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Decidability and Complexity of Finitely ClosableLinear Equational TheoriesChristopher Lynch and Barbara MorawskaDepartment of Mathematics and Computer Science Box 5815, Clarkson University,Potsdam, NY 13699-5815, USA, E-mail:clynch@clarkson.edu,morawskb@clarkson.edu ??Abstract. We de�ne a subclass of the class of linear equational theories,called �nitely closable linear theories. We consider uni�cation problemswith no repeated variables. We show the decidability of this subclass, andgive an algorithm in PSPACE. If all function symbols are monadic, thenthe running time is in NP, and quadratic for unitary monadic �nitelyclosable linear theories.1 IntroductionThe problem of E-uni�cation[1] is an important problem for automated deduc-tion, as well as other areas of computer science, such as formal veri�cation andtype inference. Given an equational theory E, an E-uni�er of terms s and t is asubstitution � such that s� and t� are equivalent modulo E. In many applica-tions it is necessary to �nd a complete set of E-uni�ers of terms s and t, thatis, to �nd a set of E-uni�ers of s and t from which all other E-uni�ers can begenerated.Unfortunately, E-uni�cation is undecidable in general. In addition, for someequational theories there is no �nite complete set of uni�ers. Therefore, if itnecessary to determine which classes of equational theories have a decidablealgorithm and on which E-uni�cation problems. Furthermore, the complexity ofthose algorithms should be analyzed.There has been much work in �nding particular equational theories withdecidable E-uni�cation problems and analyzing their complexity. There has beenless work in identifying classes of equational theories with decidableE-uni�cationproblems. However, there has been some recent work in that area, but not all ofit analyzes complexity. See [9] for some references.Recently, we have developed a simple new method of E-uni�cation andproved its soundness and completeness[6] for all equational theories. In [7] wehave re�ned it for linear theories. The method is a generalization of the GeneralMutation inference rules for Syntactic Theories[2{5]. It is an inference procedurethat does not always halt. However, the goal of developing this new method wasto use it to �nd decidable classes of equational theories and analyze their com-plexity, which is what we do in this paper.?? This work was supported by NSF grant number CCR-9712388 .



We consider linear theories, i.e., theories where in each equation no termshave repeated variables, although terms on opposite sides of an equation mayshare variables. This class of equational theories includes all theories with monadicfunctions symbols, therefore equations on strings can be represented. We onlyconsider E-uni�cation problems whose set of goal equations contains no repeatedvariables. This is a restricted E-uni�cation problem, but it contains the wordproblem, which is undecidable for equations on strings, and it also includes someexistential problems.The particular class we prove decidability of is what we call �nitely closabletheories. To use our algorithm, we must assume we know a �nite set of terms,such that we can �nd a complete set of uni�ers for each pair of those terms. If theterms that appear in each complete set of uni�ers are already in the set, then wecall the set �nitely closed. When such a set exists, we have an algorithm to solvethe E-uni�cation problems mentioned in the previous paragraph. We show thealgorithm is in PSPACE. However, for the case of monadic function symbols it isin NP, and furthermore it is quadratic if each complete set of uni�ers mentionedabove is unitary.Of course, we have not mentioned, so far, how to �nd this �nite set. We alsoshow some ways in which such a �nite set can be found.The format of the paper is to give some preliminary de�nitions, then topresent the algorithm which gives our decidability results and prove the com-plexity results. Finally we give a method for �nding the �nite set in some cases.2 PreliminariesWe assume we are given a set of variables and a set of uninterpreted functionsymbols of various arities. An arity is a non-negative integer. Terms are de�nedrecursively in the following way: each variable is a term, and if t1; � � � ; tn areterms, and f is of arity n � 0, then f(t1; � � � ; tn) is a term, and f is the symbolat the root of f(t1; � � � ; tn). A term (or any object) without variables is calledground. If t is any object, then V ar(t) is the set of all variables in t.We consider equations of the form s � t, where s and t are terms. Let Ebe a set of equations, and u � v be an equation, then we write E j= u � v (oru =E v) if u � v is true in any model of E. If G is a set of equations, thenE j= G means that E j= e for all e in G. If all the function symbols in E are ofarity no greater than one, then E is monadic.A substitution is a mapping from the set of variables to the set of terms,such that it is almost everywhere the identity. We identify a substitution withits homomorphic extension. If � is a substitution then Dom(�) = fx j x� 6= xg.The range of �, Ran(�) is fx� j x 2 Dom(�)g. A substitution � is idempotentif �� = �. In this paper, all substitutions will be considered to be idempotent.A substitution � is an E-uni�er of an equation u � v if E j= u� � v�. � isan E-uni�er of a set of equations G if � is an E-uni�er of all equations in G.Whenever an equation or a set of equations has an E-uni�er, it also has anidempotent E-uni�er. If � is an E-uni�er of u � v, we say that � is linear if no



variable appears more than twice in Ran(�), and if a variable z appears twicein Ran(�) then there is an x in u and a y in v such that z appears in x� and zappears in y�. This implies that there are not two di�erent variables x and w inu such that z appears in x� and w�.If � and � are substitutions, then we write � �E �[V ar(G)] if there is asubstitution � such that E j= x�� � x� for all x appearing in G. If G is a setof equations, then a substitution � is a most general uni�er of G, written � =mgu(G) if � is an E uni�er of G, and for all E uni�ers � of G, � �E �[V ar(G)].A complete set of E-uni�ers of G, is a set of E-uni�ers � of G such that for allE-uni�ers � of G, there is a � in � such that � �E �[V ar(G)].Given a uni�cation problem we can either solve the uni�cation problem ordecide the uni�cation problem. Given a goal G and a set of equations E, tosolve the uni�cation problem means to �nd a complete set of E-uni�ers of G.To decide the uni�cation problem simply means to answer true or false as towhether G has an E-uni�er.We say that a term t (or an equation or a set of equations) has varity n if eachvariable in t appears at most n times. An equation s � t is linear if s and t areboth of varity 1. Note that the equation s � t is then of varity 2, but it might notbe of varity 1. A set of equations is linear if each equation in the set is linear. Forexample, the axioms of group theory (ff(x; ; f(y; z)) � f(f(x; y); z); f(w; e) �w; f(u; i(u)) � e. are of varity 2.3 AlgorithmWe will be considering linear equational theories E. The goals G we are trying tosolve are sets of equations with no repeated variables (varity 1). In this sectionwe will give an E-uni�cation algorithm, and in the next section we will provethe algorithm halts for E-closed sets T , de�ned below, and give the complexityof the algorithm.De�nition 1. A set of terms T is called E-closed if it satis�es the followingconditions:1. every term in T is of varity 1;2. no member of T is a variable;3. if f is a symbol of arity n � 0 appearing in E, then f(x1 � � � ; xn) 2 T ;4. T contains two new constants c and d, which are not symbols of E.5. if s and t are renamings of terms in T , and � 2 CSUE(s; t), then � islinear, and for all x in V ar(s � t), whenever xi� is not a variable, there isa renaming � such that xi�� 2 T ;6. if t0 is a nonvariable subterm of t, then there is a renaming � such thatt0� 2 T .In the de�nition of T we assume that we are able to calculate a complete setof E-uni�ers for all pairs of terms in T . Each such T could have an associatedtable listing the complete set of uni�ers for each pair of terms in T . If such a T



exists, we will show that the E-uni�cation problem for all goals G of varity 1is solvable. But �rst we will show that if G contains symbols that are not in T ,then T and its associated table of complete sets of uni�ers can easily be extendedto handle such goals. First T is extended so that whenever u[c] is a member ofT for some term u, then u[f(t1; � � � ; tn)] is added to T for every new symbol f ,of arity n � 0, appearing in G. Then the table of complete sets of E-uni�ers isextended as follows.Let f(x1; � � � ; xn) and g(y1; � � � ; ym) be terms in the extended T , such thatf and g are di�erent symbols, and at least one of f and g did not exist inE. If f is not a symbol in E, then let u = c, else let u = f(x1; � � � ; xn). Ifg is not a symbols in E, then let v = d, else let v = f(y1; � � � ; ym). Find thecomplete set of E-uni�ers f�1; � � � ; �kg of u and v. Let f�1; � � � ; �kg be the set ofsubstitutions such that each �i is created from �i by replacing each occurrence ofc in the range of �i by f(x1; � � � ; xn), and replacing every occurrence of d in therange of �i by g(y1; � � � ; ym). Then f�1; � � � ; �kg is a complete set of E-uni�ersfor f(x1; � � � ; xn) � g(y1; � � � ; ym). Furthermore, all terms in the range of each �ihave already been added to T .Again, let f be a symbol in G that is not in E. Then, a complete set ofE-uni�ers for f(x1; � � � ; xn) is f[x1 7! z1; � � � ; xn 7! zn; y1 7! z1; � � � ; yn 7! zn]g.All terms in the range of this substitution are variables.Now we have an extended T which is E-closed over the symbols of E [ G,and we have an extended table of complete sets of E-uni�ers. For the rest of thispaper, we will assume we are working with this extended set.We give several examples of E-closed sets.Example 1. Let E be the theory of associativity and commutativity, ff(f(x; y); z) �f(x; f(y; z)); f(x; y) � f(y; x)g. Let T = ff(x; y); c; dg. Then any pair of termswhere one of them is c or d has no E-uni�ers. So, to prove that T is E-closed weonly need to checkCSUE(f(x1; x2); f(y1; y2)). In fact, CSUE(f(x1; x2); f(y1; y2)) =f�1; �2; �3; �4; �5; �6; �7g, where{ �1 = [x1 7! f(z1; z2); x2 7! f(z3; z4); y1 7! f(z1; z3); y2 7! f(z2; z4)]{ �2 = [x1 7! z2; x2 7! f(z3; z4); y1 7! z3; y2 7! f(z2; z4)]{ �3 = [x1 7! z1; x2 7! f(z3; z4); y1 7! f(z1; z3); y2 7! z4]{ �4 = [x1 7! f(z1; z2); x2 7! z4; y1 7! z1; y2 7! f(z2; z4)]{ �5 = [x1 7! f(z1; z2); x2 7! z3; y1 7! f(z1; z3); y2 7! z2]{ �6 = [x1 7! z2; x2 7! z3; y1 7! z3; y2 7! z2]{ �7 = [x1 7! z1; x2 7! z4; y1 7! z1; y2 7! z4]Notice that whenever a nonvariable term appears in the range of some �i, thena renaming of that term appears in T . Therefore, T is E-closed.Example 2. Let E be the monadic theory ffgfx � gfgxg. Let T = ffx; gy; fgz; gfw; c; dg.Then again, any pair where one term is c or d is not uni�able. The completeset of uni�ers of any term with a renaming of itself, such as fx1 and fx2, hasas most general E-uni�er, [x1 7! z; y1 7! z]. There are twelve more pairs thatmust be checked. For example CSUE(fx; gy) = f[x 7! gfz; y 7! fgz]g. Also



CSUE(fx; gfy) = f[x 7! gfz; y 7! gz]g. Also CSUE(fgx; gfy) = f[x 7! gz; y 7!fz]g. We leave it to the interested reader to check the others. Notice that anyterm that appears in the range of a uni�er is a renaming of something in T . SoT is E-closed.Example 3. Let E be the monadic theory ffggx � gffxg. Let T = ffx; gy; ffz; ggw; c; dg.Once again, any pair involving c or d is not E-uni�able. A pair of two renamingsof the same term is as in the previous example. The pair of terms fx and gyhas a most general E-uni�er [x 7! ggz; y 7! ffz]. No other pair of terms isE-uni�able. Therefore, to show that T is E-closed, we only need to verify thata renaming of ggz and ffz are in T .Example 4. Let E = ffx � xg. Let T = ffx; c; dg. Then fx � fy has a mostgeneral E-uni�er [x 7! z; y 7! z]. Also, c � fx has a most general E-uni�er[x 7! c]. The other complete sets of E-uni�ers are easy. T is E-closed, becausethe only nonvariable terms which appear in the range of a uni�er in a completeset of E-uni�ers are c and d. Now, suppose we want to consider a goal containinga new monadic function symbol g. First, we add gy to T . Then we note thatc � fx has a most general E-uni�er [x 7! c]. Therefore, [x 7! gy] must be amost general E-uni�er of gy � fx. So the extended set is also E-closed.We de�ne a function called H to calculate the height of a term in terms ofthe set T . The height is de�ned so that a term from T is considered as if it wasa single symbol.De�nition 2. Let T be an E-closed set of terms. H(t) is de�ned recursively interms of T .1. H(x) = 0, if x is a variable;2. H(s; �) = 1 +maxfH(x�) j x 2 V ar(s)g, if � is a substitution;3. H(t) = minfH(s; �) j t = s� and s 2 Tg if there exists an s 2 T and a �such that s� = t;Note that item 3 applies to a term t if the root symbol of f is in E, sincewe have said that f(x1; � � � ; xn) 2 T for all symbols f in E. If T is extendedto include symbols in t as explained above, then item 3 always applies. If Eis empty, then this de�nition gives the standard de�nition of the height of aterm, which we denote SH(t). The height of a term is the minimum number ofapplications of terms in T it takes to construct the term. If H(t) = n, we saythat the T -height of t is n. If SH(t) = m, we say the standard height of t is m.Example 5. For example, consider the set T to be ffx; gy; fgz; gfw; c; dg. Thenthe T -height H(x) = 0 and H(fx) = H(gx) = H(fgx) = H(gfx) = 1. Thefollowing set of terms are all of T -height 2:fffx; ggx; ffgx; gfgx; fgfx; gfgx; fgfgx; gffgx; fggfx; gfgfxg.Let h = maxfSH(t) j t 2 Tg. We can see from the de�nition that H(t) �SH(t) and SH(t) � h�H(t).As for height, we de�ne the standard size of a term and the T -size of a term.



De�nition 3. Let T be an E-closed set. The T -size of a term t, jtj, is de�nedrecursively as:1. jxj = 0, for any variable x;2. jsj� = 1+�fjx�j j x 2 V ar(s)g, if � is a substitution;3. jtj = minfjsj� j t = s� and s 2 Tg if there exists an s 2 T and a � such thats� = t;If E = ;, then jtj is the standard size of t. The T -size is related to thestandard size in the same way as the T -height is related to the standard height.If an E-closed set T is �nite and G has no repeated variables, then we willprove that we can solve the E-uni�cation problem for G. For the rest of thissection, we will assume that T is closed and �nite. Since G has no repeatedvariables, each equation in G can be solved separately without a�ecting theother results, so for simplicity we will assume that G is a single equation.An equation x � t, where x is a variable, is called a solved equation.Our algorithm is based on the following inference rule:Suppose the goal is u � v. Let s and t be terms in T , and let � be a substitu-tion such that s� = u and t� = v, and such that H(s; �) = H(u) and H(t; �) =H(v). 1 We don't-know non-deterministically �nd a uni�er � 2 CSUE(s; t). IfV ar(s � t) = fx1; � � � ; xng then the rule is the following:Mutate u � vS1�i�n xi� � xi�Here is an example.Example 6. Let E = ffgfx � gfgxg and let T be the E-closed set ffx; gy; fgz; gfx; c; dg.Suppose that the goal is fa � gb. Then CSUE(fx; gy) = f�g, where � = [x 7!gfz; y 7! fgz]. We also �nd a matcher � = [x 7! a; y 7! b] such that fa = fx�and gb = gy�. The Mutate inference rule applies:fa � gba � gfz; fgz � bThis is because of the fact that x� = a, x� = gfz, y� = gfz, and y� = b.It is obvious from this example that our inference rule is a generalization of theMutate Rule from [7].Consider a related example.Example 7. Let E and T be as in the above example. Suppose that the goal isfga � gfb. Then CSUE(fgx; gfy) = f�g, where � = [x 7! fz; y 7! gz]. We also�nd a matcher � = [x 7! a; y 7! b] such that fga = fgx� and gfb = gfy�. TheMutate inference rule applies:1 This means that we use the same s, t and � as in the de�nition of T -height.



fga � gfba � fz; gz � bThis is because of the fact that x� = a, x� = fz, y� = gz, and y� = b. In thisexample, if we chose s = fx, t = gy, and � = [x 7! ga; y 7! fb], then it wouldhave still been true that s� = fga and t� = gfb. However, this would not haveminimized the T -height, so it is not valid.Mutate always applies to a goal u � v, because of the de�nition T , as long asT is extended to cover all the symbols that appear in u � v but do not appearin E, as explained above.We also have an inference rule:Clash u � v [G?if there is an s and t with s� = u; t� = v, and s and t are not E-uni�able. Ifthe symbol ? appears in a goal, then that goal will never yield an E-uni�er. Anexample is:Example 8. Let E = ffggx � gffxg. Let T be the E-closed set ffx; gy; ffz; ggw; c; dg.Suppose that the goal is ffa � ga. If s = ffz and t = gy. Then � = [z 7! a; y 7!a] is a matcher. But ffz and gy are not uni�able. The Clash rule applies:ffa � ga?So ffa and ga are not E-uni�able. Interestingly, we could have chosen fx andgy from T . Those terms are E-uni�able. Therefore Mutate would have applied.If we kept applying the inference rules in that fashion, then we would not halt.That is why it is necessary to choose s and t to minimize the T -height, and whyit is necessary that T is closed in order for this algorithm to halt.We now prove the soundness of our inference rule.Theorem 1. Let s, t, u and v be terms, and let �, � and � be substitutions suchthat s� = u, t� = v, and � 2 CSUE(s; t). Suppose that for all x 2 V ar(s � t),x�� =E x��. Then u� =E v�,Proof. Since x�� =E x�� for all variables in s and t, then by the properties ofsubstitutions: s�� =E s�� and t�� =E t��. Hence u� = s�� =E s�� =E t�� =Et�� = v�. (Here the third equality holds because � 2 CSUE(s; t)). utNow we prove the completeness of the rule.Theorem 2. Suppose there exists � such that, u� =E v�, and there is a matcher�, such that, s� = u and t� = v, for some s; t 2 T . Then there must be asubstitution � 2 CSUE(s; t), such that x�� =E x�� for all variables in V ar(s; t).



Proof. Since u� =E v�, and � is the matcher, s�� = t��. Hence there must bea � 2 CSUE(s; t), such that, �� =E ��, Then x�� =E x�� = x��� , since weassume every substitution is idempotent. Furthermore, x��� =E x��� = x��,because � does not apply to any variables in Ran(�). utOur algorithm is de�ned in terms of the Mutate inference rule:u � vS1�i�n xi� � xi�Recall that u = s� and v = t�. Since s and t are from T , and we are assumingthat u � v has no repeated variables, we can divide the variables fx1; � � � ; xnginto disjoint sets Y and Z such that Y contains all the variables in s, and Zcontains all the variables in t.Then the algorithm we will describe in this section is as follows. Suppose wewant to solve the E-uni�cation problem for a single equation u � v. If u is avariable, then we return the substitution [u 7! v]. If v is a variable we return[v 7! u]. Otherwise, �nd an s and t as required in the inference rule. Then forevery � 2 CSUE(s; t) we will recursively solve z� � z� for all z 2 Z. Assumethese recursive calls to solve z� = z� all return an E-uni�er. Then let �0 bethe union of all the uni�ers. Since u � v will be assumed to have no repeatedvariable, and since each substitution in the complete set of uni�ers of two termsin T will be linear, the union is well-de�ned.2 Then we apply �0 to each equationyj� � yj�. The result of the application of �0 will be yj� � yj��0, since �0 doesnot apply to any of the variables in the range of �. Let �00 be the union of all ofthese uni�ers obtained from recursive calls on yj� � yj��0. Then the uni�er ofu � v is �0�00. If any of the recursive calls returns ?, then solve will also return?. See the algorithm in Figure 1. We must prove that the algorithm will halt.We will prove it halts by giving a bound on the number of recursive calls. Inorder to do so, we also give a bound on the T -heights of the terms in the rangesof the E-uni�ers which are generated.We make the algorithm nondeterministic by using a choose function.3 Thismakes it easier to de�ne. We must take this into account when we analyze thecomplexity. The function choose will select one E-uni�er out of a set of E-uni�ers.The end of the algorithm results in one E-uni�er. Each possible choice in thisalgorithm would supply a complete set of E-uni�ers. This set of E-uni�ers maycontain some occurrences of ?, since some choices may not give an E-uni�er.Then just remove ? from the set.In Figure 2, we give an example of performing the algorithm on the goalfffu1 � ggggu2, with the equational theory E = ffgfx � gfgxg and T =ffx; gy; fgz; gfwg. In this example, after the inference rule, the right branch isalways calculated �rst. That determines a uni�er, which is applied to the leftbranch. Therefore, each left child is shown with the calculated uni�er alreadyapplied.2 The union of anything with ? is ?.3 In an actual algorithm, choose would be replaced by a loop.



function solve(u � v)if u is a variablereturn [u 7! v]if v is a variablereturn [v 7! u]�nd s and t, � and � as in de�nition of inference ruleif s and t are not uni�ablereturn ?choose �0 in CSUE(s � t)for i = 1 to q�i = solve(zi� � zi�)�0 = �1 [ � � � [ �qfor j = 1 to r�j = solve(yj� � yj��0)�00 = �1 [ � � � [ �rreturn �0�00
Fig. 1. Algorithm4 Decidability and ComplexityWe will prove that the size of the proof for u � v is bounded. The proof is de�nedas a tree of equations, with u � v at the root and for each node e, the children ofe are obtained by our inference rule. As we explained in the algorithm, Mutateis applied as long as possible in a depth-�rst fashion, until we reach leaves ofthe form x � t or t � x, where x is a variable and t is any term. This de�nesthe mgu �i which is applied to the rest of the equations in the goal. The leavesare then counted as solved. Then another equation is selected and the process isrepeated. The size of a proof is de�ned to be the number of non-leaf equationsin the proof tree. We will show that if all non-constant function symbols aremonadic, then the size of a proof tree of u � v is less than or equal to juj � jvj.Theorem 3. Assume that E is a linear equational theory, containing only monadicfunction symbols, and that T is a �nite E-closed set. The size of the proof-treeof a goal of varity 1, u � v, is less than or equal to juj � jvj. If x and y arevariables in u and v respectively, and � is a uni�er of u and v obtained in theproof, then jx�j � jvj and jy�j � juj.Proof. The proof will be by induction on the sum of sizes of the terms in theequation u � v, i.e., juj + jvj. The base case is when juj = 0 or jvj = 0. In that
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fffu1 = ggggu2 fgz1 = gggu2fgz2 = ggu2ffu1 = gffffz4gz5 = fffz4 z1 = fffz4z2 = ffz4 fgz3 = gu2z3 = fz4 fgz4 = u2z5 = fgggz8 gfz6 = ffz4z6 = ggz8 gfz7 = fz4z7 = gz8 gfz8 = z4
gz9 = fgggz8fu1 = gffgggz8u1 = gffgggz12z9 = fggffz12 fz10 = ggz8z10 = gffz12 fgz11 = gz8z11 = fz12 fgz12 = z8Fig. 2. Proof Treecase, u � v is in normal form.4 Therefore, the proof is of size 0, since we ignoreleaf nodes in the tree.Now assume that juj > 0 and jvj > 0. Assume that the theorem is true foreach equation with sum of term sizes smaller than juj+ jvj. First we must provethat induction is applicable, i.e. that the size is decreased with the applicationof the inference rule. An application of the rule with monadic terms will havethe following form:4 Since u � v has no repeated variables, it cannot be of the form x � w[x] for someterm w.



s�[xu] � t�[yv]xs�[xu] � xs�[z1] yt�[z1] � yt�[yv]...�1xs�[xu] � xs�[z1]�1 : new goal-equation...�2where u � v is our goal, s; t 2 T , s� = u, t� = v, xu is the only variable inu, yv is the only variable in v, xs is the only variable in s, yt is the only variablein t, z1 is a variable possibly introduced by the uni�er � of s[xs] and t[yt].5In order to apply induction, we need to establish that the size of an equationgets smaller with the application of the rule.Claim. jyt�j+ jyt�j < js�j+ jt�j.Proof of Claim. jyt�j � 1, because yt� 2 T or yt is a variable. jyt�j = jt�j � 1,because by de�nition: jt�j = 1+ jyt�j. Hence jyt�j+ jyt�j � 1+ jt�j � 1 = jt�j <jt�j � js�j+ jt�j, because s� � 1, since s is not a variable. utHaving proved this lemma, we can state, by the induction assumption, thatthe size of the proof-tree for yt� � yt� is less than or equal to jyt�j � jyt�j �1 � (jt�j � 1) = jt�j � 1. Also, jz1�1j � jyt�j = jt�j � 1 and jyv�1j � jyt�j � 1,where �1 is the uni�er obtained in the proof.Claim. jxs�j+ jxs��1j < js�j+ jt�j.Proof of Claim. By the de�nition of the size of term: jxs�j = js�j � 1. (This isbecause: js�j = 1 + jxs�j, where s is in T .) The size of the term: jxs�[z1]�1j =1+jz1�1j, because xs� 2 T or is a variable. We have showed that jz1�1j � jt�j�1.Hence, jxs��1j � 1+ jt�j�1 = jt�j. Taking together the sizes of these two terms,we get: jxs�j+ jxs��1j � js�j+ jt�j � 1 < js�j+ jt�j. utIf follows from this claim that the size of the proof tree for xs� � xs��1 is lessthan or equal to jxs�j � jxs��1j = (js�j � 1)� jt�j. Also, jxu�2j � jxs��1j � jt�jand jz2�1j � jxs�j = js�j � 1, where z2 is a variable possibly introduced by thesubstitution �1.Taking together these two statements, we can assess the size of the proof-treefor s� � t�. It is less than or equal to 1+ jt�j�1+((js�j�1)�jt�j) = js�j� jt�j.Also, jxu�1�2j = jxu�2j � jt�j and jyv�1�2j = jyv�1[z2]�2j � jyv�1j + jz2�2j �1 + js�j � 1 = js�j. utThe theorem gives us the �rst major complexity results of the paper.5 Technically, we need to show that the new equations generated are of varity 1. Weshow this in the full paper[8].



Theorem 4. Let u � v be a goal with no repeated variables. Let E be a linearequational theory, containing only monadic function symbols. Let n be the sizeof u � v, de�ned in the standard way. Then{ The nondeterministic algorithm in Figure 1 �nds a set of E-uni�ers foru � v in nondeterministic time O(n2).{ Any E-uni�er that is constructed is of size O(n).{ If every pair of terms in T has a most general E-uni�er, then the algorithmis deterministic, and runs in deterministic time O(n2).In order to deal with the more general case of non-monadic terms, we will beconsidering height of a term and height of a proof-tree, in order to get an ideaabout the complexity of the procedure. The height of a term was de�ned earlier.The height of a proof tree is,the length of the longest branch in the proof-tree,excluding its leaf. We write the height of the proof-tree of u � v as H(u � v).The general case of the application of our rule is as in the following diagram:s� � t�Sqi=1 xsi � � xsi� Sri=1 yti� � yti�...�1Sqi=1 xsi � � xsi��1 : new goal-equations...�2where u � v is our goal, s; t 2 T , s� = u, t� = v, xu1 ; � � � ; xum are the variablesin u, yv1 ; � � � ; yvn are the variables in v, xs1; � � � ; xsq are the variables in s, yt1; � � � ; ytrare the variables in t, z1; � � � zp are variables possibly introduced by the uni�er �of s and t.Theorem 5. Assume T is a �nite E-closed set. E is linear, and the goal u � vis of varity 1, where u and v are not both variables. The height of a proof-treeof u � v is less than or equal to H(u) +H(v) � 1. If xu1 ; � � �xum and yv1 ; � � � ; yvnare variables in u and v respectively, and � is a uni�er of u and v obtained inthe proof, then H(xui �) � H(v) and H(yvj �) � H(u).Proof. The proof will be by induction on H(u) +H(v). The base case is whenH(u) = 0 or H(v) = 0. In that case u � v is in normal form. Therefore the proofis of height 0, since we ignore leaf nodes when calculating height.Now assume that H(u) > 0 and H(v) > 0. Assume that the theorem is truefor each equation with sum of heights smaller then H(u) + H(v). First let usconsider the right equation: yti� � yti�.Claim. H(yti�) +H(yti�) < H(s�) +H(t�)Proof of Claim. H(yti�) � 1, because yti� is in T or is a variable. H(yti�) �H(t�)�1, because, according to the de�nition of height,H(t�) = 1+maxfH(yti�)g.Hence H(yti�) +H(yti�) � 1 +H(t�)� 1 = H(t�) < H(s�) +H(t�). ut



By the induction assumption, if H(yti� � yti�) 6= 0, then H(yti� � yti�) �H(yti�) + H(yti�) � 1, for every i 2 f1; � � � ; rg. We know H(yti�) � 1, and weknow H(yti�) � H(t�) � 1. Hence, we know that the height of this proof-treeis: H(yti� � yti�) � 1 +H(t�) � 1 � 1 = H(t�) � 1. If H(yti� � yti�) = 0, thenH(yti� � yti�) = 0 � H(t�)� 1, since H(t�) � 1.By induction we also know that:{ H(zj�1) � H(yti�) � H(t�)� 1 for each zj in yti�,{ H(yvj �1) � H(yt�) � 1 for each yvj in yti�.Now, consider the left part of the proof-tree.Claim. H(xsi �) +H(xsi��1) < H(s�) +H(t�)Proof of Claim. H(xsi �) � H(s�)� 1, from the de�nition of height. H(xsi��1) �H(xsi�)+maxfH(zi�1)g, where fz1; � � � ; zkg are the variables in s�.maxfH(zi�1)g �H(t�)�1, from the analysis of the right equation. Hence H(xsi��1) � 1+H(t�)�1 = H(t�). Therefore,H(xsi �)+H(xsi��1) � H(s�)�1+H(t�) < H(s�)+H(t�).ut Hence, by the induction assumption, we know that, if H(xsi � � xsi��1) 6= 0,then H(xsi � � xsi��1) � H(xsi �) + H(xsi��1) � 1. Now, H(xsi �) � H(s�) � 1,because according to the de�nition of height of a term, H(s�) = 1+maxfxsi�g.Also, H(xsi�[z1; � � � ; zp]�1) � 1 + maxfH(zi�1)g = H(t�), because H(zi�1) �H(t�)� 1, by the previous lemma. Hence, the height of this proof-tree will be:{ H(xsi � � xsi��1) � H(s�)� 1 +H(t�)� 1 = H(s�) +H(t�)� 2.If H(xsi � � xsi��1) = 0 then H(xsi � � xsi��1) � H(s�) + H(t�) � 2, becauseH(s�) � 1 and H(t� � 1).The induction assumption also states that{ H(xuj �2) � H(xsi��1) � 1 +maxfzi�1g � 1 +H(t�) � 1 = H(t�), for eachxuj in xs�, and{ H(z0j�2) � H(xsi �) � H(s�)� 1, for all z0j in xsi��1.We can now prove the main claim:The height of the proof-tree for u � v, i.e. for s� � t�, is then:H(s� � t�) � 1 +maxfH(xsi � � xsi��1); H(yti� � yti�)g � 1 +maxf(H(s�) +H(t�)� 2); (H(t�)� 1)g = 1+H(s�) +H(t�)� 2 = H(s�) +H(t�)� 1. This isbecause H(s�) +H(t�)� 2 � H(t�)� 1, because we assumed H(s�) > 0.We only need to prove the claims about the heights of terms:H(xuj �1�2) = H(xuj �2), because xuj cannot be in the domain of �1. By theassumption, H(xuj �2) � H(t�).H(yvj �1�2) � H(yvj �1[z01; � � � ; z0k]) +maxfH(z0j�2)g � 1+H(s�)� 1 = H(s�).ut



This gives us the following complexity result.Theorem 6. Let u � v be a goal with no repeated variables. Let E be a linearequational theory. Let n be the size of u � v, de�ned in the standard way. Then{ The nondeterministic algorithm in Figure 1 �nds a set of E-uni�ers foru � v in PSPACE.{ The terms in the range of the E-uni�er that is constructed are of heightO(n).5 Finding a Closed SetWe have shown that once you have an E-closed set, then uni�cation problems ofvarity 1 are solvable, and we have given the complexity of the decision problemin several cases. That all assumes that we know of an E-closed set. That couldbe the case for some equational theories. But if we don't know whether there isan E-closed set, then in this section we give a method to produce one which willwork for some equational theories.First we show how to construct an E-closed set in an incremental way:Let T0 contain all terms of the form f(x1; � � � ; xn), where f is a functionsymbol of arity n � 0 appearing in E, and x1; � � � ; xn are fresh variables. Also,T0 will contain two fresh constants c and d.For i � 0, Ti+1 is de�ned as the set of terms such that t 2 Ti+1 if and only if tis a nonvariable such that there exists some u and v in Ti, a variable x appearingin u and a � 2 CSUE(u � v) such that t is a renaming of a subterm of x�.Let T = Si�0 Ti. Then T is an E-closed set if the complete sets of uni�ersfor pairs of terms in T are linear. Of course, T might not be �nite. But if Tis �nite, then this gives us a decision procedure for solving the E-uni�cationproblem when the goal has no repeated variables.We still have not said how to �nd a complete set of E-uni�ers for a pair ofterms. This problem is undecidable in general, but in some cases it is possible touse a complete algorithm to generate the E-uni�ers. One possibility is to use thecomplete procedure for linear equational theories presented in [7]. The inferencesystem in that paper is a generalization of the General Mutate inference rules of[2{5], but it is complete for all linear equational theories. It uses a form of eagervariable elimination which makes it more e�cient.The problem with using a complete inference system is that it may not haltwhen two terms are not E-uni�able. However, we also need to check cases ofnon-uni�ability for our algorithm. But, inference rules, such as the ones in [7]can be extended to detect non-uni�ability in some cases where the procedurewould normally not halt. The inference rules are goal directed, in the sense, thatit begins with the equation which must be E-uni�ed. As in the algorithm inthis paper, an inference rule will be applied to the goal yielding one or moresubgoals. Also, as in this paper, one or more rules may apply at each point. Sothe algorithm amounts to the simultaneous construction of one or more proof-trees. In some cases, it happens that every proof tree contains an equation u � v



that is a descendant of a renaming of an equation s � t, such that s� = u andt� = v for some �. In such cases, the algorithm will never halt, and therefore theinitial equation is not E-uni�able.6 ConclusionHistorically, much of the �eld of automated deduction has focused on inferenceprocedures that search for a proof of a theorem, and not as much e�ort has beenapplied to �nding methods of proving something is false. However, if these meth-ods can be applied to veri�cation problems and other applications, we believeit is necessary to identify classes of problems where automated theorem proverswill halt, and to understand the complexity of these classes. This is a goal of ourresearch.The problems we considered in this paper are E-uni�cation problems, sinceequational logic is useful for many applications. The procedure we give in thispaper is an adaptation of a more general procedure for E-uni�cation. However,on the class of problems we consider in this paper, we were able to show ameasure on certain E-uni�cation problems, such that the inference rules alwaysreduce the measure; therefore it will halt and we can analyze how quickly it willhalt, in order to examine the complexity.Speci�cally, we introduce a subclass of linear equational theories, called�nitely closable. We consider goals with no repeated variables. We show thatthis class is solvable in PSPACE in general. For monadic theories, it is in NP.For unitary monadic theories, it is solvable in O(n2).We think this class is interesting. We also think this research raises manyquestions to be explored further. Which equational theories are in this class?What is a good procedure for �nding a �nite (or recursive) E-closed set? Canour complexity results be made better? How can this class be expanded?References1. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge, 1998.2. C. Kirchner. Computing uni�cation algorithms. In Proceedings of the First Sympo-sium on Logic in Computer Science, Boston, 200-216, 1990.3. C. Kirchner and H. Kirchner. Rewriting, Solving, Proving.http://www.loria.fr/~ckirchne/ , 2000.4. C. Kirchner and F. Klay. Syntactic Theories and Uni�cation. In LICS 5, 270-277,1990.5. F. Klay. Undecidable Properties in Syntactic Theories. In RTA 4,ed. R. V. Book,LNCS vol. 488, 136-149, 1991.6. C. Lynch and B. Morawska. Goal-directed E-uni�cation. Submitted.7. C. Lynch and B. Morawska. Approximating E-uni�cation. Submitted.8. C. Lynch and B. Morawska. http://www.clarkson.edu/~clynch/papers/linear full.ps/,2001.9. R. Nieuwenhuis and A. Rubio. Paramodulation-based Theorem Proving. To appearin Handbook of Automated Reasoning, 2001.
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