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Abstract. We give an algorithm for the unification problem for a gen-
eralization of Thue Systems with one relation. The word problem is a
special case. We show that in many cases this is a decision procedure with
at most an exponential time bound. We conjecture that this is always a
decision procedure.

1 Introduction

In this paper we study the unification problem and word problem for Thue
Systems. This basic problem appears under several different names. It is also
known as the unification and word problem for semigroups, terms with monadic
function symbols, and ground terms with one associative operator.

In particular, we are interested in Thue Systems with only one equation,
but we have generalized our results to larger classes. The word problem for one
equation can be stated simply: Given an equation s = t, and two words ug and
U, is there a sequence of words ug, - - -, u, such that each w;41 is the result of
replacing an occurrence of s in u; by ¢, or replacing an occurrence of ¢ in u; by
s?

Despite the very simple formulation of the problem, it is unknown whether
the problem is decidable. It has been shown to be undecidable when there are
three equations instead of one [9], but the case for two equations is also unknown.
The word problem for groups with one defining equation has been known to be
decidable for 65 years [8]. However, despite considerable work in the area [2/4]
(see [6] for a survey), the decidability for one equation Thue systems is unknown.

In this paper, we address (but do not solve) the problem, and we also gen-
eralize the problem in some ways. One of our generalizations is to consider the
unification problem, which is a generalization of the word problem. The unifica-
tion problem is as follows: Given an equation s = ¢ and words u and v, are there
words x and y such that vy can be reached from uxz with a sequence of replace-
ments of s by ¢t and ¢ by s. We also generalize from one equation Thue systems
to allow more than one equation but require a certain syntactic structure. Our

* This work was supported by NSF grant number CCR-9712388 and partially done
while visiting INRIA Lorraine and CRIN.

Jacques Calmet and Jan Plaza (Eds.): AISC’98, LNAI 1476, pp. 195208, 1998.
© Springer-Verlag Berlin Heidelberg 1998



196 Christopher Lynch

result is a procedure that decides the unification problem when it halts, and also
produces the most general unifier. We have not been able to prove that it halts
for all instances of our generalization of the one equation unification problem,
but we conjecture that it does.

Although we have not proved a decidability result, we believe our work is im-
portant. We have provided some theorems showing how to automatically detect
that the algorithm is a decision procedure for certain Thue systems. We even
give a complexity result, showing that the algorithm is at most exponential for a
large class of Thue systems We have implemented an algorithm for one equation
Thue systems, based on the one in this paper. On every example we have tried,
it always terminates quickly with the answer.

Our main interest in this problem is not just for one equation Thue systems.
Our goal is to extend these results to equations over terms. Popular methods
for deciding word and unification problems, like the Knuth-Bendix completion
method have many examples, even very simple ones, where they do not halt.
Our method attempts to avoid those problems. Although our presentation here
is only for monadic function symbols, the ideas extend to function symbols of
higher arity. The syntactic restrictions on the class used in this paper allow
for our algorithm to be deterministic. Relaxing those restrictions is possible if
we allow the algorithm to be non-deterministic. Our plan for the near future
is to investigate all these extensions. We expect the ideas in this paper will be
important for finding decision procedures for interesting classes of equational
theories. The main inspiration for our paper is our previous work on SOUR
graphs [7]. This paper is actually a simplification of those ideas, although the
ideas have evolved quite a lot. We have achieved the two main purposes we
sought in the evolution of those ideas: First, they are vastly simplified to allow
much easier understanding and implementation. Second, we have shown the use
of the method to solve decision problems, which we did not realize before.

The next section of the paper gives some required background. The section
after that builds up the necessary machinery for our algorithm. We convert the
unification problem into a problem in rewrite systems. The following section
develops the rewrite system problem into an algorithm. Interestingly, in this sec-
tion we show that the unification (and word) problem is equivalent to a problem
in termination of rewrite systems. We show how to detect loops in rewrite sys-
tems, and conjecture that all nonterminating rewrite sequences are loops, which
forms the basis of our algorithm. Interesting this is the same conjecture made
for termination of one rule semi-Thue systems [I0], another decision problem
whose solution is unknown. That gives us the impression that the same tech-
niques used for solving the termination problem will be useful for solving the
word (and unification) problem. In the conclusion, we relate our work with other
work.
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2 Preliminaries

We are given a set A as alphabet. In this paper, we use letters a,b,c,d, e, f, g,h
as members of the alphabet. A word is a sequence of members of the alphabet.
We use letters r,s,t,u,v,w to represent words. If w is a word then |w| is the
number of symbols in w. If jw| = 0, then we write w as e and call it the empty
word. If u and v are words, then uv represents the concatenation of v and wv.
Then w is a prefiz of uv, and v is a suffix of uv. Also, v is a subword of uvw.
u = v is an equation if u # € and v # el

A Thue System is a set of equations. We assume it is closed under symmetry
Let E be a Thue system. If s = ¢ € F then we write usv ~g utv. If F is obvious,
we may write usv =~ utv. We call this an equational step at position p, where
p = |u|. If p = 0, then this is called an equational step at the top. A proof of
u ~g v is of the form ug ~g u1 =g -+ g u, where n > 0, u = ug, v = Uy,
and u;_1 ~g u; for all © > 0. Given a Thue system E and a pair of words u
and v, the uniform word problem for Thue Systems is the problem of deciding
whether u ~p v. This is also called the word problem for semigroups, although
in this case the problem is stated semantically B The syntactic version of the
word problem for semigroups was shown equivalent to the semantic version by

Birkhoff.

Another way to examine the problem is to view the members of A as monadic
function symbols. In that case, a set of variables V is added to the language.
We refer to members of V' with letters x,y, z. Also, a set of constants C' is
added. A term is a variable, or a constant, or a function symbol applied to a
term (parentheses are omitted). Equations are of the form s =~ ¢, where s and
t are terms. A substitution is a mapping from the set of variables to the set of
terms, which is the identity almost everywhere. A substitution is extended to
its homomorphic extension (i.e., (ft)o = f(to)). A ground instance of a term
(resp. equation) t is anything of the form to, where xo is ground for all z in
t. If ¢ is a term or equation, then Gr(t) is the set of all ground instances of t.
If E is a set of equations, then v &g v if and only if every ground instance of
u & v is in the congruence closure of the set of all ground instances of equations
in E. That is the semantic definition. This also could be defined syntactically
by saying that us ~g ut if s ~ ¢ is an instance of an equation of E. Proofs
are defined as for Thue Systems, and the word problem is stated in the same
way. Birkhoff showed that the semantic and syntactic definition are equivalent.
In this paper the syntactic definition will be more useful.

Given terms u and v and a set of equations F, ¢ is an E-unifier of u and v if
uo ~p vo. The unification problem for monadic function symbols is to find all
E-unifiers of u and v. A set of equations F is said to be unitary if for every pair
of terms u and v, there is one E-unifier o such that for every E-unifier 6 there

! See [i] for the case where u = € or v = e.
2 Therefore one relation Thue Systems are presented with two equations.
3w =g v if and only if u ~ v is true in every model of E
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is a substitution 7 such that xon ~g 260 for every variable x in v or v. Then o
is a most general unifier of u and v.

It is well-known that the word problem for Thue Systems can be expressed
as a word problem for monadic function symbols. Given the word problem for
Thue Systems u ~g v, where E = {s1 ~ t1, -+, 8, = t,}, we transform it into
a word problem for monadic function symbols by asking if uc ~g vc, such that
E = {s1x =~ tyz, -+, 8,2 ~ tpx}, where x is a variable and ¢ is a constant [}

We need the notion of rewriting in terms of words. Let s and ¢ be words
(possibly empty), then s — ¢ is a rewrite rule. If R is a set of rewrite rules, then
we write usv — utv, and say usv rewrites to utv if s — t € R. The reflexive
transitive closure of — is written as —*. A word w is in R- normal form if there
is no v such that u rewrites to v. A set of rewrite rules is confluent if s —* t and
s —* u implies that there is a v such that ¢ —* v and u —* v. A set of rewrite
rules R is weakly terminating if for every u there is a v in normal form such
that v —* v. R is strongly terminating if there is no infinite rewrite sequence.
A confluent and strongly terminating set of rewrite rules has the property that
every rewrite sequence from u leads to the same v in normal form. We say that
a set of rewrite rules R is non-overlapping if there are no rules s — t and u — v
such that a nonempty prefix of s is a suffix of u or s is a subword of u. If a set of
rewrite rules R is non-overlapping and weakly terminating then R is confluent
and strongly terminating.

3 The Word and Unification Problem

In this section we give a class of Thue systems which is a generalization of one
equation Thue systems. Then we give the structure of a proof of a unification
(or word) problem in this generalized class. Finally, we show how this proof
structure leads us to a problem in rewrite systems.

First we give the generalized class. A key idea is the notion of syntacticness
from [5].

Definition 1. A proof ug ~ uy; =~ --- = u, is syntactic if there is at most one
i such that u;_1 ~g u; 18 an equational step at the top. A Thue System E is
syntactic if whenever there is a proof of u ~g v, then there is a syntactic proof
of u =g v.

There is another restriction we need on the class to allow for our final pro-
cedure to be deterministic.

Definition 2. A Thue System sy ~ t1,---, S, = t, has a repeated top equation
if there is an i # j and a,b € A and words u,v,u’,v" such that s; = au, t; = bv
and s; = av’, t; = bv'. A Thue System s1 = t1,---,Sn = t, has a repeated top

symbol if there is an i and j (i # j) and a € A and words u,v such that s; = au
and s; = av, or if there is an ¢ and an a and an s; and t; and words v and v
such that s; = au and s; = av.

4 We sometimes confuse the notation of words and terms. When the distinction is
important, we clarify it.
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Every word problem for Thue systems of one relation can be reduced to a
simpler word problem which is either known to be solvable or has a different top
symbol on the left and right side [3]. Therefore, for one equation Thue systems,
it is only necessary to consider word problems where the one equation is of the
form as ~ bt, where a and b are different symbols and s and ¢ are words. Such
theories are syntactic [2]. Such theories also have no repeating equation. Below,
we show that any theory with no repeating top symbol is syntactic and has no
repeating top equation.

Theorem 1. Let E be a Thue system that has no repeating top symbol. Then
E has no repeating top equation and E is syntactic

Proof. The fact that E has no repeating top equation follows by definition. We
prove that E is syntactic by contradiction. Consider the set of all shortest proofs
between any pair of terms. Consider the shortest proof ug ~g u1--- ~g u, of
that set with more than one equational step at the top. Then there is a step
from some u; to u;4+1 at the top using some equation au = bv, and later there is
another step from some u; to u;41 using bv ~ au. Since this is the shortest proof,
every proper subproof must be syntactic. But then there can be no intermediate
steps involving v and v, so the steps from wu; to w;41 and from u; to uj41 can
be removed from the proof resulting in a shorter proof of u; ~g u,.

The results in this paper apply to syntactic Thue systems with no repeating
top equation. Next we look at the structure of proofs of the unification problem
in such theories. First we consider the case of unifying two terms with a different
top symbol.

Lemma 1. Let F be a syntactic Thue System. Let aux and bvy be terms. If o
is an E-unifier of aux and bvy then o is of the form [x — u'z,y — v'z] and
there exists

— an equation asx ~ btx € F,

— words 1,72 such that u' = rira,

— words w1, ws such that v/ = wiwo,

— and words s',t' such that ury ~g ss', tt' =g vwy, and s'rs =g t'ws.

Proof. Let ug ~p --- =g u, be the proof of aurc ~p bvyo. There must be
exactly one equational step at the top. The proof can be divided up into four
parts. First auxo must be changed to a new word with as as prefix. The second
part is to change as to bt. The third part is all the steps below bt, and the fourth
part is to change bt into a word with bv as prefix. The second and third parts
can be exchanged, but wlog we assume they happen in the order given.

Suppose that u; =g u;y1 is the first equational step at the top. Then u; has
as as a prefix. This means that xo must have some r; as a prefix, such that there
is an 8’ where ury ~g ss’. Therefore u;11 has bts’ as a prefix. That gives us the
first part of the proof. The third part is all the steps below bt so there must be
r9,t', wy such that s'ro ~g t'wy. The fourth part changes ¢t to something with
a v as a prefix, so there must be a w; such that ¢ ~g vw;.
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To sum it all up, the proof looks like: aurire ~g ass'ro ~g bis'ry ~g
btt'wy ~g bvwiws.

Now we look at the proof structure when unifying two terms with the same
top symbol.

Lemma 2. Let E be a syntactic set of monadic equations containing no equation
of the form as = at. Then o is an E-unifier of u and v if and only if o is an
E-unifier of au and av.

Proof. Suppose there is an equational step at the top of the proof of au ~g bv.
Since there is no equation of the form as = at, there must be two equational steps
at the top of the proof. But that cannot be, because E is syntactic. Therefore,
there is no equational step at the top of the proof.

Note that the condition of no equation of the form as = at is implied by
the condition of no repeated equation, since each Thue System is assumed to be
closed under symmetry.

Our next step is to convert each unification problem to a rewrite system over
an extended language, where the above two lemmas are applied as rewrite rules.
First we define a new alphabet A = {a|a € A}. Let B = AU A. We define an
inverse function on words in B* such that

— Ifa€ Athena ! =a.
— Ifa € Athen (a)7! =a.
— (b1 b))t =b, by forn>0,and b; € B for all 1 <i < n.

Any word w € B* can be represented uniquely in the form wyvy =1 - - - v, 71

where n > 0, each u;,v; € A*, u; = e only if « = 1 and v; # € , and similarly
v; = € only if i = n and u; # €. We say that w has n blocks.

Given a Thue System E = {a181 = bit1, -, anSn = bpty} over A, we define
a rewrite system Rp over B containing

— aib; — s;t; 7 forall 1 < i <mn, and
— aa — € for all a € A. These are called cancellation rules.

Ezample 1. Given the Thue System {abaa = bbba,bbba ~ abaa}, the associated
rewrite system Rpg is

. @b — baa&@
. ba — bbaaab
. aa — €

. bb— €

=W N =

Given an FE-unification problem G = ux = vy, we associate a word wg =
u~!v. Then we have the following theorem which translates a unification problem
into a rewrite problem.
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Theorem 2. Let E be a syntactic Thue System with no repeating equation, and
G be a unification problem over A. Then G has a solution if and only if wg has
an Rg-normal form of the form u'(v')~! with v’ and v’ in A* B Furthermore
o =[x u'z,y— v'z] is the most general unifier of G in E.

Proof. Given a word w of n blocks, where w = wiv; ™% -+ - u,v, ~L, we think of w

as representing the unification problem (z = u121) A Aocjc,, (Vic12i—1 = wizi) A
(Vnzn = y) for some z1,- -, z,. Therefore, if G = ux ~g vy, then wg = u~tv
represents the unification problem x = 21 Auzy = vz Azo = y, that is ux ~g vy.

Since each word w represents a unification problem, the solution to the uni-
fication problem has a corresponding proof. We will give an induction argument
based on the lexicographic combination of the length of that corresponding proof
and the number of symbols in w.

Suppose we are given a word w = u~ v, representing the unification problem
ur ~p vy. If ur = auiz and vy = aviy for some u; and vy, then uxr ~g vy
has most general unifier ¢ if and only if u;z ~g v1y has most general unifier o.
Then the word w = v~} l@avy — w1 1oy, which is a smaller unification
problem.

Suppose that ur = au;x and vy = bv1y, and suppose there is an equation
as ~ bt € E. Then ab — st~!. Furthermore, the unification problem ux ~g vy
is satisfiable and has most general unifier 0 = [z +— u'z,y — v'z] if and only if
there are words r1,ry such that v’ = riry, words wy,ws such that v/ = wyws,
and words s’,t' such that u;ry ~g ss, tt’ ~g viwi, and s'ro ~g t'ws. So
up"ls — 7"15’71, t~ v — t'wi; ', and PN rows !, Then the word w =
u v = uylabyy — uy st vy — 8’ Hw; ! — ryrewslw;—t. This is in
normal form, and it represents the unification problem x = r17r221 Awiwaz1 = ¥,
which has o as most general unifier.

Suppose that uz = au;x and vy = bvyy, and there is no equation as ~ bt € E.
Then w = v~ 'v = u; " 'abv; has no redex at the subword @b, and therefore has

no normal form with zero or one block.

1

UV =uUr

This theorem also shows that any syntactic Thue system with no repeating
equation has a unitary E-unification problem, because the rewriting is deter-
ministic and leads to at most one most general unifier.

The following corollary shows how the theorem applies to word problems.

Corollary 1. Let E be a syntactic Thue System with no repeated equation, and
G be a word problem over A. Then G is true in E if and only if the normal form
of wg in Rg is €.

Proof. The corollary follows from the theorem because the word problem is true
if and only if o = [x — 2,y — 2] is a most general unifier.

Ezample 2. For example, consider the Thue System {aa ~ ba,ba =~ aa}. Then
RE is

5 Notice that if A has two symbols, then every normal form is of this form.
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. ab— aa
. ba — aa
. aa — €

. bb— ¢

Let G be the unification problem abb ~p bb. Then wg = bbabb. This gives
us the following rewrite sequence: wg = bbabb — bbaab — bbaad — badad —
baa — aaa, which is in normal form. That means that the most general unifier
of Gin Eis 0 = [x — az,y — aaz]. The word problem for G is not true,
because the normal form is not e. However, if we consider the word problem
G’ = abba =~ bbaa, then wg: = awgaa —* aaaaaa —* €. Therefore, the word
problem G’ is true in E.

=W N =

Ezample 3. For another example, consider the Thue System E = {a = bba, bba ~
a}. Then Rp is

1. ab — ab
2. ba — ba
3. aa — €
4. bb — €
Consider the unification problem G = ba ~g a. Then wg = aba — aba —
aba = wg. So this rewrite sequence loops, and there are no other possible rewrite
sequences. Therefore aba has no normal form in Rp which implies that the
unification problem ba &g a (and also the word problem) has no solution in E.

4 Deciding the Unification Problem

In this section we first show why the condition of syntacticness and no repeating
equations leads to a deterministic procedure. Then we define an ordering to
show termination of rewrite sequences. This ordering is used to define a decision
procedure for certain classes of problems. In some cases, we can even bound the
complexity by an exponential of the goal size. Finally, we give an algorithm that
we conjecture decides the unification problem in all cases.

First we show the interest of the class of problems we are considering.

Theorem 3. If E is a syntactic Thue System with no repeating top equation,
and G is a satisfiable unification problem in E, then Rg is confluent and strongly
terminating on wg.

Proof. Tt follows from the fact that Rg is non-overlapping and is weakly termi-
nating on wg.

This gives us a deterministic procedure to decide the word problem. We
can assume that we always apply the rightmost rewrite step. Unfortunately, this
deterministic procedure may not always halt. So we need some ways to determine
non-termination or rewrite sequences. One way to do this is to find loops. First,
let’s define a useful ordering to determine terminating rewrite sequences.

We define an ordering on words of three or fewer blocks.
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Definition 3. Let w be an n block word of the form wivi ™' - u,v, L, with
each u;,v; € A* and n < 3. Define pu(w) to be the ordered pair (i,7) such that if
n > 1 then i = |v1| else i =0, and if n = 3 then j = |us| else j = 0. Ordered
pairs are compared lexicographically, i.e., (i,7) > (k1) if and only if i > k, or
i =k and j > 1. Note that this ordering is well-founded.

Now we define a set of words that we will later use to show that if we can
find the normal forms of these words, then we can find the normal form of any
given word, or determine that it does not have one.

Definition 4. Let A be a set of words and R be a rewrite system on B = AUA.
Let C be a set of words in (A)*, such that every non-empty prefiz of C is in C.
A word ua is called an extended word of C' if u € C and a € A. Let C' be the
set of all R-normal forms w of extended words of C. Then R is C-complete if

for all w in C

1. w contains one at most one block, and B
2. if w contains one block (i.e., w = ujvy with uy € A* and v1 € (A)*) then vy
is in C if v1 # €.

Note that condition 2 is trivially true if a is the inverse of the last letter in
U.

Definition 5. Let R be a rewrite system of the form {da1by — s1t17 1+ dpb, —
Sntn L}, with each a;,b; € A, and s;,t; € A*. C is said to be a completion of R
if R is C-complete and t; 7' € C if t; # e.

If we rewrite in a certain way, we can force one of these special words to
appear in a certain place in the word.

Definition 6. Let C' be a set of words. The word w is C-reducible if and only
if w has at most three blocks, and if w has three blocks (i.e., is of the form
wu1v1 tugve “tugvgTt) then va =t € C.

We use the previous four definitions in the following crucial lemma. It shows
that any word of a particular form can be reduced to a smaller word of the same
form, or we can detect that it will not have an appropriate normal form.

Lemma 3. Let E be a Thue System and C' be a completion of Rg. Let w be a
C-reducible word in B* of three or fewer blocks. Suppose that for all extended
words ua of C, it is decidable whether ua has an Rg-normal form. If w is not
in normal form, then we can find a smaller C-reducible w' with three or fewer
blocks such that w — w’ or we can detect that w has no normal form with one
or fewer blocks.

Proof. If w has at most one block, then w is in normal form. Suppose w has two
blocks, then w = ujv1 ‘ugvs ! with wy, v, us,v2 € A*. Suppose v1 = av and
uy = bu. Then w = wivtabuvs ™! If a = b then w — wv tuvs ™! = w’, which
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is smaller than w because p(w) = (Jv1],0) > (|v],0) = p(w’). Also, w’ has fewer
than three blocks, so it is C-reducible.

Suppose a # b and there is a rule in R of the form ab — st~!. Then
w — uyv~ st luvy ! = w’, which is smaller than w because pu(w) = (Jvi],0) >
(Jvl, |ul) = p(w"). 4 w' has three or fewer blocks. Also, note that t~1 € C by
definition of C-complete, therefore w’ is C-reducible.

If @ # b and there is no rule in Rg of the form ab — st~!, then any normal
form of w must have more than one block.

Now suppose w has three blocks, then w = uv1 " usvs ~ugvs ~! with uq, v1,
Us, V2, us, U3 € A*. Suppose vs =av and us=bu. Then w=u,v1 ‘usv 'abuvs'.
If @ = b then w — ujvy " tusv luvs ™! = w’, which is smaller than w because
w(w) = (Jv1], Jusl) > (Jv1], Ju]) = p(w’). w’ has at most three blocks. v, =1 € C
since w is C-reducible, therefore v=! € C since C' is closed under prefixes, so w’
is C-reducible.

Suppose a # b. Then, v, ! € C, because w is C-reducible. So we can decide
whether vob has an Rg-normal. form. If it has no Rg-normal form then neither
does w. Otherwise, we can calculate the normal form of vyb. By definition of
C-complete, the normal form wvsb is of the form w/v' ', with v'~* € C[] Then
w — ulvl_luQU’v’_luvg_l = w', which is smaller than w because p(w) =
(lv1ls Jus]) > (Jva], |u]) = p(w’). w’ has at most three blocks. Also, w' is C-
reducible, since v'~* € C.

If @ # b and there is no rule in Rg of the form ab — st~!, then any normal
form of w must have more than one block.

The following theorem is the main result used to decide the word and unifi-
cation problem.

Theorem 4. Let E be a Thue System and G a goal over A. Let C' be a comple-
tion of Rg.

1. Suppose that for all extended words ua of C' it is decidable whether ua has an
Rg-normal form. Then the word and unification problem for E is decidable.

2. If C is finite, then the word and unification problem is decidable in time at
most exponential in the size of the goal.

Proof. We construct Rg and wg. Note that wg has two blocks. Let w be a C-
reducible word with three or fewer blocks. We perform induction on p(w). The
induction hypothesis is that we can find the normal form of all smaller words or
prove they do not have one with one or fewer blocks. By the previous lemma,
we can either reduce w to a smaller C-reducible w’ with three or fewer blocks,
or else detect that w has no normal form with one or fewer blocks. In the second

5 In all of these cases, we should consider the case where u = ¢, but then p(w’) < p(w)
because the second number in the ordered pair of u(w’) is 0.

" Here we do not consider the simpler cases where the normal form is € or only contains
members of A or A7,
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case, we are done. In the first case, w has the same normal form as w’, so we are
also done.

This takes care of the first part of the theorem. When C' is finite, the above
argument still shows that the word problem is decidable, since decision problems
on finite sets are always decidable. But we must show that the decision procedure
runs in at most exponential time in the size of the goal. For that we must analyze
the procedure induced by the previous lemma. If u(w) = (7, j), then there are at
most j rewrite steps before i gets smaller. But during that time, w can increase
by a product of k, where & is the maximum size of u; for a normal form uv;
of ua with u € C. Therefore, to calculate the normal form of w, we potentially
multiply w by k, |w| times, at most. So the word can become as big as kI*! at
most. And since each operation is linear in the size of the goal, the running time
as also bounded by an exponential.

We give some examples to illustrate.
Ezample 4. Let E = {aba = bab, bab ~ aba}. Then Rp is

. @b — bal;@
. ba — abab

. aa — €

. bb— ¢

=W N

Let C' = {z), a, ba, ELB}; The normal forms of ba, ab, bab and aba are respectively
abab, baba, aba, and bab. Each of these normal forms contains only one block.
Since all nonempty prefixes of ab and ba are in C, then C is a completion of Rg.

Ezample 5. Let E = {abb ~ baa, baa = abb}. Then Rp is

. élb — bb@(}
. ba — aabb

. aa — €

. bb— €

=W N

Let C = {a,b,aa,bb}. The normal forms of ab and ba are respectively bbaa
and aabb. Note that aab — abbaa — bbaabaa which contains aab as subword.
Therefore aab has no normal form. Similarly, bba has no normal form. We only
need to consider the normal forms bbaa and aabb. Since all the nonempty prefixes
of aa and bb are in C, then C is a completion of Rp.

Here is an example for which C' is infinite.
Ezample 6. Let E = {bab =~ a,a =~ bab}. Then Rg is
ba — ab
ab — ba
aa — €

bb — €

=W
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Let C = {(b)"|n > 0}U{(b)"a|n > 0}. Given n, the normal form of (b)"a is
ab”, and the normal form of (b)"ab is (b)"*'a@. These can be proved by induction
on n. The cases where n = 0 are trivial. If n > 0, we have (b)"ab = b(b)"~'ab —

(b)"a. Also, (b)"a = b(b)"ta — bab"~! = ((b)"~'tab)~! — ((b)"a)~! = ab".

Here we used the fact that u=! — v~ ! if u — v.

Now we must address the question of how to determine if a word has a
nonterminating rewrite sequence. We say a word w loops if there exist words u
and v such that w —T uwwv. We conjecture that every nonterminating rewrite
sequence loops. This is the same as the conjecture for one rule semi-Thue systems
in [10].

Conjecture 1. Let E be a syntactic Thue System with no repeated equations,
and G be a unification problem. Then wg has a nonterminating rewrite sequence
in Rg if and only if there are some words u, v, w such that wg — wvw and v
loops.

It is possible to detect loops, so a proof of the conjecture would imply that
the unification and word problem are decidable. We now give an algorithm for
deciding the unification problem, whose halting relies on the truth of the con-
jecture.

For the algorithm, we are given a Thue System FE, and a goal G. We construct
Rg and wg. The intention of the algorithm is to reduce the goal to its normal
form at the same time we are creating a subset of the extensions of C (the
completion of Rg), and keeping track of the normal forms or lack of normal
forms of those extensions of C'.

The algorithm involves w which is initially set to wg and any applicable
cancellation rules are applied. w is always a reduced version of wg with at most
three blocks. The algorithm also involves a stack T" of ordered pairs. Each element
of T is an ordered pair (u,v) such that u is of the form v/~ 'a with v/ € A* and
a € A, and v is a word of at most three blocks. The values of u will be words
that we are trying to find the normal form of, and v will be a reduced version of
u. There is a set of ordered pairs S involved in the algorithm. An element of S
is an ordered pair (u,v) where u is of the form '~ 'a with «/ € A* and a € A,
and v is a word of one or fewer blocks which is the normal form of w. S and T
are both initially empty.

The algorithm proceeds as follows:

First check if T is empty. If T' is empty and w is in normal form, then check
if w has one or fewer blocks. If it does, then return w. That is the normal form
of wqg. If it does not, then return FALSE, because wg has no normal form of
one or fewer blocks, thus the unification problem is false.

Suppose T is empty and w is not in normal form, we examine the rightmost
redex position of w. Either w has two blocks and is of the form v, ~tugvs~1, or
w has three blocks and is of the form wuyv; ~tugve ~tuzvs~!. If w has two blocks,
set v/ = v; ! and set ¢ to be the first letter of us. If w has three blocks, set
u' = vy~ ! and set ¢ to be the first letter of us. If d is the last character in v’ and
there is no ¢ such that dc € R, then return FALSE. Search for an ordered pair
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(u'c,v) in S for some v. If it exists, then replace u'c in w by v and perform any
cancellation rules that now apply. Note that w still has at most three blocks. If
no (u'c,v) exists in S, then push (u'c,u'c) onto T

If T is not empty, let (u,v) be on top of the stack. Either v has two blocks
and is of the form wjv;  tusvs ™!, or v has three blocks and is of the form
w11 " tugvs tugvs L. If v has two blocks, set v/ = v; ™! and set ¢ to be the
first letter of us. If v has three blocks, set u' = v~ and set ¢ to be the first
letter of us. If d is the last character in u/ and there is no ¢ such that de € Rg,
then return FALSE. Search for an ordered pair (u'c,v’) in S for some v'. If it
exists then replace u’c in v by v" and perform applicable cancellations. Note that
v still has at most three blocks. If v is now in normal form, then if v has at most
one block, then we add (u,v) to S and remove (u, v) from T, else return FALSE.
If v contains w as a subword, or if v contains s as a subword with (s,t) in T for
some T, we return FALSE. If no (u/c¢,v") exists in S, then push (u'c,v) onto T

Keep repeating this process until it halts.

Based on our implementation, this algorithm appears to be very efficient, and
we conjecture that it always halts. Note that the algorithm constructs extensions
of a completion of Rg. Based on theorem H, we can see that this algorithm
will halt in time at most exponential in the size of the goal if Rg has a finite
completion.

There is another interesting generalization of the class of problems. We con-
sider Thue systems to only contain equations of the form ux =~ vx. Suppose
we allowed other monadic terms. For example uz ~ vy. If all our equations are
of this type, then lemma [I is still true, with the removal of the condition that
s'ro ~p t'ws. We could say a simliar thing for equations of the form ua =~ vb.
This would allow us to modify the definition of Rg so that the right hand side of
the rewrite rules have a marker between the two halves, preventing interaction
between the two. This allows us to solve the unification problem in polynomial
time in terms of the goal if F is a syntactic set of monadic terms, with no re-
peated equations, and no equations of the form ux ~ vx. Space prevents us from
giving the details of this argument. But it is interesting to note that the problem
becomes easier when the equations are not linear.

5 Conclusion

We have given a method for trying to solve the unification (and word) problem for
one equation Thue systems and other monadic equational theories. Our method
works on a larger class of problems, which we have defined. We have shown
certain cases where we can prove that the method is a decision procedure. We
gave an algorithm, which has been implemented, and appears to be efficient. It
halts and serves as a decision procedure for every input we have tried. This is
opposed to the Knuth-Bendix procedure which often runs forever. The closest
work to our approach is given in [4]. This is based on an algorithm in [2] for
Thue systems with one equation. The algorithm does not always halt. In [4], a
rewrite system is given to help determine when the algorithm of [2] halts. They
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also needed to prove the termination of the rewrite system. But their method
and rewrite system is quite different from ours. For example, our rewrite system
halts on different problems than theirs. They also gave an example of a rewrite
system with a word that did not terminate but had no loop (called a simple
loop in their paper). It would be interesting to do a more detailed comparison of
our two methods. We think that methods used to decide termination of one rule
semi-Thue systems might be helpful for us. Our ultimate goal is to extend our
method to all unification problems over terms, and find a large class of problems
for which our approach halts. This approach in this paper was designed with
that intention.
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