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We present a modification to the paramodulation inference system, where
semantic equality and nonequality literals are stored as local simplifiers
with each clause. The local simplifiers are created when new clauses are
generated and inherited by the descendants of that clause. Then the local
simplifiers can be used to perform demodulation and unit simplification,
if certain conditions are satisfied. This reduces the search space of the
theorem proving procedure and the length of the proofs obtained. In fact,
we show that for ground SLD resolution with any selection rule, any set
of clauses has a polynomial length proof. Without this technique, proofs
may be exponential. We show that this process is sound, complete, and
compatible with deletion rules (e.g., demodulation, subsumption, unit
simplification, and tautology deletion), which do not have to be modified
to preserve completeness. We also show the relationship between this
technique and model elimination. ] 1998 Academic Press

1. INTRODUCTION

The paramodulation inference system is an extension of the resolution inference
systems to deal with theorem proving in first order logic with equality (Robinson
and Wos, 1969). Unfortunately, the paramodulation inference system can be very
prolific, creating many clauses when searching for a proof. Recently, some restrictions
on paramodulation have been developed to limit the search space (Bachmair and
Ganzinger, 1994; Bachmair et al., 1995; Hsiang and Rusinowitch, 1991; Nieuwenhuis
and Rubio, 1992; Nieuwenhuis and Rubio, 1995; Peterson, 1983; Pais and Peterson,
1991; Zhang, 1988).

A paramodulation theorem prover can be viewed as a Knuth�Bendix completion
procedure, extended to handle disjunctions of equations. Knuth�Bendix completion
is fairly efficient, because each equation generated can be simplified by the other
equations, thereby saving many inferences and keeping equations in a reduced form.
In paramodulation inference procedures, we may simplify clauses with positive unit
clauses,1 (exactly as we do in completion (Wos et al., 1967). Unfortunately, the
effect of this is limited because not many unit equations exist. In this paper, we
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show how to increase the number of demodulations. The idea is that if a paramodu-
lation inference has been performed using equation s=t, yielding equation C, then
descendants of C may be simplified by s=t. Sometimes this is not sound and other
times it is not complete. In this paper, we show exactly which simplifications can
be performed, preserving soundness and completeness. We call this local simplification
because the simplifiers are local to clauses, and may not be used globally, as unit
equations can.

In Kirchner et al. (1990), it was shown how constraints could be used in theorem
proving to limit the instances of a clause. Since then many papers (Bachmair et al.,
1995; Lynch and Snyder, 1995; Nieuwenhuis and Rubio, 1992; Nieuwenhuis and
Rubio, 1995; Nieuwenhuis and Rubio, 1994; Vigneron, 1994) have appeared which
use constraints to restrict the search space. These papers show that other restric-
tions on the search space can be represented as constraints. Constraints are built up
as inferences are performed and used to remember earlier inferences. Local simplifiers
are similar to constraints in that they are inherited in the same way. In contrast,
constraints are a way of restricting the number of instances of a clause, but local
simplifiers are not. Therefore, local simplifiers have an advantage over constraints
in terms of redundancy rules, as we will show.

Local simplification works as follows: When an inference is performed, an
equation is saved as an ancestor literal (as in model elimination (Loveland, 1968;
Loveland, 1978), along with some conditions. This is called a local simplifier. When
the conditions are met, that equation can be used to simplify the clause. This may
limit the search space, but in contrast with other restrictions it may also shorten the
refutation. An advantage our local simplifiers have over other constrained theorem
provers is that they are not weakened when deletion rules, such as demodulation,
unit simplification, and subsumption, are performed. To show the completeness, we
use techniques from Bachmair and Ganzinger (1994) to remove redundant clauses.
This paper is evidence to the power of these redundancy techniques, because we can
show our completeness results by appealing to the proof in that paper.

As a motivation of the need for local simplification, consider the following
resolution refutation proof.

R 6cP P 6 Q
R 6 QcR

QP 6cQ
PR 6 cP

RcR
g

In this proof, the variable P has been removed from the clause P 6 Q by the first
resolution inference. However, it later reappears, and the same set of inferences is
repeated. Local simplification allows us to avoid that repeated set of inferences by
remembering which variables are removed by resolution and then immediately
removing them if they reappear. Local simplification would result in the following
proof.
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R 6 cP P 6 Q
R 6 Q�cP�cR

Q�cP, cR�P 6 cQ
P�cP, cR, cQ�

g

In this proof, the literals are recorded as they are resolved away and then
immediately removed when they reappear. The literals cP, cQ and cR are saved
as local simplifiers. In the last step, the variable P reappears and is immediately
removed by a local simplification step (i.e., the clause P is replaced by the empty
clause). This example shows how local simplification limits the size of proofs. It
also reduces the search space, because the extra clauses do not need to be created.
Local simplifiers contain ancestor literals as in model elimination (Loveland, 1968;
Loveland, 1978), and the local simplification step is similar to a reduction step in
model elimination. The difference is that reduction is needed to preserve complete-
ness and local simplification is only used to reduce the search space and the length
of proofs.2 We can also use local simplification to limit the search space of equa-
tional theorem provers and the size of paramodulation proofs as illustrated by the
following example. Consider the following paramodulation proof.

R 6 arb P(a)
R 6 P(b)cR

P(b)cP(b) 6 Q(a)
Q(a)R6 arb

R 6 Q(b)cR
Q(b)cQ(b)

g

In the first paramodulation inference, a is rewritten to b. In one of the descen-
dants, a reappears. It is then necessary to perform the same sequence of inferences
as before. In local simplification, we store arb as a local simplifier and immediately
rewrite a to b whenever it appears. We call it local simplification because we can
only perform this simplification locally in this clause and not globally in other
clauses. We now have the following proof

R 6 arb P(a)
R 6 P(b)�arb�cR

P(b)�arb�Q(a) 6 cP(b)
Q(a)�arb�

Q(b)�arb�cQ(b)
g
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We only show the local simplifier that was used, but there are other local
simplifiers that could be saved. In this example, we recorded the fact that arb,
then when a reappeared, it was rewritten to b. In other words, the clause containing
a is removed as the clause containing b is added. This cannot be done in model
elimination.

Unfortunately, local simplification cannot always be applied. Consider the following
proof.

R(a) 6 arb P(a)
R(a) 6 P(b)�arb�

R(b) 6 P(b)�arb�cR(b)
P(b)�arb�cP(b)

g

We record the fact that arb then use it to rewrite a to b in a later step.
Unfortunately, our initial set of clauses, [P(a), R(a) 6 arb, cR(b), cP(b)], is
satisfiable. Intuitively, the problem is that we used arb to rewrite R(a) but they
both came from the same clause. Any descendant of R(a) would cause a similar
problem. To avoid that, we save literals with each ancestor literal, which record
where each clause came from. This is the only thing which is necessary to preserve
soundness. It is slightly more sophisticated than the model elimination technique,
which keeps track of the position of an ancestor literal in a clause.

Another problem if we are not careful is that local simplification may not be
complete. We will discuss this in a later section.

This paper is organized as follows. In Section 2 we give the necessary definitions.
In Sections 3 and 4, we give the modifications necessary to the inference and
deletion rules to handle local simplifiers. In Section 5, we give the local simplifi-
cation rules used to simplify clauses. Section 6 proves completeness. Section 7 is a
discussion of how the local simplification rules react in combination with some
well-known restrictions. In SLD resolution with ground nonequational clauses, we
show that every set of clauses has a linear refutation for every selection rule,
whereas other goal directed inference rules have only exponential refutations of
some sets of clauses with certain selection rules. This is for the nonequality case.
However, we believe our results are especially powerful with equality. Section 8
shows some ways that local simplifiers can be simplified. Finally, Section 9 shows
the relationship with related work, including model elimination.

2. PRELIMINARIES

We use the standard definitions of theorem proving (see Loveland, 1968; Loveland,
1978).

Definition 1. A term is built from function symbols, constants, and variables.
An atom is a predicate symbol applied to some terms. The equality symbol is a
distinguished binary predicate symbol (r), written in infix notation. For example
srt is an equality. Negative equalities c(srt) are written as sr3 t. A literal is an
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atom or a negated atom. If L is a literal, then L� is the negation of L; i.e., if L=A
then L� =cA and if L=cA then L� =A. An undecorated clause is a disjunction of
literals. Sometimes clauses will be viewed as multisets. We represent clauses with the
letters C and D, literals with L and M, and atoms with A and B.

We next give the definition of decorated clause as used in this paper. A decorated
clause is an (undecorated) clause with some literals attached to it, which can
be used to simplify the clause. These literals, which may be equations, are created
when the clause is created and inherited by descendants of the clause. These literals
are saved along with certain conditions that indicate when they may be used to
simplify the clause, remove a literal from the clause, or remove the entire clause.

Definition 2. A (decorated) clause is of the form C�(L1 , C1 , S1), ..., (Lm , Cm , Sm)�,
where C is an undecorated clause, and each (Li , Ci , Si) is a local simplifier on C.
Each Li is an ancestor literal, which is used for simplification of the clause. Each Ci

is a disjunction of literals, and each Si is a set of undecorated clauses. Si and Ci

determine when Li may be used for simplification. We use variables like . and 9
to represent sets of local simplifiers. Since they are sets, the order is unimportant.

When we refer to a clause, we may be referring to a decorated or an undecorated
clause, depending on the context.

Substitutions are defined as usual.

Definition 3. A substitution is a mapping from variables to terms, which is
the identity on all but finitely many variables. We identify a substitution with its
homomorphic extension. If _ is a substitution, then t_ represents the result of
applying _ to t. In general, (C�.�) _=C_�._�. If _ and ' are substitutions, then
_' is defined so that x_'=(x_) ' for all variables x. We say _�% if there is an '
such that _'=%. We call _ a unifier of s and t if s_=t_. We call _ a most general
unifier of s and t (written mgu(s, t)) if _ is a unifier of s and t and for all unifiers
% of s and t, _�%.

A multiset is an unordered collection with possible duplicate elements. We denote
the number of occurrences of an object x in a multiset S by S(x). A clause is viewed
as a multiset of literals. A reduction ordering < is a well-founded ordering which is
stable under context (i.e., if s<t then u[s]<u[t]) and stable under substitution
(i.e., if s<t then s_<t_). Let < be a reduction ordering on the literals, total on
ground terms. This ordering is extended to an ordering on the clauses by identifying
< with its multiset extension. In other words, if S and T are finite multisets,
then S<T if and only if there exists an L # T such that (L)>S(L) and for all
M>L, S(M)=T(M). We say that A is maximal in a multiset S if there is no B in
S such that B>A.

One key difference between the local simplifiers in this paper and the constraints
in other papers on constrained deduction is that we do not use the local simplifiers
to determine ground instances.

Definition 4. A ground clause (resp., term) is a clause (resp., term) without
variables. A substitution _ grounds a clause (resp., term) C if C_ is ground. In this
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paper, when we call _ a ground substitution, we mean that _ grounds certain terms
which are obvious from the context. The set of ground instances of C�.�, Gr(C�.� )
=[C_ | _ grounds C]. And Gr(S)=[Gr(C) | C # S].

The implication of this definition of ground instances is that it will not be necessary
to weaken local simplifiers when performing simplification and subsumption.

We will use the notation < to mean logical implication.

Definition 5. If S is a set of ground clauses and C is a ground clause or a
literal, then S<C if and only if C is true in every model of S. If T is a set of ground
clauses or literals, then S<T if and only if S<C for all C # T. In general, if S is
a set of clauses and C is a clause or literal, then S<C if and only if Gr(S)<Gr(C).
A clause C is satisfiable if and only if there is a model that makes C true. The empty
clause g is unsatisfiable. A set of clauses S is satisfiable if and only if some model
makes all of the clauses in S true.

A clause is redundant if it is implied by smaller clauses. The definition of redundancy
is adapted from Bachmair and Ganzinger (1994). Redundant clauses may be removed
because they are not needed for finding a proof.

Definition 6. Let T be a set of clauses. A clause C is redundant at T in S if for
all ground substitutions _ there are clauses D1 , ..., Dn # Gr(S), where n�0 such that

1. D1 , ..., Dn <C_, and

2. [Dj]<T_ for all j, 1� j�n.

C is redundant up to T in S if the < in condition 2 is replaced by �. For a clause
D, C is redundant at D in S if C is redundant at [D] in S. A clause C is redundant
in S if C is redundant at C in S.

The local simplifiers are added when a clause is generated and inherited from the
clause's ancestors. In the following definition, we show the meaning of the local
simplifiers.

Definition 7. The clause C�(L1 , C1 , S1), ..., (Lm , Cm , Sm)� is said to be correct
in S if, for each i,

1. Ci �C,

2. Ci 6 Li is redundant at Si in S, and

3. Li � Ci .

Conditions 1 and 3 are needed for soundness. Condition 2 will be needed for
completeness. It will assure us that a clause may be removed because the inference
creating it is redundant. We only need to know the maximal elements of Si so we
may remove everything else from the set.

For example, the clause P(a) 6 Q(b) 6 R(c)�(arb, Q(b) 6 R(c), [D, E])� is
correct in S if D=Q(b) 6 P(c) and E=R(c) 6 cP(c) 6 arb are clauses in S.

If a clause is ever created where the first two conditions of the definition hold,
but the third condition does not (i.e., for some i's, Li # Ci), then we may replace
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each local simplifier of the form (Li , Li 6 C$, Si) with (Li , C$, Si). The first two
conditions will still hold, so the clause is now correct. Therefore, when checking for
correctness of a clause, we only check the first two conditions. We assume that the
above transformation is performed whenever a clause is created.

3. THE INFERENCE RULES

In this section, we present the inference rules. They are the same as the inference
rules in Bachmair and Ganzinger (1994), except we show how the local simplifiers
are created by inference rules and later inherited by descendants of the clause.

Each inference rule will be of the form

C1 } } } Cn

C_
,

where n�1. The substitution _ is the most general unifier in the inference.
This definition means that, if C1 } } } Cn are existing clauses, then the clause C_

must be added to the set of clauses.

Definition 8. An inference rule is correct if, for all S such that C1 , ..., Cn # S
and C1 , ..., Cn are correct in S,

1. S<C_, and

2. C_ is correct in S.

To restrict the literals of a clause that may be involved in an inference, we
define a selection rule to select certain literals from the clause. (see Bachmair and
Ganzinger, 1994; Bachmair et al., 1995). Only the selected literals may be involved
in an inference.

Definition 9. A selection rule Sel is a function from a clause C to a subset of
the literals in C. If L # Sel(C) we say that L is selected in C. A selection function
is valid if for each C, either a negative literal is selected in C or all maximal literals
of C are selected in C.

Thus, for a valid selection rule, any clause containing a negative literal only needs
to select one literal, but it may be necessary to select more than one literal in a
positive clause. When the inference rules are given, we assume a selection rule has
been defined. A set of inference rules can be thought of as being instantiated by a
selection rule. It is known that a paramodulation inference system is complete if it
is instantiated by a valid selection rule. No invalid instantiations are known to be
complete.

The inference rules are now stated and proved to be correct.
Resolution is an inference rule for first order logic. It is also necessary in

combination with paramodulation for first order logic with equality. Although, if all
literals are encoded as equations, then resolution can be encoded by paramodulation.
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Resolution

C 6 A�.� cA$6 D�9�
(C 6 D�(A, C, [C6 A]), (cA$, D, [cA$ 6 D]), .$, 9$� ) _

,

where _=mgu(A, A$),3 A_ is selected in (C 6 A�.� ) _, and cA$_ is selected in
(cA$ 6 D�9� ) _.

Also, .$ is the same as . with the following exception. For any triple in . of the
form (Li , C$ 6 A, Si) (i.e., any triple where Ci contains the literal that has been
resolved upon), that triple must be replaced in .$ by the triple (Li , C$ 6 D, Si _

[D 6 cA$]). This preserves the fact that Ci �C 6 D, because of the assumption
that Li � Ci .

Similarly, 9$ is the same as 9, except that any triple in 9 of the form
(Mi , D$ 6 cA$, Ti) is replaced in 9$ by the triple (Mi , D$ 6 C, Ti _ [C 6 A]).

Proposition 10. Resolution is correct.

Proof. The premises imply the conclusion, but we must also show that the
conclusion is correct. First we note that the second parameter of each new local
simplifier in the conclusion is a subset of the clause, because C_�(C 6 D) _ and
D_�(C 6 D) _ and each local simplifier Ci or Di has been modified so that Ci_�
(C 6 D) _ and Di_�(C6 D) _.

Now we must check the second condition of the definition of a correct clause.
Trivially the new local simplifiers satisfy the condition, because (C6 A) _<A_6 C_
and (cA$ 6 D) _<cA$_ 6 D_. In addition, we must examine each local simplifier
that was modified by the inference. For each ground substitution ', there is some
S$�Si _' such that S$< (C$ 6 A 6 Li) _', therefore S$ _ [(cA$ 6 D) _']<
C$_' 6 D_' 6 Li_'. Similarly, there is some T $�Ti_' such that T $< (D$ 6 cA$
6 Mi) _', therefore T $ _ [(C6 A) _']<D$_'6 C_' 6 Mi_'. K

Factoring is needed in combination with resolution for completeness. However,
it is only necessary to factor positive literals.

Positive Factoring

C6 A 6 A$�.�
(C 6 A�.� ) _

,

where _=mgu(A, A$) and A_ is selected in (C6 A 6 A$�.� ) _.

Proposition 11. Positive factoring is correct.

The proof follows directly from the definition of correctness.
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Paramodulation

C 6 srt�.� L[s$] 6 D�9�
(C 6 L[t] 6 D�(srt, C, [C6 srt]), (sr3 t, D 6 L[t], [L[s$] 6 D]), .$, 9$� ) _

,

where _=mgu(s, s$), s_rt_ is selected in (C6 srt�.� ) _, L[s$] _ is selected in
(L[s$] 6 D�9� ) _, t_>3 s_, and s$ is not a variable.

Also, .$ is the same as ., except that any triple in . of the form (Li , C$ 6 srt, Si)
is replaced in .$ by the triple (Li , C$ 6 L[t] 6 D, Si _ [L[s$] 6 D]).

Similarly, 9$ is the same as 9, except that any triple in 9 of the form
(Mi , D$ 6 L[s$], Ti) is replaced in 9$ by the triple (Mi , D$ 6 C 6 L[t], Ti _

[C 6 srt]).
Paramodulation is an inference rule for first order equality that generalizes

the substitution of equals by equals. It reduces to Knuth�Bendix completion if all
clauses are unit equations.

Proposition 12. Paramodulation is correct.

Proof. The premises imply the conclusion, but we must also show that the
conclusion is correct. First, we note that C_�(C 6 D) _, D_�(C 6 D)C, and each
Ci and Di has been modified so that Ci_�(C6 D) _ and Di_�(C6 D) _.
Therefore the first condition holds.

Also, we see that for all ground substitutions ', (C6 srt) _'< (srt) _' 6 C_'
and (L[s$] 6 D) _'< (sr3 t) _' 6 D_' 6 L[t] _'. So trivially, each new local
simplifier satisfies the second condition. In addition, we must examine each local
simplifier that was modified by the inference. There is an S$�Si_' such that S$<
(C$6srt6Li) _', therefore S$ _ [(L[s$]6D) _']<C$_'6 L[t] _'6D_'6 Li_'.
Similarly, there is a T $�Ti _' such that T $< (D$ 6 L[s$] 6 Mi) _', therefore
T $ _ [(C 6 srt) _']<D$_' 6 C_' 6 L[t] _' 6 Mi _'. K

In paramodulation inference systems, in order not to lose completeness, we must
either allow paramodulation into the smaller side of an equation in some cases, or
we must add an inference rule called equation factoring. Here we show how the
equation factoring inference rule would be used in our system.

Equation Factoring

C 6 srt 6 s$rt$�.�
(C 6 tr3 t$ 6 s$rt$�.$� ) _

,

where _=mgu(s, s$), s_rt_ is selected in (C 6 srt6 s$rt$�.�) _, and t_>3 _.
Also, .$ is the same as ., except that any triple in . of the form (Li , C$ 6

srt, Si) is replaced in .$ by the triple (Li , C$ 6 tr3 t$ 6 s$rt$, Si).

Proposition 13. Equation factoring is correct.

Proof. The premise implies the conclusion and each Ci has been modified so
that Ci _�(C 6 tr3 t$ 6 s$rt$) _. In addition, for any modified local simplifier and
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ground substitution ', there is some S$�Si _' such that S$< (C$ 6 srt 6 Li) _',
therefore S$< (C$ 6 tr3 t$ 6 s$rt$ 6 Li) _'. K

The last inference rule necessary for completeness is equation resolution. It
generalizes the notion of removing trivial disequations. An alternative to equation
resolution is to add the reflexivity axiom xrx to the set of clauses.

Equation Resolution

C 6 sr3 t�.�
(C�.$� ) _

,

where _=mgu(s, t) and s_r3 t_ is selected in (C 6 sr3 t�.� ) _.
Also, .$ is the same as ., except that any triple of the form (Li , C$ 6 sr3 t, Si)

is replaced by (Li , C$, Si).

Proposition 14. Equation resolution is correct.

The proof follows directly from the definition of correctness.

4. THE DELETION RULES

In this section we present some well-known deletion rules, (e.g., subsumption and
demodulation) to indicate how they are affected by the local simplifiers. The reader
will note that, unlike other theorem provers with efficiency constraints, the local
simplifier on the simplifier and subsumer do not have to be modified in order to
perform the deletion. Recall that the difference between an inference rule and a
deletion rule is that an inference rule must be performed and a deletion rule may
be performed if desired. We present deletion rules in the form:

T O T $,

where T and T $ are sets of clauses.
This means that, if T is a subset of the existing set of clauses, then we may delete

all the members of T and add all the members of T $. Generally T and T $ have some
elements in common. If those common elements exist, then we may delete the members
of T"T $ as long as we add the members of T $"T. Sometimes T will be empty, meaning
that the members of T may be deleted without adding anything. As in inference
rules, the members of T are called the premises, and the members of T $"T are the
conclusions. A deletion rule may be performed at any time. We will define it so that
the deleted clauses are redundant.

In addition to redundant clauses, we need to define redundant inferences (Bachmair
and Ganzinger, 1994). Redundant inferences do not need to be performed because
they are not needed for the proof.

Definition 15. An inference

C1 } } } Cn

C_
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is redundant in S if any of C1_, ...Cn _ is redundant or if C_ is redundant at Cn_
in S.

We define a function called height for each clause.

Definition 16. For all initial clauses C, height(C)=[C]. If a clause C_ is
created by the inference

C1 } } } Cn

C_

then height(C_)=[Cn_]. However, as soon as C_ has been used in an inference or
a deletion rule, then height(C_)=[C_].

This function will be used to show redundancy. If a clause C is redundant at
height(C), then either C is redundant or the inference used to create C is redundant.
In either case, C can be removed.

Now we define what it means for a deletion rule to be correct.

Definition 17. A deletion rule is correct if, for all S such that T�S and each
C in T is correct in S,

1. S<C for all C # T $,

2. C is correct in S for all C # T $, and

3. for each member C of T"T $, either C is redundant at height(C) in S"T _ T $
or there is a member D of S"T _ T $ such that D_=C for some _.

If T $=<, cases 1 and 2 are not necessary and case 3 says that each member of T
is redundant in S.

As mentioned above, the clauses deleted by correct deletion rules are redundant
or were produced by a redundant inference. In this section, we will present deletion
rules which remove redundant clauses. In the section on local simplification, we will
present deletion rules which remove clauses produced by redundant inferences.

The deletion rules are as follows:

Subsumption

[C�.�, C% 6 D�9�] O [C�.$�],

where % is any substitution, and .$=. _ [(Li , Ci , Si) # 9 | Ci �C].
Subsumption is interesting because in constrained theorem proving systems we

must remove constraints from . in order to perform the subsumption, whereas in
our case we do not have to remove local simplifiers from .. In fact, we may actually
add local simplifiers to ..

Proposition 18. Subsumption is correct.

Proof. The left premise is smaller than and implies the right premise, therefore
the right premise is redundant. But this deletion rule is slightly different from the
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other deletion rules. In this rule, we modified .. So we must show that the modifi-
cation of . is correct. The only thing that needs checking is that any (Li , Ci , Si)
added to . has the property that Ci �C. But that must be true because that is the
condition that allows us to add it. K

Unit Simplification

[L�.�, L� % 6 D�9�] O [L�.�, D�9$�],

where % is any substitution.
9$ is the same as 9, except that every local simplifier of the form (Li , L� %6 C$, Si)

is replaced by (Li , C$, Si _ [L]).

Proposition 19. Unit simplification is correct.

Proof. The conclusion is implied by the premises. The right premise is redundant
in the presence of the left premise and the conclusion. We must show that the
conclusion is correct. Since the right premise is correct, we know that C$�D. Also,
for any modified local simplifier and ground substitution ', there exists an S$�Si '
such that S$< (L� % 6 C$ 6 Li) ', therefore S$ _ [L']< (C$ 6 Li) '. K

Demodulation

[srt�.�, L[s%] 6 D�9�] O [srt�.�, L[t%] 6 D�9$�]

for any substitution %, if s%>t%.
The local simplifier 9$ is the same as 9, except that every occurrence of

(Li , L[s%] 6 C$, Si) is replaced by (Li , L[t%] 6 C$, Si _ [srt]).

Proposition 20. Demodulation is correct.

Proof. The conclusion is implied by the premises. The right premise is redundant
in the presence of the left premise and the conclusion. We must show that the
conclusion is correct. Since the right premise is correct, we know that C$6 L[t%]�D.
For any modified local simplifier and ground substitution ', there exists an S$�Si'
such that S$< (L[s%] 6 C$ 6 Li) ', therefore S$ _ [s'rt']< (L[t%] 6 C$ 6 Li) '.

K

We now define other deletion rules, which are often not presented in theoretical
papers because they follow from the definition of redundancy. However, these
are rules which are often used in practice. We present them here to make explicit
the way that local simplifiers are handled. Each of the correctness proofs follows
immediately from the definition of correctness

Tautology Deletion

[C 6 A 6 cA�.�] O <
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Proposition 21. Tautology deletion is a correct deletion rule.

This is trivially redundant, i.e., n=0 in the definition of redundancy.

Equational Tautology Deletion

[C 6 srs�.�] O <

Proposition 22. Equational tautology deletion is correct.

Thinning

[C 6 L 6 L�.�] O [C 6 L�.�]

Proposition 23. Thinning is correct.

Equational Thinning

[C 6 sr3 s�.�] O [C�.$�]

The local simplifier .$ is the same as ., except that any triple of the form
(Li , C$ 6 sr3 s, Si) is replaced by (Li , C$, Si).

Proposition 24. Equational thinning is correct.

Proof. The premise implies the conclusion, and the conclusion is smaller than
and implies the premise. To see that the conclusion is correct, we note that any S$
that implies some instance of C$ 6 sr3 s 6 Li must also imply the same instance
of C$ 6 Li . K

5. LOCAL SIMPLIFICATION

In the previous sections we showed how the local simplifiers are generated and
how they are inherited from their ancestors. In this section, we show the significant
result of this paper. We show how the local simplifiers can be used to perform
simplifications on their associated clauses. The rules in this section are called local
simplification rules. The first rule, called local subsumption, shows how the local
simplifiers of a clause can be used to delete that clause. The local simplification
rules local unit simplification, local demodulation, and self demodulation limit the
search space by simplifying a clause and also may shorten the length of the proof.
We will have a strong and weak version of each local simplification rule. The strong
version allows us to delete a clause, while the weak version does not.

Local simplification rules ave deletion rules which may be applied to a clause
immediately after that clause is formed by an inference. This is the reason we
have defined the function height. In practice it makes sense to simplify a clause
immediately after it is created. Therefore, as defined in the section on deletion rules,
when a clause C is created, height(C) is set to detect if the inference creating C was
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redundant. However, an implementation may decide to perform local simplification
later. In that case, if a clause has been used in an inference or another deletion rule,
height(C) is set to detect that C is redundant.

A local simplification rule is a special deletion rule that uses the information
stored with each clause to detect if the inference producing a clause is redundant.
Therefore, it is defined as a deletion rule. We call it a strong local simplification
if it is a correct deletion rule. We call it a weak local simplification if it satisfies
Properties 1 and 2 of the definition of a correct deletion rule. In the case of a weak
local simplification, it is possible to add the new clauses which are generated, but
not to delete the old clauses. This could potentially be useful, because there are
some cases when a clause can be simplified even though the original clause may not
be deleted.

The first local simplification we present is called local subsumption because
we show that a clause may be removed since a subset of it is implied by smaller
clauses.4

Local Subsumption

[C6 L�.[(L$, Ci , Si)]�] O <,

where %=mgu(L, L$), (C 6 L) %=C 6 L,5 and Si%<height(C 6 L�.�). Recall that
height(C 6 L�.� ) is the right premise of the inference which produced C 6 L when
C6 L is created. If local subsumption is performed after C 6 L is used in an
inference or a deletion rule, then the height is the clause itself. This is a strong local
simplification.

Proposition 25. Local subsumption is correct.

Proof. We assume that C6 L�.[(L$, Ci , Si)]� is correct. We must show that it
is redundant at height(C 6 L�.� ) in S. Since it is correct, we know that for all
ground substitutions ', there exists an S$ such that S$�Si %' and S$<L%' 6 Ci %'.
Since Ci%'�C%' 6 L%', we know S$<C%' 6 L%'=C' 6 L'. And S$�Si %'<
height(C 6 L�.� ) '. So C 6 L is redundant at height(C 6 L�.�) in S. K

Note that it is not enough that the ancestor literal in the local simplifier
matches onto the literal in the clause. For instance, if we have the clause q(x) 6

p(a)�( p(x), q(x), Si)� then for all ground substitutions ' there exists an S$�Si '
such that S$<( p(x) 6 q(x)) ' but it is not necessarily the case that S$< (q(x) 6 p(a)) '.
Similarly, given the clause q(a) 6 p(x)�( p(b), q(a), Si)� then there exists an S$ such
that S$<p(b) 6 q(a) but it is not necessarily the case that for every ground
substitution ', S$< (q(a) 6 p(x)) '. So it is also not enough to say that the literal
in the clause matches onto the ancestor literal in the local simplifier.

In local unit simplification, one of the literals in the clause may be deleted.
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Local Unit Simplification

[C6 L� �.[(L$, Ci , Si)]�] O [(C�.$�) %],

where %=mgu(L, L$) and L� #3 Ci . This is the weak version of local unit simplifica-
tion. The strong version is when, in addition, C%=C.

The local simplifier .$ is the same as ., except that any local simplifier of the
form (Lj , C$ 6 L� , Sj) is replaced by (Lj , C$ 6 Ci , Sj _ Si).

Proposition 26. Local unit simplification is correct.

Proof. We assume that C6 L� �.[(L$, Ci , Si)]� is correct. We must show that
(C�.$� ) % is correct. We see that C$ 6 Ci �C because L� � Ci . For every ground
substitution ', there exists an S$�Si%' such that S$<Ci%' 6 L$%'. Also, there
exists an S"�Sj%' such that S"<C$%' 6 L� %' 6 Lj %'. Therefore, S$ _ S"<Ci %'
6 C$%' 6 Lj%'.

To prove condition 2, S$ _ [C%' 6 L� %']<C%' since Ci �C. So the weak
version of local unit simplification is correct.

For the strong version, C%=C<C6 L� , therefore C 6 L� is redundant at
height(C 6 L� �.� ) in S _ [C%]. K

As an example of the use of local unit simplification, consider the clauses p 6 q,
cq 6 r and cr 6 cq. If we resolve the first two clauses, we get p 6 r�(q, p,
[ p 6 q]), (cq, r, [cq 6 r])�. This can now be resolved with cr 6 cq resulting in
p6 cq�(q, p, [ p 6 q]), (cq, g, [cq 6 r, cr 6 cq]), (r, p, [ p 6 r]), (cr, cq,
[cq 6 cr])�. Note that by Definition 7, the local simplifier (cq, cq, [cq 6 r,
cr 6cq] should have appeared in the clause. However, by the assumption following
Definition 7, the local simplifier was modified to (cq, g, [cq 6 r, cr 6 cq]. We
can perform a unit simplification to remove the literal cq resulting in the clause p.6

To show why we need the condition that L� � Ci , consider the following example.
Suppose we are given the clauses p 6 q, cq 6 r and cp 6 cq, with q> p>r. If
we resolve the first two clauses, we get p 6 r�(q, p, [ p 6 q]), (cq, r, [cq 6 r])�.
This can now be resolved with cp 6cq resulting in cq 6 r�(q, cq, [ p 6 q,
cp 6 cq]), (cq, r, [cq 6 r]), ( p, r, [ p 6 r]), (cp, cq, [cp 6 cq])�. If we
ignored the condition, we could perform a unit simplification to remove the literal
cq resulting in the clause r with some local simplifiers. This does not follow from
the original clauses. However, the second local simplifier allows us to perform a
local subsumption to remove the clause entirely. Of course, we could remove the
clause anyway because it already exists.

For the strong version of local unit simplification, it is not enough that the
ancestor literal in the local simplifies matches onto the literal in the clause. For
instance, if we have the clause q(x) 6 cp(a)�( p(x), q(x), Si)� then for all ground
substitutions ', there exists an S$�Si ' such that S$< ( p(x) 6 q(x)) '. Therefore
S$ _ [q(x) 6cp(a)]<q(a). So we are allowed to add the clause q(a) but we may
not delete q(x) 6 p(a). However, given the clause q(a) 6 cp(x)�( p(b), q(a), Si)�
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then for every ground substitution ' there exists an S$�Si' such that S$ _

[q(a) 6 cp(x)]< p(b) 6 q(a) but it is not necessarily the case that S$<q(a).
Now we present two forms of local demodulation. The first version is similar to

local unit simplification, except that it deals with equalities.

Local Demodulation

[C 6 L[s$]�.[(srt, Ci , Si)]�] O [(C6 L[t]�.$� ) %],

where %=mgu(s, s$) and L[s$] � Ci . This is the weak version. The strong version is
where, in addition, Si%<height(C6L[s$]�.�), s%>t%, and (C6L[s$])%=C6L[s$].

The local simplifier .$ is the same as ., except that any local simplifier of the
form (sr3 t, C$ 6 L[s$], Sj) is replaced by (sr3 t, C$ 6 L[t], Sj), and any local
simplifier of the form (Lj , C$ 6 L[s$], Sj), where Lj {(sr3 t), is replaced by
(Lj , C$ 6 Ci 6 L[t], Sj _ Si).

Proposition 27. Local demodulation is correct.

Proof. We assume that C 6 L[s$]�.[(srt, Ci , Si)]� is correct. We must show
that (C 6 L[t]�.$� ) % is correct. For the case where Lj is different from sr3 t, we
see that C$ 6 Ci 6 L[t]�C6 L[t] because L[s$] � Ci . In addition, for every
ground substitution ', there exists an S$�Si %' such that S$< (Ci 6 srt) %'. Also,
there exists an S"�Sj %' such that S"< (C$ 6 L[s$] 6 Lj) %'. Therefore, S$ _ S"<
(Ci 6 C$ 6 L[t] 6 Lj) %'.

The case where sr3 t is simpler. In that case, S"< (sr3 t 6 C$ 6 L[s$]) %'.
Therefore S"< (sr3 t 6 C$ 6 L[t]) %'.

For condition 2, S$ _ [C%' 6 L[s$] %']<C%' 6 L[t] %' since Ci �C. This
proves the correctness of weak local demodulation.

Now we prove the strong version. Since S$< (Ci 6 srt) %' and Ci%'�C%',
then S$ _ [(C 6 L[t]) %']< (C 6 L[s$]) %'=(C 6 L[s$])'. And since S$�Si %'
<height(C 6 L[s$]�.�) ', C6 L[s] is redundant at height(C 6 L[s$]�.� ) in
S _ [(C 6 L[t]) %]. K

There is a generalization of the paramodulation rule called parallel paramodula-
tion. In that rule, whenever C 6 srt is paramodulated with L[s$] 6 D, every
position where s$ is a subterm of L[s$] 6 D is replaced by t. This cuts down the
search space, especially if there are lots of clauses involving equations with a left
hand side of s. We can simulate that inference rule because paramodulation would
save srt as an ancestor literal in a local simplifier and local demodulation would
be used to apply it to all the other positions in which s$ appears.

We give an example of local demodulation. Suppose we have an ordering where
all equality predicates are smaller than all nonequality predicates. Consider the
paramodulation of crd 6 arb and P(a) 6 Q(c). The result is crd 6 P(b) 6

Q(c)�.1�, where one of the local simplifiers in .1 is (arb, crd, [arb 6 crd]).
If we then resolve this clause with cQ(c) 6 R(a), we get crd 6 P(b) 6 R(a)�.2�,
and .2 also contains the local simplifier (arb, crd, [arb 6 crd]). Then we can

117LOCAL SIMPLIFICATION



File: DISTL2 269017 . By:CV . Date:16:03:98 . Time:14:26 LOP8M. V8.B. Page 01:01
Codes: 3623 Signs: 2646 . Length: 52 pic 10 pts, 222 mm

apply the local demodulation rule to simplify crd6 P(b) 6 R(a) to crd6 P(b)
6 R(b). Supposing that we did not have the local demodulation rule. If cQ(c) was
selected, we could have instead performed a paramodulation among the clause
crd 6 arb to result in a clause which factored out to the same clause, but we
would not have known that we could delete the clause crd 6 P(b) 6 R(a), and if
the equation crd had disappeared by a later inference, we could not have even
done the factoring. That illustrates the benefit of local demodulation.

For the same reasons as in local unit simplification, in order to perform strong
local demodulation we needed to require that (C 6 L[s$]) %=C 6 L[s$]. We also
needed that Si<height(C 6 L[s$]�.� ) to preserve completeness. This is so we can
guarantee that a clause is being simplified by smaller clauses.

The next version of the local simplification rule does not use the local simplifier
for simplification. Instead, it uses a negative equality in the clause. The strong
version of this rule is originally from Boyer and Moore (1979) and called contextual
rewriting. It does not use the local simplifiers, but we present it here because it fits
neatly into our framework.

Self Demodulation

[sr3 t 6 C6 L[s$]�.�] O [(sr3 t 6 C6 L[t]�.$� ) %]

This is the weak version. The strong version is where % is the identity and s>t.
The local simplifier .$ is just like ., except that any local simplifier of the form

(Lj , C$ 6 L[s$], Sj) is replaced by (Lj , C$ 6 L[t] 6 sr3 t, Sj).

Proposition 28. Self demodulation is correct.

Proof. We assume that sr3 t 6 C 6 L[s$]�.� is correct. We must show that
(sr3 t 6 C 6 L[t]�.$� ) % is correct. Trivially, C$6 L[t] 6 sr3 t�sr3 t 6

C6 L[t]. In addition, for all ground substitutions ', there exists an S$�Sj%' such
that S$< (C$ 6 L[s$] 6 Lj) %'. Therefore, S$< (C$ 6 L[t] 6 sr3 t 6 Lj) %'. For
condition 2, (sr3 t 6 C 6 L[s$]) %'< (sr3 t 6 C6 L[t]) %'. For the strong version,
(sr3 t 6 C 6 L[t]) %'< (sr3 t6 C 6 L[s]) ', so sr3 t 6 C 6 L[s] is redundant at
height(sr3 t 6 C 6 L[s$]�.� ) in S _ [(sr3 t 6 C 6 L[t]) %]. K

6. COMPLETENESS

In this section we prove the completeness of the inference system given in this
paper. The definitions of correctness imply that the inference system is sound.
To prove completeness, we use results from Bachmair and Ganzinger (1994) and
Bachmair et al. (1995).

From Bachmair and Ganzinger (1994), we get the definition of a fair theorem
proving derivation meant to model an automated theorem prover.

Definition 29. A (finite or countably infinite) sequence S0 , S1 , S2 , ... of sets of
clauses is called a theorem proving derivation if each set Si+1 can be obtained from
Si by adding a clause which is a consequence of Si or by deletion of a redundant
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or subsumed clause in Si . A clause C is said to be persisting if there exists some j
such that for every k� j, C # Sk . The set of all persisting clauses, denoted S� , is
called the limit of the derivation.

Let Sel be a selection rule. Let ISel be the inference rules in this paper instantiated
by Sel. A set of clauses S is Sel-saturated if every inference from ISel applied to
clauses in S is redundant in S. A theorem proving derivation is called Sel-fair if S�

is Sel-saturated. A derivation is called fair if it is Sel-fair for some valid Sel.

The set of inference rules proved complete in Bachmair and Ganzinger (1994)
and Bachmair et al. (1995) is just ISel for a valid Sel, ignoring the local simplifiers.
Therefore, the completeness results from those papers can be used. This illustrates
the beauty of that abstract definition of an inference system. We do not need to
reprove their completeness proof. We only need to apply it to our situation. The
way it has been applied to our situation is to show that the local simplification rules
remove redundant clauses, which we have done by showing the correctness of those
rules.

Theorem 30. Let S0 , S1 , S2 , ... be a fair theorem proving derivation. If S0 is
unsatisfiable then g # S� .

See Bachmair and Ganzinger (1994) and Bachmair et al. (1995) for the proof of
the theorem. This says that any fair theorem proving derivation will produce the
empty clause. We must show that this completeness result applies to the local
simplification inference system. Let D be the set of deletion rules in this paper and
L be the set of local simplification rules. Then the following theorem immediately
follows from the correctness of the local simplification rules.

Theorem 31. Let S0 be a set of (undecorated ) clauses. Consider the sequence
S0 , S1 , S2 , ..., where each Si+1 is obtained from Si by applying a rule from I, L, or
D to clauses from Si . If the sequence is fair, then g # S� if and only if S0 is
unsatisfiable.

Proof. Since the inference rules I are the same as in Bachmair and Ganzinger
(1994) and Bachmair et al. (1995), the proof follows from the correctness of the
inference and deletion rules. By the correctness of these rules, each clause that is
created is correct. Therefore, each clause that is added, logically follows from the
existing clauses. Also, by definition of correct deletion rule, each clause that is
removed is redundant or the inference that has just created it is redundant. So the
proof follows directly from the previous theorem. K

7. COMPLEXITY OF SLD RESOLUTION

When restrictions on inference rules are proposed, it is generally not shown
theoretically that the restriction makes theorem proving more efficient. Ideally, it
would be helpful to show that a restriction reduces the search space. We cannot
show that theoretically in this case. But we can show theoretically that local simpli-
fication reduces the sizes of the proofs in some settings. In particular, we show that
for ground horn clauses, with any selection rule, SLD resolution has a polynomial
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proof (this yields a variant of an algorithm from Dowling and Gallier (1984).
However, without local simplification, we exhibit a set of clauses and a selection
rule so that SLD resolution only has exponential proofs.

A horn clause is a clause with at most one positive literal. A clause with exactly
one positive literal is called a program clause and a clause with no positive literals
is called a goal clause. SLD resolution is an inference system containing the rules
given in this paper applied to horn clauses, except that the selection rule is modified
so that the positive literal is selected in each program clause and a negative literal
is selected in each goal clause. Notice that the resolution inference rule is the only
one that applies to horn clauses. SLD resolution has been proved complete for horn
clauses. The SLD resolution selection rule cannot be encoded by the selection rule
in this paper. Therefore, to discuss local simplification in SLD resolution, we must
show how to use the selection rule in this paper to show completeness of SLD
resolution. First we define some sets used to give an ordering.

Definition 32. Given a set S of clauses, we define a hierarchy of sets of positive
literals. Let M0=[A | A # Gr(S)]. For n�0, Mn+1=[A | cB1 6 } } } 6 cBm 6

A # Gr(S) and [B1 , ..., Bm]�Mn]. Let M�=�n�0 Mn . If a literal A is in M0 , we
say that A is at level 0. If A is in Mn+1 but not in Mn , we say that A is at level
n+1. Now we define a total ordering o on the ground literals with the property
that for all positive ground literals A and B, AoB if

�� A is at level i, B is at level j and i> j or

�� A � M� and B # M� .

We have not specified how to compare A and B if they are both at level i for some i,
or if neither are in M� . In those cases we do not care. The ordering is extended
to negative literals so that, for all i, cAoB for all literals A, B at level i. Also
AoB if and only if cAocB.

Using this ordering, we can prove some facts about ground horn clauses. First
we define the following sets given a set S of clauses from which M0 , M1 , M2 , ...
have been defined. Let T0=[C | _A # C such that A � M�]. Let T1=[C | _cA # C
such that A � M�]. T2=[C | _cA, B # C such that A is at level i, B is at level j
and i� j].

Proposition 33. Let C be a ground horn clause in S. If C # T2 then C is
redundant in S.

Proof. Let C be of the form cA 6 B 6 1, where A is at level i, B is at level j,
and i� j. Then there must be a set of clauses [C1 , ..., Cn]�S which implies B such
that each Ck is smaller than C. Therefore C is redundant in S. K

Proposition 34. Let C1 and C2 be ground horn clauses in S. If C1 # T0 _ T1 or
C2 # T0 _ T1 and D is the conclusion of a resolution inference among C1 and C2 , then
D # T0 _ T1 .

Proof. Let C1=1 6 A and C2=cA6 2 such that C1 or C2 is in T0 _ T1 . If
A # M� then there exists some literal B or cB in 1 or 2 such that B is not in M� .
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Therefore D # T0 _ T1 . If A � M� then there exists some literal cB in 1 such that
B is not in M� so D # T0 _ T1 . K

We define a selection rule to be an SLD selection rule if it selects a negative literal
in each goal clause and the positive literal in each program clause. We define a
selection rule to be a max selection rule if it selects a negative literal in each goal
clause and all maximal literals in each program clauses. An inference using an SLD
selection rule is called an SLD inference. An inference using max selection rule is
called a max inference. Two selection rules are called compatible if they select the
same literal in each goal clause. We have the following useful proposition.

Proposition 35. Let SelSLD be an SLD selection rule and SelMax be a max
selection rule, such that SelSLD is compatible with SelMax . If C � T0 _ T1 _ T2 , then
SelSLD and SelMax select the same literal in C.

Proof. If C is a goal clause, then the proposition is true by compatibility. If C
is a program clause not in T0 _ T1 _ T2 then C is of the form 1 6 A where A is
at level j for some j and each B # 1 is at level i for some i such that i< j. Therefore,
A is maximal in C. So SelMax and SelSLD both select A. K

Now we can prove the completeness of SLD resolution using the completeness
of max resolution. This will show that local simplification can be performed in SLD
resolution without losing completeness.

Theorem 36. Let Sel be an SLD selection rule. Let S be a set of unsatisfiable
horn clauses. Let S0 , S1 , S2 , ... be a Sel-fair theorem proving derivation from S.
Then g # S� .

Proof. Let S* be the set of clauses formed by closing S� under nonredundant
max inferences for some max selection rule compatible with Sel. By Proposition 35,
all of these max inferences involve some clause in T0 _ T1 _ T2 . Otherwise, they would
have already been performed and would now be redundant. By Proposition 33, none
of the max inferences involve clauses from T2 . Therefore, all the max inferences involve
some clause from T0 _ T1 . By completeness, we know that g # S*. By Proposition 34,
the proof of g does not involve clauses from T0 _ T1. Therefore, g # S� . K

This shows the completeness of SLD resolution. These results are similar to results
from Bachmair and Ganzinger (1991). It shows that all the notions of redundancy
apply to SLD resolution. Therefore local simplification applies. Now we show
that any set of ground horn clauses has a polynomial local simplification proof
under any SLD selection rule. Then we will show this is not the case without local
simplification.

Theorem 37. Let S be an unsatisfiable ground set of clauses and Sel be an SLD
selection rule. Let n be the number of distinct positive literals in S. Then S has a
proof, using selection rule Sel, containing at most n+1 clauses.

Proof. We may assume that S contains no clauses from T0 _ T1 _ T2 and only
one goal clause. Otherwise, we may remove clauses to make it so without disturb-
ing unsatisfiability. In addition, we assume a proof where local unit simplification
is applied whenever it is applicable. Each inference performed is a resolvent among
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a goal clause C and a program clause of the form A 6 1. This generates a new goal
clause D which inherits all the local simplifiers of C with modifications and adds
one new local simplifier of the form (A, 1, [A6 1]) to the new goal clause. Since
A � T0 _ T1 _ T2 , we know that BOA for all B # 1. For the same reason, further
inferences can only make the elements of 1 smaller. Therefore, every local simplifier
whose ancestor literal is positive will be of the form (A, 1, S), where every element
of 1 is smaller than A. That means that whenever A appears in a clause with local
simplifier (A, 1, S), A will be immediately removed from the clause since A � 1.
Therefore it will only be possible in the proof to perform one inference containing
A as a positive literal, which implies that the length of the proof will be the number
of positive literals removed plus one for the original clause. K

However, without local simplification rules, there are some sets of ground horn
clauses and SLD selection rules which only have exponential proofs. Consider the
following set of clauses.

cp1

p1 6 cp2 6 cp3

p2 6 cp3 6 cp4

b

pn&2 6 cpn&1 6cpn

pn&1 6 cpn

pn

Suppose that the cpi with the largest value of i is selected in each goal clause.
Then each clause with a positive pi will be used fib(i) times in any proof, where
fib(i) is the ith Fibonacci number. therefore the proof length is exponential in n.
There are some selection rules which have linear proofs for this set of clauses but
only if negative factoring is allowed. However, it is impossible to know what is a
good selection rule in advance, and negative factoring is rarely used in SLD
resolution. Of course other resolution refutations always give linear proofs for horn
clauses, but they are not goal directed.

8. SIMPLIFYING LOCAL SIMPLIFIERS

Now we show some useful local simplifier simplifications, which either remove
local simplifiers that are no longer useful or move local simplifiers to a place where
they will be more useful.

Suppose we have a clause of the form C�(L, L� 6 C$, S), .�. The local simplifier
(L, L� 6 C$, S) cannot be used for any of the local simplification rules, so we remove
the local simplifier and convert the clause to C�.�.

If a clause is of the form C�(L, C, S), .�, then the local simplifier (L, C, S) is
also useless, because since L depends on the whole clause it can never be used for

122 CHRISTOPHER LYNCH



File: DISTL2 269022 . By:CV . Date:16:03:98 . Time:14:26 LOP8M. V8.B. Page 01:01
Codes: 3651 Signs: 3234 . Length: 52 pic 10 pts, 222 mm

any local simplifications. So we remove the local simplifier and convert the clause
to C�.�.

The above local simplifier modifications only remove information that is no
longer necessary. However, the following local simplifier simplification allows us to
use local information globally. Suppose we have a local simplifier of the form
C�(L, g, S), .�. This says that L is true by equations less than or equal to S and
depends on nothing in the clause. A local simplifier of this form could arise, because
a local simplifier of the form (L, L, S) is converted into (L, g, S). Since L depends
on nothing in C, it may be useful for simplifying other clauses. So we may remove
it from this clause and add it to a list of global simplifiers. Then (L, g, S) may be
treated as if it was a local simplifier in every clause.

For a particular example, consider a unit clause. Every local simplifier in a unit
clause depends either on the entire clause or on nothing. In the first case, the local
simplifier is removed. In the second case, the local simplifier is moved to a set of
global simplifiers.

We note that in every case it is possible to take a local simplifier (L, C, S) and
use it as a global simplifier. However, to apply it to a clause D, it is necessary that
C�D, which is not likely to be the case. Therefore, we think that in practice it only
makes sense to make it a global simplifier when C=g, or possibly when C
contains only one literal. Otherwise, the storage of it might not be worth the limited
number of times it is used.

9. CONCLUSION

We have shown the completeness of the local simplification inference system in
combination with a selection rule. Instead of a selection rule, most theorem provers
use other kinds of restrictions on the inference rules, such as ordered resolution,
hyperresolution, set of support resolution, semantic resolution, SLD resolution,
ordered paramodulation, strict superposition, and hyperparamodulation. All of
these restrictions can be simulated by the selection rule we give. In the next few
paragraphs, we show how these inference rules can be proved complete by encoding
them with valid selection rules. Therefore the local simplification rules apply. We
discuss how the local simplification rules affect the efficiency of each selection rule.

Ordered resolution is the resolution inference system where all maximal literals
are selected in each clause. Local simplification has a limited benefit for ordered
resolution. For a ground clause C�(Li , Ci , Si), .� formed by ordered resolution, all
literals in Ci are less than Li and Ci<Si , so the local simplification rules have no
benefit and will never be able to be used. This illustrates the reason that ordered
resolution is an efficient inference rule. It prevents the need to resolve a literal in
a clause which was already resolved and removed by an ancestor of the clause.
Strict superposition is the paramodulation inference system where all maximal
literals are selected in each clause. The above property for ordered resolution is no
longer true in this setting, so the local simplifications rules are useful. Therefore, we
believe that the greatest benefit of local simplification is in the paramodulation
setting.
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Local simplification has more of a benefit when combined with the other resolu-
tion restrictions. Many of them are goal directed, so they cannot have the property
mentioned of ordered resolution above. Local simplification can be seen as a way
of partially retrieving that property.

Hyperresolution is another useful restriction for first order logic. It is a resolution
inference system which resolves all the negative literals in a clause at the same time,
by positive clauses (clauses containing only positive literals). The conclusion of a
hyperresolution inference is a positive clause. Hyperresolution can be simulated by
a selection rule which always selects some negative literal if a clause has one. This
generates intermediate clauses, but each intermediate clause has a negative literal
selected so it cannot be used for anything else but an intermediary of a hyper-
resolution inference. The local simplification rules are helpful in combination with
hyperresolution. Hyperparamodulation is the inference system into which all negative
literals in a clause are paramodulated by positive clauses until another positive
clause results. This can be viewed as one inference as in hyperresolution or it can
be encoded like hyperresolution, where a negative literal is selected whenever
possible and lots of intermediate clauses are added which can only serve as intermediate
clauses.

Semantic resolution is an inference rule where a model I is given and no two
clauses are resolved if they are made true by I. In set of support resolution, no two
initial clauses are resolved if they are made true by I. These two inference rules can
be shown equivalent to hyperresolution under an appropriate mapping from literals
true in I to negative literals. The mapping is the following. Consider a set S of
ground clauses and I a model. Let S$ be a new set of clauses, except that each literal
L in S which is made true by I is mapped to a literal cAL in S$ and the comple-
ment of L is mapped to AL . Then S is satisfiable if and only if S$ is satisfiable and
hyperresolution from S derives the empty clause if and only if semantic resolution
from S$ derives the empty clause. This proves that semantic resolution is complete
in the ground case. Therefore, by a standard lifting argument, semantic resolution is
complete in general. This same argument proves that set of support resolution complete.
These arguments do not work for equality because paramodulation inferences are
not preserved by the translation. In fact, set of support paramodulation is not
complete.

In Section 7, we showed how to simulate SLD resolution. We also showed that
for every selection rule, every ground set of unsatisfiable horn clauses has an SLD
refutation (with local simplification) that is linear in the number of literals. However,
we exhibit an unsatisfiable set of horn clauses and a selection rule where every SLD
refutation (without local simplification) is exponential in the number of literals.
Other resolution proof strategies always have linear refutations for horn clauses,
but they are not goal directed.

Model elimination theorem provers (Loveland, 1968; Loveland, 1978) also employed
the strategy of saving literals involved in a resolution so that they can be used to
simplify the clause. In model elimination, there are two kinds of literals: B-literals
which are the literals in the clause and A-literals (ancestor literals) which are the
literals we put in local simplifiers. In model elimination, the literal resolved against
is stored as an A-literal. The position of the A-literal in the clause tells which
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literals it can simplify. In local simplification, we use the second parameter of the
local simplifier to tell which literals can be simplified. The reduction rule of model
elimination is similar to the weak unit simplification rule given in this paper. We
show how to do this in a resolution framework and show that local simplification
is compatible with restrictions and deletion rules. It is our strong local simplifica-
tion rules that exploit redundancy criteria and allow clauses to be removed. We
show local simplification in a paramodulation setting, combined with the other
known restrictions of paramodulation and deletion rules. The reduction rule from
model elimination with paramodulation is similar to weak local demodulation,
however function reflexivity and paramodulation into variables is required for
completeness and it is not compatible with deletion rules or rewrite techniques
(Loveland, 1978).

In this paper, we take advantage of the powerful redundancy criteria of Bachmair
and Ganzinger (1994). We save equations as ancestor when each clause is created.
We show how to pass that information to the descendants as more inferences are
performed. Then we show how to use this information to simplify clauses. The
intent is to gain some of the power that simplification provides in completion
procedures. Other recent work shows how constraints can reduce the search space
of theorem proving procedures (see Bachmair et al., 1995; Lynch and Snyder, 1995;
Nieuwenhuis and Rubio, 1995; Nieuwenhuis and Rubio, 1992; Nieuwenhuis and
Rubio, 1994; Lynch and Snyder, 1994; Vigneron, 1994). The results of this paper
have a nice feature which is not exhibited in constraint theorem provers. That is the
fact that we do not need to weaken the local simplifiers in order to perform simpli-
fication or subsumption or any other deletion rule. If we were to combine local
simplification with basic paramodulation, we would need to weaken constraints to
perform deletion rules. However, we believe local simplifiers would be useful in
combination with the blocking rule from Bachmair et al. (1995). We hope that
this paper will inspire other work on theorem proving procedures which inherit
information used to limit the search space.
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