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In this paper, we introduce a novel approach for goal-directed theorem prov-ing with equality which integrates Basic Ordered Paramodulation into a ModelElimination framework. The underlying idea is to relax goal-directedness by com-bining the proof search with the bottom-up saturation of the original formula.In order to bene�t from the goal-directedness as much as possible, only certaininferences are performed in the saturation. Actually, we show that it is enough toperform only inferences into the larger sides of positive equations. Therefore, thesaturation part of the combined calculus is not complete by itself although thegoal-directed part can be for certain problems. In the case without equality, thecombined calculus thus reduces to pure Model Elimination, and to Completionand Narrowing in the case of unit equality.The paper is organized as follows. Following the introduction of our combinedcalculus MEP in Section 3, the rest of the paper is devoted to the proof ofcompleteness, which consists of three steps. First, in Section 4 we present anew bottom-up calculus | Basic Factored Paramodulation | and prove itscompleteness. Based on the saturation under Basic Factored Paramodulation,we derive in Section 5 abstract representations of speci�c unsatis�able sets ofclauses. Finally, concluding the completeness argument, in Section 6 we showthat the thereby constructed abstract representations of unsatis�able sets ofclauses can be used to derive tableaux of our new calculus.For complexity reasons, not all details of the proofs could be included in thispaper. An unabridged version however can be found in [11].2 PreliminariesWe use the standard de�nitions for syntax and semantics of clausal logic withequality (cf. [10, 6, 1]). For what follows, we consider the subclass of equationalformulae where non-equational atoms A are encoded as A ' > for a new func-tion symbol > and inferences among non-equality literals can be simulated byrespective equality inference rules.We also assume familiarity with rewriting (cf. [6]), orderings (cf. [17]), andconstraints (cf. [12]). For what follows, reduction orderings are assumed to beground total.By (ordering and equality) constraints we mean conjunctions of atomic con-straints over the binary predicate symbols ` :=' for syntactic equality and `�' forthe underlying reduction ordering. > is the empty constraint which representstrue. Constraints are equivalently considered as sets of atomic constraints andwe write � � � if every atomic constraint in � is also member of �. A constraint� is satis�able if there exists some ground instance �� which is equivalent to>. A constrained clause C[[�]] consists of a clause C and a constraint �. When-ever not indicated otherwise, we rename constrained clauses to new variantsbefore we apply inferences. When needed, we will denote constrained clausesas ~C = C[[�]] in order to be able to distinguish them from the unconstraineddisjuncts of literals C.



3 The Calculus MEPThe Model Elimination calculus with Basic Ordered Paramodulation, for shortMEP, consists of two parts: inference rules for bottom-up saturation MEPS andgoal-directed tableau construction MEPT.The saturation part MEPS consists of only one inference rule which overlapsleft-hand sides of positive equations in clauses.Factored Positive Overlap:( l1 ' r1 _ � � � _ ln ' rn _ B )[[�]] ( u ' v _ C )[[�]]( u[r1]p ' v _ � � � _ u[rn]p ' v _ B _ C )[[�]]where (i) p 2 FPos(u) and (ii) � = (� ^ � ^ ujp := l1 ^ � � � ^ ujp := ln ^l1 � r1 ^ � � � ^ ln � rn ^ u � v).3The result of the saturation of a formula F under MEPS is denoted bySat(MEPS; F ).The goal-directed proof happens by constructing particular proof objects:branches and tableaux .De�nition1. [Branches, Tableaux] A branch hh L1; L2; : : : ; Ln ii is a sequenceof literals. For a branch 	 and a literal Ln+1, hh 	 j Ln+1 ii denotes the newbranch containing all literals from 	 together with the new leaf literal Ln+1.For a branch 	 and a clause L1 _ � � � _Lm, the expression hh 	 j L1 _ � � � _Lm iirepresents the multiset of extended branches fhh 	 j L1 ii; : : : ; hh 	 j Lm iig. Wewrite L 2 	 if 	 contains L. A branch 	 is said to be closed for a constraint �if 	 contains a literal s 6' t such that s� = t� for all substitutions � satisfying �.A tableau is a multiset T of branches together with a constraint �. A tableauT [[�]] is said to be closed if every branch in T is closed for �.4The goal-directed construction of the tableau starts with the initial tableauhhCii[[>]] where C is any5 clause in Sat (MEPS; F ), the saturation of the originalformula under MEPS, and ends when the closed tableau ;[[�]] is obtained where� is satis�able. To derive a closed tableau from an initial tableau, the followinginference rules from MEPT can be applied.Re
ection: ( fhh 	 j s 6' t iig [ T )[[�]]T [[� ^ s := t]]3 FPos(u) is the set of non-variable positions in the term u.4 For convenience, we always remove closed branches since they no longer contributeto the search for a proof. Thus, a closed tableau has only an empty set of branches.5 In particular, we can require that C only contains negative literals. Thus, C is alreadycontained in F .



Negative Extension/Reduction:( fhh 	 j s 6' t iig [ T )[[�]]( hh hh 	 j s 6' t ii j s[r]p 6' t _C ii [ T )[[�]]where (i) p 2 FPos(s), (ii) (l ' r _C)[[�]] 2 Sat(MEPS; F ) or l ' r 2 	; C = 2and � = >, (iii) � = (� ^ � ^ sjp := l ^ l � r ^ s � t).Lazy Positive-to-Negative Extension/Reduction:( fhh 	 j l ' r iig [ T )[[�]]( hh hh 	 j l ' r ii j sjp 6' l _ s[r]p 6' t _C ii [ T )[[�]]where (i) p 2 FPos(s), (ii) (s 6' t_C)[[�]] 2 Sat(MEPS; F ) or s 6' t 2 	; C = 2and � = >, (iii) � = (� ^ � ^ l � r).6Lazy Positive-to-Positive Extension/Reduction:( fhh 	 j l ' r iig [ T )[[�]]( hh hh 	 j l ' r ii j vjq 6' l _ u ' v[r]q _C ii [ T )[[�]]where (i) q 2 FPos(v), (ii) (u ' v_C)[[�]] 2 Sat (MEPS; F ) or u ' v 2 	; C = 2and � = >, (iii) � = (� ^ � ^ l � r ^ u � v).6Example 2. The following shows a detail of a MEP-tableau for the formulaF = f f(a; b) 6' b; f(b; b) ' g(a; b); a ' b; f(x; x) ' x _ g(y; y) ' y g. Let �be a ground total reduction ordering such that all equations above are orientedfrom left to right. Notice that in this example, Sat(MEPS; F ) = F .f(a; b) 6' bf(b; b) 6' b(Ext: a'b)x 6' b(Ext: f(x;x)'x) g(y; y) ' yg(a; b) 6' g(y; y)g(b; b) 6' g(y; y)(Ext: a�b) f(b; b) ' y(Ext: f(b;b)'g(a;b))f(a; b) 6' f(b; b)f(b; b) 6' f(b; b)(Ext: a�b) b 6' y(Red: f(a;b)6'b)6 We are able to restrict the two lazy inference rules even more e.g. by replacingsjp 6' l with sjp 6' x and adding x := l for a new variable x and `if l 62 Var thenHead(sjp) := Head(l)' to �.



The tableau starts with the only negative clause f(a; b) 6' b. After simplifyingthis literal to f(b; b) 6' b by using a ' b in a negative extension step, we can ap-ply a further negative extension step into f(x; x) ' x of f(x; x) ' x_g(y; y) ' ywhich, on one hand, leads to the uni�able leaf literal x 6' b, and on the otherhand, the new positive leaf literal g(y; y) ' y. Here, the only inference wecan apply is a lazy positive-to-positive extension step into the right-hand sideof f(b; b) ' g(a; b) which yields two new branches with g(a; b) 6' g(y; y) andf(b; b) ' y. Although g(a; b) 6' g(y; y) can easily be closed after applying a ' bagain, in order to close the branch with f(b; b) ' y we need to apply a lazypositive-to-negative reduction step into the literal f(a; b) 6' b. The rest of thetableau is closed straightforwardly.The following theorem is the main result of this paper.Theorem3. [Completeness] MEP is refutationally complete.In the subsequent sections, we will prove this theorem by a simulation ar-gument, showing that for every refutation by the new bottom-up calculus BasicFactored Paramodulation BFP, there is a closed MEP-tableau using clauses inthe saturation under MEPS.The simulation is based on the BFP calculus which is proven to be completein Theorem 4 of Section 4, using a model construction argument similar to theone in [1]. Unfortunately, the completeness of BFP depends on the selection ofmaximal literals in clauses which might eventually be a negative literal althoughthere are still other positive literals in the clause which could be overlapped.The core of the simulation argument for the tableau construction is to `delay'these inferences on negative literals and `save' them by using the abstract frame-work of path sets. More precisely, for every step in the saturation under BFP weperform corresponding operations on the path sets associated with the involvedclauses and thereby derive new sets of clauses with speci�c properties. In partic-ular, inferences involving only positive literals are immediately performed on theclauses in the path set while inferences involving a negative literal are abstractlyrepresented by a path and can thus be delayed until the tableau construction.Here, the Basic restriction is an important ingredient since the set of positionsto which inferences can be applied is not changed by delaying them. The mainresult of Section 5 is Theorem 14 which guarantees the existence of speci�c pathsets for a corresponding refutation under BFP.Providing abstract and calculi-independent representations of contradictionsof speci�c sets of clauses, we can use the resulting path sets in particular toderive contradictions under our goal-directed calculus. Thus, in Theorem 18 ofSection 6 we show that for every such path set there is a closed MEP-tableau.For this, speci�c operations on path sets are de�ned which directly correspondwith the inference rules of MEPT.



4 Basic Factored ParamodulationAs the basis of our simulation argument, we now introduce the new Basic Fac-tored Paramodulation calculus for equational clausal logic, for short BFP. Itsoutstanding property is that it does neither require inferences into right-handsides of equations nor an additional rule on positive literals (positive or equationalfactoring), like most of the existing Basic Paramodulation calculi [1, 12, 15].Instead, Basic Factored Paramodulation uses a related inference rule, factoredoverlap, which applies inferences on positive equations in a very homogeneousway and thus allows for a straight simulation argument.The BFP calculus consists of re
ection and factored positive overlap (cf.Section 3) together with the following inference rule.Factored Negative Overlap:( l1 ' r1 _ � � � _ ln ' rn _ B )[[�]] ( s 6' t _ C )[[�]]( s[r1]p 6' t _ � � � _ s[rn]p 6' t _ B _ C )[[�]]where (i) p 2 FPos(s) and (ii) � = (� ^ � ^ sjp := l1 ^ � � � ^ sjp := ln ^l1 � r1 ^ � � � ^ ln � rn ^ s � t).In addition to the conditions for re
ection and factored positive and negativeoverlap, we require that the literals which are involved in an inference are selectedby an underlying selection function. Here, a selection function Sel is a functionfrom the set of clauses to the power set of literals such that Sel(C) � C forevery clause C. Any selection function is allowed as long as for every clause C,Sel(C) contains at least one negative literal or all maximal literals in C.Theorem4. BFP is refutationally complete.Proof. We present a sketch of the completeness proof which shows how theproof in [1] based on model construction needs to be altered. There, it is shownthat if a set of clauses is saturated under a set of inference rules, and it does notcontain the empty clause, then a model of the set can be constructed from groundinstances of the clauses. The model is a canonical set of equations generatedby incrementally adding ordered instances of equations. So for each instanceC = u ' v _ C 0 of a clause in the saturation we add the equation u ' v tothe model if (i) the variables in C are reduced wrt. the equations in the modelfrom smaller instances of clauses, (ii) C is false wrt. the equations in the modelfrom smaller instances of clauses, (iii) u ' v is strictly maximal in C, and (iv)u cannot be reduced by the equations in the model from smaller instances ofclauses. A clause that adds something to the model is called productive.For our purposes, in order to take care of the missing explicit factoring in-ference rule, we modify step (iii) to only require that u ' v is maximal in C.Now we have to show that if the saturated set does not contain the emptyclause, then every instance of a clause in the saturated set whose variables arereduced by the model, must be true in the model. If they are not all true,



the smallest clause that is not true in the model is called a counterexample. Itremains to show that if there is a counterexample at all, then there must be asmaller counterexample, which leads to a contradiction. For this, we distinguishamong whether Sel(C) contains negative literals or not. In both cases, it canbe shown that Sel(C) contains a literal L which is either t 6' t and thus allowsfor a re
ection step or which is reducible by the model and thus, there is anfactored overlap inference with a productive clause. In both cases, a smallerclause is obtained which can also be shown to be a counterexample. By theusual irreducibility arguments, the inference is lifted to the non-ground case andthus, a contradiction is derived. utAlthough we don't present simpli�cation and deletion rules, it should benoted that Basic Factored Paramodulation is compatible with rules similar tothe ones presented in [1]. However, since they are not yet compatible with thepath set approach, they will be excluded here.5 Saturating Path SetsNow we are going to introduce the abstract framework which is used to representconcrete refutations under Basic Factored Paramodulation: path sets.5.1 Path Sets and PropertiesClauses and formulae have been de�ned as multisets. In order to be able todistinguish between the di�erent but syntactically identical literals or clauses, weconsider sets of occurrences of literals or clauses. Considering sets of occurrencesinstead of multisets, however, does not change the completeness proof of BasicFactored Paramodulation in the preceding section.Based on sets of occurrences, we now de�ne path sets, the origins of whichgo back to [13, 3] and have since been the basis for various proof procedures forclausal logic.De�nition5. [Paths] Let P be a function from a set of occurrences of clausesto a set of occurrences of literals such that P (C) 2 C for every occurrence ofa clause C. The homomorphic extension of P to sets of sets of occurrences ofclauses is called a path through a set of occurrences of clauses.Let P be a path through F . We write L 2 P if P (C) = L for some C 2 F .In particular, P is said to select L in C. P jF 0 is called a subpath of P , denotedas P jF 0 � P , if P is a path through F and P jF 0 is a path through a subset F 0 ofF such that P jF 0(C) = P (C) for every C 2 F 0. Two paths P through FP andQ through FQ are said to agree on a set F 0 � FP \ FQ if P jF 0 = QjF 0 .A path set S for F is a set of paths through subsets of F . S0 for F 0 is calleda path subset of S for F if S0 � S and F 0 � F .If S is a path set for a set F of occurrences of clauses, F is also often calleda matrix [2].



De�nition6. [Operations on Path Sets] For a path set S for F and anoccurrence of a clause C 2 F , we de�ne S �C for F nfCg to be the path subsetof S containing all paths from S except those selecting literals in C.Let P and Q be paths through disjoint sets FP and FQ, respectively. By P�Qwe denote the path through FP [FQ which agrees with P on FP and with Q onFQ. For two path sets S1 and S2 for disjoint sets F1 and F2, S1�S2 is the pathset f P1�P2 through F1 [ F2 j P1 2 S1 through F1 and P2 2 S2 through F2 gfor F1 [ F2.In what follows, we introduce particular properties of path sets which areused to describe properties of the underlying set of clauses.De�nition7. [Covering Path Sets] A path set S is called covering for F iffor every path P through F , there exists a path P 0 2 S through a subset FP 0 ofF such that P 0 � P . A covering path set S for F is called minimal if there is noproper path subset of S for F which is covering for F .An occurrence of a clause C 2 F is called essential for a covering path set Sif S �C is not covering for F .De�nition8. [Unitary Derivations/Refutations] Let M be a set of occur-rences of (eventually constrained) unit literals. A sequence of negative overlapsteps on M where every occurrence of a literal in M is not renamed and usedonly once is called a unitary derivation of L[[�]] if it terminates with L[[�]] orM contains only L[[�]].For a path P through a set of occurrences of clauses F , a unitary derivationof s 6' t[[�]] from P is a unitary derivation of s 6' t[[�]] from the set of occurrencesof (eventually constrained) literals selected by P from the clauses in F . We saythat P has a unitary refutation with � if there is a unitary derivation of s 6' t[[�]]from P such that � = (� ^ s := t) is satis�able. A path set S has a unitaryrefutation with � if � is satis�able and is the union of all constraints �P forwhich there is a P 2 S such that P has a unitary refutation with �P . For short,we also say that S is unitary refutable.5.2 Generating Path Sets by Bottom-Up SaturationBased on the framework of path sets, we will now present inference rules on pathsets which allow to derive a covering path set S2 for a set F2 of occurrences ofclauses from Sat (MEPS; F ) such that S2 is unitary refutable. It will be shownthat these inference rules on the path sets directly correspond with the inferencerules of BFP and thus, if there is a refutation under BFP, then there is a coveringand unitary refutable path set. This correspondence will be described by a pairof mappings.De�nition9. [Simulation Mappings] A simulation mapping from a con-strained clause ~C to a path set S ~C for F ~C consists of two functions:{ � ~C assigns to each occurrence of a literal in ~C a subset of S ~C , and



{ � ~C assigns to each occurrence of a literal in ~C a subset of F ~C .In order to show that the �nal path set ful�lls the desired properties, werequire that for each step in the saturation, the following invariance propertyholds.De�nition10. [Conform] Let ~C = C[[�]] be a constrained clause. A path setS ~C for F ~C is said to conform with ~C if(A) S ~C is covering for F ~C ,(B) for every occurrence of a literal L in C and for every path P in � ~C(L),there is a unitary derivation of L[[�]] such that � � �, and(C) every path P 2 S ~C for which there is no literal L 2 C with P 2 � ~C(L)has a unitary refutation with � such that � � �.Initially, for every clause ~C = C[[>]] in the input set F , we start with a pathset S ~C = f P through f ~Cg g for F ~C = f ~Cg. Furthermore, the correspondingsimulation mapping consists of the functions{ � ~C(L) = fPg for all occurrences L of literals in ~C if P is a path throughf ~Cg such that P selects L in ~C, and{ � ~C(L) = f ~Cg for all occurrences L of literals in ~C.The following is a straightforward consequence for these initial path sets.Proposition11. For every clause in the input set, the corresponding initial pathset conforms with the clause itself.For the following simulation, it is important to recall that for every occurrenceof a positive literal L in a clause ~C, j� ~C(L)j = 1 and j� ~C(L)j = 1. Furthermore,for an occurrence of a negative L, if P;Q 2 � ~C(L), then the literals selected byP and Q are either the same or variants of each other. Also, whenever we usea new occurrence ~C of a constrained clause C[[�]] for a new inference, we notonly assume the variables of the constrained clause to be new variables but alsothat F ~C consists of new occurrences of constrained clauses with new variablesand that S ~C , � ~C and � ~C are changed accordingly.Based on the de�nitions above, we are now able to de�ne the inference ruleson path sets, each of which corresponds with an inference rule of BFP. After eachde�nition, we will show that if the premises of the inference rules on path setsconform with respective premises of BFP, then this is also true for the relationbetween the conclusions.Re
ection: We consider a re
ection step on s 6' t in ~C = ( s 6' t _ C 0 )[[�]]yielding ~D = C 0[[�]] with � = (� ^ s := t).Let S ~C be a path set for F ~C conforming with ~C and � ~C , � ~C the accordinglyadapted simulation mapping.� For the new path set S ~D for F ~D we de�ne{ S ~D = S ~C , and{ F ~D = F ~C .



� Furthermore, for the new clause ~D, the simulation consists of{ � ~D = � ~Cj ~D, and{ � ~D = � ~Cj ~D.Lemma12. Let S ~C be a path set for F ~C which conforms with the clause ~Chaving a satis�able constraint. After applying a re
ection step, the resulting pathset S ~D for F ~D conforms with the resulting clause ~D if its constraint is againsatis�able.Proof. Obvious by construction of S ~D, F ~D, � ~D and � ~D. utFactored Negative Overlap:We consider a factored negative overlap stepfrom l1 ' r1,...,ln ' rn in ~B = ( l1 ' r1 _ � � � _ ln ' rn _ B0 )[[�]] intos 6' t in ~C = ( s 6' t _ C 0 )[[�]] at p 2 FPos(s) yielding ~D = ( s[r1]p 6' t _� � �_ s[rn]p 6' t _ B0 _ C 0 )[[�]] where � = (� ^ � ^ sjp := l1 ^ � � � ^ sjp := ln ^l1 � r1 ^ � � � ^ ln � rn ^ s � t).Let S ~B for F ~B and S ~C for F ~C be new variants of path sets (for new oc-currences of the clauses) conforming with ~B and ~C, respectively. Furthermore,let � ~B, � ~B and � ~C , � ~C be the accordingly adapted simulation mappings. LetSlr~B = � ~B(l1 ' r1)[� � �[� ~B(ln ' rn) and F lr~B = � ~B(l1 ' r1)[� � �[� ~B(ln ' rn).� For the new path set S ~D for F ~D we de�ne{ S ~D = S ~BnSlr~B [ S ~C n� ~C(s 6' t) [ Slr~B �� ~C(s 6' t), and{ F ~D = F ~B [F ~C .� Furthermore, for the new clause ~D, the simulation consists of{ � ~D(L) =8<: � ~B(L) if L 2 B0� ~C(L) if L 2 C 0� ~B(li ' ri)�� ~C (s 6' t) if L = s[ri]p 6' tand{ � ~D(L) =8<: � ~B(L) if L 2 B0� ~C(L) if L 2 C 0� ~B(li ' ri) [ � ~C(s 6' t) if L = s[ri]p 6' tFactored PositiveOverlap: We consider a factored positive overlap step froml1 ' r1,...,ln ' rn in ~B = ( l1 ' r1 _ � � � _ ln ' rn _ B0 )[[�]] into u ' v in~C = ( u ' v _ C 0 )[[�]]. Similar to factored negative overlap above, a simulationmapping for the resulting clause ~D can be de�ned. The major di�erence is thatfor factored negative overlap, only modi�cations on paths are applied whereasfor factored positive overlap, also inferences between the clauses in the corre-sponding sets F ~B and F ~C are performed. In particular, factored positive overlapinferences on clauses are done which corresponds to a completion and thus yieldsthe clauses in Sat(MEPS; F ). The whole modi�cations on the path set can bedescribed by two functions and are presented in detail in [11].Lemma13. Let S ~B for F ~B and S ~C for F ~C be path sets which conform with theclauses ~B and ~C, respectively and the constraints of which are satis�able. After



applying a factored negative or positive overlap step, the resulting path set S ~Dfor F ~D conforms with the resulting clause ~D if its constraint is again satis�able.Proof. We only present the proof for the factored negative overlap.(A): By construction, F ~D = F ~B [ F ~C where F ~B and F ~C are disjoint sets ofoccurrences of constrained clauses. Let P be any path through F ~D. If P has asubpath in S ~B nSlr~B or S ~C n� ~C(s 6' t) then there is still a subpath of it also inS ~D, by de�nition of S ~D. Else, there is a subpath of it in Slr~B and a subpath of itin � ~C(s 6' t), i.e. there is a subpath in Slr~B �� ~C(s 6' t). Thus, by de�nition ofS ~D, there is again a subpath of P in S ~D . Therefore, S ~D is covering for F ~D.(B): Obvious for L 2 B0 and L 2 C 0 since the corresponding paths are notchanged. Let L = s[ri]p 6' t, i 2 [1; n]. By assumption, for Q 2 � ~C(s 6' t) thereis a unitary derivation of s 6' t[[	 ]] such that 	 � �. Since j� ~B(li ' ri)j = 1,obviously every path in � ~B(li ' ri)�� ~C(s 6' t) allows a unitary derivation ofs[ri]p 6' t[[	 0]] such that 	 0 � �.(C): Obvious since no new path P has been generated for which no literal inL 2 ~D exists with P 2 � ~D(L). utHaving shown now that the inference rules on path sets preserve the propertyof conforming with a clause in the saturation under Basic Factored Paramod-ulation, we are now able, together with the proposition concerning initial pathsets, to prove the main result of this section.Theorem14. For every Basic Factored Paramodulation refutation of a set Fthere is a covering path set S2 for a set F2 of occurrences of variants of clausesfrom Sat(MEPS; F ) such that S2 is unitary refutable.Proof. By Proposition 11, for every clause ~C in F , the corresponding initialpath set conforms with ~C. Since we have a BFP refutation, all constraints ofthe clauses used are satis�able and, in particular, also the constraint of the�nal empty clause. By Lemmata 12 and 13, for every clause ~C derived in thesaturation under BFP, there is a corresponding path set in the saturation underthe inference rules on path sets which conforms with ~C. Thus, if the saturationunder BFP contains the empty clause 2[[�]], then there is a path set S2 fora set F2 which conforms with 2[[�]]. By property (A), S2 is covering for F2.Furthermore, since 2[[�]] contains no literals and S2 for F2 conforms with 2[[�]],we get by property (C) that every path P 2 S2 has a unitary refutation. Thus,S2 is unitary refutable. Finally, by de�nition of the inference rules on path sets,F2 contains only occurrences of variants of clauses from Sat(MEPS ; F ). utWe want to point to the fact that if S2 is a covering and unitary refutablepath set for F2 which conforms with 2[[�]] and � is a substituion satisfying �,the � can be seen as a simultaneous rigid E-uni�er of the paths in S2. For detailsabout recent results on simultaneous rigid E-uni�cation, cf. [5].



6 From Path Sets to MEP-TableauxIn the preceding section, we have proven the existence of unitary refutable pathsets S2 which are covering for certain sets F2 of occurrences of clauses. Let � bea substitution such that F2� is ground and � satis�es the constraints of all pathsin S2. Based on the �-instance of S2 for F2, we �nally show how to constructclosed MEP-tableaux.For this, with each branch of a tableau, we associate a particular path setwhich contains the leaf literal of the branch as an essential unit clause. Then,for each branch, applying speci�c operations to the associated path set leads toother path sets and therefore re
ects the inference on the branch of the tableau.There are two basic kinds of operations which we apply to path sets. Onone hand, there are operations which apply inferences to literals in a path andare meant to `solve' a path. With respect to the associated leaf literals of thebranches, we have to supply this extension operation starting from a negativeleaf literal and from a positive leaf literal. Due to the required laziness, in thecase of a positive leaf literal, the operation is more complex than in the negativecase. Furthermore, the lazy positive extension operation nondeterministicallyguarantees that at least a lazy extension step into a negative or a positive literalis possible.On the other hand, whenever an extension step into a non-unit clause isperformed, then the remaining literals in the clause need to become leaf literalsof branches in the new tableau. For this, the focusing operation allows us toderive a corresponding path set where a whole clause in a path set is replacedby one of its literals. In particular, focusing also tells us how to obtain the pathsets associated with the branches of the initial tableau.Since the operations based on path sets in this section are performed onground instances of clauses, positions in literals are called basic if they werenon-variable positions before the instantiations. By applying only inferences tobasic positions, we are able to lift the corresponding steps to the variable case.Furthermore, for convenience, whenever a set of units or a path has a unit refu-tation with some constraint, we will simply omit the reference to the constraintsince we assume it to be satis�ed under the current ground substitution.Lemma15. [Negative Path Set Extension] Let F be a set of ground in-stances of occurrences of clauses containing the essential unit clause s 6' t andD = l ' r_D0 such that sjp = l for a basic position p in s. Let S be a covering andunitary refutable path set for F and P 2 S a path through some FP � fs 6' t; Dgsuch that P (D) = l ' r. Let P 0 be the path through FP nfs 6' t; Dg[ fs[r]p 6' tgsuch that P 0 agrees with P on FP nfs 6' t; Dg and P 0(s[r]p 6' t) = s[r]p 6' t.Then S0 = S nfPg [ fP 0g for F [ fs[r]p 6' tg, the path set resulting fromthe negative extension from s 6' t into l ' r of D on P is again covering andunitary refutable, where s[r]p 6' t is essential for S0.For complexity reasons, we don't present the lemma for the lazy positiveextension. The complete version can be found in [11].



Lemma16. [Focusing] Let F be a set of ground instances of occurrences ofclauses and S a covering and unitary refutable path set for F . Let L be anoccurrence of a literal in an essential clause C in F andS1: the set of all paths Q 2 S through FQ where C 62 FQ, andS2: the set of all paths Q0 through FQ nfCg [ fLg for which there is a pathQ 2 S through FQ such that Q(C) = L, and then Q0(L) = L and Q0 andQ agree on FQnfCg.Then S0 = S1 [S2 for FnfCg[ fLg, the path set resulting from the focusingon L in C, is again covering and unitary refutable, where L is essential for S0.Based on the previous lemmata, we are now able to bring the completenessproof for our MEP calculus to a close. This will be done by inductively construct-ing a closed MEP-tableau where the inferences on the tableau are repesented bycorresponding inferences on path sets.Lemma17. [Ground Completeness] For every covering and unitary refut-able path set S2 for a set F2 of ground instances of occurrences of clauses thereexists a closed MEP-tableau.Proof. W.l.o.g. assume that S2 is minimally covering for F2 and F2 only con-tains clauses being essential for S2. By induction, we will show how to incremen-tally construct a MEP-tableau. With each branch in the tableau we will associatea covering and unitary refutable path set such that the leaf literal in the branchis essential for it. By applying negative extension, lazy positive-to-negative andpositive-to-positive extension and focusing on path sets, we will show how to de-rive new covering and unitary refutable path sets corresponding to an extendedbranch such that the new leaf nodes are essential in the corresponding path sets.Let C be any occurrence of a clause in F2 which, by assumption, is essentialfor S2. By Lemma 16, for every literal in C, focusing on it yields a new coveringpath set where the literal focused upon is essential. Furthermore, every literalfocused upon corresponds to a branch in the initial tableau.Let T be any tableau containing a branch B. By induction hypothesis, thereis an associated path set SB for a set of clauses FB which is covering and unitaryrefutable. Furthermore, the leaf literal L of B is essential for SB . Since everyliteral in B occurs as a unit clause in FB also L is a unit clause in FB. We haveto distinguish between whether L is (i) a negative literal or (ii) a positive literal.(i) L is a negative literal s 6' t: If s = t then the branch is closed. Else,s 6= t. By Lemma 15 there is a clause C in FB and a path P in SB through aset containing s 6' t and C such that P (C) = l ' r with l � r and sjp = l atsome basic position p in s such that there is a path set SB0 which is covering andunitary refutable for FB[fs[r]p 6' tg. Furthermore, the new unit clause s[r]p 6' tis essential for SB0 . If C = l ' r_C 0 is not a unit clause, then focusing applied toSB for FB on each literal in C 0 yields by Lemma 16 again covering and unitaryrefutable path sets where the literal focused upon is essential. Thus, for bothnegative extension and reduction, we obtain covering and unitary refutable pathsets for the new derived branches for which the leaf literals are essential.



(ii) L is a positive literal l ' r with l � r. According to the lemma onthe positive path set extension, there is a clause D in FB and a path P in SBthrough a set containing l ' r and D such that P selects either (a) a negativeequation s 6' t in D with Head (sjp) = Head (l) at some basic position p in s, or(b) a positive equation u ' v in D with u � v and Head (vjq) = Head (l) at somebasic position q in v. The remaining part of the proof is analogous with (i).Termination: By assumption, S2 and F2 are �nite. In order to show that weobtain a �nite tableau we show that every branch generated must be �nite bya measure on path sets. Let the size of a path set be the multiset of multisetsof literals occurring in each path. Two sizes of path sets are compared wrt.the usual threefold reduction ordering on literals. Let SB for FB the path setcorresponding to a branch. If we apply a negative, positive-to-positive or positive-to-negative extension step then the resulting path set(s) is (are) smaller than SBfor FB since one path in SB is replaced by smaller paths. Furthermore, focusingis only applied to non-unit clauses, i.e. since the paths through the neighbourliterals of the focused clause are removed, the measure also decreases.Since each branch is proven to close �nitely and the tableau is only �nitelybranching, the tableau closes �nitely. utTheorem18. For every covering and unitary refutable �nite path set there ex-ists a closed MEP-tableau.Proof. Let � be a substitution satisfying all the constraints of the paths in acovering and unitary refutable path set S2 for F2 such that F2� is ground.Thus, by Lemma 17 there is a closed MEP-tableau based on the �-instance ofF2. Since in the construction of the tableau, only steps to basic positions wereapplied there is also a closed MEP-tableau for F2. ut7 ConclusionWe have presented a new calculus for equational clausal logic which integratesBasic Ordered Paramodulation into a goal-directed Model Elimination frame-work. In order to allow the ordered application of equations in the goal-directedtableau construction, an additional bottom-up saturation phase is needed whereonly left-hand sides of positive equations have to be overlapped. In addition tobeing compatible with orderings, the calculus allows the restriction of applica-tion of equations to non-variable (in fact, basic) positions. For the completenessof the tableau part, lazy inferences are necessary for solving positive goals in thetableau, but only in a restricted form. The combined calculus can be seen as anattempt to keep the best properties of completion while only giving up part ofthe goal-directedness of Model Elimination. For a practical realization, of course,saturation and tableau construction are to be intertwined because saturation ingeneral does not terminate.The completeness of the new calculus is proven by a simulation argumentwhich shows that for every refutation with the new saturation-based calculusBasic Factored Paramodulation there is a closed MEP-tableau. For this, path sets



are used as intermediate representations of sets of clauses with speci�c properties.Due to being independent of the �nal calculus, the existence of such path setscan also be used to obtain completeness results for other goal-directed calculi.Although for a long time, equality techniques based on orderings were re-quested, just recently in [4] the probably �rst tableau-based approach was pre-sented. There, also an additional saturation phase is combined with the goal-directed tableau construction. The di�erence is, however, that in the saturation,inferences also to negative literals are allowed which might solve the underlyingproblem already during saturation and could be seen to be less goal-directed.For the future, it is planned to show that the calculus is compatible withsimpli�cation and deletion rules in saturation which cannot be achieved in thecurrent setting. Therefore, a separate model construction argument is plannedwhich is meant to replace the simulation argument and is more 
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