible by R.

We show that all derivations in DE preserve certain properties. To do
that, we define a new rewrite system P which reduces all terms to a pk-pure
term.

(i) pe(pk(K, priv, enc), X) → X

(ii) pe(pk(K, pub, sig), X) → X

C. Lynch, C. Meadows / Electronic Notes in Theoretical Computer Science 125 (2005) 43–54 51



We define t ↓P to be the normal form of t modulo P . Note that every
pk-pure term is irreducible modulo P .

Lemma 3.2 Let t be a pk-pure term, and σ be a substitution. If σ is irre-

ducible by P , then tσ is irreducible by P .

This implies that (tσ) ↓P= t(σ ↓P ) if t is pk-pure.

Theorem 3.3 Let s1, · · · , sn be terms, irreducible by R, such that s can be

derived in one step from s1, · · · , sn in DE. Then either s ↓P can be derived in

one step from s1 ↓P , · · · , sn ↓P in D and s is irreducible by R, or there exists

an i such that s ↓P= si ↓P .

Theorem 3.4 Suppose that T is a set of terms irreducible by R. Let t be a

term. If t ∈ DerivDE(T ) then t ↓P∈ DerivD(T ↓P ). In addition, there exists

an s ∈ DerivDE(T ) such that s is irreducible by R and t ↓P= s ↓P .

Corollary 3.5 Suppose that T is a set of PEV-free pk-pure terms. Let t be

a pk-pure PEV-free ground term. Let σ be a substitution irreducible by R. If

tσ ∈ DerivDE(Tσ) then t(σ ↓P ) ∈ DerivD(T (σ ↓P )).

Corollary 3.6 Let Pr be a pk-pure PEV-free protocol. Let B be a semibundle

of Pr. If B is a bundle in EFA, then it is a bundle in FA.

4 Conclusions

In this paper we extended Millen’s result on the soundness of the free en-
cryption model for shared key encryption to public key encryption as well.
Although the proof differed in some important ways from Millen’s we found
that his general approach extended quite well to public key cryptography.
Moreover, we found that our results, similarly to Millen’s corresponded well
to certain well-established best practices in cryptographic protocol design.

There are a number of ways in which these results could be extended,
besides to attack specifications with nonempty negative sets as we noted in the
previous section. The most obvious would be to include other best practices
(for example, the use of probabilistic encryption), or to extend our results to
models in which both public and single key encryption are used, since most
protocols in use today employ both. Moreover, there are a number of other
special properties of cryptographic algorithms for which it would be useful to
be able to abstract away from in a safe way. For example, the commutative
property of Diffie-Hellman can add greatly to the expense of the analysis of
a cryptographic protocol. In [7] a specification of Diffie-Hellman is used that
abstracts away from the commutative property, but it has the disadvantage
that the same key fragment computed by an initiator and a responder will have

C. Lynch, C. Meadows / Electronic Notes in Theoretical Computer Science 125 (2005) 43–5452



different representations. This should not be a problem if we can guarantee
that a key fragment computed by an initiator will never be confused with one
computed by a responder. We have some preliminary results in that direction,
using techniques similar to those used in this paper. Other algebraic properties
of interest that might be amenable to techniques such as the ones used in [9]
and here include the homomorphic properties of RSA used to compute blind
signatures, as well as the properties of Diffie-Hellman used in Group Diffie-
Hellman. Indeed, an early paper by Even et al. [2] shows that it is safe to
leave out the homomorphism property for RSA for a very restricted class of
protocols known as ping-pong protocols, so we know that for this property
the result is true at least for a limited case. It would also be useful to extend
these results to systems that already use cancellation rules, such as the NRL
Protocol Analyzer [6]. This would allow us to use cancellation rules when
necessary, and the more efficient free algebras when not.

The approach taken in both Millen’s and our paper, as well as the proposed
work described above, is part of a more general plan that we have outlined in
[8]. The general goal is to have a hierarchy of protocol models, each containing
different amounts of detail. Given certain conditions on a protocol, one can
prove that a less detailed model is sound with respect to the more detailed
model, and perform one’s analysis with the more efficient but less detailed
model. If the conditions are not satisfied, one works with the more detailed
model. This approach is not limited to more algebraic properties of cryptosys-
tems; other possibilities, detailed in [8] include type flaw attacks (handled by
Heather at al. in [4]), the possibility of key compromise, and cryptographic
models. We consider the results in this paper to be a potential building-block
in that edifice.

5 Acknowledgments

This work was supported by the Office of Naval Research.

References

[1] I. Cervesato, N. Durgin, P. Lincoln, J. Mitchell, and A. Scedrov. Relating strands and multiset
rewriting for security protocol analysis. In Proc. 13th IEEE Computer Security Foundations
Workshop. IEEE Computer Society Press, 2000.

[2] S. Even, O. Goldreich, and A. Shamir. On the security of ping-pong protocols when
implemented using the RSA. In Advances in Cryptology: Proceedings of Crypto ’85. Springer-
Verlag, 1985.

[3] F. Thayer Fábrega, J.. Herzog, and J. Guttman. Strand spaces: Why is a security protocol
correct? In Proc. 1998 IEEE Symposium on Security and Privacy, pages 160–171. IEEE
Computer Society Press, May 1998.

C. Lynch, C. Meadows / Electronic Notes in Theoretical Computer Science 125 (2005) 43–54 53



[4] J. Heather, S. Schneider, and G. Lowe. How to prevent type flaw attacks on security protocols.
In Proc. 13th IEEE Computer Security Foundations Workshop. IEEE Computer Society Press,
2000.

[5] C. Meadows. Applying formal methods to the analysis of a key management protocol. Journal
of Computer Security, 1(1), Jan. 1992.

[6] C. Meadows. The NRL Protocol Analyzer: an overview. Journal of Logic Programming,
26(2):113–131, 1995.

[7] C. Meadows. Analysis of the Internet Key Exchange Protocol using the NRL Protocol
Analyzer. In Proc. 1999 IEEE Symposium on Security and Privacy. IEEE Computer Society
Press, June 1999.

[8] C. Meadows. Towards a hierarchy of cryptographic protocol specifications. In Proc. FMSE
2003: Formal Methods in Security Engineering. ACM Press, 2003.

[9] J. Millen. On the freedom of decryption. Information Processing Letters, 86(6):329–333, June
2003.

[10] J. Millen and V. Shmatikov. Constraint solving for bounded process cryptographic protocol
analysis. In Proc. 8th ACM Conference on Computer and Communications Security (CCS
’01), pages 166–175. ACM Press, 2001.

[11] L. Paulson. The inductive approach to verifying cryptographic protocols. Journal of Computer
Security, 6(1):85–128, 1998.

[12] D. Song, S. Berizin, and A. Perrig. Athena: a novel approach to efficient automatic security
analysis. Journal of Computer Security, 9(1):47–74, 2001.

C. Lynch, C. Meadows / Electronic Notes in Theoretical Computer Science 125 (2005) 43–5454


	Introduction
	Protocol Model
	Millen and Shmatikov's Constraint Model and its Application to the Free Algebra Model in Single Key Cryptography
	Free and Extended Algebras for Public Key Cryptography
	Syntactic Properties of Protocol Specifications

	pk-Purity and PEV-freeness Imply Soundness
	Conclusions
	Acknowledgments
	References



