ResearchGate

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/2399236
Decidability and Complexity of Finitely Closable Linear Equational Theories

Conference Paper - March 2001

DOI: 10.1007/3-540-45744-5_43 - Source: CiteSeer

CITATIONS READS
2 16

2 authors, including:

Barbara Morawska
Technische Universitat Dresden
35 PUBLICATIONS 207 CITATIONS

SEE PROFILE

All content following this page was uploaded by Barbara Morawska on 25 June 2015.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/2399236_Decidability_and_Complexity_of_Finitely_Closable_Linear_Equational_Theories?enrichId=rgreq-0698d1553d41bcca1880fa531cafc881-XXX&enrichSource=Y292ZXJQYWdlOzIzOTkyMzY7QVM6MjQ0MTk3MjMxOTUxODc0QDE0MzUyMzI1NjU3MDA%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/2399236_Decidability_and_Complexity_of_Finitely_Closable_Linear_Equational_Theories?enrichId=rgreq-0698d1553d41bcca1880fa531cafc881-XXX&enrichSource=Y292ZXJQYWdlOzIzOTkyMzY7QVM6MjQ0MTk3MjMxOTUxODc0QDE0MzUyMzI1NjU3MDA%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-0698d1553d41bcca1880fa531cafc881-XXX&enrichSource=Y292ZXJQYWdlOzIzOTkyMzY7QVM6MjQ0MTk3MjMxOTUxODc0QDE0MzUyMzI1NjU3MDA%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Barbara_Morawska?enrichId=rgreq-0698d1553d41bcca1880fa531cafc881-XXX&enrichSource=Y292ZXJQYWdlOzIzOTkyMzY7QVM6MjQ0MTk3MjMxOTUxODc0QDE0MzUyMzI1NjU3MDA%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Barbara_Morawska?enrichId=rgreq-0698d1553d41bcca1880fa531cafc881-XXX&enrichSource=Y292ZXJQYWdlOzIzOTkyMzY7QVM6MjQ0MTk3MjMxOTUxODc0QDE0MzUyMzI1NjU3MDA%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Technische_Universitaet_Dresden?enrichId=rgreq-0698d1553d41bcca1880fa531cafc881-XXX&enrichSource=Y292ZXJQYWdlOzIzOTkyMzY7QVM6MjQ0MTk3MjMxOTUxODc0QDE0MzUyMzI1NjU3MDA%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Barbara_Morawska?enrichId=rgreq-0698d1553d41bcca1880fa531cafc881-XXX&enrichSource=Y292ZXJQYWdlOzIzOTkyMzY7QVM6MjQ0MTk3MjMxOTUxODc0QDE0MzUyMzI1NjU3MDA%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Barbara_Morawska?enrichId=rgreq-0698d1553d41bcca1880fa531cafc881-XXX&enrichSource=Y292ZXJQYWdlOzIzOTkyMzY7QVM6MjQ0MTk3MjMxOTUxODc0QDE0MzUyMzI1NjU3MDA%3D&el=1_x_10&_esc=publicationCoverPdf

Decidability and Complexity of Finitely Closable
Linear Equational Theories

Christopher Lynch and Barbara Morawska

Department of Mathematics and Computer Science Box 5815, Clarkson University,
Potsdam, NY 13699-5815, USA, E-mail:
clynch@clarkson.edu,morawskb@clarkson.edu *

*

Abstract. We define a subclass of the class of linear equational theories,
called finitely closable linear theories. We consider unification problems
with no repeated variables. We show the decidability of this subclass, and
give an algorithm in PSPACE. If all function symbols are monadic, then
the running time is in NP, and quadratic for unitary monadic finitely
closable linear theories.

1 Introduction

The problem of E-unification[1] is an important problem for automated deduc-
tion, as well as other areas of computer science, such as formal verification and
type inference. Given an equational theory E, an E-unifier of terms s and ¢ is a
substitution # such that sf and 6 are equivalent modulo E. In many applica-
tions it is necessary to find a complete set of E-unifiers of terms s and t, that
is, to find a set of E-unifiers of s and ¢ from which all other E-unifiers can be
generated.

Unfortunately, E-unification is undecidable in general. In addition, for some
equational theories there is no finite complete set of unifiers. Therefore, if it
necessary to determine which classes of equational theories have a decidable
algorithm and on which E-unification problems. Furthermore, the complexity of
those algorithms should be analyzed.

There has been much work in finding particular equational theories with
decidable E-unification problems and analyzing their complexity. There has been
less work in identifying classes of equational theories with decidable E-unification
problems. However, there has been some recent work in that area, but not all of
it analyzes complexity. See [9] for some references.

Recently, we have developed a simple new method of FE-unification and
proved its soundness and completeness[6] for all equational theories. In [7] we
have refined it for linear theories. The method is a generalization of the General
Mutation inference rules for Syntactic Theories[2-5]. It is an inference procedure
that does not always halt. However, the goal of developing this new method was
to use it to find decidable classes of equational theories and analyze their com-
plexity, which is what we do in this paper.

** This work was supported by NSF grant number CCR-9712388 .

We consider linear theories, i.e., theories where in each equation no terms
have repeated variables, although terms on opposite sides of an equation may
share variables. This class of equational theories includes all theories with monadic
functions symbols, therefore equations on strings can be represented. We only
consider E-unification problems whose set of goal equations contains no repeated
variables. This is a restricted E-unification problem, but it contains the word
problem, which is undecidable for equations on strings, and it also includes some
existential problems.

The particular class we prove decidability of is what we call finitely closable
theories. To use our algorithm, we must assume we know a finite set of terms,
such that we can find a complete set, of unifiers for each pair of those terms. If the
terms that appear in each complete set of unifiers are already in the set, then we
call the set finitely closed. When such a set exists, we have an algorithm to solve
the E-unification problems mentioned in the previous paragraph. We show the
algorithm is in PSPACE. However, for the case of monadic function symbols it is
in NP, and furthermore it is quadratic if each complete set of unifiers mentioned
above is unitary.

Of course, we have not mentioned, so far, how to find this finite set. We also
show some ways in which such a finite set can be found.

The format of the paper is to give some preliminary definitions, then to
present, the algorithm which gives our decidability results and prove the com-
plexity results. Finally we give a method for finding the finite set in some cases.

2 Preliminaries

We assume we are given a set of variables and a set of uninterpreted function
symbols of various arities. An arity is a non-negative integer. Terms are defined
recursively in the following way: each variable is a term, and if ty,---,¢t, are
terms, and f is of arity n > 0, then f(¢1,---,t,) is a term, and f is the symbol
at the root of f(t1,---,tn). A term (or any object) without variables is called
ground. If t is any object, then Var(¢) is the set of all variables in ¢.

We consider equations of the form s =~ ¢, where s and t are terms. Let F
be a set of equations, and u & v be an equation, then we write E = u ~ v (or
u =g v) if u & v is true in any model of E. If G is a set of equations, then
E |= G means that E |= e for all e in G. If all the function symbols in E are of
arity no greater than one, then E is monadic.

A substitution is a mapping from the set of variables to the set of terms,
such that it is almost everywhere the identity. We identify a substitution with
its homomorphic extension. If 6 is a substitution then Dom(6) = {z | 8 # z}.
The range of 8, Ran(f) is {z6 | = € Dom(6)}. A substitution o is idempotent
if o0 = 0. In this paper, all substitutions will be considered to be idempotent.
A substitution 6 is an E-unifier of an equation u = v if £ = uf = vf. 0 is
an E-unifier of a set of equations G if € is an E-unifier of all equations in G.
Whenever an equation or a set of equations has an FE-unifier, it also has an
idempotent E-unifier. If # is an E-unifier of u =~ v, we say that 6 is linear if no

variable appears more than twice in Ran(f), and if a variable z appears twice
in Ran(#) then there is an z in v and a y in v such that z appears in 26 and z
appears in y#. This implies that there are not two different variables z and w in
u such that z appears in z6 and wé.

If 0 and 6 are substitutions, then we write 0 <p 0[Var(G)] if there is a
substitution p such that E |= zop = z6 for all x appearing in G. If G is a set
of equations, then a substitution 6 is a most general unifier of G, written 6 =
mgu(QG) if 6 is an E unifier of G, and for all E unifiers o of G, § <g o[Var(G)].
A complete set of E-unifiers of G, is a set of E-unifiers © of G such that for all
E-unifiers ¢ of G, there is a 6 in © such that § <g o[Var(G)].

Given a unification problem we can either solve the unification problem or
decide the unification problem. Given a goal G and a set of equations E, to
solve the unification problem means to find a complete set of E-unifiers of G.
To decide the unification problem simply means to answer true or false as to
whether G has an E-unifier.

We say that a term ¢ (or an equation or a set of equations) has varity n if each
variable in ¢t appears at most n times. An equation s & t is linear if s and ¢ are
both of varity 1. Note that the equation s & ¢ is then of varity 2, but it might not
be of varity 1. A set of equations is linear if each equation in the set is linear. For
example, the axioms of group theory ({f(z,, f(y,2)) ~ f(f(z,y),2), f(w,e) ~
w, f(u,i(u)) =~ e. are of varity 2.

3 Algorithm

We will be considering linear equational theories E. The goals G we are trying to
solve are sets of equations with no repeated variables (varity 1). In this section
we will give an E-unification algorithm, and in the next section we will prove
the algorithm halts for E-closed sets T', defined below, and give the complexity
of the algorithm.

Definition 1. A set of terms T is called E-closed if it satisfies the following
conditions:

every term in T is of varity 1;

no member of T is a variable;

if fis a symbol of arity n > 0 appearing in E, then f(x1---,x,) € T;

T contains two new constants ¢ and d, which are not symbols of E.

if s and t are renamings of terms in T, and 8 € CSUg(s,t), then 6 is
linear, and for all © in Var(s ~ t), whenever x;0 is not a variable, there is
a renaming p such that z;0p € T;

6. if t' is a monvariable subterm of t, then there is a remaming p such that
t'peT.

SRS

In the definition of T" we assume that we are able to calculate a complete set
of E-unifiers for all pairs of terms in 7. Each such T could have an associated
table listing the complete set of unifiers for each pair of terms in 7'. If such a T’

exists, we will show that the E-unification problem for all goals G of varity 1
is solvable. But first we will show that if G contains symbols that are not in T,
then T and its associated table of complete sets of unifiers can easily be extended
to handle such goals. First T is extended so that whenever u[c] is & member of
T for some term u, then u[f(t1,---,¢,)] is added to T for every new symbol f,
of arity n > 0, appearing in GG. Then the table of complete sets of E-unifiers is
extended as follows.

Let f(z1,--,zn) and g(y1, -, Ym) be terms in the extended T, such that
f and g are different symbols, and at least one of f and g did not exist in
E. If f is not a symbol in E, then let u = ¢, else let u = f(z1, -+, x,). If
g is not a symbols in E, then let v = d, else let v = f(y1, -+, ym). Find the
complete set of E-unifiers {o1,---,0} of u and v. Let {6, --,0;} be the set of
substitutions such that each 6; is created from o; by replacing each occurrence of

¢ in the range of o; by f(x1,---,zn), and replacing every occurrence of d in the
range of o; by g(y1,---,ym). Then {61,---,6;} is a complete set of E-unifiers
for f(x1, - ,2y) = g1, -, Ym). Furthermore, all terms in the range of each 6;

have already been added to T

Again, let f be a symbol in G that is not in E. Then, a complete set of
E-unifiers for f(z1, -, zn) is {[z1 = 21, ,Zn & 2Zn,y1 = 21, Yn V> 2n)}
All terms in the range of this substitution are variables.

Now we have an extended 7" which is E-closed over the symbols of E'U G,
and we have an extended table of complete sets of E-unifiers. For the rest of this
paper, we will assume we are working with this extended set.

We give several examples of E-closed sets.

Ezample 1. Let E be the theory of associativity and commutativity, { f(f(z,y), z) =

flz, f(y,2)), f(z,y) = f(y,z)}. Let T = {f(z,y),c,d}. Then any pair of terms
where one of them is ¢ or d has no E-unifiers. So, to prove that T is E-closed we

only need to check CSUE(f(z1,x2), f(y1,y2)). Infact, CSUE(f(x1,x2), f(y1,y2)) =

{01,02,03,04,05,06,07}, where

— 01 = |T1 — f(Zl Zz) To — f(ZS 24) Yy = f(21=23)7212 = f(22724)]
— 0y = [T = 29,2 > f(23,24), 01 = 23,92 = f(22,24)]
— 03 = |T1 > 21,Ty — f(2372’4) Yy — f(Zl 23) Yo > 24

[

[

[]
— 04 = {xl = f(z1,22), 20 = 24,01 = 21,Y2 — f(zz,zél)}

[

[

— 05 =[z1 = f(21,22), 22 = 23,1 = f(21,23),y2 = 22
— 0g = |T1 = 22,%2 > 23,Y1 '—>Z37y2'—>22]
— o7 = [T = 21,82 > 24, Y1 > 21, Y2 > 24

Notice that whenever a nonvariable term appears in the range of some o;, then
a renaming of that term appears in T'. Therefore, T' is E-closed.

Ezample 2. Let E be the monadic theory {fgfz ~ gfgz}. Let T = {fx, gy, fg9z, gfw,c,d}.
Then again, any pair where one term is ¢ or d is not unifiable. The complete
set of unifiers of any term with a renaming of itself, such as fzr; and fzo, has
as most general E-unifier, [z7 — 2,31 — z]. There are twelve more pairs that
must be checked. For example CSUg(fx,g9y) = {[z — gfz,y — fgz]}. Also

CSUg(fz,9fy) = {[z = gfz,y = gz]}. Also CSUg(fgx,9fy) = {[z = g2,y —
fz]}. We leave it to the interested reader to check the others. Notice that any
term that appears in the range of a unifier is a renaming of something in 7'. So
T is E-closed.

Ezample 3. Let E be the monadic theory {fggx ~ gf fz}. Let T = {fx, gy, f [z, 99w, ¢, d}.
Once again, any pair involving ¢ or d is not E-unifiable. A pair of two renamings

of the same term is as in the previous example. The pair of terms fz and gy

has a most general E-unifier [z — ggz,y — ffz]. No other pair of terms is
FE-unifiable. Therefore, to show that 7" is E-closed, we only need to verify that

a renaming of ggz and ffz arein T.

Ezample 4. Let E = {fz ~ z}. Let T' = {fz,c,d}. Then fz = fy has a most
general E-unifier [x — z,y — 2z]. Also, ¢ & fx has a most general E-unifier
[— ¢]. The other complete sets of E-unifiers are easy. T' is E-closed, because
the only nonvariable terms which appear in the range of a unifier in a complete
set of F-unifiers are ¢ and d. Now, suppose we want to consider a goal containing
a new monadic function symbol g. First, we add gy to T. Then we note that
¢ & fx has a most general E-unifier [z — c¢|. Therefore, [z — gy] must be a
most general E-unifier of gy &~ fz. So the extended set is also E-closed.

We define a function called H to calculate the height of a term in terms of
the set T'. The height is defined so that a term from 7T is considered as if it was
a single symbol.

Definition 2. Let T be an E-closed set of terms. H(t) is defined recursively in
terms of T.

1. H(z) =0, if = is a variable;

2. H(s,p) =1+ maz{H(zp) | x € Var(s)}, if p is a substitution;

3. H(t) = min{H(s,p) | t = sp and s € T'} if there exists an s € T and a p
such that sp = t;

Note that item 3 applies to a term ¢ if the root symbol of f is in E, since
we have said that f(x1,---,z,) € T for all symbols f in E. If T is extended
to include symbols in ¢ as explained above, then item 3 always applies. If FE
is empty, then this definition gives the standard definition of the height of a
term, which we denote SH(t). The height of a term is the minimum number of
applications of terms in T' it takes to construct the term. If H(t) = n, we say
that the T'-height of t is n. If SH(t) = m, we say the standard height of t is m.

Ezample 5. For example, consider the set T to be {fz, gy, f9z,9fw,c,d}. Then
the T-height H(z) = 0 and H(fz) = H(gx) = H(fgx) = H(gfz) = 1. The
following set of terms are all of T-height 2:

{ffx, 99z, ffgv,9fgz, fafr,gfgz, fafgz, 9f fgx, fagfx,gfgfx}.

Let h = maz{SH(t) | t € T}. We can see from the definition that H(t) <
SH(t) and SH(t) < h x H(t).
As for height, we define the standard size of a term and the T-size of a term.

Definition 3. Let T be an E-closed set. The T-size of a term t, |t|, is defined
recursively as:

1. |z| =0, for any variable z;

2. |sl, =1+ X{|zp| | ® € Var(s)}, if p is a substitution;

3. [t| =min{|s|, | t = sp and s € T} if there exists an s € T and a p such that
sp=t;

If E = 0, then |¢| is the standard size of ¢. The T-size is related to the
standard size in the same way as the T-height is related to the standard height.

If an E-closed set T is finite and G has no repeated variables, then we will
prove that we can solve the FE-unification problem for G. For the rest of this
section, we will assume that T is closed and finite. Since G has no repeated
variables, each equation in G can be solved separately without affecting the
other results, so for simplicity we will assume that G is a single equation.

An equation x = t, where z is a variable, is called a solved equation.

Our algorithm is based on the following inference rule:

Suppose the goal is u &~ v. Let s and ¢ be terms in 7', and let p be a substitu-
tion such that sp = u and tp = v, and such that H(s,p) = H(u) and H (¢, p) =
H(v). ' We don’t-know non-deterministically find a unifier 0 € CSUg(s,t). If
Var(s ~t) = {z1,---,z,} then the rule is the following:

Mutate
u R

U1gign Tip R T;0

Here is an example.

Ezample 6. Let E = {fgfz = gfgz} and let T be the E-closed set { fz, gy, fg9z,gfz,c,d}.
Suppose that the goal is fa ~ gb. Then CSUg(fx,gy) = {o}, where 0 = [z —

9fz,y — fgz]. We also find a matcher p = [x — a,y — b] such that fa = fxp

and gb = gyp. The Mutate inference rule applies:

fa = gb

argfz, fgzmb
This is because of the fact that zp = a, x0 = gfz, yo = gfz, and yp = b.

It is obvious from this example that our inference rule is a generalization of the
Mutate Rule from [7].
Consider a related example.

Ezample 7. Let E and T be as in the above example. Suppose that the goal is
fga = gfb. Then CSUg(fgx,g9fy) = {o}, where ¢ = [z — fz,y — gz]. We also
find a matcher p = [x — a,y — b] such that fga = fgxzp and gfb = gfyp. The
Mutate inference rule applies:

! This means that we use the same s, £ and p as in the definition of T-height.

fgargfb
a~ fz,gz=~b

This is because of the fact that zp = a, xo0 = fz, yo = gz, and yp = b. In this
example, if we chose s = fz, t = gy, and p = [z — ga,y — fb], then it would
have still been true that sp = fga and tp = gfb. However, this would not have
minimized the T-height, so it is not valid.

Mutate always applies to a goal u & v, because of the definition T', as long as
T is extended to cover all the symbols that appear in 4 =~ v but do not appear
in FE, as explained above.

We also have an inference rule:

Clash

urvUG
1

if there is an s and ¢ with sp = u,tp = v, and s and ¢ are not F-unifiable. If
the symbol L appears in a goal, then that goal will never yield an E-unifier. An
example is:

Ezample 8. Let E = {fggx = gf fx}. Let T be the E-closed set {fz, gy, f fz, ggw, ¢, d}.
Suppose that the goal is ffa ~ ga. If s = ffzand t = gy. Then p = [z = a,y —
a) is a matcher. But ffz and gy are not unifiable. The Clash rule applies:

ffa=ga
1

So ffa and ga are not E-unifiable. Interestingly, we could have chosen fz and
gy from T'. Those terms are E-unifiable. Therefore Mutate would have applied.
If we kept applying the inference rules in that fashion, then we would not halt.
That is why it is necessary to choose s and ¢ to minimize the T-height, and why
it is necessary that 7' is closed in order for this algorithm to halt.

We now prove the soundness of our inference rule.

Theorem 1. Let s, t, u and v be terms, and let p, o and 6 be substitutions such
that sp = u, tp = v, and o € CSUg(s,t). Suppose that for all x € Var(s ~ t),
zp =g xol. Then uf =g vl

Proof. Since zpf =g xof for all variables in s and ¢, then by the properties of
substitutions: spf =g sof and tpd =g toh. Hence ub = spl = sof =g tol =g
tpd = vf. (Here the third equality holds because o € CSUg(s,t)). O

Now we prove the completeness of the rule.

Theorem 2. Suppose there exists 8 such that, ud =g v0, and there is a matcher
p, such that, sp = u and tp = v, for some s,t € T. Then there must be a
substitution o € CSUg(s,t), such that xpf =g xo8 for all variables in Var(s,t).

Proof. Since uf =g v, and p is the matcher, spf = tpf. Hence there must be
a o € CSUE(s,t), such that, o7 =g pf, Then xpf =g xoT = xooT, since we
assume every substitution is idempotent. Furthermore, zooT =g xopf = xo#b,
because p does not apply to any variables in Ran(o). O

Our algorithm is defined in terms of the Mutate inference rule:

u=v

U1gign Tip N T;0

Recall that u = sp and v = tp. Since s and t are from T', and we are assuming
that 4 =~ v has no repeated variables, we can divide the variables {z1,---,z,}
into disjoint sets Y and Z such that Y contains all the variables in s, and Z
contains all the variables in ¢.

Then the algorithm we will describe in this section is as follows. Suppose we
want to solve the FE-unification problem for a single equation v ~ v. If u is a
variable, then we return the substitution [u — v]. If v is a variable we return
[v — u]. Otherwise, find an s and ¢ as required in the inference rule. Then for
every 0 € CSUg(s,t) we will recursively solve zo ~ zp for all z € Z. Assume
these recursive calls to solve zo = zp all return an E-unifier. Then let 6’ be
the union of all the unifiers. Since u &~ v will be assumed to have no repeated
variable, and since each substitution in the complete set of unifiers of two terms
in T will be linear, the union is well-defined.? Then we apply 6’ to each equation
yjp =~ y;o. The result of the application of 6" will be y;p = y;00’, since 6" does
not apply to any of the variables in the range of p. Let 8" be the union of all of
these unifiers obtained from recursive calls on y;p ~ y;06'. Then the unifier of
u = v is 6'8". If any of the recursive calls returns L, then solve will also return
L. See the algorithm in Figure 1. We must prove that the algorithm will halt.
We will prove it halts by giving a bound on the number of recursive calls. In
order to do so, we also give a bound on the T-heights of the terms in the ranges
of the F-unifiers which are generated.

We make the algorithm nondeterministic by using a choose function.® This
makes it easier to define. We must take this into account when we analyze the
complexity. The function choose will select one E-unifier out of a set of E-unifiers.
The end of the algorithm results in one E-unifier. Each possible choice in this
algorithm would supply a complete set of E-unifiers. This set of E-unifiers may
contain some occurrences of 1, since some choices may not give an FE-unifier.
Then just remove L from the set.

In Figure 2, we give an example of performing the algorithm on the goal
fffur = ggggus, with the equational theory E = {fgfz ~ gfgz} and T =
{fz,gy, fgz,gfw}. In this example, after the inference rule, the right branch is
always calculated first. That determines a unifier, which is applied to the left
branch. Therefore, each left child is shown with the calculated unifier already
applied.

? The union of anything with 1 is L.
% In an actual algorithm, choose would be replaced by a loop.

function solve(u = v)

if u is a variable
return [u — v]
if v is a variable
return [v — u]
find s and ¢, o and p as in definition of inference rule
if s and t are not unifiable
return L
choose 0" in CSUE(s =~ t)
fori=1toq
0; = solve(zio = zip)
0'=60,U---Ub,
forj=1¢tor
0 = solve(yjo = y;pb’)
0" =6, U---Ub,
return 4’6"

Fig. 1. Algorithm

4 Decidability and Complexity

We will prove that the size of the proof for u ~ v is bounded. The proof is defined
as a tree of equations, with u & v at the root and for each node e, the children of
e are obtained by our inference rule. As we explained in the algorithm, Mutate
is applied as long as possible in a depth-first fashion, until we reach leaves of
the form = ~ t or ¢t &~ z, where x is a variable and ¢ is any term. This defines
the mgu #; which is applied to the rest of the equations in the goal. The leaves
are then counted as solved. Then another equation is selected and the process is
repeated. The size of a proof is defined to be the number of non-leaf equations
in the proof tree. We will show that if all non-constant function symbols are
monadic, then the size of a proof tree of u & v is less than or equal to |u| x |v].

Theorem 3. Assume that E is a linear equational theory, containing only monadic
function symbols, and that T is a finite E-closed set. The size of the proof-tree
of a goal of varity 1, u = v, is less than or equal to |u| X |v|. If x and y are
variables in u and v respectively, and 6 is a unifier of u and v obtained in the
proof, then |260| < |v| and |yf| < |u].

Proof. The proof will be by induction on the sum of sizes of the terms in the
equation u & v, i.e., |u| + |v|. The base case is when |u| = 0 or |v| = 0. In that

fffur = ggggus

N

ffui=gffffz fgz1 = gggus
fulz/gffgggzs gzs = fffz4 =fffz fg9z0 = ggus
ur = gff999212 25 = fgggzg 2o = ffa fgz3 = gus
9zy = fgggzs 9fze = ffza / \
/ \ 25 = fu f9za = us
z29 = fggflez %6 = 9978 gfzr = fz4
fz10 = g9z
Zlogffzm/ \ 27 = gz8 9fzs =24
fgz11 = gz
211 = fziy fgz12 = 28

Fig. 2. Proof Tree

case, u & v is in normal form.* Therefore, the proof is of size 0, since we ignore
leaf nodes in the tree.

Now assume that |u| > 0 and |v| > 0. Assume that the theorem is true for
each equation with sum of term sizes smaller than |u| + |v|. First we must prove
that induction is applicable, i.e. that the size is decreased with the application
of the inference rule. An application of the rule with monadic terms will have
the following form:

4 o . .
Since u = v has no repeated variables, it cannot be of the form z =~ w(z] for some
term w.

splzu] = tply.]
Tsplty] X Ts0]21] yeo[21] = yplyo]

61
xsplry] = ws0[21]01 : new goal-equation
6>
where u & v is our goal, s,t € T, sp = u, tp = v, x, is the only variable in
u, Y, is the only variable in v, x, is the only variable in s, y; is the only variable
in ¢, 21 is a variable possibly introduced by the unifier o of s[z,] and ¢[y].?

In order to apply induction, we need to establish that the size of an equation
gets smaller with the application of the rule.

Claim. |yio| + lysp| < |sp| + [tp].

Proof of Claim. |y;o] < 1, because y;o0 € T or y; is a variable. |y;p| = |tp| L 1,
because by definition: |tp| =1 + |y:p|. Hence |yio| + |yep| < 1+ |tp| L1 =|tp] <
[tp| < |sp|+ [tp|, because sp > 1, since s is not a variable. O

Having proved this lemma, we can state, by the induction assumption, that
the size of the proof-tree for y;0 & y;p is less than or equal to |y;o| X |ysp| <
Ix (Jtp] L1) = |tp| L 1. Also, [2161] < |yep| = [tp| L 1 and |y,b:] < [y0] <
where 6, is the unifier obtained in the proof.

[a—y

Claim. |zsp| + |x5001] < |sp| + |tp].

Proof of Claim. By the definition of the size of term: |zsp| = [sp| L 1. (This is
because: |sp| = 1+ |z,p|, where s is in T.) The size of the term: |z 0[z1]0:] =
142161, because z,0 € T or is a variable. We have showed that |z16:| < |tp| L1.
Hence, |z,06:1| < 1+|tp| L1 = |tp|. Taking together the sizes of these two terms,
we get: |z5p| + |zs061| < |sp| +[tp| L1 <|sp|+ |tp|. O

If follows from this claim that the size of the proof tree for z4p & x;06, is less
than or equal to |zsp| X |zs061| = (|sp| L 1) X [tp|. Also, |zy02] < |zs061| < |tp|
and |220;1] < |zsp| = |sp| L 1, where 25 is a variable possibly introduced by the
substitution 6.

Taking together these two statements, we can assess the size of the proof-tree
for sp ~ tp. It is less than or equal to 1+ |tp| L1+ ((|sp| L 1) x [tp]) = |sp| x |tp].
Also, |y0102] = |2zu02| < |tp| and |y,01602] = |yu01[22)02] < |yobr] + 2202 <
1+ [sp| L1=]sp| O

The theorem gives us the first major complexity results of the paper.

5 Technically, we need to show that the new equations generated are of varity 1. We
show this in the full paper|[8].

Theorem 4. Let u =~ v be a goal with no repeated variables. Let E be a linear
equational theory, containing only monadic function symbols. Let n be the size
of u & v, defined in the standard way. Then

— The nondeterministic algorithm in Figure 1 finds a set of E-unifiers for
u = v in nondeterministic time O(n?).

— Any E-unifier that is constructed is of size O(n).

— If every pair of terms in T has a most general E-unifier, then the algorithm
is deterministic, and runs in deterministic time O(n?).

In order to deal with the more general case of non-monadic terms, we will be
considering height of a term and height of a proof-tree, in order to get an idea
about the complexity of the procedure. The height of a term was defined earlier.
The height of a proof tree is,the length of the longest branch in the proof-tree,
excluding its leaf. We write the height of the proof-tree of u = v as H(u ~ v).

The general case of the application of our rule is as in the following diagram:

sprtp
Ui zip = zjo Uiz vio = yip

61
¢, afp~xioh; :new goal-equations

6>
where u & v is our goal, s,t € T', sp = u, tp = v, z{, - -,z are the variables
inu, yy, -y, are the variables in v, z{, - -, z] are the variables in s, yh, oyl

are the variables in ¢, 21, - - - 2, are variables possibly introduced by the unifier o
of s and t.

Theorem 5. Assume T is a finite E-closed set. E is linear, and the goal u ~ v
is of varity 1, where u and v are not both variables. The height of a proof-tree
of u = v is less than or equal to H(u) + H(v) L 1. If 2¥,---2¥ and y},---,y>
are variables in u and v respectively, and 6 is a unifier of u and v obtained in
the proof, then H(x{6) < H(v) and H(y;0) < H(u).

Proof. The proof will be by induction on H(u) + H(v). The base case is when
H(u) =0or H(v) = 0. In that case u & v is in normal form. Therefore the proof
is of height 0, since we ignore leaf nodes when calculating height.

Now assume that H(u) > 0 and H(v) > 0. Assume that the theorem is true
for each equation with sum of heights smaller then H(u) + H(v). First let us
consider the right equation: ylo ~ y!p.

Claim. H(yto) + H(ytp) < H(sp) + H(tp)

Proof of Claim. H(ylo) < 1, because ylo is in T or is a variable. H(y!p) <
H (tp) L1, because, according to the definition of height, H (tp) = 1+max{H (yp)}.
Hence H(ylo) + H(ylp) <1+ H(tp) L1 = H(tp) < H(sp)+ H(tp). O

By the induction assumption, if H(ylo =~ ylp) # 0, then H(ylo =~ ylp) <
H(ylo) + H(ylp) L 1, for every i € {1,---,r}. We know H(ylo) < 1, and we
know H(y!p) < H(tp) L 1. Hence, we know that the height of this proof-tree
ist H(ylo ~ylp) <1+ H(tp) L1 L1=H(tp) L 1. If H(ylo = ylp) = 0, then
H(ylo ~ ylp) =0< H(tp) L1, since H(tp) > 1.

By induction we also know that:

— H(zj61) < H(ylp) < H(tp) L 1 for each z; in ylo,

— H(yy6:) < H(y'o) < 1 for each y} in ylp.

Now, consider the left part of the proof-tree.
Claim. H(zip) + H(z{ob) < H(sp) + H(tp)

Proof of Claim. H(z$p) < H(sp) L1, from the definition of height. H (z506;) <
H(zio)+maz{H (z;61)}, where {21, - - -, z; } are the variables in so. maz{H (2;61)} <
H(tp) L1, from the analysis of the right equation. Hence H(z{06;) < 1+ H (tp) L
1= H(tp). Therefore, H(z5p)+H (ziob:) < H(sp) L1+ H(tp) < H(sp)+H(tp).

O

Hence, by the induction assumption, we know that, if H(z{p ~ zf06,) # 0,
then H(zip ~ zjo6,) < H(zip) + H(xjo60,) L 1. Now, H(zip) < H(sp) L1,
because according to the definition of height of a term, H(sp) = 1 + max{z$p}.
Also, H(xfo[z1, -+, 2p)01) < 1+ max{H(zi6h)} = H(tp), because H(z;#;) <
H(tp) L 1, by the previous lemma. Hence, the height of this proof-tree will be:

— H(z{praxioh) < H(sp) L1+ H(tp) L 1= H(sp)+ H(tp) L 2.

If H(zfp = zfob,) = 0 then H(zip ~ zf06,) < H(sp) + H(tp) L 2, because
H(sp) > 1and H(tp > 1).
The induction assumption also states that

— H(x}82) < H(zjobth) < 1+ max{z61} <1+ H(tp) L1 = H(tp), for each
z3 in z°p, and

— H(z}02) < H(zi{p) < H(sp) L1, for all 2} in zj00,;.

We can now prove the main claim:

The height of the proof-tree for u & v, i.e. for sp = tp, is then:
H(sp ~ tp) < 1+ maz{H (z}p ~ x}06:), H(yjo ~ yip)} < 1+ maz{(H(sp) +
H(tp) L2),(H(tp) L1)} =1+ H(sp) + H(tp) L2 = H(sp) + H(tp) L 1. This is
because H(sp) + H(tp) L 2 > H(tp) L 1, because we assumed H(sp) > 0.

We only need to prove the claims about the heights of terms:

H(a:}‘(% 6,) = H(:U}‘HQ), because r¥ cannot be in the domain of 8;. By the
assumption, H(z$6,) < H(tp).

H(y;0:62) < H(y;0:1[z1, -, 2;]) + maz{H(2}62)} <1+ H(sp) L 1= H(sp).

O

This gives us the following complexity result.

Theorem 6. Let u =~ v be a goal with no repeated variables. Let E be a linear
equational theory. Let n be the size of u = v, defined in the standard way. Then

— The nondeterministic algorithm in Figure 1 finds a set of E-unifiers for
u v in PSPACE.

— The terms in the range of the E-unifier that is constructed are of height
O(n).

5 Finding a Closed Set

We have shown that once you have an E-closed set, then unification problems of
varity 1 are solvable, and we have given the complexity of the decision problem
in several cases. That all assumes that we know of an E-closed set. That could
be the case for some equational theories. But if we don’t know whether there is
an F-closed set, then in this section we give a method to produce one which will
work for some equational theories.

First we show how to construct an E-closed set in an incremental way:

Let Ty contain all terms of the form f(xq,---,x,), where f is a function
symbol of arity n > 0 appearing in E, and x4, ---,x, are fresh variables. Also,
Ty will contain two fresh constants ¢ and d.

For i > 0, T;41 is defined as the set of terms such that t € T, if and only if ¢
is a nonvariable such that there exists some u and v in Tj, a variable z appearing
in u and a 0 € CSUg(u = v) such that ¢ is a renaming of a subterm of zo.

Let T' = J;5o Zi- Then T is an E-closed set if the complete sets of unifiers
for pairs of terms in T are linear. Of course, T might not be finite. But if T
is finite, then this gives us a decision procedure for solving the E-unification
problem when the goal has no repeated variables.

We still have not said how to find a complete set of E-unifiers for a pair of
terms. This problem is undecidable in general, but in some cases it is possible to
use a complete algorithm to generate the E-unifiers. One possibility is to use the
complete procedure for linear equational theories presented in [7]. The inference
system in that paper is a generalization of the General Mutate inference rules of
[2 5], but it is complete for all linear equational theories. It uses a form of eager
variable elimination which makes it more efficient.

The problem with using a complete inference system is that it may not halt
when two terms are not F-unifiable. However, we also need to check cases of
non-unifiability for our algorithm. But, inference rules, such as the ones in [7]
can be extended to detect non-unifiability in some cases where the procedure
would normally not halt. The inference rules are goal directed, in the sense, that
it begins with the equation which must be FE-unified. As in the algorithm in
this paper, an inference rule will be applied to the goal yielding one or more
subgoals. Also, as in this paper, one or more rules may apply at each point. So
the algorithm amounts to the simultaneous construction of one or more proof-
trees. In some cases, it happens that every proof tree contains an equation u ~ v

that is a descendant of a renaming of an equation s & t, such that sp = u and
tp = v for some p. In such cases, the algorithm will never halt, and therefore the
initial equation is not E-unifiable.

6 Conclusion

Historically, much of the field of automated deduction has focused on inference
procedures that search for a proof of a theorem, and not as much effort has been
applied to finding methods of proving something is false. However, if these meth-
ods can be applied to verification problems and other applications, we believe
it is necessary to identify classes of problems where automated theorem provers
will halt, and to understand the complexity of these classes. This is a goal of our
research.

The problems we considered in this paper are E-unification problems, since
equational logic is useful for many applications. The procedure we give in this
paper is an adaptation of a more general procedure for F-unification. However,
on the class of problems we consider in this paper, we were able to show a
measure on certain F-unification problems, such that the inference rules always
reduce the measure; therefore it will halt and we can analyze how quickly it will
halt, in order to examine the complexity.

Specifically, we introduce a subclass of linear equational theories, called
finitely closable. We consider goals with no repeated variables. We show that
this class is solvable in PSPACE in general. For monadic theories, it is in NP.
For unitary monadic theories, it is solvable in O(n?).

We think this class is interesting. We also think this research raises many
questions to be explored further. Which equational theories are in this class?
What is a good procedure for finding a finite (or recursive) F-closed set? Can
our complexity results be made better? How can this class be expanded?

References

1. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge, 1998.

2. C. Kirchner. Computing unification algorithms. In Proceedings of the First Sympo-
stum on Logic in Computer Science, Boston, 200-216, 1990.

3. C. Kirchner and H. Kirchner. Rewriting, Solving, Proving.
http://www.loria.fr/ ckirchne/ , 2000.

4. C. Kirchner and F. Klay. Syntactic Theories and Unification. In LICS 5, 270-277,
1990.

5. F. Klay. Undecidable Properties in Syntactic Theories. In RTA /,ed. R. V. Book,
LNCS vol. 488, 136-149, 1991.

6. C. Lynch and B. Morawska. Goal-directed E-unification. Submitted.

7. C. Lynch and B. Morawska. Approximating E-unification. Submitted.

8. C. Lynch and B. Morawska. http://www.clarkson.edu/ clynch/papers/linear_full.ps/,
2001.

9. R. Nieuwenhuis and A. Rubio. Paramodulation-based Theorem Proving. To appear
in Handbook of Automated Reasoning, 2001.

https://www.researchgate.net/publication/2399236

