
Laboratoire

LOrrain de

Recherche en

Informatique et ses

Applications

UMR 7503

Proceedings of the

19th International Workshop

on Unification

Nara, Japan, April 22, 2005

Edited by Laurent Vigneron (LORIA – UN2-CNRS)

LORIA A05-R-022

LORIA, Campus Scientifique, B.P. 239, 54506 Vandœuvre-lès-Nancy cedex, FRANCE

II

Preface

UNIF is the main international meeting on unification. Unification is concerned
with the problem of identifying given terms, either syntactically or modulo a
given logical theory. Syntactic unification is the basic operation of most au-
tomated reasoning systems, and unification modulo theories can be used, for
instance, to build in special equational theories into theorem provers.

The aim of UNIF’2005, as for the eighteen previous meetings, is to bring
together people interested in unification, present recent (even ongoing) work,
and discuss new ideas and trends in unification and related fields. This includes
scientific presentations, but also descriptions of applications and softwares using
unification as a strong component.

This workshop is the nineteenth in the series: UNIF’87 (Val d’Ajol, France),
UNIF’88 (Val d’Ajol, France), UNIF’89 (Lambrecht, Germany), UNIF’90 (Leeds,
England), UNIF’91 (Barbizon, France), UNIF’92 (Dagstuhl, Germany), UNIF’93
(Boston, USA), UNIF’94 (Val d’Ajol, France), UNIF’95 (Sitges, Spain), UNIF’96
(Herrsching, Germany), UNIF’97 (Orléans, France), UNIF’98 (Rome, Italy),
UNIF’99 (Frankfurt, Germany), UNIF’00 (Pittsburgh, USA), UNIF’01 (Siena,
Italy), UNIF’02 (Copenhagen, Denmark), UNIF’03 (Valencia, Spain), UNIF’04
(Cork, Ireland). For more information on the series:

http://www.lsv.ens-cachan.fr/~treinen/unif/

The UNIF’2005 meeting includes one invited talk, by Joachim Niehren, and
a selection of 8 contributed talks.
It also includes a panel entitled 20 Years After OBJ2 organized by Kokichi
Futatsugi (JAIST), with Joseph Goguen (University of California at San Diego),
Jean-Pierre Jouannaud (Ecole Polytechnique) and Jose Meseguer (University
of Illinois at Urbana-Champaign) as additional panelists.

Laurent Vigneron
UNIF’2005 Organization Chair

April 2005

III

Organization

UNIF’2005 is organized as part of the Federated Conference on Rewriting, De-
duction, and Programming (RDP), collocated with RTA (International Con-
ference on Rewriting Techniques and Applications) and TLCA (International
Conference on Typed Lambda Calculi and Applications), and several other af-
filiated workshops.

Organization Committee

Philippe de Groote LORIA – INRIA Lorraine
Joseph Goguen University of California at San Diego
Yuichi Kaji Nara Institute of Science and Technology
Pawel Urzyczyn Warsaw University
Laurent Vigneron LORIA – UN2-CNRS

Local Organization

Hitoshi Ohsaki National Institute of Advanced Industrial Sci-
ence and Technology (AIST)

Masahito Hasegawa Research Institute for Mathematical Sciences,
Kyoto University

Cover Design

Maki Ishida National Institute of Advanced Industrial Sci-
ence and Technology (AIST)

RDP Sponsors

Nara Convention Bureau
JSPS International

meeting series

Information Processing Society
of Japan Kansai Branch

The
Telecommunications

Advancement
Foundation

(TAF)
Kayamori Foundation of

Infomational Science
Advancement

Foundation for Nara Institute
of Science and Technology

IV

Table of Contents

Invited paper

Querying XML-Trees by Tree Automata . 1
Joachim Niehren, Laurent Planque, Jean-Marc Talbot, Sophie Tison

Selected papers

Unification with Expansion Variables: Preliminary Results and
Problems . 25
Adam Bakewell, Assaf J. Kfoury

R-Unification thanks to Synchronized Context-Free Tree Languages 41
Pierre Réty, Jacques Chabin, Jing Chen

Symbolic Debugging in Polynomial Time . 47
Christopher Lynch, Barbara Morawska

Combining Intruder Theories . 63
Yannick Chevalier, Michaël Rusinowitch

Can Context Sequence Matching Be Used for XML Querying? 77
Temur Kutsia, Mircea Marin

Tree vs Dag Automata . 93
Siva Anantharaman, Paliath Narendran, Michaël Rusinowitch

Relating Nominal and Higher-Order Pattern Unification 105
James Cheney

Efficiently Computable Classes of Second Order Predicate Schema
Matching Problems . 121
Masateru Harao, Shuping Yin, Keizo Yamada, Kouichi Hirata

Panel Discussion

20 Years After OBJ2 . 135
Organized by Kokichi Futatsugi

Author Index . 137

V

VI

Querying XML-Trees by Tree Automata⋆

Joachim Niehren, Laurent Planque, Jean-Marc Talbot, and Sophie Tison

INRIA Future, Mostrare project, LIFL, Lille, France
http://www.grappa.univ-lille3.fr/mostrare

Abstract. Information extraction from semi-structured documents requires to
find n-ary queries in XML trees that define appropriate sets of n-tuples of nodes.
In the first part of the talk, we discuss formalism by which to represent monadic
queries in XML trees. In the second part, we report more recent workn on n-
ary queries. We propose new representation formalisms by tree automata that
capture MSO. We then investigate n-ary queries by unambiguous tree automata
which are relevant for query induction in multi-slot information extraction. We
show that this representation formalism captures the class of n-ary queries that
are finite unions of Cartesian closed queries, a property we prove decidable.

Keyworks: Semi-structured documents, multi-slot information extraction, XML
query, tree logic and automata.

1 Introduction

The problem of selecting nodes in trees is the most widespread database query-
ing problem in the context of XML [13]. Many applications, however, are faced
with the more general problem of selecting tuples of nodes in trees. We therefore
study n-ary queries in trees which define sets of n-tuples of nodes.

We are particularly interested in multi-slot information extraction. A typical
problem in this class of applications is to extract all pairs of products and prices
from a set of XML documents. Such pairs are often expressed by pairs of data
values in nodes of XML trees. In this case, we can solve the extraction problem
by distinguishing an appropriate binary query in XML trees.

Monadic queries in trees received considerable attention in in previous work
on node selection. The most popular representation formalism is the W3C
standard XPATH which is used in many other standards in XML technol-
ogy (XQuery [1], XPointer [2], etc). Other path based query languages were
proposed in modal logical PDL style [16].

Monadic Datalog in trees is the logic programming approach for expressing
monadic queries. Gottlob and Koch [13, 12] argue in favour of monadic Datalog
for information extraction from semi-structured documents. Monadic Datalog
is advantageous because of its high expressiveness (all monadic MSO queries
can be specified), efficient linear time query answering, and usability in visual
wrapper (query) specification. It underlies the Lixto system [3] for Web infor-
mation extraction. Lixto indeed supports multi-slot information extraction by
composing monadic queries for all slots.

Tree automata were proposed in several alternative approaches to represent
monadic queries. They have a long tradition in querying which dates back to

⋆ The talk presents results from the paper N-ary Queries by Tree Automata

1

2 J. Niehren, L. Planque, J.-M. Talbot, S. Tison

Thatcher and Wright’s seminal paper in 1968 [23]. More recent represention ap-
proaches for queries in XML trees proposed hedge automata [6] forest automata
[17], query automata [19], selection automata [11], and stepwise tree automata
[8].

In this paper, we investigate representation formalisms for n-ary queries in
trees by tree automata. We are interested in the class of all regular n-ary queries
– those that can be expressed by MSO formulas with n free variables – since
we believe that this class provides the appropriate expressiveness for multi-
slot information extraction from XML trees. We elaborate the tree automata
approach towards expressing n-ary queries, inspired by previous work of Neven
and Bussche [18] and Berlea and Seidl [4].

Representing n-ary queries in trees by tree automata is advantageous for
query induction from annotated examples [7, 15]. Query induction is important
for improving visual wrapper induction, as argued by Gottlob et. al. [14]. Re-
cent induction methods [9, 7, 15], however, remain limited to monadic queries
in trees. As a first step towards remedying this deficiency we present new rep-
resentation formalisms for n-ary queries by tree automata.

Contributions of the paper.

1. We propose to represent n-ary queries in ranked trees by successful runs of
tree automata.

(a) The class of representable queries are precisely the class of regular queries,
i.e., those expressible in MSO.

(b) We show that universal and existential run-based queries have the same
expressiveness.

2. We investigate the querying power of unambiguous tree automata.

(a) We show that run-based queries with unambiguous tree automata cap-
ture the class of regular n-ary queries that are finite unions of some
Cartesian closed queries.

(b) We show that it is decidable whether a regular n-ary query can be ex-
pressed by an unambiguous automaton.

(c) We show that the problem of answering n-ary queries by unambigous
automata on trees has linear time combined complexity.

3. We transfer all results above to n-ary run-based queries in unranked trees –
as in XML – with respect to hedge automata [6] and stepwise tree automata
[8].

Contribution 1a is new for n-ary queries, but was known in the monadic case
[19, 11, 22]. Neven and Bussche’s RAG n-ary queries [18] are more expressive
than MSO and thus run-based n-ary queries. Binary queries by forest automata
[4] have not yet been related to MSO.

Result 1b might come as a surprise for n-ary queries, even though it is
well known for monadic queries [18, 5, 11]. It follows by a new proof method
that does not depend on the two phase query answering algorithm (which is
well-known for monadic queries by attribute grammars, monadic Datalog, or
selection automata (see e.g. [18]).

Querying XML-Trees by Tree Automata 3

In the monadic case the characterization means that all regular monadic
queries in tree can be expressed by unambiguous tree automata. This was proved
before, by Neven and Bussche [18] in the framework of attribute grammars
(see IBAGs), by Bloem and Engelfriet [5] in the context of MSO definable
transformations, and a third time for selection automata [11]. Our proof for the
general case is original, even for the monadic case. It relies on a correspondences
between queries in trees and tree languages that we elaborate, rather than on
the equivalence of tree automata and MSO.

Result 2b implies that it is decidable whether an n-ary query can be ex-
pressed a finite union of Cartesian closed queries. The proof 2b is non-trivial.
It relies on the decidability of bounded ambiguity in tree automata [21].

Contribution 2c is obtained by generalizing the two phase query answering
algorithm to the n-ary case.

Our results are highly relevant to a recent approach to query induction [7].
This approach induces monadic queries for XML trees that are expressed by
runs of unambiguous tree automata. The algorithm extends without change to
run-based n-ary queries (1a and 3). The important unambiguity assumption,
however, limits its coverage to finite unions of Cartesian closed queries (2a).
These can be answered efficiently (2c).

2 Regular queries

We recall the definition of n-ary queries in trees and propose to look at them
as tree languages, so that we can define regular n-ary queries by tree automata
and relate them to MSO.

2.1 N-ary queries in trees

To keep things as simple as possible, we develop our theory for binary trees
rather than for more general ranked trees. Binary trees will prove sufficient to
extend all our results to unranked trees (Section 6).

A signature Σ for binary trees fixes a finite set of binary function symbols
f, g and constants a, b. A binary tree t ∈ TΣ is a ground term over Σ:

t ::= a | f(t1, t2)

We define a node of a tree t by its relative address from the root. More formally,
we define a function nodes : TΣ → 2{1,2}∗ by structural induction:

nodes(a) = {ǫ}
nodes(f(t1, t2)) = {ǫ} ∪ {iπ | 1 ≤ i ≤ 2, π ∈ nodes(ti)}

The root of a tree t is the node ǫ. If π1 ∈ nodes(t) then we call π1 first child of
π and π2 its second child. A leaf is a node without children. An inner node is
a node that is not a leaf. For convenience, we will freely identify trees t over Σ
with labeling functions of type nodes(t)→ Σ:

a(ǫ) = a,
f(t1, t2)(ǫ) = f,
f(t1, t2)(iπ) = ti(π) 1 ≤ i ≤ 2, π ∈ nodes(ti)

4 J. Niehren, L. Planque, J.-M. Talbot, S. Tison

In this section, we will study queries for the class of binary trees TΣ with some
fixed signature Σ. Our definition of queries, however, will equally apply to other
classes of trees or graphs that comes with a notion of nodes.

Definition 1. Let n ∈ N and tree a class of trees. An n-ary query for this class
is a function q that maps trees t ∈ tree to sets of n-tuples of nodes in t:

∀t ∈ tree : q(t) ⊆ nodes(t)n

Simple examples for monadic queries in binary trees over Σ are the functions
leaf and root that maps trees t to the sets of their leaves resp. to the singleton
{ǫ}. The monadic queries labelc for symbols c ∈ Σ map trees t to the set of
c-labeled nodes π of t:

π ∈ labelc(t) iff t(π) = c

The binary query first child relates inner nodes to their first child, while last child
links inner nodes to their last and thus second child.

Our definition of n-ary queries is quite general in that it does not exclude
non-regular queries. For instance, we can query for all pairs (π, π′) in trees t
such that the subtrees of t on below of π and π′ are equal. This query can
indeed be expressed by the RAG’s of Neven and Bussche [18].

In order to formalize what we mean by regular or irregular queries, we will
relate n-ary queries to tree languages (Section 2.2) so that the regularity notion
for tree languages carries over (Section 2.3).

2.2 Canonical tree languages of queries

We will discuss canonical tree languages corresponding to n-ary queries in trees,
which are inspired by early work on tree automata and MSO [23, 10]. In Sec-
tion 3.2, we will discuss more compact language encodings of queries, that are
particularly useful for query induction.

Let B = {0, 1} be the set of Boolean. We want to encode n-ary queries over
Σ as tree languages over the extended signature Σ × Bn. In order to express
an n-ary query q, the canonical approach is to encode all valid membership
statements (π1, . . . , πn) ∈ q(t) into individual trees over Σ×Bn, so that we can
collect all of them in a tree language. The coding idea is to annotate all nodes
π of tree t by bit vectors (b1, . . . , bn) so that the i-th bit bi is true if and only if
πi = π for all 1 ≤ i ≤ n:

bi ↔ πi = π

For instance, a subset of trees in the canonical tree language of the query child
is displayed in Figure 1. We cannot display all of them since that canonical
language is infinite.

Let us formally define the correspondence between queries and canonical
tree languages. This requires two concepts: characteristic functions and function
products. Let S be a set. For every s ∈ S we define a characteristic function
cs : S → B so that cs(s

′) ↔ s = s′ for all s′ ∈ S. For every tree t and
π ∈ nodes(t) let

cπ : nodes(t)→ B

Querying XML-Trees by Tree Automata 5

Fig. 1. Some of the trees in the canonical tree language of the binary query child

be the characteristic function of π with respect to nodes(t). Characteristic func-
tion cπ can be identified with a Boolean trees; these have the same nodes as
t. Note that Booleans are overloaded in Boolean trees; they serve as binary
function symbols and as constants.

We define the product of m functions fi : A → Bi to be the function
f1 ∗ . . . ∗ fm : A→ B1 × . . .×Bm that satisfies for all a ∈ A:

(f1 ∗ . . . ∗ fm)(a) = (f1(a), . . . , fm(a))

Thereby, we have defined the products of m trees t1, . . . , tm of the same shape
but with possibly distinct signatures Σ1, . . ., Σm, since we identify trees with
labeling functions:

t1 ∗ . . . ∗ tm where ti ∈ TΣi
for 1 ≤ i ≤ m

We call a tree t over TΣ×Bn canonical if for all 1 ≤ i ≤ n there exists pre-
cisely one node π ∈ nodes(t) such that the i-th Boolean bi = 1 where t(π) =
(f, b1, . . . , bn) for some f ∈ Σ. We call a tree language canonical if all its trees
are canonical. We write Cann

Σ for the set of all canonical trees over Σ × Bn.

We can now define canonical languages can(q) that correspond to n-ary
queries q over Σ. The trees in can(q) ⊆ TΣ×Bn correspond one-to-one and onto
to the tuples that q selects in trees t ∈ TΣ. Each tree in the canonical language
of q is obtained by multiplying the characteristic functions of some selected
node tuple:

can(q) = {t ∗ cπ1 ∗ . . . ∗ cπn | t ∈ TΣ , (π1, . . . , πn) ∈ q(t)}

Lemma 1. A tree language L ⊆ TΣ×Bn is canonical if and only if L = can(q)
for some n-ary query q over Σ; this query q is always unique.

We next define set operations on n-ary queries over the same signature Σ
and show that they correspond precisely to the set operations on their canonical
tree languages. This is why we consider canonical languages to be canonical.
Given two n-ary queries q1 and q2 we define their union q1 ∪ q2 by imposing for
all t ∈ TΣ :

(q1 ∪ q2)(t) = q1(t) ∪ q2(t)

The complement qc of an n-ary query q is the n-ary query satisfying:

qc(t) = nodes(t)n − q(t)

6 J. Niehren, L. Planque, J.-M. Talbot, S. Tison

runsA(a) = {p | a→p ∈ rules(A)}

r1 ∈ runsA(t1) r2 ∈ runsA(t2) f(r1(ǫ), r2(ǫ))→p ∈ rules(A)

p(r1, r2) ∈ runsA(f(t1, t2))

Fig. 2. Runs of a tree automaton A

The Cartesian product of an n-ary query q1 and an m-ary query q2 is the n+m
ary query q1 × q2 such that for all trees t ∈ TΣ :

(q1 × q2)(t) = q1(t)× q2(t)

Lemma 2. For all n-ary queries q, q1, q2 and m-ary queries q′ over Σ:

can(q1 ∪ q2) = can(q1) ∪ can(q2)
can(qc) = Cann

Σ − can(q)
can(q × q′) = {t ∗ β ∗ β′ | t ∈ TΣ, t ∗ β ∈ can(q), t ∗ β′ ∈ can(q′)}

2.3 Regularity

We recall the definitions of tree automata and regular tree languages and define
the regularity of n-ary queries in trees.

A tree automaton A for binary trees over Σ consists of a finite set states(A),
a finite set rules(A), and a set final(A) ⊆ states(A). The rules of A may have
two forms:

a→ p or f(p1, p2)→ p

where f ∈ Σ is a binary function symbol, a ∈ Σ a constant and p, p1, p2 ∈
states(A).

A run of a tree automata A on a tree t is a function r : nodes(t)→ states(A)
that associates states to nodes of t according to the rules of A, or equivalently,
a tree labeled in states(A) with the same domain than t. Figure 2 defines the
set runsA(t) of runs of A on t by recursion on the structure of t.

A run r of a tree automaton A on a tree t is called successful if it labels the
root of t by some state in final(A).

succ runsA(t) = {r ∈ runsA(t) | r(ǫ) ∈ final(A)}

Example 1. Consider automaton A1 over signature Σ = {f, a}. Two runs of A1

are presented in Figure 3. Successful runs of A1 on arbitrary trees label the left
most a-leaf by 1 and all others by ∗. The ancestors of the left most a-leaf will
be assigned to y. All other inner nodes will be marked by ∗. The final states
are y and 1. In summary, we have the following states:

states(A1) = {1, ∗, y}
final(A1) = {1, y}

The rules in rules(A1) need to verify the intuitive meaning that we associated
with the states:

a→ 1 f(1, ∗)→ y f(y, ∗)→ y
a→ ∗ f(∗, ∗)→ ∗

Querying XML-Trees by Tree Automata 7

f, y

f, y a, ∗

a, 1 a, ∗

f, ∗

f, ∗ a, ∗

a, ∗ a, ∗

Fig. 3. Two runs of automaton A1 on the same tree; only the left one is successful.

Note that every tree permits at most one successful run by automaton A1 but
possibly other unsuccessful runs.

A tree t is accepted by a tree automaton A if A has a successful run on t, i.e.,
succ runsA(t) 6= ∅. The language L(A) recognized by a tree automaton A is the
set of trees t that A accepts. A tree language L ⊆ TΣ is regular if and only if it
is recognized by some tree automaton A over Σ, so that L = L(A). Automaton
A1 from Example 1, for instance, accepts all trees in T{f,a}.

Definition 2. A n-ary query q in trees over Σ is regular if its canonical tree
language can(q) ⊆ TΣ×Bn is recognized by a tree automaton.

Proposition 1. Regular queries are closed under union, intersection, comple-
mentation, and Cartesian products.

Proof. This follows from Lemma 2. To see this, let us exemplify the proof for the
union operator. If q1 and q2 are regular queries then by definition their canonical
languages are regular: can(q1) and can(q2). Unions of regular tree languages are
regular, and thus can(q1) ∪ can(q2). This language is equal to can(q1 ∪ q2) by
Lemma 2. The regularity of can(q1 ∪ q2) is equivalent to that q1 ∪ q2 is regular
by definition.

Let us recall three standard notions for tree automata: determinism, unambi-
guity, and relabelings [10]. A tree automaton A is (bottom-up) deterministic if
no two of its rules have the same left hand side. It is unambiguous, if no tree
t ∈ TΣ permits more than one successful run in succ runsA(t).

A relabeling morphism for binary signatures Σ and Σ′ is a mapping h :
Σ → Σ′ that maps constants to constants and binary function symbols to
binary function symbols. Relabeling morphisms h : Σ → Σ′ can be lifted ho-
momorphically to trees h : TΣ → TΣ′ by imposing for all f ∈ Σ and t, t′ ∈ TΣ :

h(f(t1, t2)) = h(f)(h(t1), h(t2))

It is well-known that relabeling morphisms as well their inverse images preserve
regularity, i.e. if L ⊆ TΣ is regular then h(L) and if L′ ⊆ TΣ′ is regular then
h−1(L′).

2.4 MSO queries

We recall the monadic second-order logic (MSO) in binary trees and how it
can be used to represent n-ary queries. The classical theorem of Thatcher and

8 J. Niehren, L. Planque, J.-M. Talbot, S. Tison

Wright [23] then shows that regular n-ary queries capture precisely the class of
MSO definable n-ary queries.

We identify binary trees t ∈ TΣ with logical structures. The domain of the
structure of t is the set nodes(t). Its signature consists of the binary relation
symbols first child and last child, and the monadic relation symbols labela for all
a ∈ Σ. These symbols are interpreted by the corresponding node relations of t.

first childt = {(π, π1) | π1 ∈ nodes(t)}
last childt = {(π, π2) | π2 ∈ nodes(t)}

labelta = {π | t(π) = a}

Let x, y, z range over an infinite set of node variables and p over an infinite set
of monadic predicates. Formulas φ of MSO have the following abstract syntax:

φ ::= p(x) | first child(x, y) | last child(x, y) | labela(x)
| ¬φ | φ1 ∧ φ2 | ∀x.φ | ∀p.φ

A variable assignment α into a tree t maps node variables to nodes of t and
monadic predicates to sets of nodes of t. We define the validity of formulas φ
in trees t under variable assignments α in the usual Tarskian manner:

t, α |= φ

Formulas φ with n free variables x1, ..., xn represent n-ary queries queryφ(x1,...,xn)

which satisfies for all trees t ∈ TΣ

queryφ(x1,...,xn)(t) = {(α(x1), ..., α(xn)) | t, α |= φ}

Theorem 1. (Thatcher and Wright [23]): An n-ary query in binary trees is
regular if and only if it can be expressed by some MSO formula with n free node
variables.

3 Run-based queries

We now introduce new representation formalisms for regular n-ary queries based
on successful runs of tree automata, that conservatively extend previous ap-
proaches to monadic queries [18, 11, 22]. Run-based query formalisms are strictly
less expressive that Neven and Bussche’s [18] n-ary relational attribute gram-
mars (RAGs) queries, and technically simpler. They provide a simpler and more
general alternative to Seidl and Berlea’s [4] binary queries in unranked trees by
forest automata.

3.1 Existential run-based queries

The idea is to use successful runs of tree automata not only to accept trees but
also to select nodes in them. This way, one can avoid the indirection through cor-
responding tree languages in representations formalism. As we will see, this cor-
respondence will reappear when proving that run-based queries capture MSO.

Querying XML-Trees by Tree Automata 9

A run-based n-ary query in binary trees over Σ is specified by a tree au-
tomaton A over Σ and a set S ⊆ states(A)n of so called selection tuples. An
existential run-based query query∃A,S selects all those tuples of nodes (π1, . . . , πn)
in a tree t that are assigned to a selection tuple by some successful run of A on
t:

query∃A,S(t) = {(π1, . . . , πn) | ∃r ∈ succ runsA(t), (r(π1), . . . , r(πn)) ∈ S}

Example 2. Reconsider automaton A1 from Example 1. The monadic query
queryA1,{1} selects the left most a-leaf.

This monadic query cannot be represented by any deterministic tree au-
tomaton. Non-determinism is needed to distinguish different occurrences of a-
leaves. Automata have to guess states for nodes when processing trees bottom
up. The guesses need be checked for correctness: they are correct only if they
can be extended to a successful runs.

Example 2 illustrates that runs of deterministic tree automata are not suf-
ficient to define all regular monadic queries (even though they can recognize
all regular languages). Nevertheless, one can do with a limited form of non-
determinism in monadic queries. Unambiguous automata are enough, as in the
example. This means that there exists always exists at most one correct way
of guessing states. This result is well know in the monadic case. It was proved
in the context of attribute grammars by Neven and Bussche [18] and indepen-
dently by Bloem and Engelfriet [5].

Example 3. Let us define the binary query that selects pairs of a-leaves coupled
with right sister b-leaves. We assume that the signature is Σ = {f, a, b}. We de-
fine an automaton A3 with states(A3) = {a, b, ∗, y} that will produce successful
runs of the form of Figure 4 that select the required pairs as follows:

queryA3,{(a,b)}

This means that the automaton will assign state a the selected a-leaf and state
b the its selected younger b-sister. The final state y will be assigned to all
common ancestors of the selected a and b siblings: final(A3) = {y}. State ∗ can
be assigned to all other nodes. The following rules verify these properties:

a→a b→b f(∗, ∗)→∗ f(a, b)→y
a→∗ b→∗ f(y, ∗)→y f(∗, y)→y

Every successful run of automaton A3 will select a single pair (see e.g. Figure
4). Different pairs are separated by different runs; thus they cannot be mixed
up.

This example illustrates the trick in our representation of n-ary queries. In order
to not mix up the components of selected pairs, we separate them in different
runs. This trick gives hope that run-based existential n-ary queries can represent
all regular n-ary queries. However, it raises doubts on the querying power on
unambiguous tree automata in existential run-based n-ary queries.

10 J. Niehren, L. Planque, J.-M. Talbot, S. Tison

f,y

f,y

a,a b,b

f,*

a,* b,*

f,y

f,*

a,* b,*

f,y

a,a b,b

Fig. 4. The two successful runs select both pairs of a-leaves and right sister b-leaves

f,y

f,y

a,a b,b

a,a

⇒ f,0,0

f,0,0

f,1,0 f,0,1

f,1,0

Fig. 5. From runs to Boolean query representations: select pairs of a-leaves and b-leaves

3.2 Compact tree languages for queries

Runs of tree automata can select a whole set of tuples. Sets of runs thus provide
a much more compact query representations than canonical tree languages. This
holds in particular for queries by unambiguous tree automata where all tuples
for a tree are selected in a single run.

Understanding the expressive power of existential run-based queries is best
based on a correspondence between arbitrary tree languages over Σ × Bn and
n-ary queries over Σ. This means that we give up canonicity in favour of com-
pactness.

Example 4. Let us select pairs of a-leaves and b-leaves. This query is the Carte-
sian product of two monadic queries for a-leaves and b-leaves respectively. It
can be defined by tree automaton A4 with states(A4) = {a, b, y} and rules:

a→ a, b→ b, f(p, p′)→ y for all p, p′ ∈ {a, b, y}

All a-leaves will be mapped to state a, all b-leaves to state b, and all inner
nodes to state y. All states are final: final(A4) = {a, b, y}. The query is defined
by queryA4,{(a,b)}.

Automaton A4 is deterministic and thus unambiguous. Let t ∈ TΣ and
suppose that r is the unique successful run of A4 on t. The tree t ∗ r can be
easily transformed into a tree over Σ × B2 that compactly encodes all tuples
selected by the automaton on t. An example is illustrated in Figure 5.

The example illustrates that every tree language L ⊆ TΣ×Bn – canonical or
not – corresponds to an n-ary query in trees over Σ. In order to define this query
formally, we need a partial order on bit-vectors in (b′1, . . . , b

′
n), (b1, . . . , bn) ∈ Bn:

(b′1, . . . , b
′
n) ≤ (b1, . . . , bn) iff ∀1 ≤ i ≤ n. b′i ≤ bi

We next lift this partial order to trees whose labels are extended by bit vectors
t ∗ β′, t ∗ β ∈ TΣ×Bn :

t ∗ β′ ≤ t ∗ β iff ∀π ∈ nodes(t). β′(π) ≤ β(π)

Querying XML-Trees by Tree Automata 11

Let L ⊆ TΣ×Bn be a tree language. The corresponding n-ary query corr query(L)
is the unique query whose canonical tree language satisfies:

can(corr query(L)) = {t ∗ β′ ∈ Cann
Σ | ∃t ∗ β ∈ L. t ∗ β

′ ≤ t ∗ β}

Lemma 3. If L ⊆ TΣ×Bn is a regular tree language then the corresponding
n-ary query corr query(L) is regular too.

Proof. Let ⊥0 be a constant and ⊥2 be a binary symbol. We define two rela-
beling morphism such that for all g ∈ Σ and b, b′ ∈ Bn: JN: Picture needed

Σn,n = Σ × Bn × Bn

h : Σn,n → (Σ × Bn) ∪ {⊥0,⊥2}
h((g, b, b′)) = if b ≤ b′ then (g, b′) else ⊥arity(g)

h1 : Σn,n → Σ × Bn

h1((g, b, b
′)) = (g, b)

We then have can(corr query(L)) = h1(h
−1(L))∩Cann

Σ. This language is regular
since L and Cann

Σ are.

3.3 Existential queries and regularity

Our next goal is to show that existential run-based queries capture the class of
regular n-ary queries.

Lemma 4. Existential run-based n-ary query are regular.

Proof. Existential run-based queries are finite unions of existential run-based
queries with singleton selection sets:

query∃A,S = ∪p∈S query∃A,{p}

By Proposition 1 it remains to show that run-based queries query∃A,{p} with
singleton selection sets are regular. Let us fix an automaton A with signature
Σ and selection tuple p = (p1, . . . , pn) ∈ states(A)n. For every p ∈ states(A),
let cp : states(A) → B be the characteristic function of p. We construct a new
automaton Ap over the signature Σ×Bn so that for all trees t∗β ∈ TΣ×Bn and
functions r : nodes(t)→ states(A):

r ∈ succ runsA(t) and β = cp1 ◦ r ∗ . . . ∗ cpn ◦ r
iff r ∈ succ runsAp

(t ∗ β)

Both automata have the same runs but on slightly different trees. The idea is
that runs of Ap additionally test whether the bit vectors in tree β are licensed
by runs of A on t with respect to the selection tuple p. We define automaton
Ap such that:

a→p′ ∈ rules(A)

(a, cp1(p
′), . . . , cpn(p′))→ p′ ∈ rules(Ap)

f(p′1, p
′
2)→p

′ ∈ rules(A)

(f, cp1(p
′), . . . , cpn(p′))(p′1, p

′
2)→p

′ ∈ rules(Ap)

12 J. Niehren, L. Planque, J.-M. Talbot, S. Tison

final(Ap) = final(A)

The query corresponding to L(Ap) is regular by Lemma 3. It remains to verify
that this query is identical to query∃A,{p}:

corr query(L(Ap)) = query∃A,{p}

This mainly follows from the definitions of corresponding tree languages and
the above property of Ap. We show for all trees t ∈ TΣ and nodes π1, . . . , πn ∈
nodes(t):

(π1, . . . , πn) ∈ corr query(L(Ap))(t)
⇔ t ∗ cπ1 ∗ . . . ∗ cπn ∈ can(corr query(L(Ap)))
⇔ ∃t ∗ β ∈ L(Ap). t ∗ cπ1 ∗ . . . ∗ cπn ≤ t ∗ β
⇔ ∃β∃r ∈ succ runsAp

(t ∗ β). t ∗ cπ1 ∗ . . . ∗ cπn ≤ t ∗ β
⇔ ∃r ∈ succ runsA(t). t ∗ cπ1 ∗ . . . ∗ cπn

≤ t ∗ cp1◦r ∗ . . . ∗ cpn◦r
⇔ ∃r ∈ succ runsA(t). r(π1) = p1, . . . , r(πn) = pn

⇔ (π1, . . . , πn) ∈ query∃A,{p}(t)

Lemma 5. Every regular n-ary query is equal to some existential run-based
query.

Proof. Let L be a regular language over Σ×Bn and A be an automaton such
that L(A) = L. We compute an automaton C over Σ and a selection set S such
that L(C) = {t | t ∗ β ∈ L(A)} and corr query(L(A)) = query∃C,S:

(a, b1, ..., bn)→q ∈ rules(A)

a→(q, b1, ..., bn) ∈ rules(C)

(f, b1, ..., bn)(q1, q2)→q ∈ rules(A)

(f(q1, b
1
1, ...b

n
1), (q2, b

1
2, ..., b

n
2))→(q, b1, ..., bn) ∈ rules(C)

Finally, let states(C) = states(A)∗Bn, final(C) = final(A)×Bn and S = Q1 ×
...×Qn where for all 1 ≤ i ≤ n:

Qi = {(q, b1, ..., bn) ∈ states(C) | bi = 1}

The correctness of the construction is proved by showing that for any term
t, runsC(t) = {β | r ∈ runsA(t ∗ β)} and succ runsC(t) = {β | r ∈ succ runsA(t ∗
β)}.

Theorem 2. Existential run-based n-ary queries capture precisely the class of
regular n-ary queries.

3.4 Universal run-based queries

Universal run-based query quantify universally over successful runs rather than
existentially.

query∀A,S(t) = {(π1, . . . , πn) | ∀r ∈ succ runsA(t), (r(π1), . . . , r(πn)) ∈ S}

Querying XML-Trees by Tree Automata 13

rules(A6) :
a→ 0 f(1, 2) → y

a→ 1 f(0, y) → y

a→ 2 f(y, 0) → y

f(0, 0) → 0
f(0, 0) → 1
f(0, 0) → 2

final(A6) = {y, 1, 2}

selection tuples:
S6 = {(1, 2), (0, 0), (y, 0), (0, y)}

Fig. 6. An example for a universal run-based query: next sibl = query∀A6,S6
= query∃A6,{(1,2)}

Universal queries were proposed before in selection automata [11] and universal
BAGs [18].

An example is given in Figure 6. We represent the binary query next sibl
universally, which relates first and second children with the same mother. Suc-
cessful runs of automaton A6 will assign the state pair (1, 2) to at most one
node pair satisfying the query. Descendants and cousins of these nodes will be
assigned to state 0, all others (ancestors in fact) to y. The required query can
be expressed existentially by query∃A6,{(1,2)}.

Runs in universal queries refute all those tuples that they don’t select.
Thus, one needs sufficiently many selection states so that correct tuples are
never rejected. In the example, selected pairs will always be labeled by state
pairs in S6 = {(1, 2), (0, 0), (0, y), (y, 0)}. All other node pairs can be refuted
by successful runs that assign state pairs in the complement of S6. Hence
query∃A6,{(1,2)} = query∀A6,S6

.

Lemma 6. The complement of an existential run-based query is an existential
run-based query.

Proof. Let q be an existential query. By Lemma 4, q is regular, so can(q) is
regular. By Lemma 2, can(qc) = Cann

Σ − can(q). As can(q) ⊆ Cann
Σ ⊆ TΣ×Bn ,

then can(qc) = Cann
Σ ∩ canc(q), with canc(q) is the complement of can(q) into

TΣ×Bn . So, can(qc) is regular and by Lemma 5, qc is existential.

Theorem 3. Existential and universal queries have the same expressiveness.

Proof. We prove first that any universal query has an equivalent existential
query. An universal query can be written as query∀A,S for an automaton A and
a set S ⊆ states(A)n.

query∀A,S(t) = {π | ∀r ∈ succ runsA(t), r(π) ∈ S}

Obviously, the complement of query∀A,S(t) is precisely the set

{π | ∃r ∈ succ runsA(t), r(π) ∈ states(t)n\S}

This is by definition query∃A,states(t)n\S . We can now conclude using that exis-

tential queries are closed under complement (Lemma 6). We prove now that

14 J. Niehren, L. Planque, J.-M. Talbot, S. Tison

any existential query has an equivalent universal query. By Lemma 6, for any
existential query q, there exists A and S such that q = (query∃A,S)c. Therefore,
for any tree t, q(t) is equal to

{π | ∀r ∈ succ runsA(t), r(π) ∈ states(t)n\S}

This is precisely query∀A,states(t)n\S

4 Unambiguous tree automata

Our next goal is to investigate the querying power of unambiguous tree au-
tomata in the n-ary case. Monadic queries by unambiguous tree automata are
used in a recent approach to query induction from annotated examples [7].
We believe that this approach can be extended from monadic queries to n-ary
queries. This is why we want to understand the precise expressiveness of n-ary
queries by unambiguous tree automata.

The main idea for query induction in the cite approach to represent n-ary
queries over Σ as tree languages over Σ × Bn and to infer tree automata for
such tree languages by methods of grammatical inference [20]. Compact tree
languages for representing queries seem advantageous; they are much easier to
infer than canonical tree language. N-ary queries by unambiguous tree automata
allow for compact representation, where all tuples selected in a single tree over
Σ can be represented by a single tree over Σ × Bn.

4.1 Finite unions of Cartesian closed queries

We call a n-ary query Cartesian closed if it is a Cartesian product of monadic
queries.

Proposition 2. Run-based n-ary queries queryA,S by unambiguous automata
A are finite unions of Cartesian closed n-ary queries.

Proof. We show that queryA,S is Cartesian closed for singletons S. Let S =
{(p1, . . . , pn)}. As for any tree t there exists at most one successful run r by A,
we have:

queryA,S = queryA,{p1} × . . .× queryA,{pn}

Theorem 4. Run-based queries by unambiguous tree automata capture the class
of finite unions of Cartesian closed regular queries.

The simple direction is proved by Proposition 2. The converse is more involved;
it needs some auxiliary notions.

We define sat(q), the saturated language of q, as the least subset of TΣ×Bn

satisfying (i) can(q) = can(corr query(sat(q))) and (ii) for all t ∈ TΣ , t ∗ β
belongs to sat(q) if either there exists t∗β′ in can(q) such that t∗β′ ≤ t∗β or β
satisfies β(π) = 0n for all π ∈ dom(t). Moreover, we define max(q) the language
of maximals for q defined as {t ∗ β ∈ sat(q) | ¬(∃t ∗ β′ ∈ sat(q) : t ∗ β < t ∗ β′)}.

Lemma 7. Let q be a regular query. Then both sat(q) and max(q) are regular
and computable.

Querying XML-Trees by Tree Automata 15

Proof. Let ⊥0 be a constant and ⊥2 be a binary symbol. We define two rela-
beling morphisms such that for all g ∈ Σ and b, b′ ∈ Bn:

h′ : Σ × Bn × Bn → (Σ × Bn) ∪ {⊥0,⊥2}
h′((g, b, b′)) = if b ≤ b′ then (g, b) else ⊥arity(g)

h2 : Σ × Bn × Bn → Σ × Bn

h2((g, b, b
′)) = (g, b′)

Let us define up(q) the set h2(h
′−1(can(q))). Now, let us consider qc be the

query complement of q and let up(qc) be the set h2(h
′−1(can(qc)). Obviously,

one can built automata for up(q) and up(qc). Therefore, one can do so for
sat(q) = up(q) − up(qc). Considering now the relabeling morphism h1 defined
in proofs of Lemma 3, max(q) can be defined as sat(q)∩ (h1(h

−1
2 (sat(q))∩SG))c

where SG is the regular language of trees written over the signature Σ×Bn×Bn

such that for any t ∗ β ∗ β′ in SG, it holds that t ∗ β < t ∗ β′.

Proposition 3. Let q be a Cartesian closed n-ary query. For all t ∈ TΣ, there
exists exactly one tree t ∗ β in max(q).

Proof. The query q being Cartesian closed, for all t ∈ TΣ , it can be written
as Et

1 × . . . × Et
n. For each t ∈ TΣ, we consider the tree t ∗ βq defined as

for all π ∈ dom(t) and βq(π) = (b1, . . . , bn), bi ↔ (π ∈ Et
i). Defining Lq as

{t ∗ βq | t ∈ TΣ}, it is easy to verify q = corr query(Lq).

Proposition 4. Let q be a Cartesian closed regular n-ary query. Then q is a
unambiguous query.

Proof. By Lemma 7 we can compute an automaton M recognizing max(q). Wlog
we assume M to be deterministic. By Lemma 5, we can compute some automa-
ton C for trees from TΣ such that succ runsC(t) = {r∗β | r ∈ succ runsM (t∗β)}.
As M is deterministic, succ runsM (t ∗ β) contains at most one element. More-
over, there is a unique β such that t ∗ β is accepted by M for any tree t ∈ TΣ

(by Proposition 3). Therefore, succ runsC(t) is singleton set.

Now cnsider the query q such that there exists Cartesian closed regular
queries q1, . . . , qk verifying for all t ∈ TΣ , q(t) =

⋃k
j=1 qj(t). We know by Propo-

sition 4 that for each qj there exists some pair (Aj , Sj) such that qj = queryAj ,Sj

and Aj is unambiguous. The rest of the proof is essentially the computation of
the product of the Aj’s. But, it must be done carefully to preserve the unam-
biguity of the result JN: unambiguity is not the problem, we have to ensure
runs of A if there exists runs in some Ai: we consider Āi the deterministic
automaton accepting the trees not accepted by Ai; assuming Ai and Āi have
disjoint sets of states, we define A′

i as Ai∪ Āi. This automaton A′
i is unambigu-

ous and moreover, query∃A′
i,Si

= query∃Ai,Si
. For q, we define the automaton A as

the product of the A′
i’s and let final(A) = final(A′

1)× . . .× final(A′
k). Note that

A is unambiguous. We define S as the set of all (p1, . . . , pn) ∈ states(A)n for
which there exists i (1 ≤ i ≤ k) such that (proji(p1), . . . , proji(pn)) ∈ Si (where
proji(p) is the ith component of the state p). The two queries q and query∃A,S

are equivalent. This completes the proof of Theorem 4.

16 J. Niehren, L. Planque, J.-M. Talbot, S. Tison

Proposition 5. A query q is unambiguous iff it can be expressed as Boolean
combinations of monadic MSO formulas (i.e., regular monadic queries)

4.2 Deciding unambiguity of queries

We show in this section that one can decide whether a regular n-ary query is
unambiguous, or equivalently by Theorem 4 whether the query is a finite union
of Cartesian closed regular queries.

Note that deciding whether a regular query is Cartesian closed is straight-
forward using relationship between regular queries and MSO formulas and using
that the Cartesian closed property is MSO-definable. Considering finite unions
of Cartesian closed regular queries requires more sophisticated technique.

Theorem 5. The problem whether an n-ary regular query is a finite union of
Cartesian closed regular queries is decidable.

We say that a tree automaton A is k-ambiguous if for any tree t ∈ TΣ , there
exists at most k accepting runs for t in A. An automaton A has a bounded
ambiguity if there exists some natural k such that A is k-ambiguous.

Theorem 6. [21] The boundedness of ambiguity is decidable for tree automata.

Proposition 6. For any query q, if there exists some pair (A,S) such that
q = query

∃
A,S and A has a bounded ambiguity then q is a finite union of Cartesian

closed queries.

Proof. By definition, we have q(t) =
⋃

s∈S qs(t) for any t ∈ TΣ and qs ∈
query∃A,{s}. Now, for any tree t and any accepting run for t in A, we define qs

r(t) as

{(π1, . . . , πn) | (r(π1), . . . , r(πn)) = s}. Therefore, qs(t) =
⋃

r∈succ runsA(t) q
s
r(t).

As there exists some natural k such that the cardinality of succ runsA(t) is
smaller than k for any t, we have indeed that q is a finite union of Cartesian
closed queries.

Proposition 7. For any regular query q, if q is a finite union of Cartesian
closed queries then there exists some natural l such that for all trees t ∈ TΣ,
the cardinality of the set {t ∗ β | t ∗ β ∈ max(q)} is upper-bounded by l.

Proof. The query q being a finite union of Cartesian closed queries, there exists
some natural k s.t. q =

⋃k
j=1 q

1
j × . . . × q

n
j , each qi

j being a monadic regular
query.

Let t be a tree from TΣ . For each i, 1 ≤ i ≤ n, we define ≡i, an equiv-
alence relation on dom(t) by π ≡i π′ if for all (π1, . . . , πi−1, πi+1, . . . , πn),
(π1, . . . , πi−1, π, πi+1, . . . , πn) belongs to q(t) iff (π1, . . . , πi−1, π

′, πi+1, . . . , πn)
belongs to q(t). This just means that π and π′ are, in some sense, interchange-
able in ith position. Then, let π and π′ be two nodes. If for each j, 1 ≤ j ≤ k,
π belongs to qi

j(t) iff π′ belongs to qi
j(t), then π ≡i π

′. This implies that ≡i

is of finite index bounded by 2k. Now let t ∗ β be a term in max(q). Let π
selected in the ith position by β i.e. such that β(π)i = 1. Then, by maximality
of t ∗ β, for each π′ s.t. π ≡i π

′, we have also β(π′)i = 1. This implies that
{π | β(π)i = 1} is an union of equivalence classes for ≡i. So, the cardinality of

the set {t ∗ β | t ∗ β ∈ max(q)} is upper-bounded by 2n.2k
.

Querying XML-Trees by Tree Automata 17

Proposition 8. For any regular query q, if there exists some natural l such
that for all trees t ∈ TΣ, the cardinality of the set {t ∗ β | t ∗ β ∈ max(q)} is
upper-bounded by l then there exists some k-ambiguous automaton A and some
set S of tuples of states such that q = query

∃
A,S.

Proof. The proof is similar to that of Proposition 4 and relies on the construc-
tion defined in the proof of Lemma 5.

Theorem 5 easily follows from Theorem 6 and Propositions 6, 7 and 8. Moreover,
we can show that

Corollary 1. Let q be a regular query. Then the two following statements are
equivalent: (1) q is a finite union of Cartesian closed queries. (2) q is a finite
union of Cartesian closed regular queries.

Proof. Obviously, (2) implies (1). We know by Propositions 6, 7 and 8 that q
is a finite union of Cartesian closed queries iff there exists some natural l such
that for all trees t ∈ TΣ , the cardinality of the set {t | t ∗ β ∈ max(q)} is upper-
bounded by l. So, it suffices to prove that this latter implies that q is a finite
union of Cartesian closed regular queries. We recall that q being regular, one
can compute the automaton max(q). We define a total strict ordering ≺ on trees
from TΣ×Bn as follows: t ∗ β ≺ t ∗ β′ if (i) β(ǫ) < β′(ǫ), or (ii) β(ǫ) = β′(ǫ) and
t1 ∗β1 ≺ t1 ∗β

′
1 or (iii) β(ǫ) = β′(ǫ), t1 ∗β1 = t1 ∗β

′
1 and t2 ∗β2 ≺ t2 ∗β

′
2 (where

tj ∗βj is the subtree at position j of t∗β). Obviously, ≺ is a recognizable relation
of TΣ×Bn × TΣ×Bn . Using ideas similar to those from proof of Lemma 7 we can
compute automata for S1, the set of greatest elements in the sense of ≺ from
max(q) and for R1 as max(q)−S1. Obviously, S1 contains at most one tree t ∗ β
for each t ∈ TΣ . Therefore, the regular query q1 defined as q1(t) = tuples(t ∗ β)
for the unique t ∗ β in S1, is a Cartesian closed query. We iterate the same
process l times, extracting each time a Cartesian closed regular query qj. It is
straightforward that q is the union of all these qj ’s.

4.3 Construction of unambiguous automata

We next give a direct construction of unambiguous automata for Cartesian
closed run based queries query∃A,S. The idea of the construction is that of the
two way querying answering algorithm. Note that the existence unambiguous
automata follows already from the more general Theorem 4. The direct con-
struction might be of interest nevertheless, if one wants to analyse the size of
resulting unambiguous automaton.

We first compute a deterministic automaton det(A) that can perform all
runs of A at once:

states(det(A)) = 2states(A)

final(det(A)) = {P | P ∩ final(A) 6= ∅}

P = {p | a→ p ∈ rules(A)a→ P ∈ rules(det(A))

P = {p | f(p1, p2)→ p ∈ rules(A), p1 ∈ P1, p2 ∈ P2}

f(P1, P2)→ P ∈ rules(det(A))

18 J. Niehren, L. Planque, J.-M. Talbot, S. Tison

Proposition 9. For every run r ∈ runsdet(A)(t) and node π ∈ nodes(t): r(π) =
{r′(π) | r′ ∈ runsA(t)}.

We next compute an unambiguous automaton u(A) that for all trees t computes
all successful runs of A on t at once:

states(u(A)) = {(P ′, P) | P ′ ⊆ P,P ∈ states(det(A))}

final(u(A)) = {(P ∩ final(A), P) | P ∈ final(det(A))}

a→ P ∈ rules(det(A)) P ′ ⊆ P

a→ (P ′, P) ∈ rules(u(A))

f(P1, P2)→ P ∈ det(A)
P ′

1 = {p1 ∈ P1 | p2 ∈ P2, p
′ ∈ P ′, f(p1, p2)→ p′ ∈ rules(A)}

P ′
2 = {p2 ∈ P2 | p1 ∈ P1, p

′ ∈ P ′, f(p1, p2)→ p′ ∈ rules(A)}

f((P ′
1, P1), (P

′
2, P2))→ (P ′, P) ∈ rules(u(A))

Proposition 10. For all trees t, automata A, runs r ∈ succ runsu(A)(t), and
nodes π ∈ nodes(t):

r(π) = ({r′(π) | r′ ∈ succ runsA(t)}, {r′(π) | r′ ∈ runsA(t)})

In particular, u(A) is unambiguous.

Theorem 7. Cartesian closed n-ary queries query
∃
A,S can be expressed by un-

ambiguous tree automata u(A); if Si = {pi | (p1, . . . , pn) ∈ S} for all 1 ≤ i ≤ n
then:

query
∃
A,S = query

∃
u(A),S1

× . . .× query
∃
u(A),Sn

5 Query Answering

We next show that we can answer n-ary queries by runs of unambiguous au-
tomata in linear time combined complexity. This can be done by extending the
well-known two phase query answering algorithm.

The general problem seems to have a higher computational complexity. The
data complexity of unrestricted run-based n-ary queries is remains polynomial
for fixed n ≥ 0 but the combined complexity seems to be higher. To see the
polynomial bound on the data complexity, we fix an automaton A over Σ.
The inputs are a set of selection tuples S ⊆ nodes(A)n and a tree t ∈ TΣ. We
compute an automaton A′ from A and S that recognizes the canonical language
of query∃A,S. We then test for all tuples (π1, . . . , πn) ∈ nodes(t)n whether t∗ct

π1
∗

. . . ct
π1
∈ L(A′). If we assume the size on A to be bounded by some constant then

each of this tests will be in linear time O(|t|). So the overall data complexity is
bounded O(|t|)n+1.

Theorem 8. The combined complexity for answering n-ary queries in trees by
unambiguous tree automata is linear.

Querying XML-Trees by Tree Automata 19

We only sketch the proof. Given a tree t and query∃A,S for some unambiguous

automaton A. We collect the answers of all queries query∃
A,{

→
p }

where
→
p∈ S.

These queries are Cartesian closed so that Theorem 7 applies. We compute the
unique run of u(A) on t in two phases, first first bottom up then top down. This
can be done in timeO(|t|∗|A|). We want to return: query∃

u(A),S1
×. . .×query∃

u(A),Sn

where Si = {pi | (p1, . . . , pn) ∈ S} for all 1 ≤ i ≤ n. In order to avoid a
polynomial blow up, we simply return all individual queries query∃

u(A),Si
rather

then multiplying them out. Each of these queries can be computed in time
O(|t|) by inspecting the unique run of u(A) on t if it exists.

6 Querying unranked trees

Our results carry over to unranked trees by hedge automata [6]. An unranked
tree is build from a set of constants a, b ∈ Σ by the abstract syntax t ::=
a(t1, . . . , tn) where n ≥ 0. A hedge automaton H over Σ consists of a set
states(H), a set final(H) ⊆ states(H), and a set rules(H) of rules of the form
a(A) → p where A is finite word automaton with alphabet states(H) and
p ∈ states(H). Runs of hedge automata H on unranked trees t are functions
r : nodes(t)→ states(H) defined as

t = a(t1, . . . , tn) ∀1 ≤ i ≤ n : ri ∈ runsH(ti)
a(A)→ p ∈ rules(H) r1(ǫ) . . . rn(ǫ) ∈ L(A)

p(r1, . . . , rn) ∈ runsH(t)

Queries for the class of unranked trees over Σ are defined as before. The notion
of unambiguity (that is the existence of at most one run for a tree) carries over
literally to hedge automata (in contrast to determinism). The same holds for
the notions of run-based queries by hedge automata.

Theorem 9. Existential and universal n-ary queries in unranked trees by runs
of hedge automata capture MSO over run-ranked trees (comprising the next sibl-
relation). Run-based based queries by unambiguous hedge automata capture the
class of finite unions of Cartesian closed queries. This property is decidable.
Queries by unambiguous hedge automata have linear combined complexity.

We only give a sketch of the proof. The main idea is to convert queries
by hedge automata into queries by stepwise tree automata [8] for which all
results apply. Stepwise tree automata over an unranked signature Σ are tree
automata for binary trees with constants in Σ and a single binary function
symbol @. Stepwise tree automata can be understood as tree automata that
operate on Currified binary encodings of unranked trees. The Currification of
a(b, c(d, e, f), g) for instance is the binary tree a@b@(c@d@e@f)@g .

Stepwise tree automata were proved to have two nice properties that yield a
simple proof of the theorem. 1) N-ary queries by hedge automata can be trans-
lated to n-ary queries by stepwise automata in linear time, and conversely in
polynomial time. The back and forth translations preserve unambiguity. 2) All
presented results on run-based n-ary queries for binary trees apply to stepwise
tree automata.

20 J. Niehren, L. Planque, J.-M. Talbot, S. Tison

References

1. XML Path Language (XPath): W3C Recommendation, 1999.
2. XML Pointer Language Version 1.0 (Xpointer): W3C Candidate Recommendation, 2001.
3. R. Baumgartner, S. Flesca, and G. Gottlob. Visual Web Information Extraction with

Lixto. In The VLDB Journal, pages 119–128, 2001.
4. A. Berlea and H. Seidl. Binary queries for document trees. Nordic Journal of Computing,

11(1):41–71, 2004.
5. R. Bloem and J. Engelfriet. A comparison of tree transductions defined by monadic second

order logic and by attribute grammars. JCSS, 61(1):1–50, 2000.
6. A. Brüggemann-Klein, M. Murata, and D. Wood. Regular tree and regular hedge lan-

guages over unranked alphabets, 2001. Unpublished.
7. J. Carme, A. Lemay, and J. Niehren. Learning node selecting tree transducer from com-

pletely annotated examples. In 7th International Conference on Grammatical Inference,
LNAI. 2004.

8. J. Carme, J. Niehren, and M. Tommasi. Querying unranked trees with stepwise tree
automata. In RTA, volume 3091 of LNCS, pages 105 – 118. 2004.

9. W. W. Cohen, M. Hurst, and L. S. Jensen. A flexible learning system for wrapping tables
and lists in HTML documents. In Web document analysis: challanges and opportunities.
2003.

10. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison, and M. Tom-
masi. Tree automata techniques and applications. Available on: http://www.grappa.
univ-lille3.fr/tata, 1997.

11. M. Frick, M. Grohe, and C. Koch. Query evaluation on compressed trees. In Proc. LICS
2003, 2003.

12. G. Gottlob and C. Koch. Monadic datalog and the expressive power of languages for web
information extraction. In PODS, pages 17–28, 2002.

13. G. Gottlob and C. Koch. Monadic queries over tree-structured data. In LICS 2002, IEEE
Press.

14. G. Gottlob, C. Koch, R. Baumgartner, M. Herzog, and S. Flesca. The Lixto data extrac-
tion project - back and forth between theory and practice. In ACM PODS. 2004.

15. R. Kosala, J. V. den Bussche, M. Bruynooghe, and H. Blockeel. Information extraction
in structured documents using tree automata induction. In PKDD-2002, pages 299 – 310,
2002.

16. M. Marx. Conditional XPath, the first order complete XPath dialect. In ACM PODS,
pages 13–22. 2004.

17. A. Neumann and H. Seidl. Locating matches of tree patterns in forests. In FSTTCS,
pages 134–145, 1998.

18. F. Neven and J. V. D. Bussche. Expressiveness of structured document query languages
based on attribute grammars. Journal of the ACM, 49(1):56–100, 2002.

19. F. Neven and T. Schwentick. Query automata over finite trees. TCS, 275(1-2):633–674,
2002.

20. J. Oncina and P. Garcia. Inferring regular languages in polynomial update time. In
Pattern Recognition and Image Analysis, pages 49–61, 1992.

21. H. Seidl. On the finite degree of ambiguity of finite tree automata. Acta Informatica,
26(6):527–542, 1989.

22. H. Seidl, T. Schwentick, and A. Muscholl. Numerical document queries. In PODS, pages
155–166. 2003.

23. J. W. Thatcher and J. B. Wright. Generalized finite automata with an application to a
decision problem of second-order logic. Mathematical System Theory, 2:57–82, 1968.

A Omitted proofs

A.1 On regular queries

Lemma 5. Every regular n-ary query is equal to some existential run-based
query.

Querying XML-Trees by Tree Automata 21

Proof. Let L be a regular language over Σ×Bn and A be an automaton such
that L(A) = L. We compute C, an automaton over Σ, and S a selection set
such that L(C) = {t | t∗β ∈ L(A)} and corr query(L(A)) = query∃C,S as follows:

(a, b1, ..., bn)→p ∈ rules(A)

a→(p, b1, ..., bn) ∈ rules(C)

(f, b1, ..., bn)(p1, p2)→p ∈ rules(A)

(f(p1, b
1
1, ...b

n
1), (p2, b

1
2, ..., b

n
2))→(p, b1, ..., bn) ∈ rules(C)

Finally, let states(C) = states(A)×Bn, final(C) = final(A)×Bn and S = P1 ×
...× Pn where for all 1 ≤ i ≤ n:

Pi = {(p, b1, ..., bn) ∈ states(C) | bi = 1}

The correctness of the construction is proved by showing that for any
term t, runsC(t) = {r∗β | r ∈ runsA(t∗β)} and succ runsC(t) = {r∗β | r ∈
succ runsA(t∗β)}. First, we prove by induction that (a) if r∗β ∈ runsC(t), then
r ∈ runsA(t∗β). If t is a constant, then it is obvious. Let t = f(t1, t2). Suppose
(a) is true for t1 and t2. Let (p, b)(r1∗β1, r2∗β2) ∈ runsC(t). So, there is rule such
that f(r1∗β1(ǫ), r2∗β2(ǫ))→(p, b) ∈ rules(C). By definition of our automaton,
(f, b)(r1(ǫ), r2(ǫ))→p ∈ rules(A). By hypothesis, r1 ∈ runsA(t1∗β1) and r2 ∈
runsA(t2∗β2). Then, we have p(r1, r2) ∈ runsA(t).

We now prove by induction that (b) if r ∈ runsA(t∗β), then r∗β ∈ runsC(t).
If t is a constant, then it is obvious. Let t = f(t1, t2). Suppose (b) is true
for t1 and t2. Let p(r1, r2) =∈ runsA((f, b)(t1∗β1, t2∗β2)). So, there is a rule
such that (f, b)(r1(ǫ), r2(ǫ))→p ∈ rules(A). By definition of our automaton,
f(r1∗β1(ǫ), r2∗β2(ǫ))→(p, b) ∈ rules(C). By hypothesis, r1∗β1 ∈ runsC(t1) and
r2∗β2 ∈ runsC(t2). Then, we have (p, b)(r1∗β1, r2∗β2).

As runsC(t) = {r∗β | r ∈ runsA(t∗β)}, then :

succ runsC(t) =
{r∗β | r∗β ∈ runsC(t), r∗β(ǫ) ∈ final(C)} =
{r∗β | r ∈ runsA(t∗β), r∗β(ǫ) ∈ final(A)×Bn} =
{r∗β | r ∈ runsA(t), r(ǫ) ∈ final(A)} =
{r∗β | r ∈ succ runsA(t)}

A.2 On construction of unambiguous automata

We prove Proposition 10.

Lemma 8. For all trees t, automata A, and runs r ∈ runsu(A)(t), if r(ǫ) =
(P ′, P) and p′ ∈ P ′ then there exists a run r′ ∈ runsA(t) with r′(ǫ) = p′.

Proof. By induction on the structure of trees t. If t = a, then P ′ ⊆ P so
that a → P ∈ det(A). Hence, a → p ∈ rules(A) for all p ∈ P ′, and thus
a → p′ ∈ rules(A), i.e., the function r : {ǫ} → states(A) with r(ǫ) = p′ is in
runsA(t).

22 J. Niehren, L. Planque, J.-M. Talbot, S. Tison

If t = f(t1, t2), then there exist runs of r1 ∈ runsu(A)(t1) and r2 ∈ runsu(A)(t2),
with

f(r1(ǫ), r2(ǫ))→ r(ǫ) ∈ rules(u(A))

Let (P ′
1, P1) = r1(ǫ) and (P ′

2, P2) = r2(ǫ). We have f(P1, P2)→ P ∈ rules(det(A)),
so since p′ ∈ P there exist f(p1, p2) → p′ ∈ rules(A) for some states p1 ∈ P1

and p2 ∈ P2. By definition of P ′
1 and P ′

2 this yields p1 ∈ P
′
1 and p2 ∈ P

′
2. By

induction hypothesis, there are runs r′1 ∈ runsA(t1) and r′2 ∈ runsA(t2) with
r′(ǫ) = p1 and r′2(ǫ) = p2. These can be composed into a run r′ ∈ runsA(t) with
r′(ǫ) = p′.

Lemma 9. For all trees t, automata A, π ∈ nodes(t), and runs r ∈ succ runsu(A)(t):
if r(π) = (P ′, P) and p′ ∈ P ′ then there exists a successful run r′ ∈ succ runsA(t)
with r′(π) = p′.

Proof. By induction on the depth of trees π.

Case π = ǫ. The success of r is equivalent to r(ǫ) ∈ final(u(A)), and thus,
P ′ = P ∩ final(A) 6= ∅. Thus, all states p′ ∈ P ′ satisfy p′ ∈ final(A) and
there exists such a state. By Lemma 8 there exists a run r′ ∈ runsA(t) with
r(ǫ) = p′. This run is successful.

Case π = π̃1. Let t̃ be subtree of t at node π̃. The rule of u(A) that justifies
r(π̃) has the form:

f((P ′, P), r(π̃2)→ r(π̃)

Let (P̃ ′, P̃) = r(π̃) and (P ′
2, P2) = r(π̃2). By definition of P ′ in u(A) there

exist states p̃′ ∈ P̃ ′ and p2 ∈ P2 such that

f(p′, p2)→ p̃′ ∈ rules(A)

By induction hypothesis, there exists r̃ ∈ succ runsA(t) with r̃(π̃) = p̃′ Let
f(t̃1, t̃2) = (̃t). Lemma 9 yields the existence of a run r2 in runsA(t̃2) with
r2(ǫ) = p2. Since p′ ∈ P ′ we can apply Lemma 8; it proves the existence of a
run r1 in runsA(t̃1) with r1(ǫ) = p′. We can now compose the runs r̃, r1, and
r2 into a successful run r′ ∈ succ runsA(t) which satisfies r′(π) = r1(ǫ) = p′.

The case π = π̃2 is symmetric.

Proposition 10. For all trees t, automata A, runs r ∈ succ runsu(A)(t), and
nodes π ∈ nodes(t):

r(π) = ({r′(π) | r′ ∈ succ runsA(t)}, {r′(π) | r′ ∈ runsA(t)})

Proof. Let (P,P ′) = r(π). Proposition 9 yields P = {r′(π) | r′ ∈ runsA(t)}. The
preceding Lemma 9 proves P ′ ⊆ {r′(π) | r′ ∈ succ runsA(t)}. It remains to show
for all π ∈ nodes(t) that:

{r′(π) | r′ ∈ succ runsA(t)} ⊆ P ′

We fix r′ ∈ succ runsA(t) and prove r′(π) ∈ P ′ by induction on paths π.

Case π = ǫ. By Proposition 9, r′(ǫ) ∈ P . Since r′ is successful, r′(ǫ) ∈ final(A).
Since r is successful, P ′ = P ∩ final(A) and thus r′(ǫ) ∈ P ′.

Querying XML-Trees by Tree Automata 23

Case π = π̃1. Let (P̃ ′, P) = r(π̃) and (P ′
2, P2) = r(π̃2). By induction hypothe-

sis, we know that r′(π̃) ∈ P̃ ′. Furthermore, runs satisfy:

f(r′(π), r′(π̃2))→ r′(π̃) ∈ rules(A)

Proposition 9 yields r′(π̃2) ∈ P2 and r′(π) ∈ P . The definition of u(A)
implies r′(π) ∈ P ′.

The case π = π̃2 is analogous.

Lemma 10. For all A and trees t, succ runsA(t) = ∅ iff succ runsu(A)(t) = ∅.

Proof. If succ runsu(A)(t) = ∅ then there exists a run rsucc runsu(A)(t) with
r(ǫ) ∈ final(A). By Proposition 10 this means that:

{r′(π) | r′ ∈ succ runsA(t)} = {r′(π) | r′ ∈ runsA(t)})∩
final(A) 6= ∅

Conversely, if succ runsA(t) = ∅ the we can define a successful run of r ∈
succ runsuna(A)(t) by requiring for all nodes π ∈ nodes(t):

r(π) = ({r′(π) | r′ ∈ succ runsA(t)}, {r′(π) | r′ ∈ runsA(t)})

It remains to verify, that r is indeed a successful run of u(A) on t.

24 J. Niehren, L. Planque, J.-M. Talbot, S. Tison

Unification with Expansion Variables: Preliminary
Results and Problems⋆

Adam Bakewell and Assaf J. Kfoury

Department of Computer Science, Boston University
{bake,kfoury}@cs.bu.edu

Abstract. Expansion generalises substitution. An expansion is a special term
whose leaves can be substitutions. Substitutions map term variables to ordinary
terms and expansion variables to expansions. Expansions (resp., ordinary terms)
may contain expansion variables, each applied to an argument expansion (resp.,
ordinary term). Unification instances in this setting are constraint sets, where
constraints are pairs of ordinary terms and unifiers are expansions. We present
a research agenda, a methodology for tackling problems in this setting, and
several preliminary results.

1 Background and Motivation

The study of unification with expansion variables has both practical and theo-
retical ramifications. The motivation comes from type systems for the lambda-
calculus. The theoretical framework gives rise to a host of problems whose so-
lutions require appropriately adapted algebraic and combinatorial techniques.

The key novelty in our framework is the concept of an expansion variable.
We start right off with a brief tutorial on expansion concepts in Section 1.1.
The connection with type systems is briefly discussed in Section 1.2. The scope
and organization of the paper are presented in Sections 1.3 and 1.4.

1.1 Expansion concepts

An expansion generalizes the notion of a substitution. It is a term whose leaves
can be substitutions. For example, an expansion called E1 may be defined by1

E1 = ({a1 7→ a1 ⊗ a1} ⊗ a2)⊗ {a1 7→ a3}

where ⊗ is a binary term constructor and each ai is a term variable (T-variable).
Replacing each substitution leaf in E1 by the identity substitution, we obtain
the term part of E1, namely ({} ⊗ a2) ⊗ {}. Applying the expansion E1 to a
T-variable, say a1, written [E1] a1, results in the term part of E1 with each
substitution leaf S replaced by S(a1). Thus,

[E1] a1 = ((a1 ⊗ a1)⊗ a2)⊗ a3.

⋆ Work partly funded by NSF grant CCR-0113193 Implementing Modular Program Analysis
via Intersection and Union Types.

1 The notation {a1 7→ a1 ⊗ a1} defines the support of a total function f ; i.e. f(x) = x for all
x except a1 where f(a1) = a1⊗a1. The identity substitution is therefore the function whose
support is {}, the empty set.

25

26 A. Bakewell, A. J. Kfoury

Applying the expansion E1 to a plain term τ1 (without expansion variables)
results in the term part of E1 with each substitution leaf S replaced by S(τ1).
For example, if τ1 = (a1 ⊗ a1), then

[E1] τ1 = [E1] (a1 ⊗ a1) = (((a1 ⊗ a1)⊗ (a1 ⊗ a1))⊗ a2)⊗ (a3 ⊗ a3).

An expansion variable (E-variable) e, then, is a kind of function variable. Oc-
currences in terms are always applied to one argument. We say that E-variable
e wraps its argument; the namespace of a subterm is the sequence of E-variables
encountered on the path to it from the root of the term; and e occurs outermost
if its namespace is empty. For example, in

τ2 = e1 (a1 ⊗ e2 a1),

E-variable e1 occurs outermost; e2 is in the namespace e1 and T-variable a1

has occurrences in the namespaces e1 and e1 · e2. Substitutions are extended
to map E-variables to expansions as well as T-variables to terms. Substitution
application is defined such that only the outermost variables of the argument
are affected. For a more involved example, consider the following expansion E2:

E2 = ({} ⊗ S1)⊗ S2 where
S1 = {a1 7→ a4, e2 7→ E1},
S2 = {a1 7→ a5, e2 7→ e3 {a1 7→ a6}}

and E1 was defined previously. The next expansion application shows how ex-
pansions can apply different substitutions to the same variable in different
namespaces: Outermost variable e1 becomes E2; at the leaves of E2, substi-
tutions S1 and S2 are applied; then under e2 in the substitution S1, expansion
E1 is applied:

[{e1 7→ E2}] τ2 = [E2] (a1 ⊗ e2 a1)

= ((a1 ⊗ e2 a1)⊗ [S1] (a1 ⊗ e2 a1))⊗ [S2] (a1 ⊗ e2 a1)

= ((a1 ⊗ e2 a1)⊗ (a4 ⊗ [E1] a1))⊗ (a5 ⊗ [e3 {a1 7→ a6}] a1)

= ((a1 ⊗ e2 a1)⊗ (a4 ⊗ (((a1 ⊗ a1)⊗ a2)⊗ a3))) ⊗ (a5 ⊗ e3 a6)

This layering created by expansion variables is very useful because it makes the
control of variable name disjointness or equality easier.

A graphical summary of the expansions and terms used in this section is in
Figure 1. Edges in expansions, as well as edges in terms inherited from applying
an expansion, are shown in boldface in Figure 1. Although the examples in this
section do not show it, E-variables can occur anywhere in terms, not only at
the root or at the leaves (as in term τ2 above).

In the setting just described, a unifier of two terms τ and τ ′ containing
E-variables is an expansion E such that [E] τ = [E] τ ′. Note that standard
first-order unification is a special case, when the terms τ and τ ′ contain no
E-variables; in this case, a unifier of τ and τ ′ is a first-order substitution, and
therefore trivially an expansion. There is an obvious resemblance between E-
variables here and functional variables in second-order unification, but the two
are different and potential relationships between them are yet to be worked out.

Unification with Expansion Variables: Preliminary Results and Problems 27

Expansion E1: ⊗

⊗ {a1 7→ a3}

{a1 7→ a1 ⊗ a1} a2

Applying E1 to term variable a1 (left), and to term a1 ⊗ a1 (right):

⊗

⊗ a3

⊗ a2

a1 a1

⊗

⊗ ⊗

⊗ a2

⊗ ⊗

a1 a1 a1 a1

a3 a3

Expansion E2 (left), and applying {e1 7→ E2} to term e1 (a1 ⊗ e2 a1) (right):

⊗

⊗ S2

S1{}

⊗

⊗ ⊗

⊗⊗

a4e2a1a1 ⊗

⊗ a3

⊗ a2

a1 a1

a5 e3a6

where

S1 = {a1 7→ a4, e2 7→ E1}

S2 = {a1 7→ a5, e2 7→ e3 {a1 7→ a6}}

Fig. 1. Pictorial tutorial on expansion concepts (see Section 1.1).

1.2 Developments that led to unification with expansion variables

Unification of terms with expansion variables in the general sense introduced
above is an interesting theoretical problem, but there is a lack of practical
motivation for the general case in the absence of applications (at least so far).
Moreover, desirable properties for unification such as the existence of unifiers,
principal unifiers, complete or confluent unification systems, etc., may or may
not be achieved depending on the form of the general framework we choose.

We study a particular form of unification with expansion variables which
has applications in intersection type systems. Henceforth, ordinary terms are
called types, as we build terms using two binary type constructors, → and .∩,

28 A. Bakewell, A. J. Kfoury

instead of one ⊗, and a special constant ω. Expansions include .∩ and a special
constant Ω, but not →.2

Beta-unification. The ω-free restriction of the problem we called β-unification
in [9, 13] and other more recent reports. The name β-unification refers to a pre-
cise connection. There is a constraint set, i.e., an instance of unification with
expansion variables, for every term of the lambda-calculus. A term is β-strongly
normalizing iff the corresponding constraint set has a unifier. This relationship
was expounded in [9], where a somewhat different form of expansion variables
was introduced. A theoretical presentation of another important connection
was described: Constraint-set solving reveals an intersection typing for the cor-
responding lambda-calculus term. System I, a system of intersection types with
expansion variables for the lambda-calculus [13], gave a procedure for solving an
early formulation of unification with expansion variables and applied it to infer
principal typings (not just principal types). Principal typings are important for
compositional program analysis.

Expansions and expansion variables are now being applied and developed in
the framework of System E, a more recent system of intersection types with ex-
pansion variables [5]. This has a more sophisticated and intelligible formulation
of expansions and expansion variables than System I.

Differences in formulation. There are many notational variants between
the present formulation of unification with E-variables and the various earlier
formulations based on System I in [9, 11, 10, 13], which are not important. The
core algebraic setup is similar: Types and constraint were built in the same
way (but without ω). The main difference is in expansions and their semantics.
Substitution was not a case of expansion: The leaves of expansions were always
holes, denoted �. Applying a substitution S to an applied E-variable e, i.e.,
[S] (e τ), gave the term-part of S(e) (as in the present formulation), but with
the ith leaf of S(e) replaced by S(〈τ〉i) where 〈τ〉i creates a copy of τ with all
the variables renamed according to a certain scheme. For example,

[{e1 7→ � .∩�}] (e1 a1) = a1·1
.∩ a1·2

where a1·1 and a1·2 are renamings of a1. To apply substitutions that affect deep
namespaces it was necessary to pre-empt the renamings. Thus the following
substitution achieved the same result as {e1 7→ {} .∩ {}} in the present formu-
lation:

[{e1 7→ �, a1·1 7→ a1, a1·2 7→ a1}] (e1 a1) = a1
.∩ a1

To support this approach there were restrictions on variable names. This makes
translating constraints and their solutions between the present and earlier for-
mulations of unification with expansion variables slightly complicated.

2 The purpose of the special constants ω and Ω is explained in Section 2. In papers on
typed lambda-calculi, the binary constructors ∧ and ∩ are often used instead of our .∩.
We prefer .∩ to avoid symbol overloading. We use ∩ and ∧ to denote set intersection and
logical conjunction, respectively. Contrary to standard uses of ∩ and ∧, our .∩ is not always
associative, commutative or idempotent.

Unification with Expansion Variables: Preliminary Results and Problems 29

The main result established for the formulation used in System I centres
around the connection between β-unification, β-strong normalisation and ty-
pability in the system of intersection types. The restrictions on constraints
indicated above, and other restrictions on substitutions designed to make it fit
well with certain type systems,3 make it difficult to transfer this result to the
present formulation via a translation because there are admissible solutions in
the present formulation that have no counterpart in System I. However, we are
able to establish the same connections and results independently, see Section 4
and [3]. In short, what is presented here completely supersedes the formulation
used in System I.

1.3 What This Paper Is Not

Apart from the historical connection just reviewed, this paper is not about type
systems and the lambda-calculus. Nor is it about the duplication operation
known as “expansion” in the earlier work on intersection-type systems [17, 15,
16]. Nor is it about “expansion variables” as defined and used in our own [9] or
even in [10, 13]. A cursory reading of the forementioned papers makes clear the
differences with the framework of this paper: The mechanisms we define and
bring into play here, in order to formulate problems and resolve them, are not
found in the forementioned papers.

But they are found in the more recent papers on System E [5, 6, 2], where
they are also mixed with a wide range of issues related to type systems and the
lambda-calculus. Our first goal here is to disconnect the concepts of expansion
and expansion variable underlying the process of constraint solving from all
other issues in System E. This separate examination facilitates the explanation
of the key concepts, which are quite natural, and offer new ways of tackling the
still unresolved problems.

1.4 Our Contribution and Organization of This Paper

Once we extract the unification problem from the rest of the System E frame-
work (in Section 2), involving a separate formalization in its own right, we
present:

1. Several modifications of both theoretical and practical interest (in Sec-
tion 3).

2. Research directions (in Section 4) and decidability and undecidability re-
sults. As with other unification problems, the aim is to design efficient sys-
tems that produce most-general unifiers.

3. An outline of preliminary results and a pared-down version of the method-
ology we use to obtain them (in Section 5).

3 Specifically, substitutions were restricted to map T-variables to the restricted types (see
Definition 1).

30 A. Bakewell, A. J. Kfoury

2 Problem Formulation

We first define the syntactic elements that comprise an instance of unification
with expansion variables in Section 2.1, then the semantics of expansions in
Section 2.2, and finally constraints and their unifiers in Section 2.3.

2.1 Syntax

Definition 1 (Types). There are two kinds of variables, expansion variables
(E-variables) and type variables (T-variables),

E-Var = { ei i ∈ I } and T-Var = { ai i ∈ J }

where I and J are countable subsets of the natural numbers. Metavariables e, a
and v range over E-Var, T-Var and Var = E-Var∪T-Var, respectively.4 Restricted
types and types are defined as the least sets satisfying:

Typ→ ⊇ T-Var ∪ { τ1→ τ2 τi ∈ Typ }

Typ ⊇ Typ→ ∪ {ω} ∪ { τ1 .∩ τ2 τi ∈ Typ } ∪ { e τ e ∈ E-Var and τ ∈ Typ }

Metavariable τ̄ and τ range over Typ→ and Typ, respectively. Expressions in
Typ→ have constructors of the simply-typed lambda-calculus outermost. Expres-
sions in Typ add the binary constructor .∩, E-variables and the constant (or
nullary constructor) ω.5

The types are ambiguous, e.g., a .∩ a→ a can be understood as two different
types. To disambiguate we assume → and .∩ associate to the right and .∩ binds
more tightly than →.

Definition 2 (Substitutions and Expansions). If A and B are arbitrary
sets, we write f : A _ B to denote a total function f from A to B.6 Substitu-
tions and expansions are defined simultaneously as the least sets such that:

Substitution ⊇ {�} ∪ {S : Var _ (Typ ∪ Exp) S(a) ∈ Typ and S(e) ∈ Exp }

Exp ⊇ {Ω} ∪ Substitution ∪ { eE E ∈ Exp } ∪ {E1
.∩ E2 Ei ∈ Exp }

4 We are careful to distinguish between literals and metavariables ranging over literals, and
between names of particular objects and metavariables ranging over names. Literals and
names are in sans-serif or upright Greek fonts, e.g., e, a, E and τ. Metavariables are in italic
or regular Greek fonts, e.g., e, a, E and τ .

5 In System E, the system of intersection types with expansion variables [5] which we dis-
cussed in Section 1.2, ω is an important feature and represents the empty intersection.
Among other things, it supports analysis of dead-code in terms (more generally, in func-
tional programs) and allows for a uniform account of terms containing dummy λ-bindings,
e.g., a term of the form ((λx.M)N) where there are no free occurrences of variable x in M .

6 We use the symbol “_” to distinguish it from “→” which is a type constructor.

Unification with Expansion Variables: Preliminary Results and Problems 31

The symbol “�” denotes a particular total function from Var to Typ ∪ Exp,
recursively defined by:7

� = {a 7→ a | a ∈ T-Var} ∪ {e 7→ e� | e ∈ E-Var}

By Proposition 1 below, � is the identity substitution, denoted {} in Section 1.1;
we prefer the less ambiguous �. The symbol “Ω” denotes a particular expansion,
whose interpretation is formally given by Definition 4 below. We call Ω an
annihilator because it maps every type τ to ω and every expansion E to Ω.

Substitutions are sort-preserving total functions from Var to Typ ∪ Exp,
whereas expansions are formal expressions built from the binary constructor .∩,
unary E-variables, and substitutions or Ω at the leaves.8

Definition 3 (Substitution Support). A substitution S is always a total
function on Var whose support is:

support(S) = { a ∈ T-Var S(a) 6= a } ∪ { e ∈ E-Var S(e) 6= e� }

which may or may not be finite. For convenience and whenever possible, we
define a substitution by enumerating the restriction to its support, as in Sec-
tion 1.1. So {a1 7→ a2} is not partial; it is equal to � on all variables apart from
a1.

2.2 Expansion Semantics

Expansions can be applied to any type or expansion. The definition of applica-
tion is the same for the common constructors of both of these sorts.

Definition 4 (Expansion Application). The application of an expansion
E to a type τ (respectively, an expansion E1), written [E] τ (resp., [E]E1),
returns a type (resp., an expansion). The inductive definition follows, starting
with substitutions which are a special case of expansions:

Applying substitutions to types: Applying substitutions to expansions:

[S]α = S(α) [S]S1 = { v 7→ [S] (S1(v)) v ∈ Var }

[S] (τ1→ τ2) = [S] τ1→ [S] τ2

[S]ω = ω [S] Ω = Ω

[S] (e τ) = [S(e)] τ [S] (eE) = [S(e)]E

[S] (τ1 .∩ τ2) = [S] τ1 .∩ [S] τ2 [S] (E1
.∩ E2) = [S]E1

.∩ [S]E2

7 To understand � informally, take the infinite unwinding of its definition. To simplify this,
let T-Var and E-Var be the finite sets {a1} and {e1}, for which we get:

� = {a1 7→ a1, e1 7→ e1{a1 7→ a1, e1 7→ e1{a1 7→ a1, e1 7→ e1{a1 7→ a1, e1 7→ · · ·}}}}

This also shows that substitutions are higher-order functions; their result for an E-variable
argument can include substitutions.

8 As substitutions are not formal expressions, strictly speaking, every S ∈ Substitution should
have a formal symbol, say S#, whose interpretation is the function S. Expansions should
be built from {S# | S ∈ Substitution} instead of Substitution. But this level of precision is
not needed. An alternative is to define substitutions as formal expressions. This approach
is used in [5]; it corresponds more directly to the implementation of expansions, but our
concern here is to reduce the definitional overhead.

32 A. Bakewell, A. J. Kfoury

Applying expansions to types: Applying expansions to expansions:

[Ω] τ = ω [Ω]E = Ω

[eE] τ = e ([E] τ) [eE1]E = e ([E1]E)

[E1
.∩ E2] τ = [E1] τ .∩ [E2] τ [E1

.∩ E2]E = [E1]E .∩ [E2]E

Note how the formal definition matches the description in Section 1.1: A sub-
stitution distributes down to the outermost variables of its argument then gets
applied, in the usual fashion, whereas an expansion distributes its argument
down into its leaves and then applies substitutions to it.

Proposition 1 (� Lifts to the Identity). For all types τ and expansions E,
it holds that [�] τ = τ and [�]E = E = [E] �.

Example 1 (Expansion application). [{e1 7→ Ω .∩� .∩ e4 �}] e1 (ω→ e2 (a1→ a1))
= ω .∩ (ω→ e2 (a1→ a1)) .∩ e4 (ω→ e2 (a1→ a1))

Proposition 2 (Expansion Composition Is Associative). For every type
or expansion X, it holds that [[E1]E2]X = [E1] ([E2]X).

Notation 1 For expansions E1 and E2, let (E1;E2) be shorthand for the com-
position [E2]E1, i.e., E1 is applied first and E2 second (opposite to their order
in [E2]E1). By Proposition 2, “;” is associative, so E1;E2;E3 is unambiguous.

2.3 Solutions and Unifiers

In unification theory, a problem instance is a set of constraints, and a unifier
is a solution. We adapt these standard concepts to our framework. But first,
some notation and definitions on equality and subtyping.

Definition 5 (Equality). Equality of types is determined by an equational
theory, denoted =Eq, induced by a set Eq of equations.9 Two types τ1 and τ2
are equal iff (τ1, τ2) ∈ =Eq, more conveniently written τ1=Eqτ2 or, if the con-
text makes clear what Eq is, τ1 = τ2. Technically, =Eq is the least congruence
relation on the set Typ containing Eq. If Eq = ∅, then =Eq is syntactic equal-
ity. However, in the presence of ω, we require that Eq contains the following
equations at a minimum:

(1) ω .∩ τ = τ = τ .∩ω for all types τ .

(2) eω = ω for all E-variables e.

Equations (1) make ω a neutral element (or a unit) of the binary .∩, correspond-
ing to the intuition that ω is the empty intersection. See footnote 5. Equations
(2) are needed for a smooth theory with (1) and are part of the formal setup
in [2, 5].

Equations other than (1) and (2) are added to Eq when we consider new
type constructors (such as !) or when we want type constructors to obey new
algebraic laws (such as associativity and commutativity of .∩). See Section 3.

9 We follow standard terminology of universal algebra. See [1], for example.

Unification with Expansion Variables: Preliminary Results and Problems 33

Definition 6 (Subtyping). To determine whether a type is a subtype of an-
other, we use a subtyping theory ≤Sub, induced by a set Sub of subtyping pairs.
Instead of writing (τ1, τ2) ∈ ≤Sub, we write τ1 ≤Sub τ2 or, if the context makes
clear what Sub is, τ1 ≤ τ2. The relation ≤Sub is the least closed under the rules:

τ1=Eqτ2
τ1 ≤ τ2

(Eq-≤)
(τ1, τ2) ∈ Sub

τ1 ≤ τ2
(Sub-≤)

τ1 ≤ τ2 τ2 ≤ τ3
τ1 ≤ τ3

(Trans-≤)

τ3 ≤ τ1 τ2 ≤ τ4
τ1→ τ2 ≤ τ3→ τ4

(→-≤)
τ1 ≤ τ3 τ2 ≤ τ4
τ1 .∩ τ2 ≤ τ3 .∩ τ4

(.∩-≤)
τ1 ≤ τ2
e τ1 ≤ e τ2

(e-≤)

Note that =Eq ⊆ ≤Sub. If Sub = ∅, it is easy to see that τ1=Eqτ2 iff τ1≤Subτ2.
What subtyping relations we place in Sub depends on intended applications

and restrictions imposed on type constructors. Some of these are mentioned in
Section 3 and again in Section 4 where we discuss research directions. Unless
otherwise stated, we assume Sub = ∅.

Definition 7 (Constraints and Constraint Sets). A constraint is an or-
dered pair of types τ1 and τ2, written τ1 ⋖τ2. In the special case when Sub = ∅,
we may write the constraint τ1 ⋖τ2 as τ1

.
= τ2 instead. If we want to distinguish

the general case from the special case, the first is a subtyping constraint and the
second an equality constraint. An instance of unification with expansion vari-
ables is a finite set of constraints. Metavariables δ and ∆, possibly decorated,
range over constraints and constraint sets, respectively.

Example 2 (Constraint Set). Introducing a running example:
∆1 = {e1 (ω→ e2 (a1→ a1))

.
= ω .∩ (e3 a1→ e3 a1) .∩ e4 a1}

Definition 8 (Solved Constraint Sets). The predicate solved is defined on
constraints and extended to sets as follows.

solved(τ1 ⋖ τ2) iff τ1 ≤ τ2;
solved(∆) iff solved(δ) for every δ ∈ ∆.

A solved constraint remains solved after the application of any expansion.

Definition 9 (Solutions and Unifiers). If δ is the constraint τ1 ⋖ τ2 and
E an expansion, then [E] δ denotes the constraint [E] τ1 ⋖ [E] τ2. If ∆ is a
constraint set, then [E] ∆ denotes the constraint set { [E] δ δ ∈ ∆ }. Expansion
E is a solution of constraint set ∆ iff solved([E] ∆).

In the special case when Sub = ∅ and constraints are equality constraints,
we may call a solution E a unifier, to emphasize that it equalizes the two sides
of each constraint.

Remark 1. The annihilator Ω trivially solves all constraints, which we thus call
the trivial solution. In general, Ω is not the solution we want, if only because it
cannot be a principal solution when other non-trivial solutions exist. We think
of Ω as a solution of “last resort”, when everything else has failed.10

10 This is the way we deal with Ω in [3]. What plays the role of Ω here is the expansion ω

in [3]. It is perhaps unfortunate that, in [3] following [5], we used the same symbol ω to
denote a type (as we do here) and an expansion (as we do not do here).

34 A. Bakewell, A. J. Kfoury

3 Other Versions of Unification with Expansion Variables

There is much to investigate in relation to the the fundamental framework
presented in Section 2. There are more details in the report [3], which is only a
beginning, as it uncovers more problems than it solves. We consider restrictions
of the fundamental framework to make more tractable some of the theoretical
problems, and consider generalizations for possible applications.

Omega-Free Unification. This simple restriction consists in omitting ω from
the syntax of types (Definition 1) and Ω from the syntax of expansions (Defi-
nition 2), as well as omitting every part dealing with ω and Ω in each of Defi-
nition 4 and Definition 5. In particular, this makes Eq = ∅, so that =Eq is just
syntactic equality. By translating the mechanism of substitution composition
used in [13] to expansion composition as defined here, consistently throughout,
we essentially obtain ω-free unification with expansion variables, for which we
have the most complete set of results so far.

Ranked Unification. The rank of a type τ is the smallest integer k such that
the path between the root of τ and any occurrence of “ .∩” in τ goes to the left of
an occurrence of “→” less than k times. Formally, we stratify types as follows.
The sets Typ0 and Typk, for every k > 1, are the least such that:

Typ0 ⊇ T-Var ∪ { τ1→ τ2 τi ∈ Typ0 } ∪ {ω} ∪ { e τ e ∈ E-Var and τ ∈ Typ0 }

Typk ⊇ Typk−1 ∪ { τ1→ τ2 τ1 ∈ Typk−1 and τ2 ∈ Typk }

∪ { τ1 .∩ τ2 τi ∈ Typk } ∪ { e τ e ∈ E-Var and τ ∈ Typk }

Clearly Typ =
⋃

k>0 Typk. Define rank(τ) as the least k > 0 such that τ ∈ Typk.
Let E be an expansion and δ the constraint τ1 ⋖ τ2. If E is a unifier of δ, we
say E is a rank-k unifier of δ if max{rank([E] τ1), rank([E] τ2)} 6 k. We say E
is rank-k unifier of the constraint set ∆ if E is a rank-k unifier of every δ ∈ ∆.

AC and ACI Unification. Generalizations required by potential applications
will make the binary constructor .∩ satisfy one or more of:

(A) associativity τ1 .∩ (τ2 .∩ τ3) = (τ1 .∩ τ2) .∩ τ3 for all types τ1, τ2 and τ3.
(C) commutativity τ1 .∩ τ2 = τ2 .∩ τ1 for all types τ1 and τ2.
(I) idempotence τ .∩ τ = τ for all types τ .

With AC, and a fortiori ACI, we need to impose an additional requirement for
the theory to work smoothly (see [5]). This is expressed by an equation relating
E-variables to .∩, allowing the first to distribute over the second, as follows:

(D) e (τ1 .∩ τ2) = e τ1 .∩ e τ2 for all E-variables e and types τ1 and τ2.

Equations (A), (C), (I) and (D) are added to Eq and the equational theory
=Eq modified accordingly.

Unification+Bang. In general, intersection types provide more precise typ-
ings when they are linear, i.e., when the binary constructor .∩ is not idempotent.
However, linear types have a high cost, typically making unification computa-
tionally unfeasible. We can relax linearity in a controlled way by introducing

Unification with Expansion Variables: Preliminary Results and Problems 35

the unary type constructor “!”, and adding the following subtyping relation to
Sub:11

! τ ≤ τ .∩ τ for all types τ .

In the presence of !, we also add the following equations to Eq, dictated by
semantic considerations:

(1) ! ω = ω (! is absorbed by ω).
(2) ! ! τ = ! τ (! is idempotent) for all types τ .
(3) e ! τ = ! e τ (E-variables and ! commute) for all E-variables e and types τ .
(4) ! (τ1 .∩ τ2) = ! τ1 .∩ ! τ2 (! distributes over .∩) for all types τ1 and τ2.

Introducing !, subject to the subtyping and equations above, makes it possible to
obtain the precision of linear types when it is useful, while preventing linearity
from getting in the way when it is not needed. More on the use of ! can be found
in [5, 6] in relation to building a flexible type system for the lambda calculus.

The integration of ! with E-variables is straightforward. In addition to a case
for ! in the definitions of Typ and Exp (in Definition 1 and Definition 2), we add
the following rules to expansion and substitution application (see Definition 4):

[!E]X = ! [E]X and [S] !X = ! [S]X

where X is a type or an expansion. But this also complicates the algebra of
types considerably and their unification accordingly.

Other Versions of Unification. Restrictions and generalizations can be com-
bined, guided by theoretical or practical considerations. For example, ω-free
ranked unification imposes the restrictions of both the ω-free and ranked cases.

4 Research Directions

There are standard questions in unification theory that immediately transfer to
our setting. Given an arbitrary unification instance ∆, we ask:

1. Decidability : Is it decidable whether ∆ has a unifier?
(a) If yes, what is the complexity of the decision procedure?
(b) If yes and ∆ has a unifier, what is the complexity of building a unifier?
(c) If no, what meaningful restrictions on ∆ make the problem decidable?

2. Principality : If ∆ has a unifier, does it have a principal unifier from which all
other unifiers can be obtained (by some formal mechanism, such as function
composition, in our case expansion composition)?

These questions are typically further refined. For example, in relation to com-
plexity we may ask for upper bounds (usually easier), and lower bounds (usu-
ally harder). Note that questions 1.(a) and 1.(b) are not equivalent.12 Naturally,

11 For an intuition, think of ! τ as “an object of type ! τ can be used at type τ any number of
times”, and τ .∩ τ as “an object of type τ .∩ τ can be used at type τ only twice”.

12 A case in point is first-order unification. It is decidable whether an instance of first-order uni-
fication has a unifier in low-degree polynomial time. However, when there is a unifier, build-
ing a most general unifier is low-degree polynomial time only with clever data-structures
that represent terms by dag’s instead of trees.

36 A. Bakewell, A. J. Kfoury

such questions arise for unification with expansion variables, or any of the re-
strictions/generalizations mentioned in Section 3 and Section 1.1. Currently,
we have the most complete set of answers (and proof techniques) for ω-free
unification, for which the most significant result is the following.

Theorem 2 (ω-Free Unification With E-Variables Is Undecidable).

1. There is an algorithm A which, given an arbitrary term M of the pure
lambda calculus, returns an ω-fee instance A(M) of unification with ex-
pansion variables such that: M is β-strongly normalising iff A(M) has a
unifier.

2. It is undecidable whether an arbitrary ω-free instance has a unifier.

Only the proof of part 1 in the theorem is complicated. Part 2 is an immediate
consequence of part 1, using the undecidability of β-strong normalization of
terms of the lambda calculus [4]. This undecidability result does not imply the
undecidability of any of the other unification cases mentioned in Section 3.In
particular, as noted in Remark 1, any modification of the framework that in-
cludes a type constant such as ω and a corresponding expansion such as Ω is
trivially decidable. This corresponds to the fact that all terms can be assigned
the type ω in intersection type systems that include ω such as System E. Decid-
able modifications also arise when there are no expansion constructors except
E-variables, or only one constructor.

5 Proposed Methodology

Rewriting techniques provide powerful tools for analyzing and solving problems
in other forms of unification. We use a methodology inspired by such techniques.
We have already developed elements of this approach, although not to the point
of enabling us to tackle all of the problems we raised in Section 4.

In this section we present a streamlined and highly condensed illustration of
the proposed methodology: This is a very simple rewrite system that generates
unifiers for constraint sets built in the most basic version of the framework of
Section 2, with Sub = ∅ (Definition 6). As Sub = ∅, we write constraints as
equality constraints, i.e., we write τ1

.
= τ2 instead of τ1 ⋖ τ2.

The unification procedure interleaves two phases, simplification and rewrit-
ing. The same approach is used in the more powerful procedures considered
in [3]. But first, some helpful notation.

Notation 3 1. Let e be a metavariable ranging over finite sequences of E-
variables, including the empty sequence ε.

2. A constraint of the form e τ1
.
= e τ2, where τ1 and τ2 do not have applica-

tions of the same E-variable outermost, may be written e (τ1
.
= τ2). Call e

the prefix of such a constraint.
3. Let the notation e/S be shorthand for the substitution {e 7→ eS}. Think of

such a substitution as acting under e, or in namespace e.
4. We extend the “/” notation to sequences of E-variables: e · e/S means e/(e/S)

and ε/S means S.

Unification with Expansion Variables: Preliminary Results and Problems 37

Definition 10 (Simplification). The function simplify factors out common
structure and eliminates solved constraints:

simplify(∅) = (∅),

simplify({δ} ∪∆) = simplify(δ) ∪ simplify(∆),

simplify(δ) =

simplify({e τ1
.
= e τ2, e τ ′1

.
= e τ ′2}) if δ is e (τ1 .∩ τ

′
1
.
= τ2 .∩ τ

′
2),

simplify({e τ1
.
= e τ2, e τ ′1

.
= e τ ′2}) if δ is e (τ1→ τ ′1

.
= τ2→ τ ′2),

∅ if δ is τ
.
= τ ,

{δ} otherwise.

For an arbitrary constraint set ∆, solved(∆) is true iff simplify(∆) = ∅. Simpli-
fication is sound in the sense that, for all constraint sets ∆ and all expansion
E, it holds solved([E]∆) iff solved([E] (simplify(∆))).

Example 3. simplify(ω .∩ (ω→e2 a1) .∩ e4 (ω→e2 a1)
.
=ω .∩ (e3 a1→e3 a1) .∩ e4 a1)

= {ω
.
= e3 a1, e2 a1

.
= e3 a1, e4 ((ω→ e2 a1)

.
= a1)}

Definition 13 introduces the relation =
S
=⇒, a one-step rewrite rule, which partly

solves a constraint with substitution S. A few preliminary concepts are needed.

Definition 11 (Topmost Expansion Extraction). By induction on types:

extract(τ̄) = �

extract(ω) = Ω

extract(e τ) = e (extract(τ))
extract(τ1 .∩ τ2) = extract(τ1) .∩ extract(τ2)

In words, the topmost expansion of τ is the largest tree of expansion constructors
from the root of τ down to where non-expansion constructors are encountered,
with the identity substitution � or annihilator substitution Ω at each leaf.

Example 4 (extraction). extract(ω .∩ (e3 a1→ e3 a1) .∩ e4 a1) = Ω .∩� .∩ e4 �

The “outer-part unifier” in the next definition creates substitutions for variables
that occur outermost, i.e., in the top-level namespace. We generate substitution
unifiers: Forming expansion unifiers from a set of substitution unifiers is easily
done separately.

Definition 12 (Outer-Part Unifier). The binary relation −unifier−−−→ relates con-
straints and substitutions according to the following rule:

e (τ1
.
= τ2) −

unifier−−−→

{
e/{a 7→ τ̄} if {τ1, τ2} = {a, τ̄} (T-unify)

e/{e 7→ extract(τ)} if {τ1, τ2} = {e τ̄ , τ} (E-unify)

Recall that in constraint e (τ1
.
= τ2) there is no E-variable e such that τ1 = e τ ′1

and τ2 = e τ ′2, by Notation 3. And τ̄ refers to a restricted type, by Definition 1.

– (T-unify) solves a constraint where one side is a T-variable and the other
side is a restricted type, if a is not in the empty namespace of τ̄ .

38 A. Bakewell, A. J. Kfoury

– (E-unify) solves the topmost part of a constraint by substituting the topmost
expansion of one side for the E-variable e on the other side, provided the
argument of e is a restricted type.

Remark 2. The (T-unify) and (E-unify) rules do not include occur checks on
the variables in the empty namespaces of τ and extract(τ) respectively. Adding
these conditions prevents perpetual rewriting of constraint sets such as
{e1 a1

.
= e1 a2

.∩ e1 a2}.

Example 5 (Outer-Part Unifier). e2 (a1→ a1)
.
= e3 a1 −

unifier−−−→ {e3 7→ e2 �}

Definition 13 (One-Step and Multi-Step Rewriting). The one-step re-

write rule =
S
=⇒ does two things: It first (non-deterministically) outer-part unifies

one of the constraints, applying the resulting substitution S to the entire con-
straint set, and then it simplifies:

∆ =
S
=⇒ simplify([S]∆) if there is δ ∈ simplify(∆) such that δ −unifier−−−→ S.

We define ∆ ==⇒ ∆′ if there is a substitution S such that ∆ =
S
=⇒ ∆′. The multi-

step rewrite rule ==⇒⇒ is the reflexive transitive closure of ==⇒. Formally, we first
define for all ∆,∆1 and ∆2:

∆ =
�

=⇒⇒ simplify(∆) and

∆ =
S1;S2
===⇒⇒ ∆2 if ∆ =

S1
=⇒ ∆1 and ∆1 =

S2
=⇒⇒ ∆2.

We then define ∆ ==⇒⇒ ∆′ if there is a substitution S such that ∆ =
S
=⇒⇒ ∆′.

Example 6 (Rewriting).

∆1 =
{e1 7→Ω .∩� .∩ (e4 �)}
===========⇒ {ω

.
= e3 a1, e2 (a1→ a1)

.
= e3 a1, e4 (ω→ e2 (a1→ a1)

.
= a1)}

=
e4/{a1 7→ω→e2 (a1→a1)}
=============⇒ {ω

.
= e3 a1, e2 (a1→ a1)

.
= e3 a1}

=
{e3 7→e2 �}
======⇒ {ω

.
= e2 a1, e2 (a1→ a1

.
= a1)}

=
{e2 7→Ω}
====⇒ ∅

Theorem 4 (Soundness of Rewriting). If ∆ =
S
=⇒⇒ ∅ then solved([S] ∆), i.e.,

S is a unifier of ∆.

Thus a rewrite sequence resulting in ∅ produces a unifier. The length of a
rewrite sequence is the number of applications of the one-step rewrite rule which
it comprises. Infinite rewrite sequences have an unbounded length; terminating
rewrite sequences have a finite length.

Remark 3 (Incompleteness). There are constraints, such as ω
.
= a1→ a1, with

expansion-unifiers, that ==⇒ cannot solve. There are also constraints with substi-
tution-unifiers that ==⇒ cannot solve; for an idea of the issues involved, witness:

∆2 = {e1 (ω
.
= a1→ a1), e1 a1

.
= a1

.∩ a1} =
{e1 7→� .∩�}
======⇒ ∆2 = {ω

.
= a1→ a1}

Unification with Expansion Variables: Preliminary Results and Problems 39

∆2 is soluble with S3 = {e1 7→ Ω .∩Ω, a1 7→ ω} but the simple system has vari-
ous inadequacies, preventing the discovery of such unifiers: It always assigns out-
ermost E-variables the topmost extraction, rather than allowing lesser extrac-
tions; it does not rename variables under an expanded E-variable; and, most rel-
evant for ∆2, it does not introduce fresh E-variables so that such solutions can be
built up gradually, e.g. [S3]∆2 = [{e1 7→ e2�

.∩ e2�}; {e2 7→ Ω}; {a1 7→ ω}]∆2.

Remark 4 (Termination and Non-Termination). Some constraints have infinite
rewrite sequences. For example, the following rewrite produces a kind of repeat-
able cycle:

∆3 = {e1 ((e2 ((e3 a1→a2) .∩ e3 a1))→e4 a2)
.
= e2 ((e3 a1→a2) .∩ e3 a1), e4 a2

.
= a2}

=
{e4 7→�};{e1 7→e2 (� .∩e3 �)};e2 e3/{a1 7→(e2 ((e3 a1→a2) .∩e3 a1))→e4 a2}
======================================⇒⇒ [e2]∆3

So termination depends on the rewrite strategy because ∆3 is solved by another
strategy that generates the substitutions {e2 7→ e1 �}; {e1 7→ Ω}; {e4 7→ �}. In-
finite rewriting is an essential ingredient for the correspondence to β-reduction
(mentioned in Section 1.2).

Theorem 5 (Completeness of Rewriting for a Special Case). The sim-
ple rewrite system presented in this section is complete for the special case when
instances ∆ satisfy the conditions spelled out in [3, 2].13 That is, for such a ∆,

if ∆ has a unifier then ∆ =
S
=⇒⇒ ∅ for some substitution S.

References

1. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press,
1998.

2. A. Bakewell, S. Carlier, A. J. Kfoury, and J. B. Wells. Exact intersection typing inference
and call-by-name evaluation. Technical report, Department of Computer Science, Boston
University, Dec. 2004.

3. A. Bakewell and A. J. Kfoury. Unification with expansion variables. Technical report,
Department of Computer Science, Boston University, Dec. 2004.

4. H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North-Holland,
revised edition, 1984.

5. S. Carlier, J. Polakow, J. B. Wells, and A. J. Kfoury. System E: Expansion variables for
flexible typing with linear and non-linear types and intersection types. In Programming
Languages & Systems, 13th European Symp. Programming, vol. 2986 of LNCS, pp. 294–
309. Springer-Verlag, 2004.

6. S. Carlier and J. B. Wells. Type inference with expansion variables and intersection types
in System E and an exact correspondence with β-reduction. In Proc. 6th Int’l Conf.
Principles & Practice Declarative Programming, 2004.

7. D. D. Champeaux. About the paterson-wegman linear unification algorithm. J. Comput.
Syst. Sci., 32(1):79–90, 1986.

8. A. J. Kfoury. Beta-reduction as unification. A refereed extensively edited version is [9].
This preliminary version was presented at the Helena Rasiowa Memorial Conference, July
1996.

13 These conditions cannot be presented within the confines of this extended abstract. But
suffice it to say that if the constraint set ∆ corresponds to the typability of a term of the
lambda calculus in a certain system of intersection types, then ∆ satisfies the conditions.

40 A. Bakewell, A. J. Kfoury

9. A. J. Kfoury. Beta-reduction as unification. In D. Niwinski, ed., Logic, Algebra, and
Computer Science (H. Rasiowa Memorial Conference, December 1996), Banach Center
Publication, Volume 46, pp. 137–158. Springer-Verlag, 1999. Supersedes [8] but omits a
few proofs included in the latter.

10. A. J. Kfoury, G. Washburn, and J. B. Wells. Implementing compositional analysis using
intersection types with expansion variables. In Proceedings of the 2nd Workshop on In-
tersection Types and Related Systems, 2002. The ITRS ’02 proceedings appears as vol.
70, issue 1 of Elec. Notes in Theoret. Comp. Sci.

11. A. J. Kfoury and J. B. Wells. Principality and decidable type inference for finite-rank
intersection types. In Conf. Rec. POPL ’99: 26th ACM Symp. Princ. of Prog. Langs., pp.
161–174, 1999. Superseded by [13].

12. A. J. Kfoury and J. B. Wells. Principality and type inference for intersection types using
expansion variables. Supersedes [11], Aug. 2003.

13. A. J. Kfoury and J. B. Wells. Principality and type inference for intersection types using
expansion variables. Theoret. Comput. Sci., 311(1–3):1–70, 2004. Supersedes [11]. For
omitted proofs, see the longer report [12].

14. M. Paterson and M. Wegman. Linear unification. J. Comput. Syst. Sci., 16(2):158–167,
1978.

15. S. Ronchi Della Rocca. Principal type schemes and unification for intersection type dis-
cipline. Theoret. Comput. Sci., 59(1–2):181–209, Mar. 1988.

16. S. Ronchi Della Rocca and B. Venneri. Principal type schemes for an extended type
theory. Theoret. Comput. Sci., 28(1–2):151–169, Jan. 1984.

17. S. J. van Bakel. Intersection Type Disciplines in Lambda Calculus and Applicative Term
Rewriting Systems. Ph.D. thesis, Catholic University of Nijmegen, 1993.

R-Unification thanks to Synchronized
Context-Free Tree Languages

Pierre Réty, Jacques Chabin, and Jing Chen

LIFO - Université d’Orléans, B.P. 6759, 45067 Orléans cedex 2, France
E-mail: {rety, chabin, chen}@lifo.univ-orleans.fr

http://www.univ-orleans.fr/SCIENCES/LIFO/Members/rety

Abstract. Expressing descendants or the rewrite relation by tree-(tuple) lan-
guages allows to deal with R-matching and R-unification problems. We present
in addition a new class of tree-tuple languages, more expressive than former
ones, but having the same properties. Thanks to this new class, we hope to
solve more interesting R-matching and R-unification problems.

1 The General Method

Given a confluent term rewrite system R, computing descendants (i.e. successors
by rewriting) can be applied to R-matching and R-unification. Indeed the R-
matching problem t ⊳R t′ has at least one solution θ iff ∃s, tθ →∗

R s ∗
R ← t′,

which is equivalent to check that

R∗({tσ | σ ∈ Subst}) ∩R∗({t′}) 6= ∅

where Subst is the set of all substitutions and R∗(E)
def
= {s | ∃e ∈ E, e→∗

R s}
are the descendants of the set of terms E. In the same way, and if we assume
that t and t′ do not share variables, the R-unification problem t

.
=R t′ has at

least one solution iff

R∗({tσ | σ ∈ Subst}) ∩R∗({t′σ′ | σ′ ∈ Subst}) 6= ∅

The above remarks can be used to decide R-matchability or R-unifiability,
but do not allow to express the possible R-matches or R-unifiers. However if we
can compute the binary relation →∗

R by expressing a set of pairs of terms, we
can in addition express the matched terms, i.e. {tθ, tθ =R t′} (or the unified
terms in a similar way), by computing

M = Π1(({tσ, σ ∈ Subst} 1⋊⋉1 →
∗
R) 2⋊⋉1 (∗

R← 2⋊⋉1 {t
′}))

where Π1 is the projection onto the first component, and T i⋊⋉j T
′ denotes the

natural join (like in a relational database) between the i-th component of T and
the j-th component of T ′ 1. Now, if we can solve the “set syntactic-matching
problem”, i.e. compute {θ ∈ Subst, tθ ∈ M}, we get the R-matches. We can
get R-unifiers in a similar way.

2 Using Existing Tree-(tuple) Languages

Some tree-(tuple) languages allow to achieve the general method presented in
the previous section.

1 Note that computing →∗
R allows to compute the descendants because R∗(E) = Π2(E 1⋊⋉1

→∗
R).

41

42 P. Réty, J. Chabin, J. Chen

2.1 By computing descendants

- Using regular tree languages.
If t and t′ are linear, then {tσ | σ ∈ Subst} and {t′σ′ | σ′ ∈ Subst} are
regular languages. Moreover regular tree languages are closed under inter-
section, and emptiness is decidable. Therefore for every rewrite system R
that preserves recognizability2 , R-matchability of problems t ⊳R t′ s.t. t is
linear is decidable, and R-unifiability of linear equations is decidable. Strong
restrictions ensuring recognizability preservation have been studied [1, 4, 3,
9, 12, 8, 11].

- Using context-free tree languages.
Assume that the rewrite system does not preserve recognizability, but sat-
isfies the following property : E is regular implies R∗(E) is context-free [10].
However context-free languages are not closed under intersection, but are
closed under intersection with a regular language. Therefore, we need to
assume in addition that t′ is irreducible in the matching problem t⊳R t

′ so
that R∗({t′}) = {t′} is regular. In the linear unification problem t

.
=R t′,

we need to assume that R is left-linear and constructor-based, and t′ con-
tains only constructors and variables, so that E = {t′σ′ | σ′ ∈ Subst ∧
σ′ is normalized} is regular and contains only normalized terms, and conse-
quently R∗(E) = E is regular.

2.2 By expressing →
∗

R

Here, tree-tuple languages are needed. The class of synchronized tree-tuple lan-
guages, first presented thanks to Tree-Tuple Synchronized Grammars (TTSG)
[5], then extended thanks to the so-called Constraint Systems (CS) [2], and
finally extended using a logic-programming framework [7] called CS-programs,
allows to express →∗

R [6] in a number of cases. Moreover, thanks to the logic-
programming formalism, the “set syntactic-matching problem” is trivially solv-
able. Therefore we can express the R-matches (or R-unifiers) and (more inter-
esting) handle them.

3 Merging Context-free and Synchronized Languages

Context-free tree languages and synchronized tree-tuple languages have the
same properties : they are closed under union, closed under intersection (of one
tuple-component) with a regular tree language, membership and emptiness are
decidable.

In order to increase expressivity, we have defined a new class of tree-tuple
languages : the synchronized context-free languages, obtained by mixing the
previous ones, and we are proving that the properties recalled above still hold.
This new class should allow to express both descendants and →∗

R in more cases
than before, thanks to its bigger expressivity.

2 I.e. E is regular implies R∗(E) is regular.

R-Unification thanks to Synchronized Context-Free Tree Languages 43

To give an intuitive idea, let us give a few examples. The following language
is context-free (n ∈ IN) :

sn

pn

a

The following language is synchronized :

f

sn

a

gn

a

The following language is in the new class (synchronized context-free), but it is
neither a context-free language, nor a synchronized language :

f

sn

pn

a

gn

hn

a

Actually, the new class can express an unbounded counting both in several inde-
pendent branches (like in a synchronized language), and in two nested positions
(like in a context-free language). Moreover, this class allows to recursively copy
subterms, which enables to express (among others) the set of binary balanced
trees.

We use logic programs, instead of grammars or automata.

Definition 1. A logic program with modes is a logic program such that a mode-
tuple m ∈ {I,O}n is associated to each predicate symbol P (n is the arity of
P). In other words, each predicate argument has mode I (Input) or O (Output).
To distinguish them, output arguments will be covered by a hat.

Notation: Let P be a predicate symbol. ArIn(P) is the number of input ar-
guments of P , and ArOut(P) is the number of output arguments.

Notation: Let B be a list of atoms (possibly containing only one atom).
Input(B) is the input part of B, i.e. the tuple composed of the input argu-
ments of B. ArIn(B) is the arity of Input(B). V arIn(B) is the set of variables
that appear in Input(B).
Output(B), ArOut(B), and V arOut(B) are defined in a similar way.
We also define V ar(B) = V arIn(B) ∪ V arOut(B).

Definition 2. Let B = A1, . . . , An be a list of atoms. We say that Aj > Ak

(possibly j = k) if ∃y ∈ V arIn(Aj)∩V arOut(Ak). In other words an input of Aj

depends on an output of Ak.
We say that B has a cycle if Aj >

+ Aj for some Aj (>+ is the transitive closure of

>).
We say that the clause H ← B has a cycle if B has a cycle.

44 P. Réty, J. Chabin, J. Chen

Example 1. Q(x̂, s(y)), R(ŷ, s(x)) (x, y are variables) has a cycle because Q >
R > Q.

Definition 3. A Synchronized Context-Free program (S-CF program) Prog is
a logic program with modes, whose clauses H ← B both satisfy :

- Input(H).Output(B) (. is the tuple concatenation) is a linear tuple of variables,
i.e. each tuple-component is a variable, and each variable occurs only once.

- B does not have a cycle.

Given a predicate symbol P without input arguments, the tree-(tuple) language
generated by P is L(P) = {t ∈ (TΣ)ArOut(P) | P (t) ∈ Mod(Prog)}, where
Mod(Prog) is the least Herbrand model of Prog. L(P) is called Synchronized
Context-Free language (S-CF language).

If in addition every clause H ← B of Prog satisfies :

- Output(H).Input(B) (. is the tuple concatenation) is a linear tuple, i.e. each
variable of Output(H).Input(B) occurs only once,

then Prog is said non-copying.

Remark 1. - If a predicate symbol P has no input argument, this means that
the outputs of P do not depend on a given input value (like in a regular
language). Therefore, a S-CF program whose predicate symbols do not have
input arguments, is called synchronized program. It generates a synchronized
tree-(tuple) language. This class of languages has already been studied in
[7, 6]. In these papers, synchronized programs are called cs-programs.

- If a predicate symbol P has several output arguments, this means that these
output arguments are linked (synchronized) together. Therefore, a S-CF
program whose predicate symbols have only one output argument, is called
context-free program (without synchronization). It generates a context-free
tree language.

- A non-copying context-free program whose predicate symbols have no input
arguments, is called regular program. It generates a regular tree language.

Example 2. (x, y are variables)

Prog = {P (ŝ(x), y)← P (ŝ(x), y)}

is not a S-CF program because Input(H).Output(B) = (y, s(x)) is not a tuple
of variables.

Prog′ = {P ′(ŝ(x), y)← P ′(x̂, s(y))}

is a S-CF program because Input(H).Output(B) = (y, x) is a linear tuple of
variables, and there is no cycle. Prog′ is not copying becauseOutput(H).Input(B) =
(s(x), s(y)) is a linear tuple.

Example 3. (for n ∈ IN, fn(a) is the term f(f(...f(a))) where f occurs n times)

Prog = {S(ĉ

x y

)← P (x̂, ŷ, a, b). P (f̂

x

, ĝ

y

, x′, y′)← P (x̂, ŷ, h

x′

, i

y′

). P (x̂, ŷ, x, y)←}

R-Unification thanks to Synchronized Context-Free Tree Languages 45

is a non-copying S-CF program. Note that Prog is neither a synchronized pro-
gram, nor a context-free program. The language generated by S is :

L(S) = { c

fn

hn

a

gn

in

b

| n ∈ IN}

Actually, this language is neither a synchronized language, nor a context-free
language.

Example 4.

Prog = {S(f̂

x x

)← S(x̂). S(â)←}

is a copying context-free program. The language L(S) generated by S is the
set of binary balanced terms (all leaves occur at the same depth) over the
signature Σ = {f, a}. Actually, L(S) cannot be generated by a non-copying
S-CF program.

Example 5.

Prog = {P (x̂)← Q(x̂, y), R(ŷ). Q(ĉ

y x

, x)← Q(ŷ, s

x

). Q(x̂, x)← . R(â)←}

is a copying S-CF program.

L(P) = { c

c

c

...

c

sn

a

sn−1

a

s2

a

s

a

a

| n ∈ N}

References

1. M. Dauchet and S. Tison. The theory of ground rewrite systems is decidable. In Fifth
Annual IEEE Symposium on Logic Computer Science, pages 242–248. IEEE Computer
Society Press, Philadelphia, Pennsylvania, 1990.

2. V. Gouranton, P. Réty, and H. Seidl. Synchronized Tree Languages Revisited and New
Applications. In Proceedings of 6th Conference on Foundations of Software Science and
Computation Structures, Genova (Italy), LNCS. Springer, 2001.

3. P. Gyenizse and S. Vagvolgyi. Linear Generalized Semi-monadic Rewrite Systems Effec-
tively Preserve Recognizability. Theoretical Computer Science, 194, pp 87-122, 1998.

4. F. Jacquemard. Decidable approximations of term rewrite systems. In editor
H. Ganzinger, editor, Proceedings 7th Conference RTA, New Brunswick (USA), volume
1103 of Lecture Notes in Computer Science, pages 362–376. Springer-Verlag, 1996.

5. S. Limet and P. Réty. E-Unification by Means of Tree Tuple Synchronized Grammars.
Discrete Mathematics and Theoritical Computer Science (http: // www. dmtcs. loria.
fr), 1:69–98, 1997.

46 P. Réty, J. Chabin, J. Chen

6. S. Limet and G. Salzer. Proving properties of term rewrite systems via logic programs.
In proceedings of RTA 2004, volume 3091 of LNCS, pages 170–184. Springer Verlag, 2004.

7. Sébastien Limet and Gernot Salzer. Manipulating tree tuple languages by transform-
ing logic programs. In Ingo Dahn and Laurent Vigneron, editors, Electronic Notes in
Theoretical Computer Science, volume 86. Elsevier, 2003.

8. C. Loding. Model-checking Infinite Systems Generated by Ground Tree Rewriting. In
Proceedings of the 7th Conference on Foundations of Software Science and Computation
Structures. LNCS, Springer, 2002.

9. P. Réty. Regular Sets of Descendants for Constructor-based Rewrite Systems. In Proceed-
ings of the 6th international conference LPAR, number 1705 in Lecture Notes in Artificial
Intelligence (LNAI), Tbilisi, Republic of Georgia, 1999. Springer Verlag.

10. P. Réty and J. Vuotto. Context-free tree languages for descendants. In 5th Workshop on
Rule-Based Programming (RULE’2004). Proceedings in ENTCS vol 124(1), 2005.

11. H. Seki, T. Takai, F. Youhei, and Y. Kaji. Layered Transducing Term Rewriting Sys-
tem and its Recognizability Preserving Property. In 13th International Conference RTA,
volume 2378 of Lectures Notes in computer Science. Springer-Verlag, 2002.

12. T. Takai, Y. Kaji, and H. Seki. Right-linear finite path overlapping term rewriting systems
effectively preserve recognizability. In L. Bachmair, editor, Proceedings 11th Conference
RTA, Norwich (UK), volume 1833 of LNCS, pages 246–260. Springer-Verlag, 2000.

Symbolic Debugging in Polynomial Time

Christopher Lynch1 and Barbara Morawska2

1 Department of Computer Science, Box 5815, Clarkson University, Potsdam, NY
13699-5815, USA, E-mail: clynch@clarkson.edu

2 Chair for Automata Theory, Institute for Theoretical Computer Science, Dresden
University of Technology, Germany, E-mail: morawska@tcs.inf.tu-dresden.de

Abstract. We show how to use Sorts and Normal Forms to speed up the
Narrowing Procedure. Even when an equational theory is closed under Super-
position, Narrowing may not terminate. When an equational theory is closed
under Paramodulation Narrowing terminates, but it may have NP complexity.
We show that it is possible in some equational theories to use Sorts and Normal
Forms to model well-formed terms to force Narrowing to terminate with linear
time complexity. We give some real examples which have linear behavior, such
as the theory of lists. We also extend the theory of lists to the theory of lists
plus length. We show how these results are useful in debugging.

1 Introduction

When we reason about programs, we must take into account the data struc-
tures that are used in the programs. Reasoning about programs then takes place
modulo an equational theory of the data structures used in the programs. There
are general inference procedures, such as Superposition, which allow such rea-
soning for any equational theory. However, these procedures are undecidable in
general. Therefore, it is necessary to give a better analysis of the decidability
and running time of these procedures for specific data structures.

For example, [1] shows how rewriting techniques can be used for verification
of programs modulo the theory of lists and the theory of arrays. They show
that the problem of program verification is the problem of showing if one set
of ground equations implies another ground equation, modulo the theory of
the data structures used in the program. They show that the Superposition
inference system will halt when solving this problem for the theory of lists and
the theory of arrays. In [3] it is shown that the problem can be solved modulo
the theory of lists in O(nlg(n)).

The problem of program verification is a universal problem. We want to show
that the precondition implies the postcondition for all values of the variables
used in the program. In this paper, we consider a different problem, which we
call the symbolic debugging problem. Suppose we want to know if is is possible
to follow a certain path in the program. Furthermore, suppose we want to
know for what values of the variables a certain path will be taken. A path
in the program can be represented by a set of equations and disequations,
which represent the conditions appearing at each choice point in the program.
Therefore, the problem we need to solve is the problem of E-unification of that
set of equations and disequations. If the E-unification problem has a solution,
then that means it is possible to take that path. And the solution represents

47

48 C. Lynch, B. Morawska

all the values of the variables that will cause the execution of the program to
proceed along that path. The E-unification we need to solve will be unification
of those equations and disequations modulo the data structures used in the
program.

The problem of E-unification needed for debugging is much harder than the
word problem necessary for verification. We now need to solve an existential
problem instead of a universal problem. Whereas, universal equational prob-
lems can be solved by Rewriting, E-unification problems need to be solved by
Narrowing. For some equational theories, Rewriting terminates in polynomial
time, whereas Narrowing does not terminate. This is bad enough, but we are
also interested in efficient procedures. Therefore, we want to show that Nar-
rowing will halt in polynomial time. This is even more difficult. The problem is
that Rewriting can be performed don’t care nondeterministically, whereas Nar-
rowing is don’t know nondeterministic. Even simple ground equational theories,
such as {f(a) ≈ b} have an exponential time Narrowing procedure [4].

We aim to make Narrowing procedures more deterministic, so that they
halt in polynomial time for some interesting equational theories. We solve that
problem using Sorts and Normal Forms. For example, in the theory of Lists, we
have equations such as car(cons(x, y)) = x. Given a goal containing a term of
the form car(z), we narrow it don’t know nondeterministically using the above
equation. This causes exponential behavior for Narrowing in the theory of Lists.

Notice that in order for a term of the form car(z) to make sense, z must
be a nonempty list, and therefore z is of the form cons(z1, z2). So we will say
that z is equivalent to a term cons(z1, z2). We extend our goal clause with a
disequation z 6≈ cons(z1, z2). We then select the extension literals. This will
ensure that whenever there is a Narrowing step possible in a goal, then there
is a Rewrite step at that position. This allows us to make the entire procedure
don’t care nondeterministic, and so it will halt in linear time for the theory of
lists.

We give a syntactic condition on an equational theory and its associated
Sort and Normal Form theory. And we show that for any equational theory
meeting this condition, there is a linear time E-unification procedure for that
theory. The E-unification procedure is just the Superposition inference system
with eager Rewriting. This class of theories includes the theory of Lists.

The class of theories mentioned above does not include recursive theories.
However, we show that we can extend the theory of Lists to include the theory
of Length. E-unification for the combination of those theories can still be done
in linear time. We will decide in linear time if the goal is E-unifiable. If it is
E-unifiable, then we will generate a representation of the unifier. The repre-
sentation will not be a recursive representation as in [5]. What we will do is to
not allow any Narrowing steps into a term of the form length(x). When the
Narrowing procedure halts, the goal will be in a form for which E-unification
is easily decidable using the the syntactic unification procedure. The repre-
sentation of the unifier which we create may contain equations of the form
length(x) = length(y) for example. We argue that such a representation is eas-
ily understandable to a human who examines the result. There are infinitely

Symbolic Debugging in Polynomial Time 49

many E-unifiers of this equation. The procedure of [5] can handle the theory of
Lists and Length, but it will not run in polynomial time.

Finally we combine our existential results for E-unification with the univer-
sal results of the word problem. We consider problems of the form ∀X.(A →
∃Y.B), where X and Y are sequences of variables, A may contain variables from
X and B may contain variables from X and Y . This is equivalent to the prob-
lem of showing E-unification for a ground theory modulo the theory of some
data structure. We show that such problems are still solvable in polynomial
time for the theory of Lists.

2 List Example

Consider the theory of lists as an example. In the theory of lists, we have the
following equations:

Theory of Lists L

car(cons(x, y)) ≈ x cdr(cons(x, y)) ≈ y cons(car(x), cdr(x)) ≈ x

The theory of lists is closed under Superposition, so it is a convergent rewrite
system. Therefore, the word problem is decidable in the theory of lists, because
to determine if two terms are equal, it is only necessary to reduce them both to
their normal forms, and see if those two normal forms are the same. We note
that in every application of a rewriting step from s to t in this theory, t will
have fewer symbols than s. This implies that terms can be reduced to their
normal form in a linear number of steps, and therefore the word problem can
be decided in linear time.

But this may not be the case for E-unification. Even if a theory is closed
under Superposition, Narrowing may not halt. And in theories where it does
halt, it may halt in exponentially many steps. For the theory of lists, it is closed
under Paramodulation, so E-unification can be decided in NP by Narrowing[7]
or Basic Syntactic Mutation[4]. In practice, this may be exponential.

Consider the E-unification problem represented by car(x) 6≈ car(y). It is
possible to apply a Narrowing step to the left hand side of this goal. The result
of that Narrowing step is x1 6≈ car(y), with the substitution x 7→ cons(x1, y1).
This is a don’t-know nondeterministic step. Therefore, we also have to apply
Narrowing to the right hand side of the original goal, which yields car(x) 6≈ x2,
with the substitution y 7→ cons(x2, y2). These substitutions are essentially the
same substitution. In addition, we could have applied Equation Resolution at
the beginning, which gives the substitution x 7→ y. This substitution is less
general than the other two.

It would be easy to define an exponential time E-unification problem based
on this idea. For example, let s0 be the term cdr(x0), and for i ≥ 0, let si+1 =
cons(car(xi+1), si). Similarly, let t0 be the term cdr(y0), and for i ≥ 0, let
ti+1 = cons(car(yi+1), ti). Then the E-unification problem sn 6≈ tn will require
exponential time to solve using Narrowing.

However, all the solutions that are found are essentially the same. So how
can we streamline the Narrowing Procedure so that it only finds one solution

50 C. Lynch, B. Morawska

for this example? Our solution is to for the substitutions to only be in a form
which makes sense.

The first part of our solution is to use Sorts, which forces the substitutions
to only be in form which makes sense. So we define a Sort theory for the theory
of lists, as

Sort Theory for Lists

I(car(xL)) L(cdr(xL)) L(cons(xI , yL))

This indicates that there are two sorts in the theory of lists. The Sort L is
for list, and the sort I is for an item of a list. So this sort theory says that car
takes a list and returns an item, cdr takes a list and returns a list, and cons
takes an item and a list and returns a list.

More importantly, we define normal forms for the theory. For example, for
lists, we have the following normal forms:

Normal Forms for List Theory

car(cons(x, y)) cdr(cons(x, y))

These normal forms say that a car-term must be applied to something
equivalent to a cons-term. It does not need to be exactly a cons-term though.
For example car(cdr(x)) is a valid term. A cdr-term must also be applied to
something equivalent to a cons-term. In this example, the normal forms are
from the left hand side of the equation, which will be the case in many theories.
We do not require that there is only one normal form for each function symbol,
although that will often be the case. The normal forms will end up providing
more determinism to the procedure.

Now we need to modify everything to take into account the normal forms.
We do it by extending the equations in L and also extending the goal. Each
clause is extended so that whenever car(t) or cdr(t) appears in a clause, we add
a new literal t 6≈ cons(y, z) to that clause, where y and z are fresh variables.

Another thing which gives more determinism in the case of lists is to note
that if the goal contains a literal s 6≈ t where s and t only contain cons function
symbols, then there are no inferences into s or t, so again Equation Resolu-
tion can be performed deterministically. This will also be generalized for some
equational theories besides the list theory.

The equation cons(car(x), cdr(x)) ≈ x in the Theory of Lists L becomes
a clause cons(car(x), cdr(x)) ≈ x ∨ x 6≈ cons(y, z) and is no longer necessary,
because it becomes redundant. We can see that this clause is implied by the
other clauses in the expanded List Theory. If the second literal is false then x ≈
cons(y, z). Then cons(car(x), cdr(x)) ≈ cons(car(cons(y, z)), cdr(cons(y, z))) ≈
cons(y, z) ≈ x. After removing a redundant clause and redundant literals from
the clauses, the sort theory for lists is

Theory of Lists L’
car(cons(x, y)) ≈ x
cdr(cons(x, y)) ≈ y

Going back to our example, suppose the goal is car(x) 6≈ car(y). This be-
comes x 6≈ cons(x1, x2) ∨ y 6≈ cons(y1, y2) ∨ car(x) 6≈ car(y). We assume one

Symbolic Debugging in Polynomial Time 51

of the equations added by Extension is selected first when possible. So as-
sume the first literal is selected. A deterministic application of Equation Reso-
lution gives y 6≈ cons(y1, y2)∨car(cons(x1, x2)) 6≈ car(y). Then Rewriting gives
y 6≈ cons(y1, y2) ∨ x1 6≈ car(y). Now the first literal here must be selected. An-
other deterministic Equation Resolution gives x1 6≈ car(cons(y1, y2)), followed
by Rewriting which gives x1 6≈ y1. Finally, Equation Resolution gives the empty
clause with the accumulated substitution [x 7→ cons(y1, x2), y 7→ cons(y1, y2)]
over the variables of the original goal. All the steps are deterministic or don’t-
care nondeterministic.

This is in fact the same solution we got earlier, if we take the first choice,
since car must be applied to a nonempty list. But now this solution has no
choice points. Therefore, the exponential example above can be solved in linear
time. In fact all E-unifications in this theory can be solved in linear time, as
we shall see.

3 Superposition

Now we formalize the informal ideas given in the previous section. We assume
we are given a set of equations E, and a goal G. We will consider refutation
theorem proving, so we think of G as a clause containing disequations. For now,
we assume that G can only contain symbols appearing in E and variables.

3.1 Sorts

We introduce sorts in order to eliminate terms and possible solutions to E-
unification which make no sense. Checking well-sortedness of terms in a goal
can be done once at the beginning of our E-unification procedure and it is
fast, because we use only a very simple concept of sorts. The more complicated
demands on terms will be forced by normal form terms, which will be presented
in the next subsection.

We assume a sort theory as a finite set of atoms of the form S(t), composed
of monadic predicates (denoting sorts) and terms. All variables in the terms are
assumed to be universally quantified.

A sort theory is simple if for each function symbol f , there is at most one
sorted term of the form S(f(t1, · · · , tn). The sort theory is elementary, if every
term in a sort declaration is either a variable or a constant of of the form
f(x1, . . . , xn), where all x1, . . . , xn are different. We assume that we have a sort
theory which is simple and elementary.

Definition 1. Let L be a simple sort theory. The set of well-sorted terms TS

of a sort S is defined recursively as follows:

1. xS ∈ TS, if xS is a variable labeled with S,
2. t ∈ TS, if S(t) is a sort declaration in the sort theory L,
3. tσ ∈ TS, if t ∈ TS and xσ ∈ TS′, for xS′ ∈ V ar(t) and xS′ ∈ dom(σ).

An equation s ≈ t is called well-sorted if s and t belong to the set of well-sorted
terms of the same sort.

52 C. Lynch, B. Morawska

Given a goal equation s ≈ t we can easily check if it is well-sorted. Use
syntactic unification with sorts on two goals: s′ ≈ s and t ≈ t′, where s′ is a
term from a term declaration in the sort theory, such that s and s′ have the
same root symbol, and t′ is a term from a term declaration of the same sort as
s′ such that t and t′ have the same root symbol.

It is known that syntactic unification with sorts, in a simple and elementary
sort theory is linear and unitary. [8] If our goal equation had variables not
labeled with sorts, the above procedure can be used besides checking well-
sortedness, also to assign the appropriate sort labels to the variables.

We assume that a given equational theory E is well-sorted with respect to
some simple and elementary sort theory. Hence if s ≈ t ∈ E, s and t belong to
the same set of well-sorted terms of some sort.

Given a goal, we first apply this sorting procedure to guarantee that the
goal is well-sorted. If the goal is not well-sorted, then Fail is returned.

In the next lemma we show that if a term is well-sorted, then the Superposi-
tion inferences, given in a later section, will preserve well-sortedness. The oppo-
site is not the case, because e.g. the term cons(car(cons(x, y)), cdr(cons(y, z)))
is not well sorted (y appears once as a list and second as an item). But applying
two rewrite steps to this term gives cons(x, z) which is well-sorted.

Lemma 1. Let L be a sort theory, and E – an equational theory such that
if s ≈ t ∈ E, then s and t are well-sorted. Then the Superposition inference
system preserves well-sortedness of a goal equation.

Proof. The conclusion of Equational Resolution is well-sorted, and Rewriting is
a special case of Narrowing. Hence we only have to consider Narrowing. Assume
that e[u] is a goal equation and σ = mgu(u, s), where s ≈ t ∈ E. Since σ is a
syntactic unifier, s, sσ must be of the same sort as u. Since s ≈ t is a well-sorted
equation, t and therefore also tσ must be of the same sort as u. Therefore, by
the definition of well-sorted equations, e[t]σ is well-sorted.

3.2 Normal Forms

We define a set of normal form terms, N . All terms in N should be well-sorted.

As mentioned informally in the previous section, all equations in E and
clauses in the goal must be initially extended according to the following rule.

Extension rule

e[f(u1, · · · , un)] ∨ C

e[f(u1, . . . , un)] ∨ u1 6≈ v1 ∨ · · · ∨ un 6≈ vn ∨ C

where e[f(u1, . . . , un)] is a literal and f(v1, . . . , vn) is a fresh renaming of a term
in N .

Think of the Extension rule as a rewrite rule, which rewrites the premise
of the rule into its conclusion. We do not allow the same term to be extended
more than once. Then Ext(C) represents the set of all normal forms of C with
respect to the Extension rule. We will give conditions so that normal forms
always exist, and we will actually give conditions such that Ext(C) contains

Symbolic Debugging in Polynomial Time 53

just one extended clause. Define Ext(E) =
⋃

C∈E Ext(C). Let Cl(E) be the
saturation of Ext(E) by Superposition.

We define a property called erasing to force the Extension process to halt.

Definition 2. A set of normal forms N is erasing if the symbols in the sig-
nature can be divided into two sets F and G such that for every term t in N ,
root(t) is in F , and every other symbol in t is in G.

We can think of F as defined symbols, and think of G as constructors.
If N is erasing then a precedence can be defined such that every symbol in

F is larger than every symbol in G. For an erasing set of normal forms, the
Extension rule can only be applied a linear number of times, since an extension
of a term cannot be further extended.

In the following, we will consider sets of equations that are extended and
saturated by the Superposition inference system, given in the next section.

Notice that in the theory of lists L′, an application of Equation Resolu-
tion to the extended clause gives back the original clause, which subsumes
the extended clause. For example, the extension of car(cons(x, y)) ≈ x is
cons(x, y) 6≈ cons(z,w) ∨ car(cons(x, y)) ≈ x. An application of Equation Res-
olution to this clause gives car(cons(z,w)) ≈ z, which is a renaming of the
original equation, and subsumes the extended equation.

3.3 Superposition Inference System

Now we define the Superposition inference system. This inference system is
parameterized by a selection function such that one literal in each clause is
selected, and only the selected literal is allowed to be involved in an inference.

Note that all the clauses used are Horn Clauses. Each goal is made up of
only disequations, and Extension preserves that fact. Each equation in E is
a single equation, and Extension adds negative literals, so it remains a Horn
Clause.

Let L and M be literals. Define an ordering ≺ such that L ≺ M if and
only if the multiset of symbols appearing in L is smaller than the multiset of
symbols appearing in M , according to the multiset extension of the precedence
on symbols. Note that this ordering is not stable under substitutions. If C is
a clause, then a literal L is minimal in C if there is no literal in C which is
smaller than L according to ≺.

We define the selection function as follows. In each clause containing a neg-
ative literal, some minimal negative literal is selected. If a clause contains only
a single positive literal, then that literal is selected.

Recall the Superposition inference system.
Superposition

D ∨ s ≈ t e[u] ∨ C

Dσ ∨ e[t]σ ∨ Cσ

where s ≈ t is selected, e[u] is selected, u is not a variable, sσ 6≤ tσ, and
σ = mgu(s, u). If e[u] is an equation u′[s′] ≈ v, then we can require that
u′[s′] 6≤ v. The ordering < must be a reduction ordering. Notice that it is
different from the ordering ≺.

54 C. Lynch, B. Morawska

If e[u] is a disequation and D is empty, then the Superposition inference
rule is also called Narrowing. We have noticed that everything here is a Horn
Clause. Also, the selection function requires us to select a negative literal when
one exists. Therefore, the Superposition rule is only applicable when D is empty.

If sσ = u, sσ > tσ and Dis empty, then a Superposition inference becomes a
Rewriting step, and is a don’t-care nondeterministic step because E is confluent.
In other words, Rewriting is the following inference rule:

Rewriting
s ≈ t e[u] ∨C

e[t]σ ∨ C

where u is not a variable and there is a substitution σ such that sσ > tσ and
sσ = u. After rewriting, e[u] ∨ C is deleted.

Equation Resolution
u 6≈ v ∨ C

Cσ

where σ = mgu(u, v). and u 6≈ v is selected.
The inference system we have given is sound and complete, because the

selection rule selects a negated literal when it can, [2]. In fact it is even sound and
complete for answer substitutions if substitutions are saved and accumulated[6].

Theorem 1. The Superposition inference system with the given selection func-
tion is sound and complete.

4 Polynomial Time E-unification

Next we show how Superposition can be a terminating procedure for goal solv-
ing, and how it can have polynomial complexity. We need the following property
to show the termination of Superposition for goal solving. The following defini-
tion is just an extension of a previous definition, to cover E as well as N .

Definition 3. A set of equations E and normal forms N is erasing if the sym-
bols in the signature can be divided into two sets F and G such that

1. for every equation s ≈ t ∈ E, the root symbol of s in in F , every other
symbol in the equation is in G, and every variable in t occurs in s, and

2. for every term t in N , root(t) is in F , and every other symbol in t is in G.

Notice that in a set of erasing equations, every equation can be oriented.
Also, every proper subterm u of an equation in an erasing set of equations is
reduced.

Consider a set of erasing equations E, where the symbols are divided into
F and G. Then we can add an inference rule Eager Equation Resolution.

Eager Equation Resolution

u 6≈ v ∨ C

D

where u 6≈ v is selected, and there are no symbols from F in u and v, and D is
Fail if u and v are not unifiable, and D is Cσ if σ = mgu(u, v).

Symbolic Debugging in Polynomial Time 55

This can be applied deterministically to a selected disequation. This is ob-
vious since no Narrowing or Rewrite rules apply, but this will become impor-
tant later when we extend E with a ground theory. We can justify the cor-
rectness of Eager Equation Resolution, because we are going to assume that
g(x1, · · · , xn) ≈ g(y1, · · · , yn) |= x1 ≈ y1 ∧ · · · ∧ xn ≈ yn for all symbols in G.
Later on when we add ground equations to the theory, we will still assume that
this statement is true, so Eager Equation Resolution will still be correct.

Next is a property on N which will ensure that when the extension rule is
applied to an equation e then Ext(e) contains only one clause.

Definition 4. The set N of normal forms is simple if whenever s, t ∈ N and
s 6= t then root(s) 6= root(t).

Next is another property to ensure the determinism of the procedure. Due
to the extensions, it will ensure that whenever there is a Narrowing step, there
is also a Rewrite step.

Definition 5. A set of normal forms N defines a set of equations E if

1. for every equation s ≈ t ∈ E with s 6≤ t, s is in N , and
2. for every term s in N there is an equation s ≈ t in E with s 6≤ t.

Notice that if N is simple and defines E and E is erasing, then Extension
does not add anything new.

Proposition 1. Let N and E be erasing, and N a simple set of normal forms
such that N defines E. Let Cl(E) be the saturation of the Extension of E. Then
Cl(E) = E.

Proof. Suppose we perform an Extension on e[f(s1, · · · , sn)], where f(t1, · · · , tn)
is a normal form. The result is s1 6≈ t1∨· · ·∨sn 6≈ tn∨e[f(s1, · · · , sn)]. Since N
defines E, then e is of the form f(s1, · · · , sn) ≈ t, where f(s1, · · · , sn) is just a
renaming of f(t1, · · · , tn). There are no Narrowing or Rewriting inferences into
si 6≈ ti, so only Equation Resolution applies to the new literals. The result is
just a renaming of e which subsumes the extended equation.

Theorem 2. Let N and E be erasing, such that E is saturated under Superpo-
sition. Let N be a simple set of normal forms such that N defines E. Let Cl(E)
be the saturation of the Extension of E. Then Superposition halts on Cl(E) and
any goal in linear time if Rewriting is performed eagerly, and either a single
mgu is generated or the process fails.

Proof. First note that Cl(E) = E. In order to show termination, we will show
that whenever Narrowing applies, then Rewriting also applies.

Suppose that a Narrowing inference applies to the goal. Let’s consider an
innermost Narrowing step. Then there is some equation s ≈ t in E and a term
u in the goal with σ = mgu(s, u). If sσ = u, then there is a Rewrite step which
can be performed.

Since N defines E, s ∈ N . Let u be of the form f(u1, · · · , un). The term u
must have descended from an initial term in the goal of the form f(v1, · · · , vn),

56 C. Lynch, B. Morawska

since E is erasing. Let θ be the accumulated substitution applied to the goal.
Then ui ≈ viθ for each i. There also must have been an Extension at the
beginning where the disequations v1 6≈ w1 · · · vn 6≈ wn were added to the goal.
These disequations were selected first in the goal, so we must have already
proved that viθ ≈ wiθ for all i. This implies that ui ≈ wiθ for all i.

Since we consider an innermost Narrowing step, ui must be reduced. We
also know that wi is reduced, and there must be θ′ such that ui = wiθ

′ for all
i. Therefore σ = θ′, and Rewriting can be applied.

Since we perform Eager Rewriting, this shows that no Narrowing steps will
ever be performed. Therefore, all inferences are deterministic. Every Rewriting
step applied to a term u in the goal will remove one occurrence of a symbol in
F and replace it by symbols in G, since E is erasing.

Therefore, Rewriting will only be applied finitely many times, so the proce-
dure will halt. Note that Equation Resolution does not increase the number of
symbols of F appearing in the goal, as long as the goal is stored in a dag.

Since the result is don’t care nondeterministic, a single mgu will be gener-
ated if the procedure halts.

Since each Rewriting removes a symbol of F from the goal, the total number
of applications of Rewriting is at most n, the size of the goal. If we apply each
unifier by representing the goal as a dag, then we can be sure that the set of
inferences do not grow the goal to be more than a constant times its original
size, since each inference can only increase the size of the goal by a constant
amount. And the number of Equation Resolution steps is just the number of
Extensions plus one, which is linear in the size of the goal. Since no Narrowing
steps are performed, the whole process is in linear time.

The example of List Theory L’ with the normal forms we have given is
erasing, since there is only one normal form rooted with car and one normal
form rooted with cdr. The set of normal forms N defines L’ because the set N
is just the set of left hand sides of L’. Furthermore, N and L’ is simple if we
let F = {car, cdr} and let G = {cons}. Therefore, E-unification can be solved
in linear time for the theory of lists using Superposition with eager Rewriting,
and the result will always be a most general unifier if it is solvable.

5 Lists with Length

It is possible to add some recursive theories and still run in polynomial time.
Here we discuss a theory of Lists with Length. We extend the List theory to
include the theory of length of lists.

length(nil) ≈ 0 length(cons(x, y)) = s(length(y))

The sort theory is extended to include:

L(nil) Int(length(xL)) Int(0) Int(s(xInt))

We could either make Int be the same type as the items of the list, or a
different type.

Symbolic Debugging in Polynomial Time 57

This theory is difficult to handle, because many goals have an infinite
complete set of unifiers. For example, the equation length(x) ≈ length(y)
has infinitely many unifiers. The substitution [x 7→ y] is a unifier. But then
so is [x 7→ cons(x1, z), y 7→ cons(y1, z)], [x 7→ cons(x1, cons(x2, z)), [y 7→
cons(y1, cons(y2, z))], etc. Normal forms will not help in this case. We have
to find a different solution if we want to find a halting procedure, much less a
polynomial time procedure.

Our solution to this problem is to not allow any inferences into terms of the
form length(x). Then we may not derive the empty clause of course. But, for
each goal, we will derive something from which we can tell whether or not there
is a solution. We will not give the entire complete set of unifiers. But we will
give a representation that should be meaningful to a programmer. For example,
if we halt with length(x) ≈ length(y), then we suggest that this is even more
meaningful to a programmer than a schematization of the set of solutions.

The procedure for solving E-unification for lists with length is an extension
of the procedure for lists. We start by applying the extension rule to the orig-
inal equations and goal. Then we run the Superposition procedure with eager
Rewriting, and the following restriction:

The Superposition rule is restricted so that u is not allowed to be a term of
the form length(x) with x a variable. Similarly, the Equation Resolution rule is
modified so that u and v may not contain any subterms of the form length(x)
unless u or v is a variable. We add another rule to the inference system

cons(u1, u2) 6≈ cons(v1, v2) ∨ C

u1 6≈ v1 ∨ u1 6≈ v2 ∨ C

where cons(u1, u2) 6≈ cons(v1, v2) is selected. We will call this inference system
Superposition with Length Restrictions.

After Superposition with Length Restrictions is performed, we fail if a dis-
equation of the form cons(s, t) 6≈ nil appears in the leftover goal. Otherwise,
we apply the inference system Syntactic Length Unification, which proceeds as
follows. We transpose the leftover goal clause C into a Syntactic Unification
problem in the following way. We replace each term length(y) by a new vari-
able xlength(y). Then we treat the clause like a set of equations, and perform
Syntactic Unification. If Syntactic Unification fails, then we fail. If syntactic
unification succeeds, then we succeed. The answer substitution we get repre-
sents a solution to the problem, but it is not really a substitution, because the
length(x) terms have been replaced by variables.

Note that after Superposition with Length Restrictions finishes, there are
no car terms or cdr terms in the goal, because any well-sorted instance of those
terms must contain a variable or a cons-term as a subterm, and we have shown
in the previous section that all car or cdr terms will be rewritten. Also, after
Superposition with Length Restrictions, there can be no cons terms left in the
goal. If a cons term appears directly underneath a car or cdr or length term,
then it has been rewritten. This means that a cons symbol could only appear in
a term where all nonvariable symbols are cons symbols. But then there must be
an equation of the form s ≈ t where s contains only cons symbols and variables,
and t is a length term or an s term or 0 or nil. If t is a length term or s term

58 C. Lynch, B. Morawska

or nil then the equation is not well-sorted, and we would have failed. If t is nil
then we would fail as described above. Therefore length must only be applied
to a variable, because length applied to an s term or 0 is not well-sorted, and
length(nil) would have been rewritten.

We need to prove that this process is sound and complete, and also that it
runs in polynomial time.

Theorem 3. The inference system Superposition with Length restrictions fol-
lowed by Syntactic Length Unification is sound and complete.

Proof. Since Superposition is sound and complete, that means that Superpo-
sition with Length Restrictions preserves the set of solutions. So we need to
prove that Syntactic Length Unification is sound and complete.

For completeness, we only need to show that Syntactic Length Unification
does not fail when there is a solution. If Syntactic Length Unification fails
because of the clash rule, then Syntactic Unification (without transformation
of length terms into variables) would fail also. So we only need to show that
failures by Occurs Check are truly failures. Suppose we have an equation of
the form xlength(y) ≈ t[xlength(y)], where xlength(y) is a proper subterm of t. In
order to be well-sorted, xlength(y) must be an immediate subterm of s and s
must be the root of the term or else immediately under another s, etc. This
implies that the occurs check must have occurred in an equation of the form
xlength(y) = sn(xlength(y)) and we note that length(y) = sn(length(y)) has no
solution.

For soundness, we need to show that if our procedure succeeds, then there
really is a solution to the untransformed problem. Notice that if a variable
xlength(y) appears, then y was given no substitution by Superposition with
Length Restrictions. Furthermore y could not have appeared anywhere here ex-
cept in the form length(y) because all car, cdr and cons have been removed, and
since y is of type list s(y) is not well-sorted. If y was one side of an equation, then
an Equation Resolution would have been performed. Therefore, y will be given
no value from Syntactic Length Unification. The only substitutions created by
Syntactic Length Unification will be of the form xlength(y) = sn(xlength(z)) with
n ≥ 0 or xlength(y) = sn(0) with n ≥ 0. Note that a variable cannot appear
more than once on a left hand side, or on both a left and right hand side. To
get a solution to the original problem, we could just let a variable z appearing
on the right hand side be any list. In the first case above, y could be any list
with n more elements than z, and in the second case above y could be any list
with n elements.

Theorem 4. The inference system Superposition with Length restrictions fol-
lowed by Syntactic Length Unification is don’t-care nondeterministic and runs
in linear time.

Proof. The inference system is don’t-care nondeterministic because the two
individual parts of it are. We have shown that whenever there is a Narrowing
involving a car or cdr term then there is also a Rewriting. That is also the case
for length. If the argument is a cons term or nil then there is a Rewriting. If

Symbolic Debugging in Polynomial Time 59

the argument is a variable, then we have disallowed Narrowing. Therefore, the
first part is don’t-care nondeterministic. The second part is too, because it is
just Syntactic Unification.

The first part runs in linear time, because there are no Narrowing infer-
ences. All the Rewrite inferences will result in a term with fewer symbols. And
Equation Resolution won’t increase the size of the goal if it is kept in dag form.
So the first part of the procedure is linear. The second part runs in linear time
too, because Syntactic Unification does.

6 Extending Theory with Ground Equations

Now we extend a theory E with a ground theory. A ground set of equations can
be flattened so that every equation is of a flattened form, defined as follows.

Definition 6. A ground equation is flat if it is of the form

1. f(c1, · · · , cn) ≈ c, where c1, · · · , cn and c are constants, or

2. c ≈ d, where c and d are constants.

A set of ground equations is flat if every equation in the set is flat.

So in this section we will consider an original theory with signature Σ, which
will also be the signature of the data structure theory E. Let ΣC be Σ extended
with an infinite set of constants.

We begin with a set of equations E saturated under Superposition, with a
signature Σ. We suppose that theory E is augmented with a flat set of ground
equations S with signature ΣC . We want to give conditions under which E ∪S
can be finitely saturated under Superposition. We also want to find the condi-
tions under which Superposition can solve E-unification problems for E ∪ S.

6.1 Automatic Decidability

Our first goal is to find conditions under which this extended theory can be
saturated under Superposition. In order to show this for a particular theory,
we can use the techniques of [1] automated in [3]. For example, for the theory
of Lists with Length, all initial ground equations are of the form car(a) ≈ b,
cdr(a) ≈ b, cons(a, b) ≈ c, length(a) ≈ b, s(a) ≈ b or a ≈ b, where a, b
and c are constants. The only additional equations created by Superposition
are of the form s(length(a)) ≈ length(b) and length(a) ≈ s(b) where a and b
are constants. This implies that Superposition can be performed in polynomial
time.

6.2 E-unification with Augmented Theory

Now we consider the problem of E-unification in the list theory L′ extended by
a flat ground theory S. We allow S and the goal to contain symbols from L′

plus additional constants, but no other nonvariable symbols.

60 C. Lynch, B. Morawska

Theorem 5. Let L′ be the list theory with set of normal forms N . Let S be a set
of flat ground equations. Let S′ be the saturation of E ∪ S. Then Superposition
with the addition of Eager Equation Resolution halts on S′ in linear time for
any goal if Rewriting is performed eagerly, and either a single mgu is generated
or the process fails.

Proof. The proof here is almost identical to the proof of Theorem 2. In this
case, we can assume that Cl(E) = E, because if e cannot be inferred from an
extension Ext(e) of a flat ground equation e, then e will not be able to be used
in the goal. So such equations e may be ignored.

Again, we just need to show that whenever Narrowing applies, Rewriting
also applies. We consider a Narrowing inference. First suppose it is an inference
with car(cons(x, y)) ≈ x or cdr(cons(x, y)) ≈ y. Wlog, suppose it is the first
one. Then it Narrows into a term of the form car(z) or car(cons(z1, z2)). By
the argument of Theorem 2, it cannot be a term of the form car(z), so it is a
term of the second form, and Rewriting is possible.

Next, suppose we Narrow with a term of the form car(a) ≈ b or cdr(a) ≈ b,
where a and b are constants. Wlog, assume it is the first one. Then it must be
Narrowing into a term of the form car(z) or car(a). We have already said that
it cannot be a term of the form car(z), so it must be a term of the form car(a),
and then Rewriting applies.

All of the car and cdr symbols in a selected disequation will then be removed
by eager Rewriting steps. At that point, the only nonvariable symbols left in
that disequation will be cons terms and constants. At that point, we apply Eager
Equation Resolution. So all inferences steps are still don’t care nondeterministic
or deterministic.

The procedure will still halt in a linear number of steps because all Rewriting
steps reduce the number of symbols in a term.

We stress the fact that S is not allowed to contain additional nonvariable
symbols that do not exist in E, except for constants, unless for such an extra
symbol h, we could conclude that h1(x1, · · · , xn) ≈ h(y1, · · · , yn) |= x1 ≈ y1 ∧
· · · ∧ xn ≈ yn. For constants, this statement is trivial.

7 Conclusion

We have given a procedure for solving E unification problems in linear time, if
the equational theory E meets certain conditions. The conditions imply that E
is closed under Paramodulation which implies that E-unification is in NP for
these theories[7, 4]. However it is difficult to get a polynomial time procedure
for such theories. To get this result, we needed to specify that some terms have
a particular normal form.

Our result applies to the theory of lists, for example. Without our technique,
Narrowing is exponential for the theory of lists. We also extended the technique
to the theory of Lists plus Length. E-unification in that theory is not closed
under Paramodulation, but it has been shown to be decidable by [5]. The [5]
result runs in exponential time, while ours is linear. We also showed how to get

Symbolic Debugging in Polynomial Time 61

a polynomial time procedure for E-unification modulo the theory of lists plus
any ground theory.

Our results use the standard Superposition calculus, and do not need special
inference rules.

Our result is applicable to symbolic debugging problems, whereE-unification
is required to tell which values for variables determine a particular path through
the program. Equations determine the conditions and assignment statements in
the program. For else statements, we need disequations too. Our results could
be extended to cover that. It would also be interesting to consider all paths to
a certain point in the program, not just particular paths.

References

1. A. Armando, S. Ranise and M. Rusinowitch. Uniform Derivation of Decision Procedures
by Superposition. In Proceedings 15th Workshop on Computer Science Logic., LNCS vol.
2142, 513-527, 2001.

2. L. Bachmair and H. Ganzinger. Rewrite-based equational theorem proving with selection
and simplification. In Journal of Logic and Computation 4(3), 1-31, 1994.

3. C. Lynch and B. Morawska. Automatic Decidability. In Proceedings 17th IEEE Symposium
on Logic in Computer Science, LICS’02, IEEE Computer Society Press, 7-16, 2002.

4. C. Lynch and B. Morawska. Basic Syntactic Mutation. In Proceedings of Conference on
Automated Deduction (CADE), Vol. 2392 of LNAI, 471–485, 2002.

5. S. Mitra. Semantic Unification for Convergent Systems. Technical Report CS-R-94-1855,
University of Illinois at Urbana-Champaign.

6. R. Nieuwenhuis. On Narrowing, Refutation Proofs and Constraints . In J. Hsiang, editor,
6th International Conference on Rewriting Techniques and Applications (RTA) Springer-
Verlag LNCS 914, pages 56-70, Kaiserslautern, Germany, April 4-7, 1995. Springer-Verlag.

7. R. Nieuwenhuis. Decidability and Complexity Analysis by Basic Paramodulation . Infor-
mation and Computation, 147:1-21, 1998.

8. C. Weidenbach. Sorted Unification and Tree Automata in Bibel W. and Schmitt P. H.,
editors, Automated Deduction - A Basis for Applications, Volume 1 of Applied Logic,
Chapter 9, Kluwer, pp. 291-320, 1998

62 C. Lynch, B. Morawska

Combining Intruder Theories ⋆

Yannick Chevalier1 and Michaël Rusinowitch2

1 IRIT Université Paul Sabatier, France
email: ychevali@irit.fr

2 LORIA – INRIA Lorraine, France
email: rusi@loria.fr

Abstract. Most of the decision procedures for symbolic analysis of proto-
cols are limited to a fixed set of algebraic operators associated with a fixed
intruder theory. Examples of such sets of operators comprise XOR, multipli-
cation/exponentiation, abstract encryption/decryption. In this paper we give
an algorithm for combining decision procedures for arbitrary intruder theories
with disjoint sets of operators, provided that solvability of ordered intruder
constraints, a slight generalization of intruder constraints, can be decided in
each theory. This is the case for most of the intruder theories for which a de-
cision procedure has been given. In particular our result allows us to decide
trace-based security properties of protocols that employ any combination of the
above mentionned operators with a bounded number of sessions.

1 Introduction

Recently many procedures have been proposed to decide insecurity of crypto-
graphic protocols in the Dolev-Yao model w.r.t. a finite number of protocol
sessions [2, 5, 19, 17]. Among the different approaches the symbolic ones [17, 10,
4] are based on reducing the problem to constraint solving in a term algebra.
This reduction has proved to be quite effective on standard benchmarks and
also was able to discover new flaws on several protocols [4].

However while most formal analysis of security protocols abstracts from
low-level properties, i.e., certain algebraic properties of encryption, such as the
multiplicativity of RSA or the properties induced by chaining methods for block
ciphers, many real attacks and protocol weaknesses rely on these properties. For
attacks exploiting the XOR properties in the context of mobile communications
see [7]. Also the specification of Just Fast Keying protocol (an alternative to
IKE) in [1] employs a set constructor that is idempotent and commutative and
a Diffie-Hellman exponentiation operator with the property (gy)z = (gz)y.

In this paper we present a general procedure for deciding security of pro-
tocols in presence of algebraic properties. This procedure relies on the combi-
nation of constraint solving algorithm for disjoint intruder theories, provided
that solvability of ordered intruder constraints, a slight generalization of in-
truder constraints, can be decided in each theory. Such combination algorithm
already exists for solving E-unification problems [20, 3]. We have extended it
in order to solve intruder constraints on disjoint signatures. This extension is
non trivial since intruder deduction rules allow one to build contexts above
terms and therefore add some second-order features to the standard first-order
E-unification problem.

⋆ supported by IST AVISPA Project, ACI-SI SATIN, ACI-Jeune Chercheur

63

64 Y. Chevalier, M. Rusinowitch

Our approach is more modular than the previous ones and it allows us
to decide interesting intruder theories that could not be considered before by
reducing them to simpler and independant theories. For instance it allows one
to combine the exponentiation with abelian group theory of [18] with the Xor
theory of [8].

Related works. Recently several protocol decision procedures have been de-
signed for handling algebraic properties in the Dolev-Yao model [16, 6, 11, 8].
These works have been concerned by fixed equational theories corresponding
to a fixed intruder power. A couple of works only have tried to derive generic
decidability results for class of intruder theories. For instance, in [12] Delaune
and Jacquemard consider the class of public collapsing theories. These theories
have to be presented by rewrite systems where the right-hand side of every rule
is a ground term or a variable, which is a strong restriction.

2 Motivation

Combination of algebraic operators. We consider in this section the Need-
ham-Schroeder Public-Key protocol. This well-known protocol is described in
the Alice and Bob notation by the following sequence of messages, where the
comma denotes a pairing of messages and {M}Ka denotes the encryption by
the public key Ka of A.

A→ B : {A,Na}Kb

B → A : {Na, Nb}Ka

A→ B : {Nb}Kb

Assume now that the encryption algorithm follows El-Gamal encryption
scheme. The public key of A is defined by three publicly-available parameters: a
modulus pa, a base ga and the proper public key (ga)

a mod pa. The private key
of A is a. Denoting expp the exponentiation modulo p and ×p the multiplication
modulo ϕ(p), and with new nonces k1, k2 and k3 we can rewrite the protocol
as:

A→ B : exppb
(gb, k1), (A,Na)⊕ exppb

(exppb
(gb, b), k1)

B → A : exppa
(ga, k2), (Na,Nb)⊕ exppa

(exppa
(ga, a), k2)

A→ B : exppb
(gb, k3), (Nb)⊕ exppb

(exppb
(gb, b), k3)

In this simple example we would like to model the group properties of the
Exclusive-or (⊕), the associativity of exponential ((xy)z = xy×z), the group
property of the exponents. Several works have already been achieved toward tak-
ing into account these algebraic properties for detecting attacks on a bounded
number of sessions. However none of these works can analyse protocols com-
bining several algebraic operators like the example above. The algorithm given
in this paper will permit to decide the trace-based security properties of such
protocols.
Examples of intruder theories. A convenient way to specify intruder theo-
ries in the context of cryptographic protocols is by giving a set L of deduction
rules that tell how the intruder can construct new messages from the ones she

Combining Intruder Theories 65

already knows and a set of equational laws E that are verified by the functions
that are employed in messages. We give here two examples of intruder theories.
Some other theories are given in 6.

Abelian group theory. This intruder may treat messages as elements of an
abelian group. We assume here there is only one such group and that the com-
position law is · × ·, the inverse law is i(·) and the neutral element is denoted 1.

L×

→ 1
x→ i(x)

x, y→ x× y
E×

(x× y)× z = x× (y × z)
x× y = y × x
1× x = x

x× i(x) = 1

Dolev Yao with explicit destructors. The intruder is given with a pairing
operator and projections to retrieve the components of a pair. There is a sym-
metric encryption operator se(,) and an operator sd(,) for the decryption
algorithm too. For conciseness we omit the public-key encryption specification.

LDY

x, y → 〈x, y〉
x→ π1(x)
x→ π2(x)

x, y → se(x, y)
x, y → sd(x, y)

EDY

π1(〈x, y〉) = x
π2(〈x, y〉) = y

sd(se(x, y), y) = x

3 Terms and subterms

We consider an infinite set of free constants C and an infinite set of variables
X . For all signatures G (i.e. a set of function symbols with arities), we denote
by T(G) (resp. T(G,X)) the set of terms over G ∪ C (resp. G ∪ C ∪ X). The
former is called the set of ground terms over G, while the later is simply called
the set of terms over G. Variables are denoted by x, y, terms are denoted by
s, t, u, v, and finite sets of terms are written E,F, ..., and decorations thereof,
respectively. We abbreviate E∪F by E,F , the union E∪{t} by E, t and E \{t}
by E \ t.

A constant is either a free constant or a function symbol of arity 0. Given a
term t we denote by Var(t) the set of variables occurring in t and by Cons(t) the
set of constants occurring in t. We denote by Atoms(t) the set Var(t) ∪ Cons(t).
We denote by A the set of all constants and variables. A substitution σ is an
involutive mapping from X to T(G,X) such that Supp(σ) = {x|σ(x) 6= x}, the
support of σ, is a finite set. The application of a substitution σ to a term t (resp.
a set of terms E) is denoted tσ (resp. Eσ) and is equal to the term t (resp. E)
where all variables x have been replaced by the term xσ. A substitution σ is
ground w.r.t. G if the image of Supp(σ) is included in T(G).

In this paper, we consider 2 disjoint signatures F1 and F2, a consistent
equational theory E1 (resp. E2) on F1 (resp. F2). We denote by F the union of
the signatures F1 and F2, E the union of the theories E1 and E2. A term t in
T(F1,X) (resp. in T(F2,X)) is called a pure 1-term (resp. a pure 2-term).

The syntactic subterms of a term t are defined recursively as follows and
denoted Subsyn(t). If t is a variable or a constant then Subsyn(t) = {t}. If

66 Y. Chevalier, M. Rusinowitch

t = f(t1, . . . , tn) then Subsyn(t) = {t} ∪
⋃n

i=1 Subsyn(ti). The positions in a
term t are defined recursively as usual (i.e. as sequences of integers), ǫ being
the empty sequence. We denote by t|p the syntactic subterm of t at position
p. We denote by t[p ← s] the term obtained by replacing in t the syntactic
subterm t|p by s. We denote by Sign(·) the function that associates to each
term t 6∈ C ∪ X the signature (F1, or F2) of its root symbol t|ǫ. For t ∈ C ∪ X
we define Sign(t) = ⊥, with ⊥ a new symbol. The term s is alien to u if
Sign(s) 6= Sign(u). Factors. We define the set of factors of a term t, and note
it Factors(t), the set of maximal syntactic subterms of t that are alien to t and
different of t. In particular Factors(t) = ∅ for t ∈ A.
Subterms. We now define the notion of subterm values. Given a term t, the
set of its subterm values is denoted by Sub(t) and is defined recursively by:
Sub(t) = {t} ∪

⋃
u∈Factors(t) Sub(u). For a set of terms E, Sub(E) is defined as

the union of the subterms values of the elements of E.

As an example consider F1 = {⊕, a, b, c} and F2 = {f} where f has arity 1.
Then Sub(a⊕ (b⊕ c)) = {a⊕(b⊕c), a, b, c}. On the other hand Sub(f(b⊕ c)) =
{f(b ⊕ c), b ⊕ c, b, c}. This shows the difference with the notion of syntactic
subterms. In the rest of this paper and unless otherwise indicated, the notion
of subterm will refer to subterm values.

Congruences and ordered rewriting. We shall introduce the notion of ordered
rewriting [13], which is a useful tool that has been utilized (e.g. [3]) for proving
the correctness of combination of unification algorithms.

Let < be a simplification ordering on T(G) 3 assumed to be total on T(G)
and such that the minimum for < is a constant cmin ∈ C. Given a possibly
infinite set of equations O on the signature T(G) we define the ordered rewriting
relation →O by s →O s′ iff there exists a position p in s, an equation l = r in
O and a substitution τ such that s = s[p← lτ], s′ = s[p← rτ], and lτ > rτ .

It has been shown (see [13]) that by applying the unfailing completion pro-
cedure [15] to a set of equations H we can derive a (possibly infinite) set of
equations O such that:

1. the congruence relations =O and =H are equal on T(F).

2. →O is convergent (i.e. terminating and confluent) on T(F).

We shall say that O is an o-completion of H.

The relation →O being convergent on ground terms we can define (t)↓O as
the unique normal form of the ground term t for →O. Given a ground substi-
tution σ we denote by (σ)↓O the substitution with the same support such that
for all variables x ∈ Supp(σ) we have x(σ)↓O = (xσ)↓O. A substitution σ is
normal if σ = (σ)↓O.

We will denote by R an o-completion of E = E1∪E2. We denote by Cspe the
set containing the constants in F and cmin.

3 by definition < satisfies for all s, t, u ∈ T(G) s < t[s] and s < u implies t[s] < t[u]

Combining Intruder Theories 67

4 Protocols, intruders and constraint systems

Security of a given protocol is assessed with respect to a class of environments in
which the protocol is executed. Dolev and Yao have described the environment
not in terms of possible attacks on the protocol but by the deduction an intruder
attacking a protocol execution is able to perform.

In Subsection 4.1 we define an extension of Dolev-Yao model to arbitrary
operators for modeling the possible deductions of the intruder. In Subsection 4.2
we define the protocol semantics for an execution within an hostile environment
controlled by the intruder and in Subsection 4.3 we describe how we represent
this execution by a constraint system.

4.1 Intruder deduction systems

We shall model messages as ground terms and intruders deduction rules as
rewrite rules on sets of messages representing the knowledge of an intruder. The
intruder derives new messages from a given (finite) set of messages by applying
intruder rules. Since we assume some equational axioms H are satisfied by
functions symbols in the signature, all these derivations have to be considered
modulo the equational congruence =H generated by these axioms.

An intruder deduction rule in our setting is specified by a term t in some
signature G. Given values for the variables of t the intruder is able to generate
the corresponding instance of t.

Definition 1. An intruder system I is given by a triple 〈G, T,H〉 where G is
a signature, T ⊆ T(G,X) and H is a set of axioms between terms in T(G,X).
To each t ∈ T we associate a deduction rule Lt : Var(t) → t and Lt,g denotes
the set of ground instances of the rule Lt:

Lt,g = {l→ r | ∃σ, ground substitution on G, l = Var(t)σ and r =H tσ}

The set of rules LI is defined as the union of the sets Lt,g for all t ∈ T .

Each rule l → r in LI defines an intruder deduction relation →l→r between
finite sets of terms. Given two finite sets of terms E and F we define E →l→r F
if and only if l ⊆ E and F = E ∪ {r}. We denote →I the union of the relations
→l→r for all l → r in LI and by →∗

I the transitive closure of →I . We simply
denote by → the relation →I when there is no ambiguity about I.

For instance we can define I× = 〈{×, i, 1}, {x× y, i(x), 1}, E×〉 and we have
a, b, c→I× a, b, c, c × a.

A derivation D of length n, n ≥ 0, is a sequence of steps of the form
E0 →I E0, t1 →I · · · →I En with finite sets of ground terms E0, . . . En, and
ground terms t1, . . . , tn, such that Ei = Ei−1 ∪ {ti} for every i ∈ {1, . . . , n}.

The term tn is called the goal of the derivation. We define E
I

to be equal to
the set {t | ∃F s.t. E →∗

I F and t ∈ F} i.e. the set of terms that can be derived
from E. If there is no ambiguity on the deduction system I we write E instead

of E
I
.

68 Y. Chevalier, M. Rusinowitch

Let O be an o-completion of H. We will assume from now that all the
deduction rules generate terms that are normalized by →O and the goal and
the initial set are in normal form for →O. It can be shown [9] that this is not
restrictive for our main decidability result.

Given a set of terms T ⊆ T(G,X) we define the set of terms 〈T 〉 to be the
minimal set such that T ⊆ 〈T 〉 and for all t ∈ 〈T 〉 and for all substitutions σ
with image included in 〈T 〉, we have tσ ∈ 〈T 〉. Hence terms in 〈T 〉 are built by
composing terms in T iteratively. We can prove easily that the intruder systems
I = 〈G, T,H〉 and J = 〈G, 〈T 〉 ,H〉 define the same sets of derivable terms, i.e.

for all E we have E
I

= E
J

.

We want to consider now the union of 2 intruder systems: I1 = 〈F1, T1, E1〉
and I2 = 〈F2, T2, E2〉. In particular we are interested in the derivations obtained
by using →I1 ∪ →I2. It can be noticed that 〈T1 ∪ T2〉 = 〈〈T1〉 ∪ 〈T2〉〉. Hence
by the remarks above the derivable terms using 〈T1 ∪ T2〉 or 〈T1〉 ∪ 〈T2〉 are
the same. For technical reason it will be more convenient to use 〈T1〉 ∪ 〈T2〉 for
defining the union of 2 intruder systems:

Definition 2. The union of the two intruder systems 〈F1, T1, E1〉 , 〈F2, T2, E2〉
is the intruder system U = 〈F1 ∪ F2, 〈T1〉 ∪ 〈T2〉 , E1 ∪ E2〉.

A derivation E0 →U E0, t1 →U · · · →U En of intruder system U is well-
formed if for all i ∈ {1, . . . , n} we have ti ∈ Sub(E0, tn); in other words every
message generated by an intermediate step either occurs in the goal or in the ini-
tial set of messages. In the following lemma the derivations refer to the intruder
system U = 〈F1 ∪ F2, 〈T1〉 ∪ 〈T2〉 , E1 ∪ E2〉. For the proof see [9]:

Lemma 1. A derivation of minimal length starting from E of goal t is well-
formed.

4.2 Protocol analysis

In this subsection we describe how protocols are modelled. In the following we
only model a single session of the protocol since it is well-known how to reduce
several sessions to this case. Our semantics follows the one by [12].

In Dolev-Yao model the intruder has complete control over the commu-
nication medium. We model this by considering the intruder is the network.
Messages sent by honest agents are sent directly to the intruder and messages
received by the honest agents are always sent by the intruder. From the intruder
side a finite execution of a protocol is the interleaving of a finite sequence of
messages it has to send and a finite sequence of messages it receives (and add
to its knowledge).

We also assume that the interaction of the intruder with one agent is an
atomic step. The intruder sends a message m to an honest agent, this agent
tests the validity of this message and responds to it. Alternatively an agent
may initiate an execution and in this case we assume it reacts to a dummy
message sent by the intruder.

A step is a triplet (recv(x); send(s);cond(e)) where x ∈ X , s ∈ T(G,X)
and e is a set of equations between terms of T(G,X). The meaning of a step is

Combining Intruder Theories 69

that upon receiving message x, the honest agent checks the equations in e and
sends the message s. An execution of a protocol is a finite sequence of steps.

Example 1. Consider the following simple protocol:

A→ B : {M ⊕B}K
B → A : B
A→ B : K
B → A : M

Assuming the algebraic properties of ⊕, symmetric encryption se(,) and sym-
metric decryption sd(,) we model this protocol as:

recv(v1); send(se(M ⊕B,K));cond(v1 = cmin)
recv(v2); send(B);cond(∅)
recv(v3); send(K);cond(v3 = B)
recv(v4); send(sd(v2, v4)⊕B);cond(v4 = K)
recv(v5); send(cmin);cond(v5 = M)

Note that in our setting we can model that at some step i the message must

match the pattern ti by adding an equation vi
?
= ti to S.

In order to define whether an execution of a protocol is feasible we must
first define when a substitution σ satisfies a set of equations S.

Definition 3. (Unification systems) Let H be a set of axioms on T(G,X). An

H-Unification system S is a finite set of equations in T(G,X)denoted by (ui
?
=

vi)i∈{1,...,n}. It is satisfied by a ground substitution σ, and we note σ |= S, if for
all i ∈ {1, . . . , n} uiσ =H viσ.

Let I=〈G, T,H〉 be an intruder system. A configuration is a couple 〈P,N〉
where P is a finite sequence of steps and N is a set of ground terms (the knowl-
edge of the intruder). From the configuration 〈(recv(x); send(s);cond(e)) ·
P,N〉 a transition to (P ′, N ′) is possible iff there exists a ground substitution σ

such that xσ ∈ N
I
, σ |= e, N ′ = N ∪ {sσ} and P ′ = Pσ. Trace based-security

properties like secrecy can be reduced to the following Execution feasability
problem.

Execution feasability

Input: an initial configuration 〈P,N0〉
Output: SAT iff there exists a reachable configuration 〈∅,M〉

4.3 Constraints systems

We express the execution feasability of a protocol by a constraint problem C.

Definition 4. (Constraint systems) Let I = 〈G, T,H〉 be an intruder system.
An I-Constraint system C is denoted: ((Ei ⊲ vi)i∈{1,...,n},S) and it is defined
by a sequence of couples (Ei, vi)i∈{1,...,n} with vi ∈ X and Ei ⊆ T(G) for i ∈
{1, . . . , n} and Ei−1 ⊆ Ei for i ∈ {2, . . . , n} and by an H-unification system S.

An I-Constraint system C is satisfied by a ground substitution σ if for all
i ∈ {1, . . . , n} we have viσ ∈ Eiσ and if σ |= S. If a ground substitution σ
satisfies a constraint system C we denote it by σ |=I C.

70 Y. Chevalier, M. Rusinowitch

Constraint systems are denoted by C and decorations thereof. Note that if a
substitution σ is a solution of a constraint system C, by definition of constraints
and of unification systems the substitution (σ)↓O is also a solution of C (whereO
is an o-completion of H). In the context of cryptographic protocols the inclusion
Ei−1 ⊆ Ei means that the knowledge of an intruder does not decrease as the
protocol progresses: after receiving a message an honest agent will respond to
it. This response can be added to the knowledge of an intruder who listens all
communications.

Example 2. We model the protocol of Example 1 by the following constraint
system. First we gather all conditions in an unification system S

S =
{
v1

?
= cmin , v3

?
= B , v4

?
= K , v5

?
= M

}

The protocol execution for intruder I with initial knowledge {cmin} is then
expressed by the constraint:

C = ((cmin ⊲ v1,
cmin, se(M ⊕B,K) ⊲ v2,
cmin, se(M ⊕B,K), B ⊲ v3,
cmin, se(M ⊕B,K), B,K ⊲ v4),
cmin, se(M ⊕B,K), B,K, sd(v2, v4)⊕B ⊲ v5,S)

We are not interested in general constraint systems but only in those related
to protocols. In particular we need to express that a message to be sent at
some step i should be built from previously received messages recorded in the
variables vj , j < i, and from the initial knowledge. To this end we define:

Definition 5. (Deterministic Constraint Systems) An I-constraint system
((Ei⊲vi)i∈{1,...,n},S) is deterministic if for all i ∈ {1, . . . , n} we have Var(Ei) ⊆
{v1, . . . , vi−1}

The decision problems we are interested in are the satisfiability and the
ordered satisfiability of intruder constraint systems.

Satisfiability

Input: an I-constraint system C
Output: Sat iff there exists a substitution σ such that: σ |=I C.

In order to be able to combine solutions of constraints in component theories
to get a solution for the full theory these solutions have to satisfy some ordering
constraints too. Intuitively, this is to avoid introducing cycle when building a
global solution. This motivates the following definition:

Ordered Satisfiability

Input: an I-constraint system C, X the set of all variables and C the
set of all free constants occurring in C and a linear ordering ≺
on X ∪ C.

Combining Intruder Theories 71

Output: Sat iff there exists a substitution σ such that:
{
σ |=I C
∀x ∈ X and ∀c ∈ C, x ≺ c implies c /∈ Subsyn(xσ)

The main result of this paper is the following modularity result:

Theorem 1. If the ordered satisfiability problem is decidable for two intruders
〈F1, T1, E1〉 and 〈F2, T2, E2〉 for disjoint signatures F1 and F2 then the satisfia-
bility problem is decidable for the intruder U = 〈F1 ∪ F2, 〈T1〉 ∪ 〈T2〉 , E1 ∪ E2〉.

This result is obtained as a direct consequence of the next section where we
give an algorithm for solving U -constraints using algorithms for solving ordered
satisfiability for intruders 〈F1, T1, E1〉 and 〈F2, T2, E2〉.

5 Combination of decision procedures

We introduce Algorithm 1 for solving satisfiability of constraint systems for the
union U of two intruders systems I1 = 〈F1, T1, E1〉 and I2 = 〈F2, T2, E2〉 with
disjoint signatures F1 and F2. The completeness of Algorithm 1 is sketched
below, and the proofs (for completeness and soundness) are fully detailed in [9].
Let us explain this algorithm:
Step 2 The algorithm input is a U -Constraint system (D,S). An equational

system S is homogeneous if for all u
?
= v ∈ S, u and v are both pure 1-terms

or both pure 2-terms. It is well-known that equational systems can be trans-
formed into equivalent (w.r.t. satisfiability) homonogeneous systems. Thus we
can assume that S is homogeneous without loss of generality.
Step 3 abstracts every subterm t of C by a new variable ψ(t). A choice of ψ
such that ψ(t) = ψ(t′) will lead to solutions that identify t and t′.
Steps 4-6 assign non-deterministically a signature to the root symbol of the
subterms of C instanciated by a solution. The choice th(ψ(t)) = 0 corresponds
to the situation where t gets equal to a free constant.
Steps 7-10 choose and order non-deterministically the intermediate subterms
in derivations that witness that the solution satisfies the constraints in D.
Step 11 defines a constraint problem C′ collecting the previous choices on sub-
terms identification, subterms signatures and derivation structures.
Step 12 splits the problem S ′ in two pure subproblems.
Step 13 splits non-deterministically the problem D′, that is we select for each
E ⊲ v in D′ an intruder system to solve it.
Step 14 guesses an ordering on variables: this ordering will preclude the value
of a variable from being a subterm of the value of a smaller variable. This is
used to avoid cycles in the construction of the solution.
Step 15 solves independantly the 2 pure subproblems obtained at steps 12-13.
In Ci the variables q with th(q) 6= i will be considered as constants.

We assume Cspe ⊆ Sub(C). Recall that R is the rewrite system associated
to E = E1 ∪ E2. We say a normal substitution σ is bound if for all variables x
with xσ 6= x and for all t ∈ Sub(xσ) there exists u ∈ Sub(C) ∪ Cspe such that
(uσ)↓R = t. A key proposition is:

72 Y. Chevalier, M. Rusinowitch

Algorithm 1 Combination Algorithm
1: SolveU(C)
2: Let C = ((Ei ⊲ vi)i∈{1,...,n},S) with S homogeneous.
3: Choose ψ an application from Sub(C) to X \ Var(C)

and let Q = ψ(Sub(C))
4: for all q ∈ Q do

5: Choose a theory th(q) ∈ {0, 1, 2}
6: end for

7: for i = 1 to n do

8: Choose Qi ⊆ Q

9: Choose a linear ordering over the elements of Qi say (qi,1, . . . , qi,ki
)

10: end for

11: Let C′ = (D′,S ′) where

(

S ′ = S ∪
n

z
?
= ψ(z) | z ∈ Sub(C)

o

D′ = ∆1, . . . ,∆i, . . .∆n

and ∆i = (Ki, Q
<j
i ⊲ qi,j)j∈{1,...,ki}, (Ki, Qi ⊲ ψ(vi)) with

Ki = ψ(Ei) ∪
Si−1

j=1Qj

Q
<j
i = qi,1, qi,2, . . . , qi,j−1

12: Split S ′ into S1,S2 such that S ′ = S1 ∪ S2 and:

8

<

:

S1 =
n

z
?
= z′ ∈ S ′ | z, z′are pure 1-terms

o

S2 =
n

z
?
= z′ ∈ S ′ | z, z′are pure 2-terms

o

13: Split non-deterministically D′ into D1,D2

14: Choose a linear ordering ≺ over Q.
15: Solve Ci = (Di,Si) for intruder Ii with linear ordering ≺ for i ∈ {1, 2}
16: if both are satisfied then

17: Output: Satisfied
18: end if

Proposition 1. If C is a satisfiable constraint system there exists a bound sub-
stitution σ such that σ |= C. Moreover Sub((Sub(C)σ)↓R) = (Sub(C)σ)↓R∪Cspe.

5.1 Completeness of the algorithm

Proposition 2. If C is satisfiable then there exists C1 and C2 satisfiable at
Step 15 of the algorithm.

Proof. First let us prove that the 11 first steps of the algorithm preserve satis-
fiability. Assume C is satisfiable. By Proposition 1 there exists a normal bound
substitution σ which satisfies C. Define ψ to be a function from Sub(C) to a set
of variables Q such that ψ(t) = ψ(t′) if and only if (tσ)↓R = (t′σ)↓R. Thus by
Proposition 1 there exists a bijection φ from Q to Sub((Sub(C)σ)↓R). We let
th(q) = i if Sign(φ(q)) = Fi and th(q) = 0 if Sign(φ(q)) = ⊥. By the construc-
tion of S ′ and the choice of ψ we can extend σ on Q by qσ = (ψ−1(q)σ)↓R.

For each i ∈ {1, . . . , n} by Lemma 1 we can consider a well-formed derivation
Di starting from Fi = (Eiσ)↓R and of goal gi = viσ:

Di : Fi →U Fi, ri,1 →U · · · →U Fi, ri,1, . . . , ri,ki
→U Fi, ri,1, . . . , ri,ki

, gi

Combining Intruder Theories 73

We have Sub(Fi, gi) ⊆ Sub((Sub(Cσ))↓R). Since the derivation is well-formed
we have {ri,1, . . . , ri,ki

} ⊆ Sub(Fi, gi). By Proposition 1, Sub((Sub(Cσ))↓R) =
(Sub(Cσ))↓R Thus the function φ−1 is defined for each ri,j . Let qi,j = φ−1(ri,j)
and Qi be the sequence of the qi,j.

The algorithm will non-deterministically produce a C′ corresponding to these
choices and satisfied by σ (extended over Q by ψ(t)σ = (tσ)↓R) by construction.
Since S is satisfiable, following the lines of F. Baader and K. Schulz [3] permits
to prove that S1 and S2 are satisfiable with a linear constant restriction ≺
chosen such that q ≺ q′ implies q′σ is not a subterm of qσ.

We choose the sequence of constraints in D1 (resp. D2) to be the subsequence
of constraints F ⊲ q from D′ such that the corresponding transition in the
solution was performed by a rule in Lu,g with Sign(u) = F1 (resp. F2). By
construction these two systems are satisfiable.

From the soundness and completeness of Algorithm 1 and the (non trivial)
fact that the constraint Ci = (Di,Si) can be chosen to be deterministic, we can
derive our main result on the combination of two intruders. It can be easily
generalized to n intruders over disjoint signatures F1, . . . ,Fn.

6 Application to Security Protocols

In order to combine constraint solving algorithms for subtheories we only need
to show that ordered satisfiability is decidable in each component theory. To
illustrate the benefit of our approach we show that this is the case for several
theories encoding useful properties of cryptographic primitives (pair, xor, expo-
nential, encryption). A consequence of our main result Theorem 1 is that we can
decide the security of (finite sessions of) any protocol employing these primi-
tives even assuming their algebraic properties and even if they are employed
all together.

6.1 Abelian group operators

We consider in this subsection the case of an intruder I× = 〈F×, S×, E×〉, where
F× is the signature {i(·), · × ·, 1}, T× is the set of terms {i(x), x × y, 1} and with
the equational theory:

E×

(x× y)× z = x× (y × z)
x× y = y × x
1× x = x

x× i(x) = 1

We reduce decidability of I×-constraints to satisfiability of affine systems of
equations on Z. This reduction is performed in two steps. First we prove that
it suffices to consider ground sets Ei in the constraints, and thus that the vi are
linear combination of ground terms. Second the unification system is translated
to a system of affine equations over Z.

Lemma 2. One can compute C′ = ((E′
i ⊲ vi)i∈{1,...,n},S) from C such that

74 Y. Chevalier, M. Rusinowitch

– σ |= C iff σ |= C′

– for all i ∈ {1, . . . , n} the set E′
i is ground

This leads to next proposition.

Proposition 3. The ordered satisfiability problem for deterministic constraints
and intruder I× is decidable in NPTIME.

6.2 XOR operator

We consider the intruder I⊕ = 〈F⊕, {x⊕ y, 0}, E⊕〉 with the signature F⊕ =
{0, · ⊕ ·} and with equational theory:

E⊕

(x⊕ y)⊕ z = x⊕ (y ⊕ z)
x⊕ y = y ⊕ x
0⊕ x = x
x⊕ x = 0

Let C = ((Ei ⊲ vi)i∈{1,...,n},S) be a deterministic constraint problem for
I⊕. Lemma 2 can be adapted to this case. The main difference is that affine
systems are over (Z/2Z). We refer to [14] for a more detailed description of the
translation from unification problems to linear systems and of the resolution of
such systems.

Proposition 4. The ordered satisfiability problem for deterministic constraints
and intruder I⊕ is decidable in PTIME.

6.3 Exponential operator

For simplicity of exposition we assume that all exponentiations are computed
in the same modulus.

Let Fexp = {exp(·, ·), i(·), · × ·} and Texp = {x× y, exp(x, y), exp(x, i(y))}.
We now consider the intruder system Iexp = 〈Fexp, Texp, Eexp〉 where

Eexp

exp(x, 1) = x
exp(exp(x, y), z) = exp(x, y × z)

(x× y)× z = x× (y × z)
x× y = y × x
1× x = x

x× i(x) = 1

Following [18] the satisfiability problem for deterministic constraint systems
for this intruder can be reduced to the satisfiability problem for an abelian group
operator. We can deduce:

Proposition 5. The ordered satisfiability problem for deterministic constraints
and intruder Iexp is decidable in NPTIME.

Combining Intruder Theories 75

6.4 Equational Dolev-Yao theory with explicit decryption

We consider now the Dolev-Yao intruder IDY = 〈FDY , TDY , EDY 〉 over the sig-
nature FDY = {〈·, ·〉 , π1(·), π2(·), se(·, ·), sd(·, ·)} with deduction system defined
by SDY = {〈x, y〉 , π1(x), π2(x), se(x, y), sd(x, y)} and the equational theory:

EDY

π1(〈x, y〉) = x
π2(〈x, y〉) = y

sd(se(x, y), y) = x

First we note that we can get from EDY a convergent and finite rewrite sys-
tem RDY simply by orienting the axioms from left to right. Thanks to Theorem
8.5. of Schmidt-Schauss [20] satisfiability of equational systems modulo EDY is
decidable even in presence of linear constant restrictions. The idea is that the
so-called narrowing procedure modulo RDY terminates (since rules right-hand
sides are variables) and is complete for solving equations modulo EDY with
linear constant restrictions.

The algorithm of [2] for deciding intruder IDY -constraints can be adapted
to generate a finite and complete set of symbolic solutions. Then we can use the
constant elimination technique of [20] to solve the ordered satisfiability problem:
we apply narrowing (i.e. instanciating and rewriting) to the complete set of
symbolic solutions provided by [2] and then we eliminate from the resulting
substitutions the ones that do not satisfy the constant restrictions.

7 Conclusion

We have proposed an algorithm for combining decision procedures for intruder
constraints on disjoint signatures. This algorithm allows for a modular treat-
ment of algebraic operators in protocol analysis and a better understanding of
complexity issues in the domain. Since only constraint satisfiability is required
from the intruder subtheories the approach should permit one to handle more
complex operators.

References

1. M. Abadi, B. Blanchet, and C. Fournet. Just Fast Keying in the Pi Calculus. In David
Schmidt, editor, Proceedings of ESOP’04, volume 2986 of Lecture Notes on Computer
Science, pages 340–354, Barcelona, Spain, 2004. Springer Verlag.

2. R. Amadio, D. Lugiez, and V. Vanackère. On the symbolic reduction of processes with
cryptographic functions. Theor. Comput. Sci., 290(1):695–740, 2003.

3. F. Baader and K. U. Schulz. Unification in the union of disjoint equational theories.
combining decision procedures. J. Symb. Comput., 21(2):211–243, 1996.

4. D. Basin, S. Mödersheim, and L. Viganò. An On-The-Fly Model-Checker for Security
Protocol Analysis. In Einar Snekkenes and Dieter Gollmann, editors, Proceedings of
ESORICS’03, LNCS 2808, pages 253–270. Springer-Verlag, 2003.

5. M. Boreale. Symbolic trace analysis of cryptographic protocols. In Proceedings of the 28th
ICALP’01, LNCS 2076, pages 667–681. Springer-Verlag, Berlin, 2001.

6. M. Boreale and M. Buscemi. Symbolic analysis of crypto-protocols based on modular
exponentiation. In Proceedings of MFCS 2003, volume 2747 of Lecture Notes in Computer
Science. Springer, 2003.

76 Y. Chevalier, M. Rusinowitch

7. N. Borisov, I. Goldberg, and D. Wagner. Intercepting mobile communications: the inse-
curity of 802.11. In Proceedings of MOBICOM 2001, pages 180–189, 2001.

8. Y. Chevalier, R. Kuesters, M. Rusinowitch, and M. Turuani. An NP Decision Procedure
for Protocol Insecurity with XOR. In Proceedings of the Logic In Computer Science
Conference, LICS’03, June 2003.

9. Y. Chevalier and M. Rusinowitch. Combining intruder theories. Technical report, INRIA,
2005. http://www.inria.fr/rrrt/liste-2005.html.

10. Y. Chevalier and L. Vigneron. A Tool for Lazy Verification of Security Protocols. In Pro-
ceedings of the Automated Software Engineering Conference (ASE’01). IEEE Computer
Society Press, 2001.

11. H. Comon-Lundh and V. Shmatikov. Intruder Deductions, Constraint Solving and In-
security Decision in Presence of Exclusive or. In Proceedings of the Logic In Computer
Science Conference, LICS’03, pages 271–280, 2003.

12. S. Delaune and F. Jacquemard. A decision procedure for the verification of security
protocols with explicit destructors. In Proceedings of the 11th ACM Conference on Com-
puter and Communications Security (CCS’04), pages 278–287, Washington, D.C., USA,
October 2004. ACM Press.

13. N. Dershowitz and J-P. Jouannaud. Rewrite systems. In Handbook of Theoretical Com-
puter Science, Volume B, pages 243–320. Elsevier, 1990.

14. G. Guo, P. Narendran, and D. A. Wolfram. Unification and matching modulo nilpotence.
Information and Computation, 162((1-2)):3–23, 2000.

15. J. Hsiang and M. Rusinowitch. On word problems in equational theories. In ICALP,
volume 267 of Lecture Notes in Computer Science, pages 54–71. Springer, 1987.

16. C. Meadows and P. Narendran. A unification algorithm for the group Diffie-Hellman
protocol. In Workshop on Issues in the Theory of Security (in conjunction with POPL’02),
Portland, Oregon, USA, January 14-15, 2002.

17. J. Millen and V. Shmatikov. Constraint solving for bounded-process cryptographic pro-
tocol analysis. In ACM Conference on Computer and Communications Security, pages
166–175, 2001.

18. J. Millen and V. Shmatikov. Symbolic protocol analysis with an abelian group operator
or Diffie-Hellman exponentiation. Journal of Computer Security, 2005.

19. M. Rusinowitch and M. Turuani. Protocol insecurity with finite number of sessions is NP-
complete. In Proc.14th IEEE Computer Security Foundations Workshop, Cape Breton,
Nova Scotia, June 2001.

20. M. Schmidt-Schauß. Unification in a combination of arbitrary disjoint equational theories.
J. Symb. Comput., 8(1/2):51–99, 1989.

Can Context Sequence Matching Be Used
for XML Querying?⋆

Temur Kutsia1 and Mircea Marin2

1 Research Institute for Symbolic Computation
Johannes Kepler University

A-4040 Linz, Austria
tkutsia@risc.uni-linz.ac.at

2 Graduate School of Systems and Information Engineering
University of Tsukuba

Tsukuba 305-8573, Japan
mmarin@cs.tsukuba.ac.jp

Abstract. We describe a matching algorithm for terms built over flexible arity
function symbols and context, function, sequence, and individual variables. The
algorithm is called a context sequence matching algorithm. Context variables
allow matching to descend in term-trees to arbitrary depth. Sequence variables
allow matching to move in term-trees in arbitrary breadth. The ability to explore
terms in two orthogonal directions in a uniform way may be useful for querying
data available as a large term, like XML documents. We extend the algorithm to
process regular constraints and discuss its possible application in XML querying.

1 Introduction

We describe a context sequence matching algorithm and discuss its possible
application in querying XML [27]. Context variables may be instantiated with
a context—a term with a hole. They permit matching to descend to arbitrary
depth in a term represented as a tree. Sequence variables may be instanti-
ated with a finite (maybe empty) sequence of terms. They are normally used
with flexible arity function symbols and permit matching to move to arbitrary
breadth. Thus, context and sequence variables together allow exploring terms
in two orthogonal directions in a uniform way which may be useful for querying
data available as a large term, like XML documents.

Besides context and sequence variables we have function and individual vari-
ables. Function variables may be instantiated with a single function symbol or
with another function variable. Individual variables may be bound with a single
term. Like context and sequence variables, functional and individual variables
can be used to traverse terms in depth and breadth, respectively, but only in
one level.

In this paper first we describe a minimal and complete rule-based algorithm
for context sequence matching. It operates on terms built using flexible ar-
ity function symbols and involving context, sequence, function, and individual
variables. Then we show how to use context sequence matching in a declarative
XML query language. At the end, we extend the algorithm to deal with regular

⋆ Temur Kutsia has been supported by the Austrian Science Foundation (FWF) under
Project SFB F1302 and F1322.

77

78 T. Kutsia, M. Marin

constraints, both in depth and in breadth. Context sequence matching, with or
without regular restrictions, is finitary. Regular expressions provide a powerful
mechanism for restricting data values in XML. Many languages have support
for them.

Context matching and unification have been intensively investigated in the
recent past years, see e.g, [9, 10, 20, 24–26]. Context matching is decidable. De-
cidability of context unification is still an open question. Schmidt-Schauß and
Stuber in [26] gave a context matching algorithm and noted that it can be used
similar to XPath [7] matching for XML documents. Sequence matching and uni-
fication was addressed, for instance, in [2, 12, 13, 16–18, 22]. Both matching and
unification with sequence variables are decidable. Sequence unification proce-
dure described in [17, 18] was implemented in the constraint logic programming
language CLP(Flex) [8] and was used for XML processing.

Simulation unification [4] implemented in the Xcerpt language has a ‘descen-
dant’ construct that is similar to context variables in the sense that it allows
to descend in terms to arbitrary depth, but it does not allow regular expres-
sions along it. Also, sequence variables are not present there. However, it can
process unordered and incomplete queries, and it is a full scale unification, not
a matching. Having sequence variables in a full scale unification would make it
infinitary (see e.g., [18]).

In our opinion, context sequence matching can serve as a computational
mechanism for a declarative, rule-based language to query and transform XML.
Such a query language would have advantages of both path-based and pattern-
based languages that form two important classes of XML query languages. Path-
based languages usually allow to access a single set of nodes of the graph or tree
representing an XML data. The access is based on relations with other nodes
in the graph or tree specified in the path expression. Pattern-based languages
allow access to several parts of the graph or tree at once specifying the relations
among the accessed nodes by tree or graph patterns. (For a recent survey over
query and transformation languages see [11].) Moreover, with context sequence
matching we can achieve improved control on rewriting that can be useful for
rewriting-based web site specification and verification techniques [1]. In our
opinion, a system like ρLog [23] can be extended to a prototype of such a query
language. ρLog is a rule-based language whose computational mechanism uses
sequence matching with function variables. It supports single and multiple query
answers, non-deterministic computations, and has a clean declarative semantics.
However, implementation issues for such a query language is not a subject of
this paper.

Another possible application area for context sequence matching is math-
ematical knowledge management. For instance, it can retrieve algorithms or
problems from the schema library [5] of the Theorema system [6].

The results of this paper extend those of [19] by considering regular expres-
sions on full contexts instead of functions only.

The paper is organized as follows: In Section 2 we introduce preliminary
notions. In Section 3 we describe the context sequence matching algorithm. Its
application in XML querying is discussed in Section 4. Section 5 is about regular
expression matching for context and sequence variables. Section 6 concludes.

Can Context Sequence Matching Be Used for XML Querying? 79

2 Preliminaries

We assume fixed pairwise disjoint sets of symbols: individual variables VInd,
sequence variables VSeq, function variables VFun, context variables VCon, and
function symbols F . The sets VInd, VSeq, VFun, and VCon are countable. The
set F is finite or countable. All the symbols in F except a distinguished con-
stant ◦ (called a hole) have flexible arity. We will use x, y, z for individual
variables, x, y, z for sequence variables, F,G,H for function variables, C,D,E
for context variables, and a, b, c, f, g, h for function symbols. We may use these
meta-variables with indices as well.

Terms are constructed using the following grammar:

t ::= x | x | ◦ | f(t1, . . . , tn) | F (t1, . . . , tn) | C(t)

In C(t) the term t can not be a sequence variable. We will write a for the
term a() where a ∈ F . The meta-variables s, t, r, maybe with indices, will be
used for terms. A ground term is a term without variables. A context is a term
with a single occurrence of the hole constant ◦. To emphasize that a term t is a
context we will write t[◦]. A context t[◦] may be applied to a term s that is not
a sequence variable, written t[s], and the result is the term consisting of t with
◦ replaced by s. We will use C and D, with or without indices, for contexts.

A substitution is a mapping from individual variables to those terms which
are not sequence variables and contain no holes, from sequence variables to
finite, possibly empty sequences of terms without holes, from function variables
to function variables and symbols, and from context variables to contexts, such
that all but finitely many individual and function variables are mapped to
themselves, all but finitely many sequence variables are mapped to themselves
considered as singleton sequences, and all but finitely many context variables
are mapped to themselves applied to the hole. For example, the mapping {x 7→
f(a, y), x 7→ pq, y 7→ pa,C(f(b)), xq, F 7→ g,C 7→ g(◦)} is a substitution. We
will use lower case Greek letters σ, ϑ, ϕ, and ε for substitutions, where ε will
denote the empty substitution. As usual, indices may be used with the meta-
variables.

Substitutions are extended to terms as follows:

xσ = σ(x)

xσ = σ(x)

f(t1, . . . , tn)σ = f(t1σ, . . . , tnσ)

F (t1, . . . , tn)σ = σ(F)(t1σ, . . . , tnσ)

C(t)σ = σ(C)[tσ]

A substitution σ is more general than ϑ, denoted σ ≤· ϑ, if there exists a ϕ such
that σϕ = ϑ. A substitution σ is more general than ϑ on a set of variables V,
denoted σ ≤·V ϑ, if there exists a ϕ such that vσϕ = vϑ for all v ∈ V. A
context sequence matching problem is a finite multiset of term pairs (matching
equations), written {s1 ≪ t1, . . . , sn ≪ tn}, where the s’s and the t’s contain
no holes, the s’s are not sequence variables, and the t’s are ground. We will

80 T. Kutsia, M. Marin

also call the s’s the query and the t’s the data. Substitutions are extended to
matching equations and matching problems in the usual way. A substitution σ
is called a matcher of the matching problem {s1 ≪ t1, . . . , sn ≪ tn} if siσ = ti
for all 1 ≤ i ≤ n. We will use Γ and ∆ to denote matching problems. A complete
set of matchers of a matching problem Γ is a set of substitutions S such that
(i) each element of S is a matcher of Γ , and (ii) for each matcher ϑ of Γ there
exist a substitution σ ∈ S such that σ ≤· ϑ. The set S is a minimal complete
set of matchers of Γ if it is a complete set and two distinct elements of S are
incomparable with respect to ≤·. For solvable problems this set is finite, i.e.
context sequence matching is finitary.

Example 1. The minimal complete set of matchers for the context sequence
matching problem {C(f(x))≪ g(f(a, b), h(f(a), f))} consists of three elements:
{C 7→ g(◦, h(f(a), f)), x 7→ pa, bq}, {C 7→ g(f(a, b), h(◦, f)), x 7→ a}, and
{C 7→ g(f(a, b), h(f(a), ◦)), x 7→ pq}.

3 Matching Algorithm

We now present inference rules for deriving solutions for matching problems.
A system is either the symbol ⊥ (representing failure) or a pair 〈Γ ;σ〉, where Γ
is a matching problem and σ is a substitution. The inference system I consists of
the transformation rules on systems listed below. We assume that the indices n
and m are non-negative unless otherwise stated.

T: Trivial

{t≪ t} ∪ Γ ′; σ =⇒ Γ ′; σ.

IVE: Individual Variable Elimination

{x≪ t} ∪ Γ ′; σ =⇒ Γ ′ϑ; σ ∪ ϑ, where ϑ = {x 7→ t}.

FVE: Function Variable Elimination

{F (s1, . . . , sn)≪ f(t1, . . . , tm)} ∪ Γ ′; σ
=⇒ {f(s1ϑ, . . . , snϑ)≪ f(t1, . . . , tm)} ∪ Γ ′ϑ; σ ∪ ϑ,

where ϑ = {F 7→ f}.

TD: Total Decomposition

{f(s1, . . . , sn)≪ f(t1, . . . , tn)} ∪ Γ ′; σ
=⇒ {s1 ≪ t1, . . . , sn ≪ tn} ∪ Γ

′; σ,

if f(s1, . . . , sn) 6= f(t1, . . . , tn) and si /∈ VSeq for all 1 ≤ i ≤ n.

PD: Partial Decomposition

{f(s1, . . . , sn)≪ f(t1, . . . , tm)} ∪ Γ ′; σ
=⇒ {s1 ≪ t1, . . . , sk−1 ≪ tk−1, f(sk, . . . , sn)≪ f(tk, . . . , tm)} ∪ Γ ′; σ,

if f(s1, . . . , sn) 6= f(t1, . . . , tm), sk ∈ VSeq for some 1 < k ≤ min(n,m) + 1,
and si /∈ VSeq for all 1 ≤ i < k.

Can Context Sequence Matching Be Used for XML Querying? 81

SVD: Sequence Variable Deletion

{f(x, s1, . . . , sn)≪ t} ∪ Γ ′; σ =⇒ {f(s1ϑ, . . . , snϑ)≪ t} ∪ Γ ′ϑ; σϑ,

where ϑ = {x 7→ pq}.

W: Widening

{f(x, s1, . . . , sn)≪ f(t, t1, . . . , tm)} ∪ Γ ′; σ
=⇒ {f(x, s1ϑ, . . . , snϑ)≪ f(t1, . . . , tm)} ∪ Γ ′ϑ; σϑ,

where ϑ = {x 7→ pt, xq}.

CVD: Context Variable Deletion

{C(s)≪ t} ∪ Γ ′; σ =⇒ {sϑ≪ t} ∪ Γ ′ϑ; σϑ, where ϑ = {C 7→ ◦}.

D: Deepening

{C(s)≪ f(t1, . . . , tm)} ∪ Γ ′; σ =⇒ {C(sϑ)≪ tj} ∪ Γ
′ϑ; σϑ,

where ϑ = {C 7→ f(t1, . . . , tj−1, C(◦), tj+1, . . . , tm)} for some 1 ≤ j ≤ m,
and m > 0.

SC: Symbol Clash

{f(s1, . . . , sn)≪ g(t1, . . . , tm)} ∪ Γ ′; σ =⇒ ⊥,

if f /∈ VCon ∪ VFun and f 6= g.

AD: Arity Disagreement

{f(s1, . . . , sn)≪ f(t1, . . . , tm)} ∪ Γ ′; σ =⇒⊥,

if m 6= n and si /∈ VSeq for all 1 ≤ i ≤ n.

E1: Empty 1

{f()≪ f(t, t1, . . . , tn)} ∪ Γ ′; σ =⇒ ⊥.

E2: Empty 2

{f(s, s1, . . . , sn)≪ f()} ∪ Γ ′; σ =⇒ ⊥, if s /∈ VSeq.

We may use the rule name abbreviations as subscripts, e.g. Γ1;σ1 =⇒T

Γ2;σ2 for the Trivial rule. SVD, W, CVD, and D are non-deterministic rules. A
derivation is a sequence Γ1;σ1 =⇒ Γ2;σ2 =⇒ · · · of system transformations.

Definition 1. A context sequence matching algorithm M is any program that
takes a system Γ ; ε as an input and uses the rules in I to generate a complete
tree of derivations, called the matching tree for Γ , in the following way:

1. The root of the tree is labeled with Γ ; ε.
2. Each branch of the tree is a derivation. The nodes in the tree are systems.
3. If several transformation rules, or different instances of the same transfor-

mation rule are applicable to a node in the tree, they are applied concur-
rently. No rules are applicable to the leaves.

The leaves of a matching tree are labeled either with the systems of the form
∅;σ or with ⊥. The branches that end with ∅;σ are successful branches, and
those that end with ⊥ are failed branches. We denote by SolM(Γ) the solution
set of Γ generated by M, i.e., the set of all σ’s such that ∅;σ is a leaf of the
matching tree for Γ .

82 T. Kutsia, M. Marin

Theorem 1 (Main Theorem). The matching algorithm M terminates for
any input problem Γ and generates a minimal complete set of matchers of Γ .

Proof. See Appendix A. ⊓⊔

Moreover, note that M never computes the same matcher twice.

If we are not interested in bindings for certain variables, we can replace them
with the anonymous variables: “ ” for any individual or function variable, and
“ ” for any sequence or context variable. It is straightforward to adapt the
rules in I to anonymous variables: If an anonymous variable occurs in the rule
IVE, FVE, SVD, W, CVD, or D then the substitution ϑ in the same rule is the
empty substitution ε. It is interesting to note that a context sequence matching
equation s ≪ t whose all variables are anonymous variables can be considered
as a problem of computing simulations of s in t that can be efficiently solved
by the algorithm described in [14].

4 Querying XML

We assume the existence of a declarative, rule-based query and transformation
language for XML that uses the context sequence matching to answer queries.
We refer to this language as L. Queries in L are expressed as (conditional)
rules pattern → result if condition . We do not go into the details, just mention
that conditions can be effectively checked. In particular, arithmetic formulae,
matchability tests, and queries can be used in conditions, but special care has to
be taken about variable occurrences. Note that conditions can also be omitted
(assumed to be true). The pattern matches the data in the root position. One
can choose between getting all the results or only one of them.

To put more syntactic sugar on queries, we borrow some notation from [4].
We write f{s1, . . . , sn} if the order of arguments s1, . . . , sn does not matter.
The following (rather inefficient) rule relates a matching problem in which the
curly bracket construct occurs, to the standard matching problems:

Ord: Orderless

{f{s1, . . . , sn} ≪ t} ∪ Γ ′; σ =⇒ {f(sπ(1), . . . , sπ(n))≪ t} ∪ Γ ′; σ,

if f(s1, . . . , sn) 6= t and π is a permutation of 1, . . . , n.

Moreover, we can use the double curly bracket notation f{{s1, . . . , sn}} for the
term f{ , s1, , . . . , , sn, }, and the double bracket notation f((s1, . . . , sn))
for f(, s1, , . . . , , sn,). The matching algorithm can be easily modified
to work directly (and more efficiently) on such representations.

Now we show how in this language the query operations given in [21] can
be expressed. (This benchmark was used to compare five XML query languages
in [3].) The case study is that of a car dealer office, with documents from
different auto dealers and brokers. The manufacturer documents list the man-
ufacturers name, year, and models with their names, front rating, side rating,
and rank; the vehicle documents list the vendor, make, year, color and price.
We consider XML data of the form:

Can Context Sequence Matching Be Used for XML Querying? 83

<manufacturer>
<mn-name>Mercury</mn-name>
<year>1999</year>
<model>

<mo-name>Sable LT</mo-name>
<front-rating>3.84</front-rating>
<side-rating>2.14</side-rating>
<rank>9</rank>

</model>
<model>...</model>
...

</manufacturer>

while the dealers and brokers publish information in the form

<vehicle>
<vendor>Scott Thomason</vendor>
<make>Mercury</make>
<model>Sable LT</model>
<year>1999</year>
<color>metallic blue</color>
<option opt="sunroof"/>
<option opt="A/C"/>
<option opt="lthr seats"/>
<price>26800</price>

</vehicle>.

Translating the data into our syntax is pretty straightforward. For instance,
the manufacturer element can be written as:

manufacturer(mn-name(Mercury), year(1999),

model(mo-name(SableLT), front-rating(3 .84), side-rating(2 .14), rank(9))).

The query operations and their encoding in our syntax are given below.

Selection and Extraction: We want to select and extract <manufacturer>
elements where some <model> has <rank> less or equal to 10:

((manufacturer(x 1 ,model(y1 , rank(x), y2), x 2)))

→ manufacturer(x 1 ,model(y1 , rank(x), y2), x2) if x ≤ 10 .

Reduction: From the<manufacturer> elements, we want to drop those<model>
sub-elements whose <rank> is greater than 10. We also want to elide the
<front rating> and <side rating> elements from the remaining models.

((manufacturer(x 1 ,

model(y1 , front-rating(), side-rating(), rank(x), y2), x 2)))

→ manufacturer(x 1 ,model(y1 , rank(x), y2), x 2) if x ≤ 10 .

84 T. Kutsia, M. Marin

Joins: We want our query to generate pairs of<manufacturer> and<vehicle>
elements where <mn-name>=<make>, <mo-name>=<model>, and <year>=
<year>.

{{manufacturer(x 1 ,mn-name(x1), x 2 , year(x2), x 3 ,

C (mo-name(y1)), x 4),

vehicle(z1 ,make(x1), z 2 ,model(y1), z 3 , year(x2), z 4)}}

→ pair(manufacturer(x 1 ,mn-name(x1), x 2 , year(x2), x 3 ,

C (mo-name(y1)), x 4),

vehicle(z1 ,make(x1), z 2 ,model(x2), z 3 , year(y1), z 4)).

Restructuring: We want our query to collect <car> elements listing their make,
model, vendor, rank, and price, in this order:

{{vehicle((vendor(y1),make(y2),model(y3), year(y4), price(y5))),

manufacturer((C (rank(x1))))}}

→ car(make(y2),model(y3), vendor(y1), rank(x1), price(y5)).

Hence, all these operations can be easily expressed in our framework.
At the end of this section we give an example how to extract elements from

an XML document that do not meet certain requirements (e.g., miss certain
information). Such problems arise in web site verification tasks discussed in [1].

We want our query to select from the <manufacturer> elements those
<model> sub-elements which miss the <rank> information:

((manufacturer((model(y)))))→ model(y) if model((rank(()))) 6≪ model(y).

The condition in the query requires the term model((rank(()))) not to match
model(y). The variable y gets instantiated while matching the query pattern
((manufacturer((model(y))))) against the data. Since context sequence matching

is decidable, the condition can be effectively checked.

5 Regular Expressions

Regular expressions provide a powerful mechanism for restricting data values
in XML. Many languages have support for them. In [15] regular expression
pattern matching is proposed as a core feature of programming languages for
manipulating XML. The classical approach uses finite automata for regular
expression matching. In this section we show that regular expressions matching
can be easily incorporated into the rule-based framework of context sequence
matching. We assume that the set F is finite.

Regular expressions on terms are defined by the following grammar:

R ::= t | pq | pR1, R2q | R1|R2 | R
∗,

where t is a term without holes, pq is the empty sequence, “,” is concatenation,
“|” is choice, and ∗ is repetition (Kleene star). The symbols “p” and “q” are

Can Context Sequence Matching Be Used for XML Querying? 85

there just for the readability purposes. The operators are right-associative; “*”
has the highest precedence, followed by “,” and “|”.

Substitutions are extended to regular expressions on terms in the usual way:
pqσ = pq, pR1, R2qσ = pR1σ, R2σq, (R1|R2)σ = R1σ|R2σ, and R∗σ = (Rσ)∗. Each
regular expression on terms R define the corresponding regular language L(R).

Regular expressions on contexts are defined as follows:

Q ::= C | pQ1, Q2q | Q1|Q2 | Q
∗.

Like for regular expressions on terms, substitutions are extended to regular
expressions on contexts in the usual way. Each regular expression on contexts
Q defines the corresponding regular tree language L(Q) as follows:

L(C) = {C}.

L(pQ1, Q2q) = {C1[C2] | C1 ∈ L(Q1) and C2 ∈ L(Q2)}.

L(Q1|Q2) = L(Q1) ∪ L(Q2).

L(Q∗) = {◦} ∪ L(pQ, Q∗q).

Membership atoms are atoms of the form Ts in R or Cv in Q, where Ts is
a finite, possibly empty, sequence of terms, and Cv is either a context or a con-
text variable. Membership-pairs are pairs (p, f) where p is a membership atom
and f is a flag that is an integer 0 or 1. The intuition behind the membership-
pair (x in R, f) is that if f = 0 then x is allowed to be replaced with pq if R
permits. If f = 1 then the replacement is impossible, even if the corresponding
regular expression permits. Similarly, the intuition behind (C in Q, g) is that
if g = 0 then C is allowed to be replaced with ◦ if Q permits. If g = 1 then
the replacement is impossible, even if the corresponding regular expression per-
mits. It will be needed later to guarantee that the regular matching algorithm
terminates. Substitutions are extended to membership-pairs in the usual way.

Now, we can extend the query language L allowing (with some care) mem-
bership pairs in conditions. Then such conditions can be checked using finite
(tree) automata. We can also tailor this check into the matching process itself,
and this is what we discuss in details below.

A context sequence regular matching problem is a multiset of matching equa-
tions and membership-pairs of the form:

{s1 ≪ t1, . . . , sn ≪ tn, (x1 in R1, f1), . . . , (xm in Rm, fm),

(C1 in Q1, g1), . . . , (Ck in Qk, gk)},

where all x’s and all C’s are distinct and do not occur in R’s and Q’s. We will
assume that all x’s and C’s occur in the matching equations. A substitution σ
is called a regular matcher for such a problem if siσ = ti, xjσ ∈ L(Rjσ)fj

,

and C lσ ∈ L(Qlσ)gl
for all 1 ≤ i ≤ n, 1 ≤ j ≤ m, and 1 ≤ l ≤ k, where

L(R)0 = L(R), L(R)1 = L(R) \ {pq}, L(Q)0 = L(Q), and L(Q)1 = L(Q) \ {◦}.
We define the inference system IR to solve context sequence regular match-

ing problems. It operates on systems Γ ;σ where Γ is a regular matching problem
and σ is a substitution. The system IR includes all the rules from the system I,

86 T. Kutsia, M. Marin

but SVD, W, CVD, and D need an extra condition on applicability: For the
variables x and C in those rules there should be no membership-pair (x in R, f)
and (C in Q, g) in the matching problem. There are additional rules in IR for
the variables constrained by membership-pairs listed below. The meta-functions
NonEmpty and ⊕ used in these rules are defined as follows: NonEmpty() = 0 and
NonEmpty(r1, . . . , rn) = 1 if ri /∈ VSeq∪VCon for some 1 ≤ i ≤ n; 0⊕0 = 1⊕1 = 0
and 1⊕ 0 = 0⊕ 1 = 1.

ESRET: Empty Sequence in a Regular Expression for Terms

{f(x, s1, . . . , sn)≪ t, (x in pq, f)} ∪ Γ ′; σ
=⇒ {f(x, s1, . . . , sn)ϑ≪ t} ∪ Γ ′ϑ; σϑ,

where ϑ = {x 7→ pq} if f = 0.

TRET: Term in a Regular Expression for Terms

{f(x, s1, . . . , sn)≪ t, (x in s, f)} ∪ Γ ′; σ
=⇒ {f(x, s1, . . . , sn)ϑ≪ t} ∪ Γ ′ϑ; σϑ,

where ϑ = {x 7→ s} and s /∈ VSeq.

SVRET: Sequence Variable in a Regular Expression for Terms

{f(x, s1, . . . , sn)≪ t, (x in y, f)} ∪ Γ ′; σ
=⇒ {f(x, s1, . . . , sn)ϑ≪ t} ∪ Γ ′ϑ; σϑ,

where ϑ = {x 7→ y} if f = 0. If f = 1 then ϑ = {x 7→ py, yq} where y is a
fresh variable.

ChRET: Choice in a Regular Expression for Terms

{f(x, s1, . . . , sn)≪ t, (x in R1|R2, f)} ∪ Γ
′; σ

=⇒ {f(x, s1, . . . , sn)ϑ≪ t, (yi in Ri, f)} ∪ Γ
′ϑ; σϑ,

for i = 1, 2, where yi is a fresh variable and ϑ = {x 7→ yi}.

CRET: Concatenation in a Regular Expression for Terms

{f(x, s1, . . . , sn)≪ t, (x in pR1, R2q, f)} ∪ Γ
′; σ

=⇒ {f(x, s1, . . . , sn)ϑ≪ t, (y1 in R1, f1), (y2 in R2, f2)} ∪ Γ
′ϑ; σϑ,

where y1 and y2 are fresh variables, ϑ = {x 7→ py1, y2q}, and f1 and f2

are computed as follows: If f = 0 then f1 = f2 = 0 else f1 = 0 and f2 =
NonEmpty(y1)⊕ 1.

RRET1: Repetition in a Regular Expression for Terms 1

{f(x, s1, . . . , sn)≪ t, (x in R∗, f)} ∪ Γ ′; σ
=⇒ {f(x, s1, . . . , sn)ϑ≪ t} ∪ Γ ′ϑ; σϑ,

where ϑ = {x 7→ pq} and f = 0.

RRET2: Repetition in a Regular Expression for Terms 2

{f(x, s1, . . . , sn)≪ t, (x in R∗, f)} ∪ Γ ′; σ
=⇒ {f(x, s1, . . . , sn)ϑ≪ t, (y in R, 1), (x in R∗, 0)} ∪ Γ ′ϑ; σϑ,

where y is a fresh variable and ϑ = {x 7→ py, xq}.

Can Context Sequence Matching Be Used for XML Querying? 87

HREC: Hole in a Regular Expression for Contexts

{C(s)≪ t, (C in ◦, g)} ∪ Γ ′; σ =⇒ {C(s)ϑ≪ t} ∪ Γ ′ϑ; σϑ,

where ϑ = {C 7→ ◦} and g = 0.

CxREC: Context in a Regular Expression for Contexts

{C(s)≪ t, (C in C, g)} ∪ Γ ′; σ =⇒ {C(s)ϑ≪ t} ∪ Γ ′ϑ; σϑ,

where C 6= ◦, Head(C) /∈ VCon, and ϑ = {C 7→ C}.

CVREC: Context Variable in a Regular Expression for Contexts

{C(s)≪ t, (C in D(◦), g)} ∪ Γ ′; σ =⇒ {C(s)ϑ≪ t} ∪ Γ ′ϑ; σϑ,

where ϑ = {C 7→ D(◦)} if g = 0. If g = 1 then ϑ = {C 7→ F (x,D(◦), y)},
where F, x, and y are fresh variables.

ChREC: Choice in a Regular Expression for Contexts

{C(s)≪ t, (C in Q1|Q2, g)} ∪ Γ
′; σ

=⇒ {C(s)ϑ≪ t, (Di in Qi, g)} ∪ Γ
′ϑ; σϑ,

for i = 1, 2, where Di is a fresh variable and ϑ = {C 7→ Di(◦)}.

CREC: Concatenation in a Regular Expression for Contexts

{C(s)≪ t, (C in pQ1, Q2q, g)} ∪ Γ
′; σ

=⇒ {C(s)ϑ≪ t, (D1 in Q1, g1), (D2 in Q2, g2)} ∪ Γ
′ϑ; σϑ,

where D1 and D2 are fresh variables and ϑ = {C 7→ D1(D2(◦))}, and g1

and g2 are computed as follows: If g = 0 then g1 = g2 = 0 else g1 = 0 and
g2 = NonEmpty(D1)⊕ 1.

RREC1: Repetition in a Regular Expression for Contexts 1

{C(s)≪ t, (C in Q∗, g)} ∪ Γ ′; σ =⇒ {C(s)ϑ≪ t} ∪ Γ ′ϑ; σϑ,

where ϑ = {C 7→ ◦} and g = 0. If g = 1 the rule fails.

RREC2: Repetition in a Regular Expression for Contexts 2

{C(s)≪ t, (C in Q∗, g)} ∪ Γ ′; σ
=⇒ {C(s)ϑ≪ t, (D in Q, 1), (C in Q∗, 0)} ∪ Γ ′ϑ; σϑ,

where D is a fresh variable and ϑ = {C 7→ D(C(◦))}.

A context sequence regular matching algorithm MR is defined in the similar
way as the algorithm M (Definition 1) with the only difference that the rules
of IR are used instead of the rules of I. ¿From the beginning, all the flags in
the input problem are set to 0. Note that the rules in IR work either on a
selected matching equation, or on a selected pair of a matching equation and a
pattern-pair. No rule selects a patter-pair alone. We denote by SolMR

(Γ) the
solution set of Γ generated by MR.

Theorem 2. The algorithm MR is sound, terminating and complete.

Proof. See Appendix B. ⊓⊔

88 T. Kutsia, M. Marin

Note that we can extend the system IR with some more rules that facilitate an
early detection of failure, e.g., {f(x, s1, . . . , sn)≪ f(), (x in R, 1)}∪Γ ′;σ =⇒⊥
would be one of such rules.

Turning back to the query language L, now the queries that contain member-
ship pairs in conditions can be resolved by context sequence regular matching,
forming the matching problem with the pattern from the query against the
data, and the corresponding membership pairs from the condition.

As a syntactic sugar on regular expressions on contexts, we let function
symbols, function variables, and context variables be used as the basic build-
ing blocks for regular expressions. Such regular expressions are understood as
abbreviations for the corresponding regular expressions on contexts. We demon-
strate the correspondence on the example: The regular expression pF, f |pC, gq∗q
abbreviates the regular context expression

pF (x1, ◦, y1), f(x2, ◦, y2)|pC(x3, ◦, y3), g(x4, ◦, y4)q
∗q

where x’s and y’s are fresh variables. In this way, the query language L will
understand also the regular path expression syntax.

6 Conclusions

We showed how to use context sequence matching to explore terms (represented
as trees) in two orthogonal directions: in depth (by context variables) and in
breadth (by sequence variables). We developed a minimal complete rule-based
algorithm for context sequence matching. Moreover, we showed that regular
restrictions can be easily incorporated in the rule-based matching framework,
and sketched proofs of soundness, termination and completeness of such an
extension.

Context sequence matching can serve as a computational mechanism for a
declarative rule-based XML query and transformation language. In our opinion,
an advantage of such a language would be its flexibility and expressiveness: It
would combine in itself the features of both path-based and pattern-based lan-
guages, and would easily support, for instance, a wide range of queries (selection
and extraction, reduction, negation, restructuring, combination), parent-child
and sibling relations and their closures, access by position, unordered matching,
order-preserving result, partial and total queries, multiple results, and other
properties. Moreover, rule-based paradigm would provide a clean declarative
semantics.

References

1. M. Alpuente, D. Ballis, and M. Falaschi. A rewriting-based framework for web sites
verification. Electronic Notes on Theoretical Computer Science, 2004. To appear.

2. H. Boley. A Tight, Practical Integration of Relations and Functions, volume 1712 of LNAI.
Springer, 1999.

3. A. Bonifati and S. Ceri. Comparative analysis of five XML query languages. ACM
SIGMOD Record, 29(1):68–79, 2000.

Can Context Sequence Matching Be Used for XML Querying? 89

4. F. Bry and S. Schaffert. Towards a declarative query and transformation language for
XML and semistructured data: Simulation unification. In Proc. of International Con-
ference on Logic Programming (ICLP), number 2401 in LNCS, Copenhagen, Denmark,
2002. Springer.

5. B. Buchberger and A. Crǎciun. Algorithm synthesis by lazy thinking: Examples and
implementation in Theorema. In Proc. of the Mathematical Knowledge Management
Symposium, volume 93 of Electronic Notes on Theoretical Computer Science, pages 24–
59, 2003.

6. B. Buchberger, C. Dupré, T. Jebelean, F. Kriftner, K. Nakagawa, D. Vasaru, and
W. Windsteiger. The Theorema project: A progress report. In M. Kerber and
M. Kohlhase, editors, Proc. of Calculemus’2000 Conference, pages 98–113, 2000.

7. J. Clark and S. DeRose, editors. XML Path Language (XPath) Version 1.0. W3C, 1999.
Available from: http://www.w3.org/TR/xpath/.

8. J. Coelho and M. Florido. CLP(Flex): Constraint logic programming applied to XML
processing. In R. Meersman and Z. Tari, editors, On the Move to Meaningful Internet
Systems 2004: CoopIS, DOA, and ODBASE. Proc. of Confederated Int. Conferences,
volume 3291 of LNCS, pages 1098–1112. Springer, 2004.

9. H. Comon. Completion of rewrite systems with membership constraints. Part I: Deduction
rules. J. Symbolic Computation, 25(4):397–419, 1998.

10. H. Comon. Completion of rewrite systems with membership constraints. Part II: Con-
straint solving. J. Symbolic Computation, 25(4):421–453, 1998.

11. T. Furche, F. Bry, S. Schaffert, R. Orsini, I. Horroks, M. Kraus, and O. Bolzer. Survey
over existing query and transformation languages. Available from: http://rewerse.net/
deliverables/i4-d1.pdf, 2004.

12. M. L. Ginsberg. The MVL theorem proving system. SIGART Bull., 2(3):57–60, 1991.

13. M. Hamana. Term rewriting with sequences. In: Proc. of the First Int. Theorema Work-
shop. Technical report 97–20, RISC, Johannes Kepler University, Linz, Austria, 1997.

14. M. R. Henzinger, T. A. Henzinger, and P. W. Kopke. Computing simulations on finite
and infinite graphs. In Proc. of the 36th Annual Symposium on Foundations of Computer
Science (FOCS), pages 453–462. IEEE Computer Society Press, 1995.

15. H. Hosoya and B. Pierce. Regular expression pattern matching for XML. J. Functional
Programming, 13(6):961–1004, 2003.

16. T. Kutsia. Solving and Proving in Equational Theories with Sequence Variables and
Flexible Arity Symbols. PhD thesis, Johannes Kepler University, Linz, Austria, 2002.

17. T. Kutsia. Unification with sequence variables and flexible arity symbols and its extension
with pattern-terms. In J. Calmet, B. Benhamou, O. Caprotti, L. Henocque, and V. Sorge,
editors, Artificial Intelligence, Automated Reasoning and Symbolic Computation. Proc. of
Joint AISC’2002 – Calculemus’2002 Conference, volume 2385 of LNAI, pages 290–304.
Springer, 2002.

18. T. Kutsia. Solving equations involving sequence variables and sequence functions. In
B. Buchberger and J. A. Campbell, editors, Artificial Intelligence and Symbolic Com-
putation. Proc. of AISC’04 Conference, volume 3249 of LNAI, pages 157–170. Springer,
2004.

19. T. Kutsia. Context sequence matching for XML. In M. Alpuente, S. Escobar, and
M. Falaschi, editors, Proc. of First International Workshop on Automated Specification
and Verification of Web Sites (WWV’05), pages 103–119, Valencia, Spain, March 14–15
2005. (Full version to appear in Elsevier ENTCS).

20. J. Levy and M. Villaret. Linear second-order unification and context unification with tree-
regular constraints. In L. Bachmair, editor, Proc. of the 11th Int. Conference on Rewriting
Techniques and Applications (RTA’2000), volume 1833 of LNCS, pages 156–171. Springer,
2000.

21. D. Maier. Database desiderata for an XML query language. Available from: http:

//www.w3.org/TandS/QL/QL98/pp/maier.html, 1998.

22. M. Marin and D. Ţepeneu. Programming with sequence variables: The Sequentica pack-
age. In P. Mitic, P. Ramsden, and J. Carne, editors, Challenging the Boundaries of
Symbolic Computation. Proc. of 5th Int. Mathematica Symposium, pages 17–24, London,
2003. Imperial College Press.

90 T. Kutsia, M. Marin

23. M. Marin and T. Kutsia. Programming with transformation rules. Analele Universitatii
de Vest din Timisoara, XVI:163–177, 2003.

24. M. Schmidt-Schauß. A decision algorithm for stratified context unification. J. Logic and
Computation, 12(6):929–953, 2002.

25. M. Schmidt-Schauß and K. U. Schulz. Solvability of context equations with two context
variables is decidable. J. Symbolic Computation, 33(1):77–122, 2002.

26. M. Schmidt-Schauß and J. Stuber. On the complexity of linear and stratified context
matching problems. Research Report 4923, INRIA-Lorraine, France, 2003.

27. World Wide Web Consortium (W3C). Extensible Markup Language (XML) 1.0. Second
edition. Available from: http://www.w3.org/, 1999.

A Proof of Theorem 1

Theorem 1 is an immediate consequence of Soundness, Termination, Complete-
ness, and Minimality theorems for M given below.

Theorem 3 (Soundness of M). Let Γ be a matching problem. Then every
substitution σ ∈ SolM(Γ) is a matcher of Γ .

Proof. (Sketch) Inspecting the rules in I one can conclude that for a derivation
Γ ; ε =⇒+ ∅;σ the problems Γσ and ∅ have the same set of matchers. It implies
that σ is a matcher of Γ . ⊓⊔

Theorem 4 (Termination of M). The algorithm M terminates on any input.

Proof. With each matching problem ∆ we associate a complexity measure as a
triple of non-negative integers 〈n1, n2, n3〉, where n1 is the number of distinct
variables in ∆, n2 is the number of symbols in the ground sides of matching
equations in ∆, and n3 is the number of subterms in ∆ of the form f(s1, . . . , sn),
where s1 is not a sequence variable. Measures are compared lexicographically.
Every non-failing rule in I strictly decreases the measure. Failing rules imme-
diately lead to termination. Hence, M terminates on any input. ⊓⊔

Theorem 5 (Completeness of M). Let Γ be a matching problem and let ϑ be
a matcher of Γ . Then there exists a derivation Γ ; ε =⇒+ ∅;σ such that σ ≤· ϑ.

Proof. We construct the derivation recursively. For the base case Γ1;σ1 = Γ ; ε
we have ε ≤· ϑ. Now assume that the system Γn;σn, where n ≥ 1 and Γn 6= ∅,
belongs to the derivation and find a system Γn+1;σn+1 such that Γn;σn =⇒
Γn+1;σn+1 and σn+1 ≤· ϑ. We have σn ≤· ϑ. Therefore, there exists ϕ such
that σnϕ = ϑ and ϕ is a matcher of Γn. Without loss of generality, we pick an
arbitrary matching equation s ≪ t from Γn and represent Γn as {s ≪ t} ∪ Γ ′

n.
Depending on the form of s≪ t, we have three cases:

Case 1. The terms s and t are the same. We extend the derivation with the
step Γn;σn =⇒T Γ

′
n;σn. Therefore, σn+1 = σn ≤· ϑ.

Case 2. The term s is an individual variable x. Then xϕ = t. Therefore, for
ψ = {x 7→ t} we have ψϕ = ϕ and, hence, σnψϕ = ϑ. We extend the derivation
with the step Γn;σn =⇒IVE Γ

′
n;σn+1, where σn+1 = σnψ ≤· ϑ.

Case 3. The terms s and t are not the same and s is a compound term.
The only non-trivial cases are those when the first argument of s is a sequence

Can Context Sequence Matching Be Used for XML Querying? 91

variable, or when the head of s is a context variable. If the first argument
of s is a sequence variable x then ϕ must contain a binding x 7→ pt1, . . . , tkq
for x, where m ≥ 0 and ti’s are ground terms. If k = 0 then we take ψ =
{x 7→ pq} and extend the derivation with the step Γn;σn =⇒SVD Γ ′

n;σn+1,
where σn+1 = σnψ. If k > 0 then we take ψ = {x 7→ pt1, xq} and extend the
derivation with the step Γn;σn =⇒W Γ ′

n;σn+1, where σn+1 = σnψ. In both
cases we have σn+1 = σnψ ≤· σnϕ = ϑ. If the head of s is a context variable C
then ϕ must contain a binding C 7→ C for C, where C is a ground context. If
C = ◦ then we take ψ = {C 7→ ◦} and we extend the derivation with the step
Γn;σn =⇒CVD Γ ′

n;σn+1, where σn+1 = σnψ. If C 6= ◦ then C should have a
form f(t1, . . . , tj−1,D, tj+1, . . . , tm), where D is a context and f(t1, . . . , tm) = t.
Then we take ψ = {C 7→ f(t1, . . . , tj−1, C(◦), tj+1, . . . , tm)} and extend the
derivation with the step Γn;σn =⇒W Γ ′

n;σn+1, where σn+1 = σnψ. In both
cases σn+1 = σnψ ≤· σnϕ = ϑ. ⊓⊔

Theorem 6 (Minimality). Let Γ be a matching problem. Then SolM(Γ) is
a minimal set of matchers of Γ .

Proof. For any matching problem ∆ the set

S(∆) = {ϕ | ∆; ε =⇒ Φ;ϕ for some Φ}

is minimal. Moreover, every substitution ϑ in S(∆) preserves minimality: If
{σ1, . . . , σn} is a minimal set of substitutions then so is the set {ϑσ1, . . . , ϑσn}.
It implies that SolM(Γ) is minimal. ⊓⊔

B Proof of Theorem 2

Theorem 2 follows from Soundness, Termination, and Completeness theorems
for MR given below.

Theorem 7 (Soundness of MR). Let Γ be a regular matching problem. Then
every substitution σ ∈ SolMR

(Γ) is a regular matcher of Γ .

Proof. (Sketch) Inspecting the rules in IR one can conclude that for a derivation
Γ ; ε =⇒+ ∅;σ every regular matcher of ∅ is also a regular matcher of Γσ. It
implies that σ is a regular matcher of Γ . ⊓⊔

Theorem 8 (Termination of MR). The algorithm MR terminates on any
input.

Proof. The tricky part of the proof is related with patterns containing the star
“*”. A derivation that contains an application of the RRET2 rule on a system
with a selected matching equation and pattern-pair s0 ≪ t0, (x in R∗0, f) either
fails or eventually produces a system that contains a matching equation s1 ≪ t1
and a pattern-pair (x in R∗1, 0) where R1 is an instance of R0 and x is the first
argument of s1:

{s0 ≪ t0, (x in R∗0, f)} ∪ Γ ;σ

=⇒RRET2 {s0ϑ≪ t0, (y in R0, 1), (x in R∗0, f)} ∪ Γϑ;σϑ

=⇒+ {s1 ≪ t1, (x in R∗1, 0)} ∪∆;ϕ.

92 T. Kutsia, M. Marin

Hence, the rule RRET2 can apply again on {s1 ≪ t1, (x in R∗1, 0)} ∪ ∆;ϕ.
The important point is that the total size of the ground sides of the matching
equations strictly decreases between these two applications of RRET2: In {s1 ≪
t1} ∪∆ it is strictly smaller than in {s0 ≪ t0} ∪ Γ . This is guaranteed by the
fact that (y in R0, 1) does not allow the variable y to be bound with the empty
sequence. The same argument applies to derivations that contain an application
of the RREF2 rule. Applications of the other rules also lead to a strict decrease
of the size of the ground sides after finitely many steps. Since no rule increases
the size of the ground sides, the algorithm MR terminates.

Theorem 9 (Completeness of MR). Let Γ be a regular matching problem,
ϑ be a regular matcher of Γ , and V be a variable set of Γ . Then there exists a
substitution σ ∈ SolMR

such that σ ≤·V ϑ.

Proof. Similar to the proof of Theorem 5. ⊓⊔

Tree vs Dag Automata

Siva Anantharaman1, Paliath Narendran2, and Michaël Rusinowitch3

1 LIFO - Université d’Orléans (France)
e-mail: siva@lifo.univ-orleans.fr

2 University at Albany–SUNY (USA)
e-mail: dran@cs.albany.edu

3 INRIA-Lorraine, Nancy (France)
e-mail: rusi@loria.fr

Abstract. The complexity of several classical algorithms has been lowered with
success by using structures over dags instead of over trees. It is natural then
to try to replace automata running over trees by those running over dags, at
least for some of the problems solved by using tree automata techniques. The
purpose of this paper is to show that algebraically dag automata behave very
differently from tree automata, but they can be finer modeling tools in several
complex situations.

1 Introduction

The expressive power of tree automata has proved to be very useful in several
contexts, such as rewriting (e.g., [8]), the analysis of XML documents (e.g., [13]),
and formal verification techniques based on set constraints. They have also been
employed in solving unification problems over theories extending ACUI (AC
with Unit element plus Idempotence), see for instance [4] and [1, 2].

On the other hand, right from the early days of syntactic unification, dags
have often been used for the same purposes as trees, generally with the advan-
tage that algorithms using dag structures have a lower complexity than those
using trees. It is therefore only natural to investigate the possibility of using
automata over dags instead of over trees, for solving problems. Dag automata
(DA) were first introduced and studied in detail in [6]: a dag automaton is
a bottom-up tree automaton running on dags, not on trees. Their emptiness
problem was shown in [6] to be NP-complete, and the membership problem
was proved to be in NP; but the stability under complementation of the class of
dag automata was raised as an open problem, closely linked with that of their
determinization. These two issues are settled negatively by our results of [3];
the principal reason is that the set of all terms represented by the set of dags
accepted by a deterministic DA is necessarily regular, but that is no longer true
for a non-deterministic DA.

The notion of labeled tree automaton was introduced in [7] essentially as a
means for some control over the runs: a labeled tree automaton is a tree au-
tomaton where the transitions are labeled; it runs on trees with labeled nodes;
the runs have then to use transitions whose labels tally with those at the nodes
reached. But their expressive power is the same as for tree automata, since
any labeled tree automaton can be easily translated into a usual tree automa-
ton without labels, in a way that preserves determinism and accepting runs.

93

94 S. Anantharaman, P. Narendran, M. Rusinowitch

Recall that for (deterministic or non-deterministic) tree automata, the mem-
bership problem is decidable in polynomial time, and universality is known to
be EXPTIME-complete, cf. [7], Section 1.7, Theorems 10 and 14.

Now, one can define analogously the notion of a labeled dag automaton
(LDA), as a dag automaton with labeled transitions, running on dags with
labeled nodes, using transitions whose labels tally with those at the nodes
reached. It was shown in [1] that unification modulo the theory ACID (ob-
tained by adjoining a binary operator assumed 2-sided distributive over a basic
ACI symbol) is decidable with a DEXPTIME lower bound and a NEXPTIME
upper bound complexity; this was done by formulating an ACID-unification
problem as the emptiness problem of a deterministic labeled dag automaton
that can be constructed naturally, and in exponential time, from the given uni-
fication problem. Thus, if emptiness of deterministic LDAs could be shown to be
decidable in polynomial time, one could have deduced that ACID-unification
is DEXPTIME-complete. But our results of [3] show that deciding emptiness is
NP-complete for deterministic LDAs. The reason for this is that an LDA can
in general be translated into a DA without labels in a way that only preserves
accepting runs, but not determinism.

We have also shown in [3] that (i) the class of dag automata is not sta-
ble under complementation, (ii) the membership problem is NP-hard for non-
deterministic dag automata, and (iii) universality is undecidable for dag au-
tomata. The results on emptiness and membership are obtained via reduction
from boolean satisfiability, while that on universality is obtained via reduction
from the reachability problem for Minsky 2-counter machines [12]. Part of the
constructions and proof details of [3] are reproduced in this paper, along with
some additional comments, remarks, as well as examples borrowed from some
of our other works. The intended message is that, however ill-behaved DAs and
LDAs may be from an algebraic point of view, they can be the appropriate tools
for modeling or analyzing several complex situations.

2 DAs: Definitions, Properties

A term-dag over a ranked alphabet Σ is a rooted dag where each node has a
symbol from Σ such that:

(i) the out-degree of the node is the same as the rank of the symbol,
(ii) edges going out of a node are ordered, and
(iii) no two distinct subgraphs are isomorphic.

Every node represents a unique term in a term-dag, so we often treat “node”
and “term” as synonymous on a term-dag.

Definition 1. A term-dag automaton (or dag automaton, DA for short) over
a ranked alphabet Σ is a tuple (Σ,Q,F,∆), where Q is a finite non-empty set of
states, F ⊆ Q is the set of final (or accepting) states, and ∆ is a set of transition
rules of the form : f(q1, q2, ..., qn) → q, where f ∈ Σ is of arity (rank) n, and
the qi, . . . , qn, q are in Q.

A run r of a DA A = (Σ,Q,F,∆) on a term-dag t is a mapping from the set
of nodes of t to the set of states Q that respects the transition relation ∆; i.e., for

Tree vs Dag Automata 95

every node u, if the symbol at u is f of arity k, then f(r(u1), . . . , r(uk))→ r(u)
must be a transition in ∆, where u1, . . ., uk are the successor-nodes of u given
in order. A run r is accepting on t if and only if r(t) ∈ F , i.e, it maps the root
node to an accepting state. A term-dag t is accepted by a DA iff there is an
accepting run on t. The language of a DA is the set of all term-dags that it
accepts.

In brief, a dag automaton is none other than a bottom-up automaton run-
ning on term-dags, not on trees. It was already pointed out in [6], that this
makes an essential difference for the language. Thus, the following bottom-up
automaton:

a→ q1, a→ q2, f(q1, q2)→ qa
with q0, q1, qa as states and qa as the accepting state, has an empty language as
a DA; however, as a tree automaton it accepts f(a, a).

Remark 1. The above difference disappears though, if the DA is determinis-
tic. (A dag automaton is said to be deterministic iff any two distinct transition
rules have distinct left-hand-sides.) Indeed, if an automaton is bottom-up de-
terministic, then there is no difference whether it runs on a tree or on the
dag representing this tree. It follows that if A is a deterministic DA and L its
language, then the set of terms represented by the dags of L is a regular tree
language. This last assertion is not true however, for general non-deterministic
DAs, as is shown by the following construction.

Construction: Consider the infinite set M of term-dags defined recursively
over the signature {a(0), g(2)}, as follows (superscripts denote ranks):

• a ∈M , • if t ∈M then g(t, t) ∈M ,
• nothing else is in M

Note first that there is no DA accepting precisely the dags of M . The proof is
by contradiction, based on a standard pumping argument. This is illustrated in
the figure below. (Note: the same pumping argument also shows that the set of
terms represented by the dags of M cannot be a regular tree language.)

g

s_2

u u

g s_2

g g s_1

g

s_1

g

==>

g g

Fig. 1. Pumping out some nodes

However the complement M ′ of M (with respect to the set of all ground
terms generated by {a(0), g(2)}), is accepted by a DA. To show this observe first
that, for any ground term t, we have t ∈M ′ iff t contains a subterm of the form
g(t1, t2) with t1 6= t2. It is easily seen that the following DA, where qa is the

96 S. Anantharaman, P. Narendran, M. Rusinowitch

unique accepting state, accepts precisely the dags of the terms in M ′:

a −→ q0

a −→ q1

g(q0, q0) −→ q0

g(q0, q0) −→ q1

g(q1, q1) −→ q0

g(q1, q1) −→ q1

g(q0, q1) −→ qa

g(q1, q0) −→ qa

g(qa,) −→ qa

g(, qa) −→ qa

From this construction and Remark 1, we get the following:

Proposition 1. (i) The class of DAs is not closed under complementation.
(ii) DAs are not determinizable in general.
(ii) There exists a set T of term-dags recognized by a DA such that the set

of all terms represented by the dags in T is not a regular tree language.

This proposition answers all the three questions on DAs raised in [6], after
the proof that their emptiness problem is in NP. (Note: It is easy to show that
the class of DAs is stable under union and intersection.)

3 LDAs: Definitions, Properties

A labeled term-dag , or lt-dag for short, is a term-dag equipped additionally with
a mapping from the nodes of the dag to a given set of labels E. Adding labels
has several advantages: e.g., in the case where the labels are boolean, i.e., when
E = {0, 1}, a labeled term-dag can be used to specify finite sets of terms. For
instance, the lt-dag of Figure 2 naturally represents the set {a, g(g(a, a), b)} of
terms. More generally, if the nodes are labeled with boolean vectors of length
m, then each lt-dag represents naturally an m-tuple of finite sets of terms.

g

g

a b

1

0

01

Fig. 2. A labeled term-dag

Definition 2. A labeled dag automaton (or LDA for short) over a ranked
alphabet Σ is a quintuple (Σ,Q,F,E,∆), where Q is a finite non-empty set
of states, F ⊆ Q is the set of final (or accepting) states, E is a finite set of
labels, and the transition relation ∆ consists of labeled rewrite rules of the form

f(q1, . . . , qk)
l
−→ q, where k is the rank of f , l ∈ E, and q1, . . . , qk, q ∈ Q.

Tree vs Dag Automata 97

A run r of an LDA (Σ,Q,F,E,∆) on an lt-dag t with label E is a mapping
from the nodes of t to Q that respects the labels and the transition relation ∆
in the following sense:

• for every node u on t, if the symbol at u is f of arity k, and the label
of t at u is l, then transitions are possible via rules in ∆ of the form

f(r(u1), . . . , r(uk))
l
−→ r(u), where u1, . . ., uk are the successor nodes of u

on t given in order.

The above condition says in intuitive terms that the label on an LDA-transition
must be the one at the node reached. A run r is said to be accepting on t iff
r(t) ∈ F , i.e, it maps the root node to an accepting state. An lt-dag t is said to
be accepted by an LDA iff there is an accepting run on t. The language of an
LDA is the set of all lt-dags that it accepts.

An LDA is thus none other than a bottom-up automaton with labeled tran-
sition rules, running on labeled term-dags instead of on labeled trees. We say
that an LDA is deterministic iff no two distinct transition rules have the same
left-hand-side and the same label.

Unlabeling an LDA into a DA: To clearly bring out the difference with
automata over trees, we first consider bottom-up labeled tree automata (that we
shall refer to as LTAs): these are defined exactly as above, but operate on labeled
trees. From the known results on unlabeled tree automata (such as emptiness ..),
one deduces similar results for LTAs, via an ‘unlabeling’ process, as follows: For
any function symbol f ∈ Σ of rank n, and any label l ∈ E, define a new function

symbol fl, also of rank n; and for any transition rule f(q1, . . . , qn)
l
−→ q on

the LTA, define an unlabeled transition rule fl(q1, . . . , qn) → q. By ‘pushing
the labels onto the function symbols’ in this manner, we derive in polynomial
time a usual unlabeled tree automaton (TA) from the given LTA, such that the
following holds: a labeled tree t is accepted by the LTA if and only if the TA
accepts the unlabeled tree derived from t by pushing the label at each node
onto the function symbol at that node; and the accepting runs are ‘preserved
up to labels’. Via such an unlabeling, not only do the results carry over from
the TA to the LTA, but the complexity is unaffected; moreover, if the LTA is
deterministic, the unlabeled TA derived will be deterministic too. This explains
that the expressive power of LTAs is the same as that of TAs; and therefore,
labeling a TA appears only as notational convenience.

But such an unlabeling process cannot be carried over to the case of LDAs,
since it will destroy the structure of the term-dags. So, unlabeling an LDA has
to be done by ‘pushing the labels onto the state symbols’, and not onto the
function symbols. Even this has to be done with caution, in order that the
complexity of the results concerned remains unaffected:

Proposition 2. The emptiness problem for LDAs is in NP.

Proof. This is a consequence of the result of [6] that the emptiness problem
for DAs is in NP. Here is how. Given the LDA A, construct an unlabeled DA
denoted A′, as follows: the states of A′ are the pairs of form (q, Lq), denoted

98 S. Anantharaman, P. Narendran, M. Rusinowitch

as q̂, where q is a state of A and Lq is the set of all labels of the transitions
of A which have q as target; the (unlabeled) transitions of A′ are of the form

f(q̂1, . . . , q̂k) −→ q̂, whenever f(q1, . . . , qk)
l
−→ q is a (labeled) transition on

the given LDA A; the accepting states of A′ are the q̂’s corresponding to the
accepting states q on A. Note that A′ is constructed from A in linear time: its
number of states is the same as for A (since Lq is completely determined by q
on A), and its number of transitions is at most that of A.

It is not hard to check then that the LDA A has a non-empty language if
and only if the unlabeled DA A′ accepts some term-dag. ⊓⊔
Remark 2. In the above construction of the unlabeled A′ from the LDA A,
the accepting runs are preserved up to labels; but even if the LDA A is de-
terministic, the DA A′ will be non-deterministic in general. This shows that
deterministic LDAs do not behave in general like deterministic LTAs; it turns
out in particular, that their emptiness problem is NP-hard (so NP-complete,
thanks to [6]):

Theorem 1. The emptiness problem is NP-hard for deterministic LDAs.

Proof. The proof is by reduction from boolean satisfiability. Let B be any arbi-
trarily chosen boolean formula over a given set of boolean variables {x1, . . . , xn},
and the usual boolean connectives {∧,∨,¬}. Let tB be a term-dag for B, and m
its number of distinct nodes. We then construct an LDA A with 2m states, such
that A accepts exactly the term-dag tB labeled suitably with boolean values
0, 1 if and only if B is satisfiable. The construction goes as follows.

Corresponding to each node we have two states which stand for that sub-
formula getting the corresponding truth-value. For ease of exposition we repre-
sent the states in the form q(s,0) or q(s,1) where s is a subterm of tB . The labels
are 0 and 1. The labeled transition rules on A are of the form:

xi
0
−→ q(xi,0), xi

1
−→ q(xi,1),

and, more generally, for any h ∈ {∧,∨}, will have the form:

h(q(s1,b1), q(s2,b2))
h(b1,b2)
−−−−−→ q(h(s1,s2),h(b1,b2))

where b1, b2 ∈ {0, 1}, and h(s1, s2) is a subterm of tB; for the connective ¬ we

have the transitions of the form: ¬(q(s,b))
¬b
−→ q(¬s,¬b). The unique accepting

state is q(tB ,1). This LDA meets the requirements (cf. [3]). ⊓⊔
Remarks 3. i) By replacing the labels of the above constructed LDA by a
“don’t-care” boolean label (the LDA becomes non-deterministic, but) we may
deduce that the membership problem for LDAs is NP-hard (so is NP-complete).

ii) The above proof is a further illustration that deterministic LDAs do not
behave like deterministic LTAs: the reason is that on a tree the same subterm
can be at two different nodes with different labels. Thus, a deterministic LTA
can be easily constructed to accept the boolean formula a ∧ ¬ a as a suitably
labeled tree.

iii) Exploiting the fact that on a dag two equal subterms must occupy the
same node, one can construct a DA that accepts precisely all the non-accepting
or incorrect computations of a deterministic 2-counter machine, cf. [3]. It follows
that the universality problem for DAs is undecidable, consequently so is also
the problem of equivalence of DAs.

Tree vs Dag Automata 99

4 LDA for Solving a Unification Problem

This section presents briefly the ideas on how the LDA formalism was used
in [1], for solving the ACID-unification problem. (It was this problem that
was the motivation for our initial interest in DAs and LDAs.) The full details –
technical and complex – will be left out, but can be found in the research report
RR-2004-12: How useful are Dag Automata ?, http://www.univ-orleans.fr/
lifo/prodsci/rapports/RR2004.htm.fr.

By ACID we mean the theory defined by the following equational axioms:

x+ (y + z) ≈ (x+ y) + z, x+ y ≈ y + x, x+ x ≈ x.

x ∗ (y + z) ≈ (x ∗ y) + (x ∗ z), (u+ v) ∗ w ≈ (u ∗ w) + (v ∗ w)

ACID-unification with free constants is the problem of solving, modulo this
theory, a finite family of equations of the form: {s1 = t1, . . . , sk = tk} as finite,
non-empty sets of ground terms (over the free constants) for the variables of
the problem. Such a problem can always be reduced to a standard form,: every
equation in the problem has one of the following forms (respectively referred to
as of type ‘product’, ‘sum’, or ‘constant’):

x = y ∗ z, u = v +w, u = c

where u, v,w, x, y, z are variables and c is any constant or 0. Since ‘+’ is idem-
potent and ‘∗’ distributes left and right over ‘+’, we may view this ACID-
unification problem as a set constraint problem; e.g. if y and z are interpreted
as sets of terms over ∗ and the constants, then y ∗ z = {s ∗ t | s ∈ y, t ∈ z}.

To every such problem P, we associate an LDA in such a way that solving
P amounts – in the following sense – to showing that the language of the LDA
is non-empty. Let Xi, i = 1..n, denote the set variables of the problem P:

(i) If Si, i = 1..n, are (finite, non-empty) sets of ground terms such that
Xi = Si, i = 1..n, is a solution to P, then one can construct an lt-dag repre-
senting this family of sets (so labeled with boolean vectors of length n), such
that the LDA associated accepts the lt-dag.

(ii) Conversely, if t is an lt-dag t (labeled with boolean vectors of length n)
accepted by the LDA associated to P, the n sets of ground terms Si recovered
as elements of Xi from the labels of t may not have the closure property w.r.t.
P, i.e. some of the ‘product’-equations of P may remain unsatisfied; however,
from the accepting run of the LDA on t, we can derive a grammar, with the
help of which one can produce a solution to the problem P.

Suppose given an ACID-unification problem P, and let {Xi}i=1..n be its set
variables, arranged in some fixed order. The lt-dags on which we shall consider
runs of our LDA (to be defined), will be term dags over the symbol ‘∗’ and the
given ground constants, labeled with n-bit vectors at their various nodes. These
labels will in general be denoted as (m1,m2, . . . ,mn), mi ∈ {0, 1}, i = 1..n.
They have as semantics that mi = 1 iff the subterm of the lt-dag at the current
node is an element of the set Xi.

The LDA that we shall be associating with our ACID-problem is somewhat
similar to the tree automata with free variables defined in [9]. Let S be the set of
all 2n-bit vectors of the form {..., li, ...; ..., hi , ...} such that li ≤ hi for all i ∈ 1..n;
the elements of S will be referred to as pstates; we denote them by barred capital

100 S. Anantharaman, P. Narendran, M. Rusinowitch

letters such as A,B, For any pstate A ∈ S, we shall be denoting its first-half
(or lower) and second-half (or higher) n-bit vectors by A.l,A.h respectively.

Any state A of our LDA will have as its first component a pstate, that we
shall denote A; this corresponds to two sets of boolean valuations on the set
expressions {Xi}i=1..n ; the lower i-th bit A.li of the LDA state A will signify
(when 1) that the term at the current node on an lt-dag mapped to A under
a given run r is accepted as element of Xi; the upper i-th bit A.hi is meant to
signify (when 1) that some subterm below the current node has been accepted
in Xi by the run; this explains why we only consider pstates A with A.l ≤ A.h.

An accepting state on the LDA will then be in particular such that A.hi = 1
for all i = 1..n; but this condition alone will not be sufficient for acceptance:
many of the ‘product’-equations of P may still remain unsatisfied. To circum-
vent this, we add as the second component of any state A of the LDA, a set
of equalities formed from some new symbols called dsymbols which are meant
to keep some book-keeping on the nodes traversed by the run. A dsymbol is of
the form Xi

B
, where 1 ≤ i ≤ n, and B is a pstate. The second component at

any state A will be referred as the defect set at A and denoted as MA; it will
contain some dsymbols doing the book-keeping along the run, together with
some defect equalities: a defect equality over the dsymbols is by definition an
equality having one of the two following forms:

Xk
C

= Xi
A
Xj

B
, T = Xi

A
Xj

B

where A,B,C ∈ S, and (k, i, j) are triples corresponding to some ‘product’-
equation in P of the form Xk = Xi ∗ Xj . Equalities of the first type are said
to be closed, and those of the second type open. (Note: the number of all the
dsymbols and defect equalities is polynomial in the size of S.)

The presence of a dsymbol Xi
B

in the defect set MA of a state A has the
semantics that some node below, along the run, got mapped to a state on the
LDA whose pstate is B, and the subterm at that node is in the set Xi. Closed
(resp. open) defect equalities in the defect set MA keep track of the ‘product’-
equations of P which have remained ‘covered’ along the run (resp. which still
remain to be covered). The open defect equalities will also be witnesses that the
term accepted at the current node by the run contributes (along with a subterm
accepted at some earlier node) to one or more of the ‘product’-equations of P.

By definition, the accepting states of the LDA are the A satisfying the fol-
lowing two conditions:

(i) A.hi = 1 for all i ∈ {1, .., n};
(ii) the defect set MA at A contains no open defect equalities.

We skip the other technical details on how the transitions are defined on the
LDA associated to P, in particular on how the pstates and the defect sets evolve
under them. Suffices to note that they are defined in such a way that the LDA
will be deterministic. (This fact is crucial for proving the completeness of the
LDA approach for solving ACID-unification problems.)

We give below a couple of examples illustrating the approach sketched above;
the first one shows in particular why we need a grammar from an accepted lt-
dag to generate a solution for the unification problem. Guessing how the runs
get initialized must not be too difficult, from either of the examples.

Tree vs Dag Automata 101

4.1 Examples of ACID-Unification

Example 1. Consider the ACID-problem Z =? X ∗ Y , and order the list
of variables as {X,Y,Z}. Let a, b, c, d be ground constants; we construct an
accepted lt-dag rooted at (c ∗ (c ∗ (a ∗ b))) ∗ (c ∗ d), with leaves at a, c put into
X; and at b, d put into Y ; in addition the nodes at (a ∗ b), (c ∗ (a ∗ b)) are put
into Y ; cf. figure below. From the labels of this accepted lt-dag we only get the
following terms in the set Z: (a∗ b), c∗ (a∗ b), c∗ (c∗ (a∗ b)), (c∗d), so the sets
of terms recovered from the labels of the lt-dag is not a solution to the problem.

The accepting run is as follows (in the figure, the states to which the nodes
get mapped are indicated in italic capitals).

a, c
100

−−−−−→ A = (100; 100; {XA}); b, d
010

−−−−−→ B = (010; 010; {YB});

A∗B
011

−−−−−→ C = (011; 111; {XA , YB , YC , ZC , ZC = XAYB, T = XAYC});

A ∗B
001

−−−−−→ D = (001; 111; {XA , YB , ZD, ZD = XAYB});

A∗C
011

−−−−−→ C = (011; 111; {XA , YB , YC , ZC , ZC = XAYB, T = XAYC});

C

c

a b

(a*b)

(c*(a*b))

(c*(c*(a*b)))

(c*(c*(a*b))) * (c*d)

d

(c*d)

(100) (010)

(010)

(011)
(100)

(001)
(011)

(001)

(000)

B

B

A

C
A

D

F

G

Fig. 3. An accepted lt-dag for Z =? X ∗ Y

Then: A ∗ C
001

−−−−−→ F = (001; 111;MF), where
MF = {XA, YB , YC , ZC , ZC = XAYB , ZF , ZF = XAYC}.

And finally: F ∗D
001

−−−−−→ G = (000; 111;MG), where
MG = {XA, YB , YC , ZC , ZC = XAYB, ZD, ZD = XAYB, ZF , ZF = XAYC},

where D = F . The states D,F,G are all accepting; so the sub-dags rooted at
the nodes mapped to these states are accepted. The solution for the problem
derived at the node mapped to D is the simplest; the assignment is: X =

102 S. Anantharaman, P. Narendran, M. Rusinowitch

{A}, Y = {B}, Z = {A ∗B}. where A −→ a | c, B −→ b | d; this is a correct
solution.

Let us compute the contribution of the run to X,Y,Z on the sub-dag rooted
at node F , by looking at MF : The productions of the grammar w.r.t. this
accepting sub-run are as follows:

F −→ A ∗ C, C −→ A ∗B, A −→ a | c, B −→ b | d.

So the contribution of the run is the assignment: X = {A}, Y = {B, A ∗
B}, Z = {A ∗B, A ∗ (A ∗B)}, where A −→ a | c, B −→ b | d; this is again a
correct solution.

The grammar for the accepting run at the root node G has an additional
production: D −→ A∗B, with D = F . The solution derived here is the same as
at F : the terms derivable from this production are also derivable from C. ⊓⊔
Example 2. The ACID-unification problem: X + Z = X ∗ Y + U may be
transformed into the following standard form:

V = X + Z, V = W + U, W = X ∗ Y .

Let us show that the lt-dag in Figure 4 is accepted by the associated LDA.
Arrange the set variables into an ordered list, say as {X,Y,Z,U, V,W}.

*

a

a*a (001011)

(110110)

Fig. 4. lt-dag solving V = X + Z, V = W + U, W = X ∗ Y

The states on the LDA are therefore 12-bit vectors. From the node ‘a’ on
the lt-dag with label m = (110110) we first have an initial transition to a state
A:

a
110110
−−−−−→ A = (110110 ; 110110 ;MA)

where MA = {XA, YA, UA, VA, T = XAYA} representing the fact that at the
current node the values X = Y = a = V = U have been accepted (and
a product X ∗ Y remains to be covered). Next we have a transition, with
label (001011), from A ∗ A to the state B = (001011; 111111;MB), where
MB = {XA, YA, UA, VA, ZB , VB ,WB ,WB = XAYA}; at this node, the assign-
ments W = a ∗ a = Z = V have been accepted. The state reached at the root
node is an accepting state. So the lt-dag is accepted.

Note that in this case the lt-dag t has the closure property w.r.t. the problem:
the sets of terms deduced from the labels of t is a solution to the ACID-problem.

On the other hand the grammar derived from the accepting run has two
productions: B −→ A ∗ A, A −→ a. The contribution of the run to the
variables are therefore the sets of terms representable as: X = {A} = Y =
U, V = {A, A ∗ A}, Z = W = {A ∗A}; that is to say:

Tree vs Dag Automata 103

X = {a} = Y = U, V = {a, a ∗ a}, Z = W = {a ∗ a}
which is the same as the one deduced from the labels of the lt-dag. ⊓⊔

5 Conclusion

The results of [3] that we have partially presented here illustrate that the alge-
braic behavior of dag automata can be very different from that of tree automata.
But at the same time the proof techniques employed in [3], as well as the ap-
plication to unification that we have illustrated in Section 4, show that the
expressive power of dag automata can be extremely useful in modeling and/or
analyzing several complex situations. Furthermore, the dag representation has
been shown to be clearly space efficient for compressed XML documents, cf. [5,
10, 11]. All these lead us to the belief that DAs and LDAs may also useful for
handling certain classes of XML/XPath queries, especially where bottom-up
analysis techniques can be brought into play.

References

1. S. Anantharaman, P. Narendran, M. Rusinowitch, ACID-Unification is NEXPTIME-
Decidable, Proc. of MFCS’03, pp. 169–179, LNCS 2747, 2003.

2. S. Anantharaman, P. Narendran, M. Rusinowitch, Unification modulo ACUI plus Dis-
tributivity Axioms, Journal of Automated Reasoning, Vol. 33, n01, pp.1–28, 2004.

3. S. Anantharaman, P. Narendran, M. Rusinowitch, Closure Properties and Decision Prob-
lems of Dag Automata Information Processing Letters, (To appear), 2005.

4. F. Baader, P. Narendran, Unification of Concept Terms in Description Logics, Journal of
Symbolic Computation 31 (3):277–305, 2001.

5. P. Buneman, M. Grohe, C. Koch, Path queries on compressed XML. Proc. of the 29th
Conf. on VLDB, 2003, pp. 141–152, Ed. Morgan Kaufmann.

6. W. Charatonik, Automata on DAG Representations of Finite Trees, Technical Report
MPI-I-99-2-001, Max-Planck-Institut für Informatik, Saarbrücken, Germany.

7. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison, M. Tommasi,
Tree Automata Techniques and Applications, http://www.grappa.univ-lille3.fr/tata/

8. T. Genet and F. Klay, Rewriting for Cryptographic Protocol Verification, Proc. of the 17th
CADE, pp. 271-290, LNAI 1831, 2000.

9. R. Gilleron, S. Tison, M. Tommasi, Set Constraints and Tree Automata, Information and
Computation 149, 1–41, 1999. (cf. also Technical Report IT 292, Laboratoire-LIFL, Lille,
1996.)

10. M. Frick, M. Grohe, C. Koch, Query Evaluation of Compressed Trees, Proc. of LICS’03,
IEEE, pp. 188–197.

11. M. Marx. XPath and Modal Logics for Finite DAGs. Proc. of TABLEAUX’03, pp. 150–
164, LNAI 2796, 2003.

12. M. Minsky, Computation: Finite and Infinite Machines, Prentice-Hall International,
London, 1972.

13. F. Neven, Automata Theory for XML Researchers, SIGMO Record 31(3), September
2002.

104 S. Anantharaman, P. Narendran, M. Rusinowitch

Relating Nominal and Higher-Order Pattern
Unification

James Cheney

University of Edinburgh
jcheney@inf.ed.ac.uk

Abstract. Higher-order pattern unification and nominal unification are two
approaches to unifying modulo some form of α-equivalence (consistent renaming
of bound names). The higher-order and nominal approaches seem superficially
dissimilar. However, we show that a natural concretion (or name-application)
operation for nominal terms can be used to simulate the behavior of higher-
order patterns. We describe a form of nominal terms called nominal patterns
that includes concretion and for which unification is equivalent to a special case
of higher-order pattern unification, and then show that full higher-order pattern
unification can be reduced to nominal unification via nominal patterns.

1 Introduction

Higher-order unification is the unification of simply-typed λ-terms up to α-, β-,
and (sometimes) η-equivalence. It has been studied for over thirty years.. Al-
though it is undecidable and of infinitary unification type, Huet’s algorithm [6]
performs well in practice, and Miller identified a well-behaved special case called
higher-order pattern unification [7, 13, 11, 1] that is decidable in linear time
and possesses unique most general unifiers. In higher-order patterns, uses of
metavariables (variables for which terms may be substituted) are limited so
that the nondeterministic search needed in full higher-order unification can be
avoided. A key aspect of higher-order unification is that substitution is capture-
avoiding. For example, the unification problem λx.M ≈? λy.f y has no solution,
since although both sides could be made equal by making a capturing substitu-
tion f x for M , there is no way to make both sides equal using capture-avoiding
substitution to instantiate M .

Nominal unification [15] is the unification of nominal terms, which include
special name or atom symbols, a name-swapping operation, an abstraction op-
eration for name-binding, and freshness relation. Equality and freshness for
nominal terms coincide with classical definitions of α-equivalence and the “not-
free-in” relation − 6∈ FV (−), respectively. Nominal unification is decidable in
at worst quadratic time (exact complexity bounds are not yet known). Nomi-
nal unification is based on nominal logic, a logic formalizing a novel approach
to abstract syntax with bound names due to Gabbay and Pitts [3]. There are
two aspects of nominal unification that contrast sharply with higher-order uni-
fication. First, abstraction is not considered to bind names, and metavariables
may mention arbitrary names, so that the problem 〈a〉M ≈? 〈b〉f(b) does have
solution M = f(a). Second, abstractions are not considered to be functions,
and there is no built-in notion of “abstraction application”. Instead, nominal
unifiers can be expressed in terms of the swapping operation (a b) · t, which

105

106 J. Cheney

describes the result of exchanging all occurrences of a and b within t, and fresh-
ness constraints a # t, which assert that a name a is fresh for a term t. For
example, the unification problem 〈a〉M ≈? 〈b〉f(N, b) has most general solution
M = f((a b) · N, a) subject to the constraint that a # N . This unifier shows
how to compute M as a function of N while excluding false solutions such as
M = f(b, a), N = a, since 〈a〉f(a, b) 6≈ 〈b〉f(b, a).

Despite these differences, nominal and higher-order pattern unification ap-
pear closely related. In fact, at first glance, one might wonder if they are not
merely different presentations of the same algorithm. Both are techniques for
equational reasoning about languages involving bound identifiers. Both algo-
rithms rely on computing with permutations of bound names: the higher-
order pattern restriction can be seen as a sufficient condition to ensure that
such permutations always exist. In fact, as noted by Urban, Pitts, and Gab-
bay [15], there is a translation from nominal unification problems to higher-order
pattern unification problems that preserves satisfiability. In this translation,
metavariables are “lifted” so as to be functions of all the names in context.
A freshness constraint such as a # M can be translated to an equation like
λa, b, c.M a b c ≈ λa, b, c.N b c, which asserts that M cannot be dependent
on its first argument (namely, a). However, as argued by Urban et al., it is
not straightforward to convert the resulting solutions back to solutions to the
original nominal unification problem. As a result, it appears much easier to
solve such problems directly using Urban et al.’s algorithm (which seems much
simpler than that for higher-order pattern unification in any case).

Another reason to study the relationship between higher-order pattern uni-
fication and nominal unification is to provide a logical foundation for higher-
order patterns. While both nominal and higher-order unification are grounded
in clear logical foundations, higher-order patterns appear motivated solely by
algorithmic concerns. If higher-order patterns can be explained using nominal
terms, the semantic foundations of the latter could also be used for the former.

In this paper we argue that higher-order pattern unification can be reduced
to nominal unification. This relationship helps justify the higher-order pattern
restriction and explain why it works. The key idea is that the pattern restriction
(that metavariable occurrences are of the form X v where v is a list of distinct
names) is essentially the same as a natural freshness restriction on the concretion
operation. This operation is an elimination form for abstraction that has been
considered in some versions of FreshML [12, 14], but so far not incorporated
into nominal logic or nominal unification.

The structure of this paper is as follows. First (Section 2), we review higher-
order pattern unification and nominal unification. In Section 3, we introduce
a type system that enforces the higher-order pattern restriction in a particu-
larly convenient way. In Section 4, we identify a variant of nominal terms called
nominal patterns that includes the concretion operation and for which unifica-
tion is equivalent to a special case of higher-order pattern unification. We then
(Section 5) show that full higher-order pattern unification can be reduced to
nominal pattern unification and (Section 6) that nominal pattern unification
can be reduced to nominal unification. Put together, these reductions show

Relating Nominal and Higher-Order Pattern Unification 107

that higher-order pattern unification can be implemented via nominal unifica-
tion. Section 7 and Section 8 discuss related work and conclude.

2 Background

2.1 Higher-order terms, patterns, and unification

Consider infinite sets of variable names x, y, z, . . . ∈ Var and metavariables
X,Y,Z . . . ∈ MVar . The terms of the λ-calculus are as follows:

t ::= c | x | λx.t | t t′ | X

We assume that common notions such as the set of free variables of a term
FV (−), α-equivalence, capture-avoiding substitution −[−/−] etc. are defined
as usual. In addition, we assume that there are some given base types δ, that
types include function types τ → τ ′, and that well-formedness is defined as
usual provided that types are assigned to constants via a signature Σ. A term
with no free variables is called closed ; a term with no metavariables is called
ground. We often write f(t1, . . . , tn) as a shorthand for f t1 · · · tn.

Terms are considered equal up to α-equivalence plus two additional equa-
tions: β-reduction and η-expansion

(β) (λx.t) u ≈ t[u/x]
(η) t ≈ λx.(t x) (t : τ → τ ′, x 6∈ FV (t))

We write θ for a substitution mapping metavariables to λ-terms. Such a
substitution may be applied to any λ-term by replacing each metavariable X
with θ(X). If Γ and Γ ′ are contexts consisting only of metavariables, we write
substitution is well-formed (Γ ′ ⊢ θ : Γ) provided that for each X : τ ∈ Γ ,
Γ ′ ⊢ θ(X) : τ . Thus, there is no danger of variable capture during substitution,
and we have:

Lemma 1. If Γ ⊢ θ : Γ ′ and Γ ′ ⊢ t : τ , then Γ ⊢ θ(t) : τ .

We consider higher-order unification to be unification of λ-terms up to the
above equational theory, that is, up to αβη-equivalence. (Higher-order unifica-
tion sometimes refers to unification up to only α and β-equivalence, but for
this paper, we do not consider this problem.) Huet [6] gave an algorithm for
generating complete sets of higher-order unifiers which performs well in prac-
tice. Technically, we consider only problems of the form ∃X.∀y.t ≈? u, since
substitutions θ cannot mention free variables. This excludes problems such as
∀y.∃X.X ≈? y. However, such problems can always be transformed to equiv-
alent ∃∀-problems by raising [9] metavariables in order to make their depen-
dence on other variables explicit: for example, transforming ∀y.∃X.X ≈? y to
∃F.∀y.F y ≈? y, where X ≈ F y.

Miller investigated a decidable special case of higher-order unification called
higher-order patterns. To define higher-order patterns, we first recall that any
λ-term (possibly involving metavariables) can be put into a normal form called
η-long, β-normal form (or ηlβn form), such that (a) no β-redices exist, and

108 J. Cheney

(b) no η-expansions can be performed without introducing a β-redex. Note
that this normal form is dependent on the types of metavariables. For example,
the normal form of λy, z.(λx.xy) (F G) is λy, z, b.F (λa.G a) y b, provided
F : (τ → τ ′) → σ1 → σ2 → σ and G : τ → τ ′. Such normal forms conform to
the following grammar:

t ::= λv.x t | λv.X t

The insight behind higher-order pattern unification is that all the nondetermin-
ism in higher-order unification comes about because of uncertainty concerning
how an unknown X can act on its arguments t. In general, t may include
repeated variables or more complex terms involving other metavariables. In
higher-order patterns, this uncertainty is eliminated by requiring the argument
list t in each subterm of the form λv.X t to be a list of distinct bound variables
w. Thus, the above example ηlβn-normal form λy, z, b.F (λa.G a) y b is not a
pattern, while λx, y.c (F y x) is a pattern.

Higher-order patterns are closed under substitution modulo β-normalization;
in fact, the only redices introduced by substituting a higher-order pattern for a
metavariable in another higher-order pattern are of the form called β0 by Miller:

(β0) (λx.t) y = t[y/x]

Unification for higher-order patterns is decidable (in linear time [13]) and most
general unifiers exist.

2.2 Nominal terms and unification

We now consider a different language called nominal terms1. Let ν, ν ′ be basic
name types. Let Nm be a set of names aν , bν′ , . . . tagged with name types and
let MVar be a set of metavariables X,Y,Z, The set of nominal terms is
generated by the grammar

t ::= aν | 〈aν〉t | c | t1 t2 | π ·X π ::= id | (aν bν) ◦ π

τ ::= σ | σ → τ σ ::= δ | ν | 〈ν〉δ

Metavariables are annotated with suspended permutations of names, that are
to be applied to any value substituted for the variable. A nominal term with
no metavariables is called ground.

Terms of the form 〈a〉t are called abstractions. An abstraction is an object
with a single bound name. However, the name is not considered syntactically
bound as in a λ-abstraction; instead, an abstraction describes a semantic value
with a bound name. For example, 〈a〉b and 〈b〉b are not considered to be the same
term; however, they have the same meaning. In particular, while term equality
behaves like (and is intended to model) α-equivalence for ground terms, this is
not the case for terms mentioning metavariables (e.g., the equation 〈a〉X ≈ 〈b〉X
is not valid in general).

1 Our version of nominal terms is superficially different from that used on Urban, Pitts,
and Gabbay’s paper, in order to minimize the number of unimportant differences from
higher-order patterns.

Relating Nominal and Higher-Order Pattern Unification 109

We assume that there is a signature Σ assigning types τ to constants c,
such that there are no constants or other closed terms inhabiting any name
type. A permutation is considered well-formed if it is composed of swappings
of names of the same type only. Contexts Γ associate metavariables to types.
The following well-formedness rules are considered:

Γ ⊢ aν : ν
c : τ ∈ Σ
Γ ⊢ c : τ

π well-formed
Γ,X : τ ⊢ π ·X : τ

Γ ⊢ t : τ → τ ′ Γ ⊢ u : τ ′

Γ ⊢ t u : τ ′
Γ ⊢ t : τ

Γ ⊢ 〈aν〉t : 〈ν〉τ

We define a swapping function on nominal terms as follows:

(a b) · a′ =

b (a = a′)
a (b = a′)
a′ (a 6= a′ 6= b)

(a b) · c = c
(a b) · (t1 t2) = ((a b) · t1) ((a b) · t2)

(a b) · 〈a〉t = 〈(a b) · a〉(a b) · t
(a b) · (π ·X) = (a b) ◦ π ·X

Also, we define π · t as follows:

id · t = t (a b) ◦ (π · t) = ((a b) · π) · t

We are now in a position to define the meaning of nominal terms. We do this
by introducing axioms describing equality and an auxiliary freshness relation.

a ≈ a c ≈ c
t ≈ t′ u ≈ u′

t u ≈ t′ u′
t ≈ u

〈a〉t ≈ 〈a〉u

t ≈ (a b) · u a # u (a 6= b)

〈a〉t ≈ 〈b〉u

a 6= b

a # b a # c

a # t a # u

a # t u a # 〈a〉t

a # t (a 6= b)

a # 〈b〉t

Given a substitution function θ mapping metavariables to terms, we write
θ(t) for the result of applying substitution θ to term t. To be precise, the
definition of substitution is as follows.

θ(a) = a
θ(c) = c

θ(〈a〉t) = 〈a〉θ(t)
θ(π ·X) = π · θ(X)

θ(t1 t2) = θ(t1) θ(t2)

We require that substitutions are well-formed so that they preserve types, but
(unlike for higher-order unification) substitutions are allowed to mention both
metavariables and names, so “capturing” substitutions are allowed. For exam-
ple, if θ(X) = a then θ(〈a〉X) = 〈a〉a.

If θ is a valuation (ground substitution), we write θ � t ≈ u to indicate that
θ(t) ≈ θ(u) and write θ � a # t if a # θ(t). As usual, a formula A is valid
(satisfiable) if for all (resp. some) well-formed substitutions, θ � A holds. This
is extended to validity or satisfiability of sets of formulas P in the obvious way.
Similarly, if P is a set of formulas, we write P � A to indicate that whenever
θ � P , we also have θ � A.

Urban et al.’s nominal unification algorithm solves the satisfiability problem
for sets of equations and freshness constraints. Given a problem P , it produces
a unique (up to renaming) most general answer of the form θ,∇, where θ is

110 J. Cheney

a substitution and ∇ is a set of freshness constraints of the form a # X.
This answer has the property that ∇ � θ(P). Moreover, for any other answer
∇′, θ′ having this property, there exists a substitution ρ such that ρ(∇) � ∇′

and ρ(∇) � ρ ◦ θ ≈ θ′ (where θ ≈ θ′ means dom(θ) = dom(θ′) and ∀X ∈
dom(θ).θ(X) ≈ θ′(X)).

Urban et al. argue that their algorithm can be implemented in quadratic
time; however, the exact complexity has not been established. We omit the
precise details of the algorithm.

3 A Refined Type System for Higher-Order Patterns

We modify the notation of λ-terms to distinguish between rigid applications in-
volving terms t u where the head of t is rigid (i.e., a constant or bound variable),
and flexible applications tˆa, where the head of t is flexible (a metavariable).
Also, we assume that variables are tagged with their types: for example, xτ in-
dicates that x is a variable of type τ . The grammar of such terms is as follows:

t ::= c | xτ | λxτ .t | t t
′ | X | tˆxτ

We use a type system for ηlβn-normalized terms that enforces the pattern
restriction. Contexts Γ bind metavariables to types. There are three judgment
forms: Γ ⊢ t ↓ τ , indicating that t is a rigid atomic term of type τ ; Γ ⊢ t ⇓ τ ,
indicating that t is a flexible atomic term of type τ ; and Γ ⊢ t ↑ τ , indicating
that t is a normal term of type τ . Examples of rigid atomic, flexible atomic, and
normal terms include x (λy.y)z, X ˆyˆz, and λx, y, z.y (x (λy.y)z) (X ˆyˆz),
respectively. The well-formedness rules for nominal patterns are as follows:

c : τ ∈ Σ
Γ ⊢ c ↓ τ Γ ⊢ xτ ↓ τ

Γ ⊢ t ↑ τ ′

Γ ⊢ λxτ .t ↑ τ → τ ′
Γ ⊢ t ↓ τ → τ ′ Γ ⊢ u ↑ τ

Γ ⊢ t u ↓ τ ′

Γ,X : τ ⊢ X ⇓ τ

Γ ⊢ t ⇓ τ → τ ′ (x 6∈ FV (t))

Γ ⊢ tˆxτ ⇓ τ
′

Γ ⊢ t ↓ δ

Γ ⊢ t ↑ δ

Γ ⊢ t ⇓ δ

Γ ⊢ t ↑ δ

There is no way to bind a metavariable: λ binds ordinary variables only. We
can only convert from an atomic typing to a normal typing at base types δ; this
ensures that all the necessary η-expansions take place.

All well-formed terms in this system are ηlβn-normalized. Moreover, as for
higher-order patterns generally, only β0 reductions (λxτ .t)ˆyτ → t[yτ/xτ] need
to be performed after a substitution of higher-order patterns for metavariables.

Lemma 2 (Renaming). Let R be one of ↓,⇓, ↑. If yτ 6∈ FV (t) and Γ ⊢ t R τ ,
then Γ ⊢ t[yτ/xτ] R τ , respectively.

Lemma 3 (Substitution). If Γ,X : τ ′ ⊢ t ↑ τ and Γ ⊢ u ↑ τ ′ for FV (u) = ∅,
then Γ ⊢ t[u/X] ↑ τ .

4 Nominal Patterns

We now introduce a slight variant of nominal terms that provides a closer match
to higher-order patterns. This language, called nominal patterns, is defined by

Relating Nominal and Higher-Order Pattern Unification 111

the following grammar:

t ::= c | t t′ | X | aν | 〈aν〉t | t@ aν

τ ::= σ | σ → τ σ ::= δ | ν | 〈ν〉σ

where as before, δ denotes a base (data) type and ν denotes a name type. As
before, we assume that there is a signature assigning τ -types to constants c.
Metavariables may not have arbitrary types, but only σ-types (i.e., types built
using only data, name, and abstraction types). In addition, we assume that
name symbols aν are tagged with their name types ν. As for nominal terms, we
assume that the only ground terms inhabiting name-types are literal names.

The main difference between ordinary nominal terms and nominal patterns
is the presence of the concretion operation (−)@(−) that has also been consid-
ered in some versions of FreshML [12, 14]. Our type system requires well-formed
nominal patterns to satisfy an analogue of the higher-order pattern restriction:
in every subterm of the form t@a, we require that a # t holds. In order to
simplify this check (and to make nominal patterns more similar to higher-order
patterns), we only consider substitutions of patterns such that FN(t) = ∅,
where

FN(c) = ∅ FN(X) = ∅

FN(a) = {a} FN(t u) = FN(t) ∪ FN(u)
FN(t@a) = FN(t) ∪ {a} FN(〈a〉t) = FN(t)− {a}

As a result, � a # X and � (a b) · X ≈ X are valid for any names a, b and
metavariable X; using these facts we can lift the freshness relation and swapping
function to patterns involving metavariables.

As before, signatures Σ map constants to types and names to name types,
whereas contexts map metavariables to metavariable types σ. We require pat-
terns to be well-typed, subject to the following rules:

Γ ⊢ aν ↓ ν
c : τ ∈ Σ
Γ ⊢ c ↓ τ Γ,X : σ ⊢ X ↓ σ

Γ ⊢ t ↓ τ → τ ′ Γ ⊢ u ↑ τ

Γ ⊢ t u ↓ τ ′

Γ ⊢ t ↑ σ

Γ ⊢ 〈aν〉t ↑ 〈ν〉σ

Γ ⊢ t ↓ 〈ν〉σ a 6∈ FN(t)

Γ ⊢ t@aν ↓ σ

Γ ⊢ t ↓ ǫ (ǫ = δ, ν)

Γ ⊢ t ↑ ǫ

Abstraction and concretion are construction and destruction operations for the
abstraction sort. Thus, nominal patterns are subject to the following βα- and
ηα-laws:

(βα) (〈a〉t)@b ≈ (a b) · t
(ηα) t ≈ 〈a〉(t@a) (t : 〈ν〉σ)

Note that the typing rules ensure that b # 〈a〉t must hold in the first case and
a # t must hold in the second case. We first state some basic properties of
nominal patterns.

Lemma 4 (Swapping). Let R be one of ↓, ↑. If Γ ⊢ t R τ then Γ ⊢ (a b)·t R τ .

Lemma 5 (Substitution). If Γ,X : τ ′ ⊢ t ↑ τ and Γ ⊢ u ↑ τ ′ where FN(u) =
∅, then Γ ⊢ t[u/X] ↑ τ .

112 J. Cheney

We now show that this axiomatization satisfies the previously given laws of
nominal abstraction.

Proposition 1. For nominal patterns, we have 〈a〉t ≈ 〈b〉u if and only if a ≈
b, t ≈ u or a # u, t ≈ (a b) · u. Similarly, if t : 〈ν〉τ , then there exists aν and
u : τ such that t ≈ 〈a〉u.

Proof. Suppose 〈a〉t ≈ 〈b〉u. Then a # 〈a〉t ≈ 〈b〉u, so we have

t ≈ (a a) · t ≈ (〈a〉t)@a ≈ (〈b〉u)@a ≈ (a b) · u

There are two cases. If a = b then t ≈ (a b) ·u = (a a) ·u = u. Otherwise, a # u
and t ≈ (a b) · u.

Now suppose t : 〈ν〉τ . Since FN(t) is finite, we can always find a name a 6∈
FN(t), so we can form the term 〈a〉(t@a). By the η-rule, we have t ≈ 〈a〉(t@a),
thus, a is the required name and t@a the required term of type τ .

The similarity between the βα and ηα rules for nominal patterns and the
β0 and η rules for higher-order patterns is not a coincidence. We now consider
a typed translation from nominal to higher-order patterns. We assume (for
convenience) that the constants, names and metavariables of nominal patterns
are the same as the constants, variables, and metavariables of higher-order
patterns respectively. Similarly, we assume that the name types and data types
of the nominal language are base types of the higher-order language. Terms are
translated as follows:

c∗ = c
(t u)∗ = t∗ u∗

X∗ = X

a∗ν = aν

(〈aν〉t)
∗ = λaν .t

∗

(t@aν)
∗ = (t∗)ˆaν

The translation of types is as follows:

δ∗ = δ
ν∗ = ν

(σ → τ)∗ = σ∗ → τ∗

(〈ν〉τ)∗ = ν → τ∗

Contexts and signatures are translated by replacing each type with its starred
form.

Example 1. The translation of t = 〈a〉X @ a@ b is λa.X a b, where X : 〈ν〉〈ν〉δ
in the former and X : ν → ν → δ in the latter.

Lemma 6. If a 6∈ FN(t) then a∗ 6∈ FV (t∗). Also, if Γ ⊢ t ↑ τ then Γ ∗ ⊢ t∗ ↑
τ∗.

Theorem 1. The translation (−)∗ has an inverse (−)† on its range.

Proof. Clearly (−)∗ is injective, and it is surjective on its range by definition.

Lemma 7. If Γ ⊢ t : τ is a nominal pattern and b 6∈ FN(t), then ((a b) · t)∗ =
t∗[b/a]. Dually, if Γ ⊢ u : τ is a higher-order pattern in the range of (−)∗, and
b 6∈ FV (t), then (u[a/b])† = (a b) · u†.

Relating Nominal and Higher-Order Pattern Unification 113

Proof. Proof is by induction on the structure of t. If t = a, then ((a b) · t)∗ =
b∗ = b and t∗[b/a] = a[b/a] = b. Otherwise, t is a name other than a or b,
and swapping, substitution, and the (−)∗ translation all fix t. The case for
t a constant or metavariable is similar. For t = t1 t2, the induction step is
straightforward. This leaves the case of abstraction. If t = 〈a〉u, then b # u so
by induction we have ((a b) · u)∗ = u∗[b/a], hence

((a b) · 〈a〉u)∗ = (〈b〉(a b) · u)∗ = λb.((a b) · u)∗ = λb.u∗[b/a]

≈α λa.u
∗ = (λa.u∗)[b/a] = (〈a〉u)∗[b/a]

If t = 〈b〉u, then the induction hypothesis does not apply directly, but we can
choose a fresh name b′ # a, b, t such that

((a b) · 〈b〉t)∗ ≈ ((a b) · 〈b′〉(b b′) · t)∗ = (〈b′〉(a b) · (b b′) · t)∗

= λb′.((b b′) · t)∗[b/a] = λb′.t∗[b′/b][b/a] ≈α λb.t∗[b/a] = (〈b〉t)∗[b/a]

where the two middle steps rely on the facts that b 6∈ FN((b b′) · t) and b′ 6∈
FN(t). The case for t = 〈a′〉t for a′ 6= a, b is straightforward.

The second part follows immediately from the first by setting t = u†.

Theorem 2. Let t, u : τ be nominal patterns. Then t ≈ u if and only if t∗ ≈ u∗.

Proof. Proof is by induction on the derivation of t ≈ u in the forward direction.
The interesting cases are for βα and ηα rules. While ηα is straightforward, for
βα we have (〈a〉t)@b ≈ (a b) · t and want to show that (λa.t∗) b ≈ ((a b) · t)∗.
By β0 and the previous lemma we have (λa.t∗) b ≈ t∗[b/a] = ((a b) · t)∗.

The reverse direction is similar, except that we need to use the identity
(t[a/b])† = (a b) · t† in the β0 case.

Corollary 1. t ≈ u is satisfiable if and only if t∗ ≈ u∗ is; moreover, the satis-
fying valuations θ, θ∗ are in bijective correspondence via (−)∗.

This shows that nominal pattern unification coincides with a special case
of higher-order pattern unification: specifically, the case for terms in which the
only form of binding is λ-abstraction over void base types ν. In fact, many ap-
plications of higher-order patterns are possible within this fragment: it is com-
monplace to use an abstract or empty type for the “type of variable names”
in, for example, a higher-order abstract syntax encoding of the π-calculus [10].
However, applications involving λ-abstraction over non-void types are also com-
mon [7].

This translation is interesting, but we have only shown that there is a corre-
spondence between two very limited special cases of the two problems. Next we
show how to translate full higher-order pattern unification to nominal pattern
unification.

5 Higher-order pattern unification as nominal pattern
unification

In higher-order patterns, λ-term variables are not limited to a collection of void
base types, but may be of any type, so variables may be applied to argument

114 J. Cheney

lists including repeated variables, metavariables, or more general terms (that
is, the pattern restriction is not required of argument lists whose head is not
a variable). This permits the formation of terms such as λx, y.y (λz.Fz) x x
which are not in the range of (−)∗; i.e., which do not correspond to a nominal
pattern. Such terms are not in the domain of (−)†, so the approach investigated
in the last section does not apply.

However, there is another translation that works. The reason the idea of the
previous section doesn’t work is that in higher-order patterns, variables play
one of two roles: they can be passed as arguments to metavariables, but they
can also act as functions on lists of arguments. The latter role is not supported
directly by nominal patterns, because name types ν are populated only by
names.

Given a higher-order language L, we construct a nominal language L∗∗ pos-
sessing a name-type ντ for each simple type τ of L and a data type δ for each
basic type δ of L. We define a translation on L-types as follows:

δ∗∗ = δ (τ1 → τ2)
∗∗ = 〈ντ1〉τ2

∗∗

Note that each τ -type of L translates to a σ-type of L∗∗. Given a signature
Σ, we write Σ∗∗ for the result of replacing all the types in Σ with their (−)∗∗

translations; similarly for contexts Γ ∗∗. Moreover, we add the following new
constants to L∗∗:

varτ : ντ → τ∗∗

appτ1τ2 : (τ1 → τ2)
∗∗ → τ1

∗∗ → τ2
∗∗

This signature is infinite, since the function symbols varτ and appτ1τ2 are in-
dexed with types. However, in any particular situation, only finitely many ντ

types and finitely many constants of the above signature need to be considered.
After unwinding definitions, the type of appτ1τ2 is 〈ντ1〉τ2

∗∗ → τ1
∗∗ → τ2

∗∗. The
types of these constants are legal τ -types in L∗∗.

Intuitively, ντ is the type of names of variables of type τ , and var “casts”
a ντ to its value, simulating the evaluation of a variable at the head of an
application in a higher-order term. Similarly, app simulates application: given
an abstraction 〈ντ1〉τ2

∗∗ and a translated term of type τ1
∗∗, application produces

a term of type τ2
∗∗.

The idea of the translation is to use the var, app, and lam constructors to
represent ground λ-term structure, and use names, abstraction and concretion
to represent subterms involving metavariables. In this translation, we assume
that λ-calculus variables are the same kinds of symbols as names in nominal
patterns.

c∗∗ = c
xτ

∗∗ = var(xντ)
(λx.t)∗∗ = 〈x〉t∗∗

(t u)∗∗ = app(t∗∗, u∗∗)
X∗∗ = X

(tˆa)∗∗ = t∗∗ @ a

Example 2. Note that variable occurrences are treated differently depending
on context: variables on the left-hand side of a flexible application (−) (̂−) are
left alone, while others are encapsulated in a var(−)-constructor which casts a

Relating Nominal and Higher-Order Pattern Unification 115

variable name of type ντ to an expression of type τ∗∗. Thus, the translation of
λx, y.c (F ˆxˆy) is 〈x〉〈y〉app(var(c), F @x@ y), where F : τ1 → τ2 → δ in the
former is mapped to F : 〈ντ1〉〈ντ2〉δ in the latter.

The translation preserves well-formedness and is invertible; these facts are
easy to show by induction.

Proposition 2. If x 6∈ FV (t) then x∗∗ 6∈ FN(t∗∗). If Γ ⊢ t ↑ τ where t is a
higher-order pattern, then Γ ∗∗ ⊢ t∗∗ ↑ τ∗∗. Similarly, if Γ ⊢ t ↓ τ or Γ ⊢ t ⇓ τ ,
then Γ ∗∗ ⊢ t∗∗ ↓ τ∗∗. Also, the translation has an inverse (−)††.

As observed by Miller, in a ηlβn higher-order pattern unification problem,
the only kinds of redices that occur are β0 redices. Since the β0η theory is simu-
lated by the βαηα theory in nominal patterns, higher-order pattern unification
is equivalent to nominal pattern unification.

Theorem 3. A higher-order pattern unification problem t ≈? u in ηlβn-normal
form has a solution if and only if its translation t∗∗ ≈? u∗∗ has a nominal pattern
unifier.

Proof. For the forward direction, suppose that t, u are normalized and have a
higher-order pattern unifier θ, so that θ(t) ≈ θ(u) up to ηlβn-normalization.
Moreover, this normalization process can only involve β0-redices, because there
are no metavariables of extensional function types in t, u (as argued above). Let
θ∗∗ = [X := θ(X)∗∗ | X ∈ Dom(θ)] be the translation of θ. Following a similar
argument to the one used in Theorem 2, β0-normalization can be simulated
in the nominal pattern calculus via βα-normalization. Thus, θ∗∗ is a nominal
pattern unifier of t∗∗ ≈? u∗∗.

The reverse direction is similar. Since only βα-redices can be introduced in
a nominal pattern unifier θ for t∗∗ ≈? u∗∗, we can use the reverse translation
(−)†† to translate θ to a higher-order pattern unifier θ††.

6 Nominal Pattern Unification as Nominal Unification

In this section, we show how to reduce nominal pattern unification to nominal
unification. This is not as trivial as it sounds, for nominal patterns include
the concretion operation not found in ordinary nominal terms, and so nominal
pattern unification is not an immediate special case of nominal unification.
In addition, nominal unification permits metavariables to be instantiated with
terms containing free names, whereas nominal pattern unifiers must be closed.

We deal with the second problem first. Given a problem P with metavari-
ables X and names a, let #(a,X) = {a # X | a ∈ a,X ∈ X}. This set of
constraints ensures that no name mentioned in P can appear free in any substi-
tution for P ’s metavariables. Moreover, the nominal unifiers produced by Urban
et al.’s algorithm only involve the names mentioned in the original problem.

Concretion can be eliminated from nominal pattern unification problems as
follows. If t@ a is a subterm of a nominal pattern unification problem P [t@ a],
then that problem is equivalent to the problem P [Y], 〈a〉Y ≈? t, where Y is a
fresh metavariable. This is because we know that a must be fresh for t (because

116 J. Cheney

of the well-formedness constraint) and so by the η-rule, we know that t can
always be expressed as 〈a〉Y for some value Y ; this is precisely the value denoted
by t@ a.

Given a nominal pattern unification problem P over names a and variables
X, we write P# for the result of eliminating concretions from P and adding
the freshness constraints #(a,X). We claim that P# and P are equivalent
problems, and in addition that the answer to P can be computed from that of
P#. However, the final step in this process is complicated, so we will illustrate
it via examples first.

Example 3. Consider the problem 〈a〉X ≈? 〈a〉Y @ a. In this case the transla-
tion is

#({a}, {X,Y }), Y ≈ 〈a〉Y ′, 〈a〉X ≈ 〈a〉Y ′

The nominal unifier is a # X,Y = 〈a〉X . Since a # X, and a is the only name
in scope, Y = 〈a〉X is a nominal pattern unifier for the original problem.

Example 4. The translation of the problem 〈a〉〈b〉X @ a@ b ≈? 〈a〉〈c〉Y @ c@ a
is (after some trivial simplifications)

#({a, b}, {X,Y }),X ≈ 〈a〉〈b〉X ′, Y ≈ 〈c〉〈a〉Y ′, 〈a〉〈b〉X ′ ≈ 〈a〉〈c〉Y ′

The most general unifier is b # Y ′,X ≈ 〈a〉〈b〉(b c) · Y ′, Y ≈ 〈a〉〈c〉Y ′. Since
b # Y ′, we know that Y ′ can only depend on a and c, so there must be a
Z such that Y ′ = Z @ a@ c, where Z is a nominal pattern metavariable (i.e.,
can be substituted only with closed patterns). Solving for X,Y in terms of Z,
we obtain X = 〈a〉〈b〉(a b) · (Z @ a@ c) = 〈a〉〈b〉Z @ a@ b, Y = 〈a〉〈c〉Z @ a@ c;
this is a nominal pattern unifier of the original problem.

Remark 1. There is a minor hitch in this argument, due to the fact that there
may be types that have no closed terms. For example, if data type δ consists
only of terms of the form v(a) for names aν and v : ν → δ, then the unification
problem X ≈? X, where X : δ, has no solution among closed terms, but it does
have a nominal unifier.

This is similar to the difficulty in ordinary (typed) unification in the presence
of possibly-void types. It is customary to either ignore this problem or assume
that all types have at least one (closed) term. In our case, it is decidable (for
finite signatures) whether each σ-type possesses any closed terms. We call such
types nonvoid. For example, ν and δ (where δ is as in the previous paragraph)
obviously possesses no closed terms, while 〈ν〉ν and 〈ν〉δ are nonvoid. Moreover,
a substitution θ is called nonvoid if all the metavariables mentioned in its range
are nonvoid.

Theorem 4. If P is satisfiable then its translation P# is satisfiable. Further-
more, if P# is satisfiable then its unifier can be translated to a substitution
which unifies P if and only if it is nonvoid.

Proof. For the forward direction, clearly if θ satisfies P then θ satisfies each
constraint in #(a,X). In addition, it is easy to show that #(a,X), P [t@ a]

Relating Nominal and Higher-Order Pattern Unification 117

is satisfiable if and only if #(a,X), P [Y], 〈a〉Y ≈? t is satisfiable; thus, by
induction if P is satisfiable then so is P#.

For the reverse direction, suppose ∇, θ is the most general nominal unifier
for P#. Let a be the names of P . Suppose that the free variables in ∇, θ are
Y . For each Y ∈ Y , there is a list of names aYi

such that a ∈ A but a #
Yi 6∈ ∇. Thus, we have Yi = Zi @ aYi

for some fresh metavariables Zi such
that a # Zi. If we make this substitution, then we obtain a nominal pattern
possibly involving swappings, but these swappings can be eliminated since each
Zi satisfies (ai aj) · Z ≈ Z. This produces the desired substitution θ′. If θ′ is
nonvoid, i.e. each σi is nonvoid for Zi : σi, then each Zi can be replaced with
a closed term 0σi

to obtain a satisfying valuation for P . Conversely, it is not
difficult to show that if θ′ is not nonvoid, then P is unsatisfiable, since (by
the first part) any valuation satisfying P can be used to construct a valuation
satisfying P#, which would have to be an instance of ∇, θ because it is most
general. Closed instantiations of all the Zi could be extracted from such a
valuation.

7 Related work

As discussed by Urban et al. [15], nominal unification can apparently be reduced
to higher-order pattern unification, but it is difficult to see how to translate the
resulting higher-order pattern unifier to a nominal unifier. Nevertheless, such
a translation is of interest because if nominal unifiers can be extracted from
higher-order pattern unifiers in linear time, this would give a linear algorithm
for nominal unification. We believe that it would be equivalent (and notationally
simpler) to investigate the reduction of full nominal unification to nominal
pattern unification.

Miller [8] showed that higher-order unification problems (and higher-order
logic programs) can be translated to logic programs in Lλ [7], a logic program-
ming language based on higher-order pattern unification. This reduction takes
advantage of hereditary Harrop goals and clauses featured in Lλ. We believe
that a similar reduction could be performed in a nominal logic programming
language that provides hereditary Harrop goals and program clauses. While
such features are present in the current implementation of the nominal logic
programming language αProlog, the semantics of goals of the form ∀x.G and
D ⊃ G have not been studied carefully yet for nominal logic programming.
This question, and more generally, the question of whether Lλ programs can be
translated to nominal logic programs (or vice versa) is of interest.

Hamana [4] has investigated the problem of unification modulo the β0-rule
for binding algebra terms [2]. Such terms are similar to nominal or higher-order
patterns except that the lists of names supplied to metavariables may include
repeated names. As a result, unification appears to require some searching for
suitable renamings, and most general unifiers appear not to be unique. Obvi-
ously, this is a special case of higher-order unification, but it appears to be at
worst of nondeterministic polynomial time complexity (since one can guess a
sequence of appropriate renamings to find a unifier in polynomial time). We are

118 J. Cheney

interested in seeing whether this form of unification can also be implemented
via nominal logic programming using Miller’s approach.

Finally, we are interested in combining nominal and higher-order unification,
or more generally, developing nominal equational unification techniques that in-
clude higher-order unification, Hamana’s β0-unification, structural equivalence
in the π-calculus, and other equational theories involving name-binding as spe-
cial cases. We believe that nominal equational unification techniques would be
extremely useful for programming, prototyping, and formalizing programming
languages, logics, and type systems.

8 Conclusion

We have shown that higher-order pattern unification can be reduced to nominal
unification via an intermediate language of nominal patterns. This shows that
any computation that can be performed using higher-order pattern unification
can also be performed using nominal unification. It also shows that higher-order
patterns are not just an ad-hoc invention of interest for efficiency reasons, but
that they can be given formal status using nominal logic: in particular, semantic
models of binding syntax for higher-order patterns can be constructed using the
same techniques as for nominal logic.

Previous work has been focused on determining whether nominal unification
is really “new” (that is, whether it is trivially reducible to higher-order pattern
matching). We agree with Urban et al. that while it may not be new, there
are good reasons for studying nominal unification directly rather than through
the lens of higher-order unification. Moreover, our experience has been that
nominal unification is much closer to first-order unification and considerably
simpler to explain and implement than higher-order pattern unification (com-
pare Urban et al. [15] to treatments such as Miller [7, 8], Nipkow [11], Dowek
et al. [1], or Hamana [5]). This is not meant as a criticism of these works! In-
stead, our point is that even if one does not believe that nominal techniques
are worth investigating as an alternative to higher-order abstract syntax, we
believe that they are of value as an aid to understanding higher-order abstract
syntax, particularly higher-order patterns.

References

1. G. Dowek, T. Hardin, C. Kirchner, and F. Pfenning. Unification via explicit substitutions:
The case of higher-order patterns. Technical Report Rapport de Recherche 3591, INRIA,
December 1998.

2. M. P. Fiore, G. D. Plotkin, and D. Turi. Abstract syntax and variable binding. In
Giuseppe Longo, editor, Proceedings of the 14th Annual IEEE Symposium on Logic in
Computer Science, pages 193–202, Washington, DC, 1999. IEEE, IEEE Press.

3. M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax with variable binding.
Formal Aspects of Computing, 13:341–363, 2002.

4. Makoto Hamana. A logic programming language based on binding algebras. In Proc.
Theoretical Aspects of Computer Science (TACS 2001), number 2215 in Lecture Notes in
Computer Science, pages 243–262. Springer-Verlag, 2001.

5. Makoto Hamana. Simple β0-unification for terms with context holes. In Proceedings of
the 16th International Workshop on Unification (UNIF 2002), pages 9–13, 2002.

Relating Nominal and Higher-Order Pattern Unification 119

6. Gérard Huet. A unification algorithm for typed λ-calculus. Theoretical Computer Science,
1:27–67, 1975.

7. Dale Miller. A logic programming language with lambda-abstraction, function variables,
and simple unification. J. Logic and Computation, 1(4):497–536, 1991.

8. Dale Miller. Unification of simply typed lambda-terms as logic programming. In Koichi
Furukawa, editor, Logic Programming, Proceedings of the Eighth International Conference,
pages 255–269, Paris, France, June 24–28 1991. MIT Press.

9. Dale Miller. Unification under a mixed prefix. Journal of Symbolic Computation,
14(4):321–358, 1992.

10. Dale Miller and Alwen Tiu. A proof theory for generic judgments: extended abstract.
In Proc. 18th Symp. on Logic in Computer Science (LICS 2003), pages 118–127. IEEE
Press, 2003.

11. Tobias Nipkow. Functional unification of higher-order patterns. In Proc. 8th IEEE Symp.
Logic in Computer Science, pages 64–74, 1993.

12. A. M. Pitts and M. J. Gabbay. A metalanguage for programming with bound names
modulo renaming. In R. Backhouse and J. N. Oliveira, editors, Proc. 5th Int. Conf. on
Mathematics of Programme Construction (MPC2000), number 1837 in Lecture Notes in
Computer Science, pages 230–255, Ponte de Lima, Portugal, July 2000. Springer-Verlag.

13. Zhenyu Qian. Linear unification of higher-order patterns. In Proceedings of the Interna-
tional Joint Conference CAAP/FASE on Theory and Practice of Software Development,
pages 391–405. Springer-Verlag, 1993.

14. M. R. Shinwell, A. M. Pitts, and M. J. Gabbay. FreshML: Programmming with binders
made simple. In Proc. 8th ACM SIGPLAN Int. Conf. on Functional Programming (ICFP
2003), pages 263–274, Uppsala, Sweden, 2003. ACM Press.

15. C. Urban, A. M. Pitts, and M. J. Gabbay. Nominal unification. Theoretical Computer
Science, 323(1–3):473–497, 2004.

120 J. Cheney

Efficiently Computable Classes of Second Order
Predicate Schema Matching Problems

Masateru HARAO1, Shuping YIN2, Keizo YAMADA1, and Kouichi HIRATA1

1 Department of Artificial Intelligence Kyushu Institute of Technology
Kawazu 680-4, Iizuka 820-8502, Japan

2 Graduate School of Computer Science and Systems Engineering
{harao,yin,yamada,hirata}@ai.kyutech.ac.jp ⋆

Abstract. Second order predicate schema matching is concerned with finding
the matchers of a given pair such that 〈Φ, φ〉 where Φ is a formula containing
second-order predicate variables and φ is a first order logical formula. In general,
this problem is intractable even if we impose some strict syntactic restrictions.
In this paper, we propose a class of second order predicate schemas which is
defined by introducing syntax free variables and show that the computational
complexity of the schema matching is almost linear on input size. We also show
that this class possesses enough expressive power to implement a schema-guided
automatic theorem prover.

1 Introduction

A schema is a template of formulas and knowledge processing which uses
schemas as guiding information is called schema guided knowledge processing [6].
Especially, processing based on second-order schemas has been studied in re-
search areas such that program transformations [12], automatic program syn-
theses [6], analogical reasoning [2, 4, 7], and so on. Here, second order matching
has an important role in implementing these systems.

A second order predicate schema is a formula including second-order pred-
icate variables, and a second order predicate schema matching is a problem
of obtaining matchers of any pair such that 〈Φ, φ〉 where Φ is a second order
predicate schema and φ is a closed first order formula. This predicate schema
matching can be regarded as a special case of the second-order matching and
is known to be intractable in general [16].

Though the second-order matching is intractable in general [1], a sharp char-
acterization between tractable and intractable second-order matching has been
given from syntactical viewpoint [10]. Especially, a class of second order terms
called higher order pattern in which matchers can be derived in linear time has
been reported [14]. Furthermore, it has been shown that a matching algorithm
which works more efficient than the standard one [11, 12] can be designed by us-
ing pre-checking method [3]. These results indicate that the efficiency of second
order matchings strongly depends on the existence of bound and free variables
and can be improved by devising the strategy of the procedure.

⋆ This work is partially supported by Grand-in-Aid for Scientific Research 13558036 from the
Ministry of Education, Culture, Sports, Science and Technology, Japan, and Foundation
for promotion of researches on artificial intelligence

121

122 M. Harao, S. Yin, K. Yamada, K. Hirata

In this paper, we propose a class of second order predicate schemas in
which an efficient schema matching exists from the motivation of construct-
ing a schema-guided theorem prover [17]. Firstly, we define the syntax of sec-
ond order schemas which we propose here by introducing syntax free variables.
Next, we design a general schema matching algorithm based on the projection
position indexing. Furthermore, we study the heuristics to improve its computa-
tional efficiency. In particular, we present an algorithm which derives matchers
efficiently by introducing strategy. Finally, we introduce a class of predicate
schema matching problems in which a unique matcher can be derived almost
in linear time. We also show that this class possesses enough expressive power
to implement a schema-guided automatic theorem prover.

2 Preliminaries

We use a term language L to represent second order language [10] instead of the
general language defined by using λ-notation. The term language L is defined
using the following symbol sets.

(1) IC :a set of individual constants {a, b, c, . . .}
(2) IV :a set of individual variables {x, y, z, . . .},
(3) FC :a set of function constants {f, g, h, . . .},
(4) FV :a set of function variables {F,G,H, . . .},
(5) PC :a set of predicate constants {p, q, r, . . .},
(6) PV :a set of predicate variables {P,Q,R, . . .},
(7) ISV : a set of individual syntax variables {xc, yc, zc, . . .},
(8) FSV : a set of function syntax variables {Fc, Gc,Hc, . . .},

Throughout of this paper, we assume a set of elementary types containing
the Boolean type o. Furthermore, we assume that each d ∈ IC ∪ IV ∪ FC ∪
PC ∪ PV ∪ ISV ∪ FSV has a type denoted by τ(d). Each d ∈ IC ∪ IV ∪ ISV
has an elementary type not equal to o, each d ∈ FC ∪ FV ∪ FSV has a type
µ1 × · · · × µn → µ where neither µi nor µ is o, and each d ∈ PC ∪ PV has a
type µ1 × · · · × µn → o. Especially, we deal with the logical connectives ∧,∨,⊃
as predicate constants satisfying that τ(∧) = τ(∨) = τ(⊃) = o × o → o and
τ(¬) = o→ o. For a quantifier Q (Q ∈ {∀,∃}) we also treat Qx. as a predicate
constant satisfying that τ(Qx.) = o→ o. If τ(ϕ) = o and τ(x) 6= o, then Qx.ϕ
has the type o.

Typed terms are defined as usual [1]. Here, we assume that each term con-
tains no λ abstraction. A variable x ∈ IV is called bound if x appears in the scope
of a quantifier Qx(Q ∈ {∀,∃}) and free otherwise. A formula is called closed if
it contains no free individual variables. A second order predicate schema or sim-
ply predicate schema is a closed formula which contains predicate variables but
contains no function variables. Note that a closed predicate schema may con-
tain some syntax free variables xc, Fc,. . . . In the following, we denote schemas
and formulas by Φ,Ψ, . . . and φ,ϕ, ψ, . . ., respectively. Examples of a predicate
schema Φ and a closed first order formulas φ are given next.

Φ = P (xc) ∧ ∀x.(P (x) ⊃ P (Fc(x))) ⊃ P (Fc(Fc(c))),
φ = ∀z.p(z, 0) ∧ ∀x.(∀z.p(z, x) ⊃ ∀z.p(z, f(x))) ⊃ ∀z.p(z, f(f(0)))

Second Order Schema Matching 123

In this Φ, syntax variables xc and Fc denote constants from the logical
viewpoint, but they mean indefinite constants. From this reason, we treat them
as free variables which range over IC and FC respectively. By treating them
as syntax free variables, we can raise the expressive power of schemas. A head
of a schema Φ is a left-most symbol of Φ in its prefix expression and is denoted
by hd(Φ). In case of above Φ, hd(Φ) = ” ⊃ ”.

Let V ={IV ∪ FV ∪ ISV ∪ FSV }. A substitution θ is a function from V
to the set of all terms such that θ(v) 6= v holds only for finitely many v ∈ V.
For terms ti(1 ≤ i ≤ m) and variables vi(1 ≤ i ≤ m), a substitution such that
θ(vi) = ti is denoted by θ = [v1 := t1, . . . , vm := tm]. Intuitively, tθ denotes the
term obtained by replacing a variable vi in t with ti simultaneously under the
renaming, and is the same operation to (λv1 · · · vn.t)t1 · · · tn in λ-calculus.

A set of substitutions {θ1, . . . , θm} is consistent if (θ1 ∪ . . . ∪ θm) is well
defined. For example, if θ1=[x := a] and θ2=[x := b], then {θ1, θ2} is not
consistent. θ ∈ {[H := t] | t ∈ S⊓E} is a matcher of E if it is consistent.

We denote an m-tuple of terms t1, · · · , tm by tm. For a term t and a substi-
tution θ, tθ is defined inductively as follows:

(1) If t = c(c ∈ IC), then tθ = c.

(2) If t = x(x ∈ IV), and [x := t′] ∈ θ, then tθ = t′; otherwise tθ = x.

(3) If t = xc(xc ∈ ISV), and [xc := c] ∈ θ(c ∈ IC), then tθ = c; otherwise
tθ = xc.

(4) If t = f(tn)(f ∈ FC ∪ PC), then tθ = f(tnθ).

(5) If t = P (tn)(P ∈ PV ∪ FV) and [P := λvn.t
′] ∈ θ, then tθ = t′[v1 :=

t1θ, . . . , vn := tnθ]; otherwise tθ = P (tnθ).

(6) If t = Fc(tn)(Fc ∈ FSV) and [Fc := λvn.f(vn)] ∈ θ, then tθ = f(tnθ).

(7) If t = Qx.t′ and Q ∈ {∀,∃}, then tθ = Qy.((t′[x := y])θ), where y is a new
variable.

Example 1. Let Φ be the schema stated above, and let θ be a substitution such
that θ = [P := λu.∀z.p(z, u), xc := 0, Ff := λv.f(v)]. Then we have:

Φθ = P (xc)θ ∧ (∀x.(P (x) ⊃ P (Fc(x)))θ ⊃ P (Fc(Fc(x)))θ = φ. ⊓⊔

A finite set of pairs of schemas and formulas is called an expression. An
expression of the form {〈Pi(t

i
1, . . . , t

i
ni

), ϕi〉 | i ∈ N} is called a reduced expres-
sion, where Pi is a predicate variable and ϕi is a formula. The size of a term
t is the number of occurrences of all symbols in t and is denoted by |t|. For an
expression E = {〈Φi, ϕi〉 | i ∈ N}, the size of E is defined by

∑
i∈N (|Φi|+ |ϕi|)

and is denoted by |E|. A substitution θ such that Φiθ = ϕi for all i ∈ N is called
a matcher of E. The schema matching for E is a procedure to find a matcher
of E. If there is a matcher of E, then E is called matchable.

3 Projection Position Indexing for Schema Matching

We define rules for our schema matching by modifying the ones of [12]. Let E
be an expression and let 〈s, t〉 ∈ E. Assume that hd(s) = @, hd(t) = ♮. In the

124 M. Harao, S. Yin, K. Yamada, K. Hirata

following, we denote the transformation using a rule ”rule” by ”⇒rule ”.

Rules for second-order matching:
E=E′ ∪ {〈s, t〉}, s=@(sr), t=♮(td)

Simp (Simplification rule):
(1) If s = t and s ∈ IC or s = w: E=E′ ∪ {〈s, t〉} ⇒Simp E

′

(2) If hd(s) = hd(t) = @ and @ ∈ (IC ∪ FC ∪ PC ∪ {∨,∧,⊃,¬}):
E=E′ ∪ {〈@(sm), ♮(tm)〉} ⇒Simp E′ ∪ {〈s1, t1〉, · · · , 〈sm, tm〉}

(3) If s = Qx.Φ, t = Qy.ϕ,(Q ∈ {∀,∃}):
E=E′ ∪ {〈s, t〉} ⇒Simp E

′ ∪ {〈Φ[x := w], ϕ[y := w]〉}
Imit (Imitation rule):

(1) If t=Qx.ϕ(td) (Q ∈ {∀,∃}) and τ(s)=τ(Qx.ϕ(td))=o:
E ⇒Imit E[@ := λvr.Qx.ϕ(H1(x, vr), . . . ,Hd(x, vr)],
where Hi ∈ FV (1 ≤ i ≤ d).

(2) If hd(s)=x(x ∈ IV) and t contains no bound variables:
E ⇒Imit E[x := t]

(3) If hd(s)=xc(xc ∈ ISV) and t ∈ IC:
E ⇒Imit E[x := t]

(4) If hd(s)=Fc(Fc ∈ FSV) and hd(t) ∈ FC:
E ⇒Imit E[x := hd(t)]

(5) If hd(s) ∈ FV and t=x(x ∈ IV): E ⇒Imit E[@ := λvr.x]
(6) If hd(s) = @(@ ∈ PV ∪ FV) and hd(t) = ♮(♮ ∈ IC ∪ FC ∪ PC):

E ⇒Imit E[@ := λvr.♮(H1(vr), · · · ,Hd(vr))].
(7) If hd(s) = @(@ ∈ FSV) and hd(t) = ♮(♮ ∈ FC), r = d:

E ⇒Imit E[@ := λvr.♮(v1, · · · , vr)].
Proj (Projection rule), where s̄r = (s1, . . . , sr).

If τ(si) = τ(t)(1 ≤ i ≤ r): E ⇒Proj E[@ := λvr.vi]

The rules Simp decompose a given E into reduced form E′. Note that
Simp (3) replaces quantified variables x, y, . . . with different symbols w1, w2, . . .
to denote bound variables in schemas explicitly after the quantifiers are deleted.
In the following, we also call them bound variables. For example, for an expres-
sion

〈∀x.(P (x) ⊃ P (Fc(x))),∀x.(∀z.p(z, x) ⊃ ∀z.p(z, f(x)))〉,

we have the following reduced expression by applying Simp(3):

{〈P (w),∀z.p(z,w)〉, 〈P (Fc(w)),∀z.p(z, f(w))〉}.

A rule of Imit imitates hd(t) of the target formula t. The rule Imit (1) is
the newly introduced rule for the predicate matching. A predicate variable Φ
imitates also formulas having ∀ and ∃ as heads such that ∀x.p(. . . , x, . . .) and
∃x.p(. . . , x, . . .) by treating quantifiers as constants. There, the bound variable
x has to appear on the inside of p since it makes sense only by the pair. For
example, let E = {〈Φ(a),∀x.p(x)〉}, then the substitution [Φ := λu.∀x.Ψ(x, u)]
is available, where ∀x.Ψ(x, u) expresses any formulas quantified with ∀x. Then,
we have ∀x.p(H(x, a)) by applying [Ψ := λv1v2.p(H(v1, v2))]. By combining
these transformations into one operation, the rule Imit (1) is defined. Here,

Second Order Schema Matching 125

each Hi ∈ FV is a second order function variable introduced newly, and is
called fresh schema variable.

Note that Imit cannot be applied for any pair such that 〈s,w〉, where w is
a bound variables (see Imit (2)). For syntax free variables, the rule Imit(3)(4)
are used, where each syntax variable can be substituted with a symbol. For
example, let 〈H(xc), f(g(a))〉. Then we have [H := λv.f(g(v)), xc := a], but
[H := λv.f(v), xc := g(a)] is not available. Similarly, 〈Fc(xc), f(g(a))〉 is not
matchable.

A rule of Proj simulates a subterm of the target formula t by projecting an
argument si of s(1 ≤ i ≤ r).

For an expression E, we have an expression in the formE′ = {〈Pi(s
i
1, . . . , s

i
ri

), ϕi〉 |
i ∈ N} by applying Simp rules to E repeatedly. We call this E′ reduced form
of E and this process pre-processing . Let ⇒∗ denote finitely many applications
of the rules Simp,Imit ,Proj . Then the following theorem holds in a similar way
to [12]:

Theorem 1. Let E be an expression and E′ be its reduced form. Then E is
matchable if and only if E′ ⇒∗ ∅, and matchers of E are given as the composi-
tion of all substitutions derived in the transformation from E′ to ∅. ⊓⊔

Let E be a reduced form {〈Pi(s
i
1, . . . , s

i
ri

), ϕi〉 | i ∈ N}. Then, our schema

matching applies the projection position indexing to E. Assume that sj
i is a

term which contains no fresh schema variables but may contain syntax free
variables, and t is a term which contains no free variables. By s

.
= t, we denote

that s and t are matchable. For example, Fc(xc)
.
= f(a), since a matcher [Fc :=

λu.f(u), xc := a] exists.

Definition 1. Let s be a schema P (s1, . . . , sr), t a formula, ρ(t) a set {i | t
.
=

si, 1 ≤ i ≤ r}. Then, an indexed term J(s, t) is defined inductively as follows:

(1) J(s,w) = ∗ρ(w), J(s, c) = cρ(c) (c ∈ IC), and J(s, x) = x∅ (x ∈ IV).

(2) If t = f(t1, . . . , tm), f ∈ FC and J(s, ti) is an indexed term of ti for s
(1 ≤ i ≤ m), then J(s, t) = fρ(t)(J(s, t1), . . . , J(s, tm)).

(3) If t = p(t1, . . . , tm), p ∈ PC ∪{¬,∧,∨,⊃} and J(s, ti) is an indexed term of
ti for s (1 ≤ i ≤ m), then J(s, t) = p∅(J(s, t1), . . . , J(s, tm)).

(4) If t = Qx.t1 (Q ∈ {∀,∃}) and J(s, t1) is an indexed term of t1 for s, then
J(s, t) = Qx∅.J(s, t1). ⊓⊔

Here, ∗ is a new symbol to denote that any imitation cannot be applied.
From indexed terms, we form a common indexed term as a common part of
them.

Definition 2. For a reduced expression E = {〈si, ti〉 | i ∈ N} such that
hd(si) = P , let J(si, ti) be an indexed term of si for ti. Then, a common
indexed term J(E) = ⊓i∈NJ(si, ti) of {J(si, ti) | i ∈ N} is defined inductively
as follows:

(1) If J(si, ti) = cρi and c ∈ IC ∪ IV ∪{∗} for each i ∈ N , then J(E) = c∩i∈N ρi .

(2) If J(si, ti) = fρi(ti1, . . . , t
i
m) and f ∈ FC for each i ∈ N , then:

126 M. Harao, S. Yin, K. Yamada, K. Hirata

J(E) = f∩i∈Nρi(⊓i∈NJ(si, t
i
1), . . . ,⊓i∈NJ(si, t

i
m)).

(3) If J(si, ti) = p∅(ti1, . . . , t
i
m) and p ∈ PC ∪ {¬,∧,∨,⊃} for each i ∈ N , then:

J(E) = p∅(⊓i∈NJ(si, t
i
1), . . . ,⊓i∈NJ(si, t

i
m)).

(4) If J(si, ti) = Qx∅i .t
′
i and Q ∈ {∀,∃} for each i ∈ N , then:

J(E) = Qx∅. ⊓i∈N (J(si, t
′
i)[xi := x]).

(5) If there exist k, j ∈ N such that hd(J(sk, tk)) 6= hd(J(sj , tj)), then J(E) =
∗∩i∈N ρi . ⊓⊔

Finally, we form a reduced indexed term from a common indexed term.

Definition 3. Let E = {〈si, ti〉 | i ∈ N} be a reduced expression. Then a
reduced indexed term ⊓E of E is an indexed term obtained by applying the
following rule to J(E) as often as possible:

For a subterm t′ of J(E) if there exists a j(1 ≤ j ≤ m) such that
t′ = f∅(t′1, . . . , t

′
j , . . . , t

′
m) and t′j = ∗∅, then replace t′ with ∗∅. ⊓⊔

If ⊓E 6= ∗∅, then at least a transformation from E to ∅ exists, and the
composition of substitutions derived in the transformation becomes a matcher
of E if they are consistent. The problem of indexing for a E=〈P (s1, . . . , sr), t〉
can be reduced to the matching of ordered subtrees with logical variables in [13],
and the indexing for each pair 〈si, t〉 can be done in time O(| t |). Hence, the
total time required for the indexing concerning E is O(r· | t |). By estimating
O(r· | t |) ≤ O(|E|2), we have the following result.

Theorem 2. Let E be a reduced expression. Then, ⊓E can be constructed in
O(|E|2) time, and E is matchable only if ⊓E 6= ∗∅. ⊓⊔

Especially, if E contains no syntax variables, then E is matchable if ⊓E 6= ∗∅

since the set of obtained substitutions is always consistent. Hence we have the
following property.

Corollary 1. Let E be a reduced expression which contains no syntax free vari-
ables. Then, E is matchable if and only if ⊓E 6= ∗∅. ⊓⊔

Example 2. Matchability test based on reduced indexed terms.

(1) Consider the following expression E1:

〈∀x1(P (x1, Fc(x1))∧P (x1, Gc(x1)), ∀x2(∃z1.p(z1, f(x2))∧∃z2.p(z2, g(x2)))〉

By applying the pre-processing to E1, we obtain the following reduced ex-
pression E′

1.

E′
1 = {〈P (w,Fc(w)),∃z1.p(z1, f(w))〉, 〈P (w,Gc(w)),∃z2.p(z2, g(w))〉}

= {〈s1, t1〉, 〈s2, t2〉}.

It holds that ⊓i∈{1,2}J(si, ti) = ∃z∅.p∅(z∅, ∗{2}) = ⊓E′
1 6= ∗

∅. Accordingly,
E1 is matchable if the obtained substitutions are consistent by Theorem 2.

Second Order Schema Matching 127

(2) Consider the following expression E2 which contains no syntax free variables:

E2 =

{
〈∀x1.((P (x1, Fc(x1)) ∧ P (x1, Gc(x1))) ⊃ P (f(x1), x1)),
∀x2.((∃z1.p(z1, f(x2)) ∧ ∃z2.p(z2, g(x2))) ⊃ ∃z3.p(z3, f(x2)))〉

}
.

Firstly, we apply the pre-processing to E2. Then we have the following
reduced expression E′

2.

E2 ⇒

{
〈(P (w,Fc(w)) ∧ P (w,Gc(w))) ⊃ P (Ff (w), w),

(∃z1.p(z1, f(w)) ∧ ∃z2.p(z2, g(w))) ⊃ ∃z3.p(z3, f(w)))〉

}

⇒

{
〈P (w,Fc(w)) ∧ P (w,Gc(w)), ∃z1.p(z1, f(w)) ∧ ∃z2.p(z2, g(w))〉,
〈P (Ff (w), w), ∃z3.p(z3, f(w))〉

}

⇒

〈P (w,Fc(w)), ∃z1.p(z1, f(w))〉,
〈P (w,Gc(w)), ∃z2.p(z2, g(w))〉,
〈P (Fc(w), w), ∃z3.p(z3, f(w))〉

=

〈s1, t1〉,
〈s2, t2〉,
〈s3, t3〉

 = E′

2

.

Next, we apply the projection point indexing to E′
2. The indexed terms@are

given as follows:

J(s1, t1) = ∃z∅1 .p
∅(z∅1 , f

{2}(w{1})), J(s2, t2) = ∃z∅2 .p
∅(z∅2 , g

{2}(w{1})),

J(s3, t3) = ∃z∅3 .p
∅(z∅3 , f

{1}(w{2})).

By Definition 2, it holds that ⊓i∈{1,2,3}J(si, ti) = ∃z∅.p∅(z∅, ∗∅). By Defini-

tion 3, it holds that ⊓E′
2 = ∗∅. Hence, E is not matchable by Corollary 1.

⊓⊔

4 Matcher Derivation Algorithm

4.1 A general matcher derivation algorithm

In this section we study algorithms of deriving any matchers of E from a given
common reduced indexed term ⊓E. Intuitively, projection rules can be applied
to the positions of ⊓E whose index set ρ is not ∅, and imitation rules can be
applied to any positions of ⊓E which are not ⋆.

Definition 4. Let E be an expression such that {〈si, ti〉 | 1 ≤ j ≤ m},where
hd(si) = P for any i(1 ≤ i ≤ m). The set of substitutions S⊓E for E is defined
inductively as follows.

(1) ⊓E = cρ : S⊓E = {λv̄n.c} ∪ {λv̄n.vj | j ∈ ρ}.
(2) ⊓E = ⋆ρ : S⊓E ={λv̄n.vj | j ∈ ρ}.
(3) ⊓E = fρ(⊓E1, . . . ,⊓Em) :

S⊓E={λv̄n.f(t1, . . . , tm) | λv̄n.ti ∈ S⊓Ei
, 1 ≤ i ≤ m} ∪ {λv̄n.vj | j ∈ ρ}. ⊓⊔

A matcher derivation term of E is a subterm of a reduced indexed term ⊓E
formed by deleting the descendant of every node to which a projection rule is
chosen and the choiced index is labelled to each node of it. In case of ⊓E =
p∅(f{1,2}(c{3,4}⋆{5,6})), the terms p∅(f{1}), p∅(f∅(c∅, ⋆{5})) and p∅(f∅(c{4}, ⋆{5}))
are examples of matcher derivation terms of ⊓E. A atcher derivation term
specifies a substitution θ ∈ {[H := t] | t ∈ S⊓E}.

Note that the substitutions for syntax free variables arise only when pro-
jection rules are applied. Accordingly, consistency check is required only when
projection rules are applied.

128 M. Harao, S. Yin, K. Yamada, K. Hirata

Theorem 3. Let E be an expression and let ⊓E be its reduced indexed term.
Then each consistent θ ∈ {[H := t] | t ∈ S⊓E} is a matcher of E. ⊓⊔

Corollary 2. Let E be an expression which contain no syntax free variables
and let ⊓E be its reduced indexed term. Then each θ ∈ {[H := t] | t ∈ S⊓E} is
a matcher of E. ⊓⊔

Example 3. Matcher derivation from S⊓E

(1) Let E be an expression such that

E =

〈H(w,Fc(xa, w)), f(a,w)〉,
〈H(xa, Fc(xa, xb)), f(a, b)〉,
〈H(xa, Fc(xa, xc)), f(a, c)〉

 .

Then ⊓E = f{2}(a∅, w{1}). The derivation terms of ⊓E are f∅(a∅, w{1}) and
f{2}. Hence, we have the following substitutions:

{
θ1 = [H := λv1v2.f(a, v1), xa := b, xa := c],
θ2 = [H := λv1v2.v2, Fc := λv1v2.f(v1, v2), xa := a].

}

Here, θ2 is a consistent matcher, but θ1 is not.

(2) Let E2 be the expression in Example2. Then ⊓E2 = ∃z∅.p∅(z∅, ∗{2}). In this
case, the derivation term of E2 is uniquely defined as ∃z∅.p∅(z∅, ∗{2}). Hence
we have the following matcher. θ = [P := λv1v2.∃z.p(z, v2)]. ⊓⊔

A matcher derivation term is given by choosing rules and indices from re-
duced indexed terms. The efficiency of the matching strongly depend on this
choosing procedure. We introduce a preference order ≻od into SE such that if
r1 ≻od r2, then r1 is chosen in preference to r2, and denote the ordered set
by (SE,≻od). A strategy which derives matchers according to a preference or-
der ≻od is called od-strategy, and a procedure which is based on od-strategy is
denoted by Matchod. A general procedure of Matchod is given as follows:

Algorithm Matchod :
Input: E={〈P (s̄j), tj〉 | 1 ≤ j ≤ m}
Output: Matchers of E
begin
(1)Pre-process E to a reduced expression E′;
(2)Derive the reduced indexed term ⊓E;

If ⊓E = ⋆∅ then output fail;
else

(3) While a possible matcher derivation term exists do;
(3-1)Choose a possible matcher derivation term under od-strategy;
(3-2)Derive substitutions according to the chosen matcher derivation term;
(3-3)Check the consistency of the obtained substitutions;
If consistent then output the substitutions;

end

As a basic preference order, we introduce the imitation preference order.

Second Order Schema Matching 129

Definition 5. The imitation preference order denoted by ≻I and the ordered
set (S⊓E,≻I) are defined inductively as follows:

(1) ⊓E = cρ : (S⊓E ,≻I) = {λv̄n.c ≻I λv̄n.v1 ≻I . . . ≻I λv̄n.v|ρ|}.
(2) ⊓E = ⋆ρ : (S⊓E ,≻I) = {λv̄n.v1 ≻I . . . ≻I λv̄n.v|ρ|}.
(3) ⊓E = fρ(S⊓E1, . . . , S⊓Em): (S⊓E,≻I) =
{{λv̄n.f(t1, . . . , tm) | λv̄n.ti ∈ (S⊓Em ,≻I)} ≻I λv̄n.v1 ≻I . . . ≻I λv̄n.v|ρ|}.

⊓⊔

Theorem 4. MatchI is sound and complete, that is, it derives any matchers
of E. ⊓⊔

Especially, if E contains no syntax free variables, then the consistency check (3-
3) is not necessary. Hence, for each choice in (3-1), MatchI derives a consistent
matcher.

Example 4. Let E be an expression such that 〈P (w,w,Fc(w), xc, xc), p(f(w), a)〉.
Then ⊓E = p∅(f{3}(⋆{1,2}), a{4,5}), andMatchI derives the following 9 matchers
in this order.

(1)[P := λv1v2v3v4v5.p(f(v1), a)]
(2)[P := λv1v2v3v4v5.p(f(v2), a)],
(3)[P := λv1v2v3v4v5.p(f(v1), v4), xc := a],
(4)[P := λv1v2v3v4v5.p(f(v1), v5), xc := a]
(5)[P := λv1v2v3v4v5.p(f(v2), v4), xc := a]
(6)[P := λv1v2v3v4v5.p(f(v2), v5), xc := a]
(7)[P := λv1v2v3v4v5.p(v3, a), Fc := λv.f(v)]
(8)[P := λv1v2v3v4v5.p(v3, v4), Fc := λv.f(v), xc := a]
(9)[P := λv1v2v3v4v5.p(v3, v5), Fc := λv.f(v), xc := a]

4.2 Efficiently Computable Predicate Schema Matching Classes

There exist one imitation rule and | ρ | projection rules which can be applied
to positions indexed as cρ or fρ(· · ·). Hence, the number of matcher derivation
terms increases in exponential as for the number of such positions. It is essential
for designing an efficient matching algorithm to suppress this combinational
explosion.

One of the reasons of the increase of the size of ρ is the occurrence count
of identical terms in arguments of schemas. For example, in Example 4, the
same symbols w, xc occur twice in the schema variable P . Hence, there exist
4 combinations as for w, xc to form matcher derivation terms. However, it is
meaningless to derive matchers for all such combinations. In order to suppress
such meaningless combinations, we restrict the occurrence count of each term
in an atom to be at most one. From this viewpoint, we introduce the condition
of simplex.

For a position indexed as ⋆ρ, we have to apply projection rules. The size of
ρ depend on the occurrence count of each bound variable w in an atom. For ex-
ample, let E be {〈P (w,Fc(w)), p(f(w), a, b)〉}. Then, ⊓E=p∅(f{2}(w{1}), a∅, b∅),
and 2 matcher derivation terms exist. If we restrict the occurrence count of w

130 M. Harao, S. Yin, K. Yamada, K. Hirata

up to one, then the matcher derivation term is decided uniquely. For example,
in case of {〈P (w,Fc(xc)), p(f(w), a, b)〉}, its matcher derivation term is decided
uniquely as p(f∅(w{1}), a∅, b∅). From this viewpoint, we introduce the condition
of linear.

The existence of bound variables in each argument of any atoms reduces
the indeterminacy of choosing rules. For example, let E be an expression such
that {

〈P (xc, yc), p(a, b)〉, 〈P (yc, xc), p(a, c)〉
}
.

Then ⊓E = p∅(a{1,2}, ⋆{1,2}). For ⋆{1,2}, there exist 2 possible projections. On
the other hand, in case of

{
〈P (xc, yc), p(a, b)〉, 〈P (yc, xc), p(a, c)〉 〈P (w, xc)), p(a,w)〉

}
,

⊓E = f∅(a{2}, ⋆{1}), and the index set of the position ⋆ is decided uniquely.
Thus, for a position ⋆ρ, if there exists a sj

i (1 ≤ j ≤ m) for each i ∈ ρ which con-
tains bound variables, that is, the position ⋆ is dominated with bound variables,
then the matcher derivation term is uniquely decided. From this viewpoint, we
introduce the condition of dominated.

Definition 6. Let {〈P (sj
1, . . . , s

j
r), tj〉 | 1 ≤ j ≤ m} be a reduced expression of

〈Φ, φ〉. Then

(1) An atom P (sj
1, . . . , s

j
r) is simplex if it contains bound variables, then sj

i 6=

sj
i′(1 ≤ i, i

′ ≤ r) holds for any j(1 ≤ j ≤ m). A schema Φ is simplex if each
atom of Φ is simplex.

(2) An atom P (sj
1, . . . , s

j
r) is linear if the occurrence count of each bound variable

of the atom is at most one. A schema Φ is linear if each atom of Φ is linear.

(3) A set of atoms {P (sj
1, . . . , s

j
r) | (1 ≤ j ≤ m)} is dominated if sj

i 6= sj′

i (1 ≤

j, j′ ≤ m) holds for some i(1 ≤ i ≤ r), then at least a s ∈ {sj
i | 1 ≤ j ≤ m}

contains bound variables. A schema Φ is dominated if each atom set of Φ
with a same head is dominated. ⊓⊔

Example 5. Let Φ1, Φ2, Φ3 be schemas such that:

Φ1 = ∀xy.P (x, y, xc, yc) ⊃ P (xc, yc, xc, yc)
Φ2 = ∀x.P (x, Fc(x), xc, yc) ⊃ P (xc, xc, xc, xc)
Φ3 = ∀xy.P (x, y, xc, xc) ⊃ P (xc, yc, xc, xc)

Then Φ1 is simplex, dominated and linear. Φ2 is simplex, but is not dominated
since the 4th argument of its atoms are different (yc 6= xc) but no bound
variables occurs in the 4th argument of both atoms. Further Φ2 is not linear
since x occurs twice in ∀x.P (x, f(x), xc, yc). Φ3 is not simplex since xc occurs
twice in ∀x.P (x, f(x), xc, xc), but is dominated and linear. ⊓⊔

A schema Φ is called s-l-d if it satisfies all the conditions of simplex, dom-
inated and linear. Let E = {〈si, ti〉 | i ∈ N} be a reduced expression obtained
from a s-l-d schema Φ, and let J(E) be the common indexed term of E. Assume
that ⋆ρ be a position of J(E). If ⋆ρ is derived by hd(J(sk, tk)) 6= hd(J(sj , tj)

Second Order Schema Matching 131

and sk
l = sj

l holds for any k, j ∈ N where sk = P (sk
1, . . . , s

k
r) ,sj = P (sj

1, . . . , s
j
r)

and l ∈ ρ, then the substitutions obtained by applying projection rules to the
position ,i.e.,λvn.vl, l ∈ ρ, are inconsistent. Therefore, this matching fails. For
this reason, for the case of s-l-d schema, we modify the definition of common
indexed term (Definition 2(5)) as follows:

(5)’ If there exist k, j ∈ N such that hd(J(sk, tk)) 6= hd(J(sj , tj)), then

J(E) = ∗∩i∈N ρi−α, where α = {l | sk
l = sj

l ,∀k, j ∈ N} and sk = P (sk
1 , . . . , s

k
r),

sj = P (sj
1, . . . , s

j
r).

From the condition of linear, the relation | ρ |≤ 1 holds for any ⋆ρ. Accord-
ingly, if Φ is s-l-d schema, then the positions to which projection rules must be
applied are uniquely specified.

Example 6. Matching for s-l-d schemas.

(1) Let E1 = {〈P (xc, yc), p(a)〉, 〈P (xc, zc), p(b)〉, 〈P (xc, w), p(c)〉}. Then we have
⊓E1=p

∅(⋆∅) instead of p∅(⋆{1}). Finally we have the reduced indexed term ⋆∅,
and therefore this matching fails. We can ascertain that the substitutions [xc :=
a, xc := b, xc := c] obtained by applying the projection λuv.u to the ⋆ position
are inconsistent.

(2) Let E2 = {〈P (Fc(xc)), p(f(a))〉, 〈H(Fc(xc)), p(f(b))〉}. Then we have ⊓E2=⋆
∅

by reducing from p∅(f{1}(⋆∅)). Hence this matching fails.

(3) Let E3 = {〈P (Fc(xc)), p(f(a))〉, 〈P (Fc(yc)), p(f(b))〉, 〈P (Fc(w)), p(f(w))〉.
Then ⊓E3 =p∅(f{1}), and E3 is matchable. The matcher is [P := λu.p(u), Fc :=
λv.f(v), xc := a, yc := b]. ⊓⊔

Let t = ⊓E be the reduced indexed term of E obtained from a s-l-d schema.
Then a strategy which uses only imitation rules for the positions indexed as cρ

or fρ(· · ·) is called strong imitation preference. The matching MatchS based
on this strong imitation preference strategy is defined as follows.

Definition 7. s-l-d schema matching.

(1) ⊓E = cρ : (Ss
⊓E ,≻) = {λv̄n.c}.

(2) ⊓E = ⋆ρ : (Ss
⊓E ,≻) ={λv̄n.vj},where j ∈ ρ (| ρ |≤ 1).

(3) ⊓E = fρ(S⊓E1, . . . , S⊓Em) : (Ss
⊓E ,≻)={λv̄n.f(t1, . . . , tm) | λv̄n.ti ∈ S⊓Em}.

⊓⊔

Next, we estimate the time complexity of MatchS . Let E be a reduced
expression. The procedures in (3) are linear except for (3-1). However, in the
case of the s-l-d schema matching, this procedure (3-1) becomes linear since the
projection position set is uniquely decided and | ρ |≤ 1.

The projection position indexing procedure is computable in time O(r· | t |)
as stated in Theorem2. Especially, in the case of schema matching, we can
assume that | t |≤ (k | si |) holds for some fixed k ∈ N . Accordingly, in this
case, the complexity of the matching becomes O(| E |). Therefore, in most of
the cases, the s-l-d schema matching runs almost in linear time. Thus, we have
the following results.

132 M. Harao, S. Yin, K. Yamada, K. Hirata

Theorem 5. Let Φ be a s-l-d schema and E be a reduced expression for some
〈Φ, φ〉. Then MatchS derives a unique matcher of E almost in linear time if E
is matchable. ⊓⊔

Example 7. Let E be a matching pair 〈Φ,ϕ〉 such that

Φ = P (xc) ∧ ∀x.(P (x) ⊃ P (Fc(x))) ⊃ P (Fc(Fc(xc))).
φ = (p(0) ∧ q(0)) ∧ ∀x.(p(x) ∧ q(x) ⊃ p(suc(x)) ∧ suc(x))

⊃ (p(suc(suc(0))) ∧ q(suc(suc(0)))

At first, we have the following reduced expression:

E =

〈P1(xc), p(0)〉 〈P1(w), p(w) 〉,
〈P1(Fc(w)), p(suc(w))〉, 〈P1(Fc(Fc(xc))), p(suc(suc(0)))〉
〈P2(xc), q(0)〉 〈P2(w), q(w) 〉
〈P2(Fc(w)), q(suc(w))〉, 〈P2(Fc(Fc(xc))), q(suc(suc(0)))〉

Then we have the reduced indexed terms such that :

{
⊓E1 = p∅(⋆{1}), ⊓E2 = q∅(⋆{1}).

}

Hence, we have the substitutions such that

{P1 := λu1.p(u1), P2 := λu2.q(u2), Ff := λv.suc(v), xc := 0}.

Finally, we have the matcher [P := λu1u2.p(u1) ∧ q(u2), Fc := λv.suc(v), xc :=
0}. ⊓⊔

5 Discussions and Conclusion

We have discussed in this paper the second order predicate schema match-
ing motivating to apply it to the schema guided theorem proving. We pro-
posed an algorithm MatchI which pre-checks the projection positions and
showed an efficiently computable class characterized by the conditions sim-
plex,linear and dominated exists. Though the conditions seem to be too re-
strictive, these restrictions do not reduce the expressive power of schemas. For
example,∀x.P (x, xc, Fc(yc)) matches with formulas containing the bound vari-
able x such that

∀x.p(x, a, f(a), g(x)),
∀x.(∃y.q(x, y, a, f(a), b, f(x), g(y)),
∀x.(∃y.p(x, f(y), a, g(x)) ∧ ∀y∃z.q(x, y, z, a, b, f(a), g(b))

.

The conditions of dominated are motivated from the provability of schemas.
Let Φ be a schema expressed in sequent such that

∀x∀y.P (xa, x, Fc(y))⇒ P (xa, xb, xc).

Second Order Schema Matching 133

Then its sequent style proof (LK proof) [15] is given as follows:

P (xc, wb, Fc(wc))⇒ P (xc, yc, Fc(zc))

∀y.P (xc, wb, Fc(y))⇒ P (xc, yc, Fc(zc))
(∀ L)

∀x∀y.P (xc, x, Fc(y))⇒ P (xc, yc, Fc(zc))
(∀ L)

A sequent which contains a same formula in the both side of ⇒ is called an ax-
iom, and each leaf of LK-proofs must be an axiom. Therefore, every quantified
variable must be substituted for some constant so that leaves become axioms.
In the above example, wb and Fc(wc) must be substituted for yc, Fc(zc), respec-
tively. Thus, all the syntax free variables occurring in Φ are either remain un-
changed or identified with bound variables. In this example, ”xc” is unchanged
and ”yc”, ”Fc(zc)” are identified with wb, Fc(wc),respectively. This relation must
be preserved for each formula φ to be matched. Thus, a schema which satisfies
the s-l-d conditions is provable. However, provable schema is not always s-l-d.
The characterization from the ligical viewpoint should be discussed further.

Fig. 1. Schema matching system

The proposed matching algorithm is implemented and is used in the schema
guided theorem prover which we have developed (Fig.1). The algorithm works
satisfactory and the class which we have introduced in this paper covers enough
schemas for our system. Thus the second order matching is very complex in
general, but is useful if we amalgamate some first order features with the second
order ones.

134 M. Harao, S. Yin, K. Yamada, K. Hirata

References

1. L. D. Baxter. The complexity of unification. PhD thesis, Department of Computer Science
,University of Waterloo, 1977.

2. B. Brock, S. Cooper, and W. Pierce. Analogical reasoning and proof discovery. LNCS,
No.310:454–468, 1988.

3. R. Curien, Z. Qian, and H. Shi. Efficient second order matching. In RTA 96(Rewriting
Techniques and Application), pages 317–331, 1996.

4. M. R. Donat and L. A. Wallen. Learning and applying generalised sotutions using higher
order resolution. LNCS, No.310:41–60, 1988.

5. G. Dowek. Third order matching is decidable. In 7th Annual IEEE Symposium on Logic
in Computer Science, pages 2–10, 1992.

6. P. Flener. Logic program synthesis from incomplete information. Kluwer Academic Press,
1995.

7. M. Harao. Proof discovery in lk system by analogy. In LNCS(Proc. of the 3rd Asian
Computing Science Conference), volume 1345, pages 197–211, 1997.

8. M. Harao and K. Iwanuma. Complexity of higher-order unification algorithm. Society for
Software Science and Technology, No.8:41–53, 1991. In Japanese.

9. M. Harao, K. Yamada, and K. Hirata. Efficient second order predicate matching algo-
rithm. In Proc. Korea-Japan Joint Workshop on Algorithm and Computations, pages
31–39, 1999.

10. K. Hirata, K. Yamada, and M. Harao. Tractable and intractable second-order matching
problems. Journal of Symbolic Computation, 37:611–628, 2004.

11. G. P. Huet. A unification algorithm for typed λ-calculus. Journal of Theoretical Computer
Science, 1:27–57, 1975.

12. G. P. Huet and B. Lang. Proving and applying program transformations expressed with
second-order patterns. Acta Informatica, 11:31–55, 1978.

13. P. Kilpeläinen. Tree Matching Problems with Applications to Structured Text Databases.
PhD thesis, University of Helsinki Department of Computer Science, 1992.

14. D. A. Miller. A logic programming language with lambda-abstraction function variables,
and simple unification. J. of Logic and Computations, 1(4):494–536, 1991.

15. A. S. Troelstra and H. Schwichtenberg. Basic proof Theory. Cambridge University Press,
1996.

16. K. Yamada, K. Hirata, and M. Harao. Schema matching and its complexity. Trans.
IEICE, J82-D-I:1307–1316, 1999. In Japanese.

17. K. Yamada, S. Yin, M. Harao, and K. Hirata. Development of an analogy-based generic
sequent style automatic theorem prover amalgamated with interactive proving. In Proc.
of IWIL’05 (the International Workshop on the Implementation of Logics 2005), 2005.

Panel Discussion: 20 Years After OBJ2

Organized by Kokichi Futatsugi

A memorable paper on OBJ2 [1] was published in the year 1985 in the
proceedings of the Twelfth POPL. OBJ2 was an algebraic specification language
designed and implemented from 1983 to 1984 by the four authors of the paper
at SRI International in Menlo Park, California. OBJ2 was a novel executable
formal specification language, and it had many new features its predecessor
languages were lacking.

Although the definitive implementation of OBJ2 is OBJ3, which has been
widely used as the latest OBJ language, almost all important language features
were defined in OBJ2. The novel features of OBJ2 such as powerful module
system, order sorted signature, rewriting modulo equational theories (A/C/I),
evaluation strategy (E-strategy), etc. have influenced the designs of many lan-
guages in the last 20 years. Those languages include, at least:

BOBJ (http://www-cse.ucsd.edu/groups/tatami/bobj/)
CafeOBJ (http://www.ldl.jaist.ac.jp/cafeobj/)
CASL (http://www.cofi.info/CASL.html)
ELAN (http://elan.loria.fr/)
Maude (http://maude.cs.uiuc.edu/)

The four authors of the OBJ2 paper share the luck of participating RDP2005
exactly 20 yeas after the paper was published. All of the four have been frequent
international travelers and attended many international conferences / sympo-
siums / workshops, but it is really rare to have this kind of coincidence. The
panel discussion of 20 Years After OBJ2 is organized by making use of this
precious chance for discussing the future possibilities of algebraic specification
languages, rewriting techniques, rewriting logic, behevioral / observational spec-
ification, etc. based on 20 years of experiences after OBJ2.

Panelists include the following four authors of the OBJ2 paper and one or
two more persons.

Kokichi Futatsugi
JAIST (Japan Advance Institute of Science and Technology)
futatsugi@jaist.ac.jp

Joseph Goguen
University of California at San Diego
goguen@cs.ucsd.edu

Jean-Pierre Jouannaud
Ecole Polytechnique
jouannaud@lix.polytechnique.fr

Jose Meseguer
University of Illinois at Urbana-Champaign
meseguer@cs.uiuc.edu

135

136 Organized by Kokichi Futatsugi

References

1. K. Futatsugi, J.A. Goguen, J.P. Jouannaud and J. Meseguer. Principles of OBJ2. In:
Conference Record of the Twelfth Annual ACM Symposium on Principles of Programming
Languages, New Orleans, Louisiana, January 1985 (POPL85), ACM (1985) 52-66.

Author Index

Anantharaman, Siva, 93

Bakewell, Adam, 25

Chabin, Jacques, 41
Chen, Jing, 41
Cheney, James, 105
Chevalier, Yannick, 63

Futatsugi, Kokichi, 135

Goguen, Joseph, 135

Harao, Masateru, 121
Hirata, Kouichi, 121

Jouannaud, Jean-Pierre, 135

Kfoury, Assaf J., 25
Kutsia, Temur, 77

Lynch, Christopher, 47

Marin, Mircea, 77
Meseguer, Jose, 135
Morawska, Barbara, 47

Narendran, Paliath, 93
Niehren, Joachim, 1

Planque, Laurent, 1

Réty, Pierre, 41
Rusinowitch, Michaël, 63, 93

Talbot, Jean-Marc, 1
Tison, Sophie, 1

Yamada, Keizo, 121
Yin, Shuping, 121

137

