
Paramodulation without DuplicationChristopher LynchINRIA Lorraine et CRINCampus Scienti�queBP 10154602 Villers-lès-Nancy CedexFranceAbstractThe resolution (and paramodulation) inference sys-tems are theorem proving procedures for �rst-orderlogic (with equality), but they can run exponentiallylong for subclasses which have polynomial time de-cision procedures, as in the case of SLD resolutionand the Knuth-Bendix completion procedure, both inthe ground case. Specialized methods run in poly-nomial time, but have not been extended to the full�rst�order case. We show a form of Paramodulationwhich does not copy literals, which runs in polynomialtime for the ground case of the following four sub-classes: Horn Clauses with any selection rule, any setof Unit Equalities (this includes Completion), Equa-tional Horn Clauses with a certain selection rule, andConditional Narrowing.1 IntroductionSince the early 1960's, automated deduction hasbeen a popular topic of research. Resolution remainsthe most popular method, along with its extension toequality of Paramodulation [20]. Methods have beendeveloped to restrict the search space of Resolutionand Paramodulation proof procedures, and new the-orem proving procedures have been developed. Muchof this research has been to make the theorem provermore e�cient. The main technique of showing the ef-�ciency of a theorem prover is to compare it with an-other prover on a few test problems, with some recentemphasis to develop a database of test problems.During this same period of time, the �eld of Anal-ysis of Algorithms has been developed to compare therunning time of di�erent algorithms. The complexityof running times of Automated Theorem Provers isnot analyzed, because the problem of theorem prov-ing is undecidable. However, some methods have beendeveloped to solve certain important classes of formu-las in polynomial time. One way to show e�ciencyof a general theorem prover would be to show that

it decides these important classes in polynomial time.Up until now, these classes have only been polynomi-ally decided by specialized procedures which have notbeen extended to more general settings. Resolutionand Paramodulation are exponential for these classes.This paper shows how special data structures can beused to make Resolution and Paramodulation run inpolynomial time on these classes, while not requiringthe inference system to use special strategies.One class which can be decided in polynomial timeis the class of propositional Horn Clause formulas.Goal�directed strategies are useful in theorem prov-ing. In an important recent paper, Plaisted [17, 18]has examined the behavior of many general purposegoal�directed theorem proving methods on this class.His conclusion is that the only strategies which arepolynomial are those strategies which use methods tosave goals as they are solved and avoid repeatedly solv-ing them. These techniques generally only work forHorn clauses and not for �rst order logic. Plaistedshowed that only the MESON and Model Elimina-tion strategies [9] with unit lemmas and caching [1],the simple and modi�ed problem reduction formats[15, 16] and the Hyper�linking strategy [8] are poly-nomial. However, the �rst two of these strategies (withcaching) are not complete for �rst�order logic; the sec-ond two are ine�cient on non�Horn clauses, and havenot been extended to equality. He also notes thatnone of the resolution strategies are polynomial, andsuggests that maybe SLD�resolution should be basedon another strategy. We note that caching methods(often called memoing) [22, 23] have been applied toSLD�resolution, but the technique is not complete fornon�Horn clauses. Local Simpli�cation [10] is a gen-eral strategy for �rst�order equational theorem prov-ing that always has polynomial size proofs in the caseof SLD�resolution of ground clauses, but the search



space is exponential.1Knuth�Bendix completion is a method to converta set of equations to an equivalent canonical set. Itcorresponds to paramodulation in the case where allclauses are positive unit equalities. Polynomial timealgorithms, based on congruence closure, have beengiven to convert a set of equations without variablesinto an equivalent canonical set in polynomial time[5, 21], but these algorithms are not Completion anddo not work when the equations contain variables. Re-cently, it has been shown that ground completion withstructure sharing is polynomial if a strategy is usedwhich applies critical pairs in a certain order [19].In this paper, we de�ne a method of performingparamodulation without copying literals. The termsare stored in a hypergraph. To perform resolution orparamodulation a hyperedge is added to the graph.The hyperedge is labelled by the uni�cation problem.Therefore, many inferences are performed simultane-ously. The graph can store exponentially many clausesand exponentially large clauses in a polynomial space.It can also store in�nitely many clauses in a �nitespace. In some sense, it can be seen as an exten-sion of the caching technique for logic programmingand the congruence closure technique for completionto the general �rst order case. The Clause Graph Res-olution method [7] super�cially resembles our method,but it copies literals, so it does not have a polynomialsearch space for the above cases. The Clause GraphResolution method was developed to improve the ef-�ciency of processes such as �nding literals to unify,and those techniques can be applied equally well here.The format of this paper is as follows. In section2, we give some de�nitions. Then in section 3 we ex-plain how clauses are represented in Paramodulationwithout Duplication (PWD). In section 4, we explainhow inferences cause edges to be added to the graph.In section 5, we show the complexity results of thismethod, all for classes without variables. Speci�callywe show that the search space of PWD is polynomialfor the class of Horn Clauses for any selection rule, in-cluding goal�directed selection rules. This di�ers withcaching results mentioned above which are only com-plete for certain kinds of goal�directed selection ruleslike the left�to�right strategy of PROLOG. We showthe search space is polynomial for the class consistingof only unit equalities and disequalities. This showsthat it is polynomial for completion. The search spaceis also polynomial for conditional narrowing,2 and for1The existence of polynomial�sized proofs has been studiedby Haken[6] and others but Automated Deduction researchersare concerned with the e�ciency of searching for a proof.2See [11] for an explanation of this class.

Equational Horn Clauses under certain selection rules.2 PreliminariesOur setting is equational clauses. We have predi-cate symbols, function symbols and variables. A termis a variable or an n�ary function symbol applied to nterms. A literal is an n�ary predicate symbol (possi-bly negated) applied to n terms. The equality symbol� is a special binary predicate symbol, represented inin�x notation. The negation of � is written as 6�. Anunconstrained clause is a disjunction of literals, alsoviewed as a multiset. An object without variables isground . The empty clause is denoted by 2. Let Ebe the set of equality axioms, i.e., the axioms for re-�exivity, symmetricity, transitivity, and substitutionof equals for equals. A set of clauses S is satis�able ifS [E has a model, otherwise S is unsatis�able.We use the usual de�nitions of Automated Deduc-tion (see [9]). A substitution is a function from the setof variables to the set of terms, that is almost every-where the identity. A substitution is identi�ed withthe homomorphic extension of itself. Composition ofsubstitutions � and � is de�ned so that t�� = (t�)� forall t. A substitution is a renaming substitution if it isa 1�1 function whose codomain is the set of variables.We assume that all the variables that have appearedare renamed to fresh variables (variables that have notappeared).We use the symbol := as a syntactic equality symbol.An equational constraint is a conjunction of syntacticequalities. A solution of an equational constraint is asubstitution. Every substitution � is a solution of >.� is a solution of s := t if and only if s� = t�. � isa solution of '1 ^ '2 if and only if � is a solution of'1 and � is a solution of '2. A constrained clause is apair of an unconstrained clause C and an equationalconstraint ' represented as C [[' ]]. The ground clauseC� is an instance of C [[' ]] if � is a solution of '. Theclause C1 [['1 ]] is a variant of C2 [['2 ]] if C1 [['1 ]] andC2 [['2 ]] have the same instances.Given a clause C, a selection rule is a function fromC [[ � ]] to a set of literals � � C. If A is in �, wesay that A is selected in C [[ � ]]. We assume a well�founded reduction ordering <, total on ground terms,identi�ed with its multiset extension. We call a literalA maximal in C [[ � ]] if A 2 C and there is a solution� of � such that A� � B� for all B 2 C.We now present the Basic Paramodulation infer-ence rules [4, 13]. They di�er from the standardParamodulation inference rules in that the most gen-eral uni�er is not applied to the conclusion of the infer-ence. Instead, it is saved as an equational constraint inthe conclusion of the inference. This is more restrictive



than the standard inference rules, because disallowingparamodulation inferences into variables correspondsto never allowing a paramodulation inference into asubstitution position. A clause may be removed whenits equational constraint is not satis�ed.Our presentation of Basic Paramodulation di�ersfrom the standard presentation, since we explicitlygive the renaming substitution that must be appliedto at least one of the premises of the inference. Nor-mally, it is just assumed that the clauses are renamed.However, since the handling of the renaming is veryimportant in PWD, we explicitly state it here to clar-ify its use.Resolution� _A [[ �1 ]] :A0 _�[[ �2 ]]�� _�[[A� := A0 ^ �1� ^ �2 ]]where A is selected in � _ A [[ �1 ]], :A0 is selected in:A0 _�[[ �2 ]], and � is a new renaming substitution.Note that � is only applied to the left premise.Positive Factoring� _A _A0 [[ � ]]� _A [[A := A0 ^ � ]]where A0 is selected in � _A _A0 [[ � ]].Basic Paramodulation� _ s � t [[ �1 ]] L[s0] _�[[ �2 ]]�� _ L[t�]_�[[ s� := s0 ^ �1� ^ �2 ]]where s0 is not a variable, s � t is selected in � _ s �t [[ �1 ]], L[s0] is selected in L[s0]_�[[ �2 ]], s 6� t, if L[s0]is a disequation then s0 appears on a maximal side ofthe disequation, if L[s0] is of the form u[s0] � v thenu[s0] is maximal in fu[s0]; vg or some ground instancev� of v is identical with a ground instance w� of oneside of an equation in �3, and � is a new renamingsubstitution.Equation Resolutions 6� t _ � [[ � ]]� [[ s := t ^ � ]]where s 6� t is selected in s 6� t _ � [[ � ]].Let Selmax be a selection rule that selects all maxi-mal literals in each clause. Let Sel� be a selection rulethat selects a negative literal in each clause containing3This is called Merging Paramodulation in [3]. We prefer itto Equational Factoring for this formalism.

one, otherwise selects all maximal literals. Let Sel+be a selection rule which selects all positive literals ineach clause containing one, otherwise selects a nega-tive literal. Let Sel be a selection rule which selectsone literal in each clause. Then BPmax is the set ofthe above inference rules with selection rule Selmax,BP� the above set with Sel�, BP+ the above set withSel+ , and BP the above set with Sel. Note that thecompleteness of BP on a class implies the complete-ness of the more speci�c inferences systems. Similarly,any class where BP has a polynomial search space im-plies a polynomial search space for the other inferencesystems.We can de�ne a notion of redundant [3], so that aclause may be removed when it is redundant. This is ageneral notion that implies practical deletion methodslike demodulation and subsumption. Here we state aproperty that is necessary to hold for redundancy topreserve completeness. If C [[ � ]] is a clause and S isa set of clauses, then C [[ � ]] is redundant in S if forevery ground instance D of C [[ � ]] there exist groundinstances C1; � � � ; Cn of S such that C1^ � � �^Cn logi-cally impliesD and for all i, Ci < D and Ci is reducedrelative to D.4 In practice, we use whichever forms ofredundancy are useful. For example, in some instancesof the above inferences, the addition of the conclusionof the inference implies that one of the premises of theinference is redundant. These cases of redundancy areeasy to detect and quite useful to perform in practice.A theorem proving derivation models an automatedtheorem prover [2]. It is used to prove soundness andcompleteness results, but we have extended it to referto complexity. If I is an inference system and S isa set of clauses, then an I-inference from S is an in-stance of one of the inferences in I, where the premisesare clauses in S. A sequence S0; S1; S2; � � � of sets ofclauses is called an I�theorem proving derivation fromS0 if every Si+1 is obtained by adding the conclusion ofan I-inference from Si or deleting a redundant clausein Si. No inference is performed twice in the sequence.Furthermore, every I�inference applied to clauses inS1 = Si�0Tj�i Sj is redundant in S1. If the se-quence is of the form S0; S1; S2; � � � ; Sn we say thatthe length of the sequence is n. Otherwise we say thatthe length of the sequence is 1. A class is de�ned tobe a set of sets of clauses. For a class C and a functionf , we say that the length of I over C is bounded by f iffor all S0 2 C, the longest I�theorem proving deriva-tion from S0 has length less than or equal to f(n)where n is the number of symbols in S0. An inferenceprocedure I decides a class C if the length of I over4See [4] for a de�nition of reduced relative to.



C is bounded by some function f and there is somerecursive procedure to calculate each Si+1 from Si foreach such sequence. An inference procedure I polyno-mially decides C if the length of I over C is boundedby a polynomial f and Si+1 can be calculated from Sion each such sequence in polynomial time.An inference system I is sound if for any I�theoremproving derivation from a satis�able S0, 2 62 S1. I iscomplete if for any I�theorem proving derivation froman unsatis�able S0, 2 2 S1.LetHC be the class of all sets of ground horn clauseswithout equations. Let HCE be the class of all sets ofground horn clauses with equations. Let UE be theclass of all sets of ground equational clauses with justone literal per clause. Let CN 5 be the class of allsets of ground horn clauses such that every Paramod-ulation inference among positive literals of any twoclauses is redundant.Theorem 1 The inference rules BPmax [4, 13] andBP� [4] are sound and complete. BP [11] (and there-fore also BP+) is sound but only complete for HCEand its subclasses.6 None of the given inference sys-tems polynomially decides HCE , UE or CN . OnlyBP� polynomially decides HC (see [17, 18] for moredetails).The classes which cannot be polynomially decidedby these general inference systems do have special-ized inference procedures which polynomially decidethem. The inference system BP+ is especially impor-tant, because it is a goal�directed inference system forHC and CN . BP+ on HC is called SLD�resolution.In this paper we show how clauses can be representedso that BP polynomially decides HC and UE and sothat BP� polynomially decides HCE and BP+ poly-nomially decides CN .3 Clause RepresentationNow we show how to represent the set of clauses asa directed hypergraph G, so that literals and terms arenot copied when inferences are performed. Each clausein the initial set of clauses is represented as a tree (ordag) in the usual way. The result of an inference willbe to add a new hyperedge to the graph, labelled byan equational constraint and a renaming (as in BasicParamodulation). This will make it easy to read o�the clauses from the hypergraph.The vertices of the graph are labelled with sym-bols from the language. Each vertex is labelled with a5CN stands for conditional narrowing.6In [11], the substitutions are required to be applied toclauses with positive literals, and examples are givenwhich showthat the de�nition of redundancy must be modi�ed.

variable, constant, function symbol, predicate symbol,negated predicate symbol, or the symbol _.All edges in the graph are directed. There are twokinds of edges: subterm edges and replacement edges.Each subterm edge is labelled by an integer. If thesource of a subterm edge is labelled by an n�ary sym-bol, then it will have n subterm edges directed out ofit, labelled by each of the integers from 1 to n, indicat-ing the index of the subterm. The subterm edges areused to represent the set of clauses that we want toperform inferences on. For example the set of clausesP (a; b) _ f(c; d) � e is represented by the followinggraph. �a b c d e_P f1 21 21 21 2Figure 1: Initial set of clausesNote in this example that the _ symbol is assumedto be binary for this clause, although it may appearelsewhere in the graph with a di�erent arity. The arityfor � is always 2.The replacement edges are added to the graph wheninferences are performed. Each replacement edge islabelled with a renaming substitution and a path. Apath is a sequence of edges < e1; � � � ; en > so that foreach i < n, the target of ei is the source of ei+1. Weuse � for paths and the comma is overloaded, so that< e;� > refers to the path � with e added to thebeginning and < �1;�2 > indicates �1 concatenatedwith �2. The path is only necessary for Paramodula-tion. It is not necessary for Resolution or Completion.The source of a replacement edge is labelled by a func-tion symbol, constant or (usually negated) predicatesymbol. Replacement edges are of two types: rewriteedges and resolution edges. The target of a rewriteedge is always labelled by a function symbol, constantor variable. The target of a resolution edge is labelledby a (possibly negated) predicate symbol.Subterm edges are grouped together as subterm hy-peredges. A subterm hyperedge is a set of subtermedges with the same source, such that if the source is



labelled with an n�ary symbol then there are n edgesin the set labelled with the integers from 1 to n. In aninitial graph, every edge has one subterm hyperedgeleading from it, except the nodes labelled by constants,variables, and 0�ary predicate symbols (see Figure 1).Replacement edges are also grouped together as re-placement hyperedges. A replacement hyperedge is aset of replacement edges with the same source. A re-placement hyperedge will contain at most one rewriteedge. Each replacement hyperedge is labelled with anequational constraint. When a critical pair inferenceis performed, a replacement hyperedge containing justa rewrite edge is added to the graph. When a Resolu-tion Inference is performed, a replacement hyperedgeis added which contains only resolution edges. Whena paramodulation inference is performed, a replace-ment hyperedge is added containing one rewrite edgeand zero or more resolution edges. Replacement hy-peredges are labelled with the equational constraintcorresponding to the inference. Each edge in a re-placement hyperedge is labelled with a renaming sub-stitution to be applied to the target term. We givesome examples here and leave the formal de�nitionfor the next section. In all examples, any omitted la-bellings are assumed to be trivial (i.e., missing equa-tional constraints are assumed to be >, missing renam-ing substitutions are id, and a missing path is somenon�existing path). Similarly, clauses written as un-constrained clauses are assumed to have a constraintof>. First consider the followingResolution inference:p _ q _ r :r _ s _ tp _ q _ s _ tThe conclusion of the inference is the same as theright premise, except that the literal :r is replacedby the literals p and q, so we draw a replacement hy-peredge containing a resolution edge from the vertexlabelled by :r to the vertex labelled by p and fromthe vertex labelled by :r to the vertex labelled by q.Suppose we also perform the inference:r _ s _ t :t _ p0:r _ s _ p0or the inferencep _ q _ s _ t :t _ p0p _ q _ s _ p0We represent these inferences in Figure 2.Consider the following Critical Pair inference:f(f(x)) � f(g(x)) f(f(x)) � f(g(x))f(f(g(x))�) � f(g(x)) [[ f(f(x))� := f(x) ]]

p q r :r s t_ _ :t p0_Figure 2: Resolution InferenceThe subterm f(x) in the second premise is uni�edwith f(f(x))� and replaced by f(g(x))� from the �rstpremise. We must label the new rewrite edge withthe equational constraint f(f(x))� = f(x) and therenaming substitution �. It is represented graphicallyin �gure 3. fx fgxf _�f(f(x))� := f(x); �Figure 3: Critical Pair InferenceWe de�ne an unfolding of the graphG to be a tree Tsuch that each vertex and hyperedge in T is also in G,although vertices and hyperedges may be duplicatedin T . If there is an edge e from u to v in T , then eis directed from u to v in G. Each node has only onehyperedge leading from it in T . Also, we require thateach leaf of T is labelled by a variable, constant, or0�ary predicate symbol.We will de�ne T̂ to be the element that a tree Trepresents. If the root of an unfolding T is labelled by_, a predicate symbol or a negated predicate symbol,then T̂ is a constrained clause. If the root of T is avariable, constant or function symbol, then T̂ is a con-strained term�clause pair (t; C) [[' ]]. If v is a vertex,and U is the set of all unfoldings rooted at v, thenv̂ = ST2U T̂ . Since the graph may have cycles, v̂ canbe in�nite, although each element of v̂ is �nite.Let T be a tree whose root is labelled with _. We



say that v represents T̂ if v is the root of T . If T 0 isa subtree of T such that T̂ 0 = L _C [[' ]] and there isno subtree T 00 of T 0 such that T̂ 00 = L _ C 0 [['0 ]] forsome C0 and '0, then we say that v represents L inT̂ if v is the root of T 0. If T 0 is a subtree of T suchthat T̂ 0 = (t; C) [[' ]] and there is no subtree T 00 of T 0such that T̂ 00 = (t; C 0) [['0 ]] for some C 0 and '0, thenwe say that v represents t in T̂ if v is the root of T 0.Before de�ning T̂ , we must give a few de�nitionsconcerning trees and graphs. A tree T can be repre-sented as the set fu; (e1; T1); � � � (en; Tn)g, where u isthe root of T , T1; � � � ; Tn are subtrees of T and for eachi, ei is the edge in T from u to the root of Ti. If n = 0,then T is the trivial tree.Let T be a tree of the form fu; (e1; T1); � � � (en; Tn)gand � be a path. We inductively de�ne the notion ofpre�x and the notation T� meaning the subtree of Trooted at the path �. If � is the empty path, then �is a pre�x of T and T� = T . Otherwise, � is a pre�xof T if � is the sequence of edges < ei;�0 > for somei and �0 is a pre�x of Ti. In this case T� = Ti�0 . If� is not a pre�x of T , then T� is the empty tree. If� is a pre�x of T and u is the source of some edge in� and v is the target of the �nal edge in �, then u isabove v and v is below u.We de�ne the removal of a path from a tree as fol-lows. If T is a tree and � is a path, then T �� is thetree T with T� replaced by the empty tree. If T� isthe empty tree, then T � � = T . We also de�ne anordering on trees such that T < T 0 if the number ofreplacement edges in T is smaller than the number ofreplacement edges in T 0.Each T̂ can be de�ned inductively. If T is the emptytree, then T̂ = 2 [[> ]]. If T has a single node labelledby a 0�ary predicate symbol P , then T̂ = P [[> ]].Negated predicate symbols are treated similarly. IfT has a single node labelled by t where t is a variableor a constant symbol then T̂ = (t;2) [[> ]].If T is of the form fu; (e1; T1); � � � ; (en; Tn)g wherefe1; � � � ; eng is a subterm hyperedge then each ei islabelled with i. If u is labelled by _ and T̂i = Ci [['i ]]for each i, then T̂ = C1 _ � � � _ Cn [['1 ^ � � � ^ 'n ]].If u is labelled by a predicate symbol P and T̂i =(ti; Ci) [['i ]] for each i, then T̂ = P (t1; � � � ; tn) _C1 _� � � _ Cn [['1 ^ � � � ^ 'n ]]. Negated predicate symbolsare treated similarly. If u is labelled by a functionsymbol f and T̂i = (ti; Ci) [['i ]] for each i, then T̂ =(f(t1; � � � ; tn); C1 _ � � � _Cn) [['1 ^ � � � ^ 'n ]].Suppose T = fu; (e1; T1); � � � ; (en; Tn)g where u islabelled with a (usually negated) predicate symbol,e = fe1; � � � ; eng is a replacement hyperedge, and thelabel of each ei is (�i;�i), where �i is a renaming

substitution and �i is a path. The hyperedge e islabelled by an equational constraint '. Suppose thatfor each i, T̂i0 = Ci [['i ]] where Ti0 = Ti � �i. ThenT̂ = C1�1 _ � � � _Cn�n [[' ^ '1�1 ^ � � � ^ 'n�n ]]In Figure 2, suppose up is the node labelled by p,u:r is the node labelled by :r, u:t is the node labelledby :t and u_ is the node labelled by the _ on the right.Then ûp = fpg, ^u:r = f:r; p_qg, û:t = f:t;:r_s; p_q_ sg and û_ = f:t_ p0;:r_ s_ p0; p_ q_ s_ p0g. Soup represents p in p_ q _ r and in p_ q _ s_ p0. Also,u:r represents :r in :r _ s_ p0 and u:t represents :tin :t _ p0.Suppose T = fu; (e0; T 0); (e1; T1); � � � (en; Tn)gwhere u is labelled with a constant or function sym-bol, e = fe0; e1; � � � ; eng is a replacement hyperedge,e0 is a rewrite edge, the label of each ei is (�i;�i),and the label of e0 is (�0;�0). The hyperedge e is la-belled by an equational constraint '. Suppose thatfor each i, T̂i0 = Ci [['i ]] where Ti0 = Ti � �i andT̂ 00 = (t0; C 0) [['0 ]]. where T 00 = T 0 � �0. ThenT̂ = (t0�0; C 0�0 _C1�1 _ � � �_Cn�n) [['^'0�0 ^'1�1 ^� � � ^ 'n�n ]].In Figure 3, suppose u1 is the node labelled by f onthe top of the right hand side, u2 is the node labelledby f on the middle of the left hand side and u3 isthe node labelled by �. Then û1 = f(f(g(x));2)g,û2 = f(f(x);2); (f(g(x))�;2) [[ f(f(x))� := f(x) ]]g,and û3 = ff(f(x)) � f(g(x)); f(f(g(x))�) �f(g(x)) [[ f(f(x))� := f(x) ]]g. So u1 representsf(g(x)) in f(f(x)) � f(g(x)) and in f(f(g(x))�) �f(g(x)) [[ f(f(x))� := f(x) ]]. Also, u2 represents f(x)in f(f(x)) � f(g(x)), but does not represent f(g(x))�in f(f(g(x))�) � f(g(x)) [[ f(f(x))� := f(x) ]].To understand the meaning of path labels, we re-fer the reader to �gure 4. To simplify the example,the edges are referred to by the labels of the verticeson either end. Let uQ be the node labelled by Q,ua be the node labelled by a, u:P be the node la-belled by :P , and u:Q be the node labelled by :Q.There are four replacement hyperedges in the graph.One contains a resolution edge from ua to uQ and arewrite edge from ua to the node labelled by b. Onecontains a resolution edge from u:P to uQ. One con-tains a resolution edge from u:Q to u:P and is labelledwith the path < (:P; a)(a;Q) >. The other one alsocontains a resolution edge from u:Q to u:P but it islabelled with path < (:P;Q) >. Then ûQ = fQg,ûa = f(a;2); (b;Q)g, ^u:P = f:P (a);:P (b)_Qg, and^u:Q = f:Q;:P (a);:P (b);2g. For the meaning ofu:Q, we have thrown away the information at the endof the path (i.e., Q is not included in the clause with:P (b) or with 2).



_a _Q �a b _Pb_:Q :P< (:P;Q) >< (:P;a)(a; Q) >Figure 4: Paramodulation Inference4 Inference RulesIn the previous section, we have shown how to cre-ate a graph from an initial set of clauses, using onlysubterm edges. We have also de�ned the syntax andsemantics of the graph. We mentioned that the in-ference rules add replacement edges to the graph. Inthis section, we de�ne exactly how the inference sys-tem adds these edges to the graph.The clauses that exist in the graph at any momentof a theorem proving derivation are represented bythe set Sv2U v̂ where U is the set of all vertices inthe graph labelled with _. At each step of the infer-ence procedure, the theorem prover must decide whatedge to add next. To do that, it must decide whatBasic Paramodulation inference must be performed.It is possible to do this without calculating all theclauses. It is only necessary to know which literals inthe graph are selected in some clause. We must alsoknow which clauses contain a selected positive literal.For negative literals we only need to know if they areselected in some clause, but not which clause they areselected in. In this section we describe what edge thetheorem prover must add once it decides the inferenceto perform. In many cases, the theorem prover willnot perform the necessary inference. Instead, it willadd an edge corresponding to another inference. Butbecause of the addition of that edge, the required in-ference will also be performed.The theorem prover must halt when no inferencescan be performed or the empty clause is found. Onesimple way to search for the empty clause, is by usingthe inductive de�nition of resolution edges to calculatea �xed point of v̂ for each vertex v. To begin with,v̂ = ; for all v. Then at each stage, we apply a singleapplication of the inductive de�nition of replacementhyperedges. If that places 2 [[' ]] in v̂ for some ', thenwe add 2 [[' ]] to v̂. Otherwise, we don't add anythingto v̂. Eventually, if a tree rooted at a vertex labelledwith _ represents the empty clause with a satis�able

constraint, then the empty clause is present. Eachstep of this process can be done in polynomial time inthe size of the constraints. For the ground case, theprocedure can not take more steps than the number ofvertices in the graph, because it can only add 2 onceto each vertex. If 2 is added to no vertices at somestep, then the �xed point is reached, and the search forthe empty clause is terminated. For the non�groundcase, the procedure may proceed in�nitely long, so itmay be necessary to dovetail the search for the emptyclause with the addition of new edges which representinferences.Now we explain how to perform each inference.First, consider the resolution inference rule.� _A [[ �1 ]] :A0 _�[[ �2 ]]�� _�[[A� := A0 ^ �1� ^ �2 ]]Let T1 be the tree which represents the clause � _A [[ �1 ]], and T2 the tree which represents the clause:A0 _�[[ �2 ]]. Let u1 be the vertex that represents Ain T1. Let u2 be the vertex which represents :A0 inT2. Let T10 be the smallest subtree of T1 which has thesame root as T1 and for which u1 still represents A.Then T̂10 is a clause of the form �0 _A [[ �10 ]]. Let T20be the smallest subtree of T2 which has u2 as a rootand u2 still represents :A0. Then T̂20 is a clause of theform :A0_�0 [[ �20 ]]. Let U1 be the multiset of verticeswhich represent one of the literals of �0 in T̂10. Each uin U1 is the root of some tree Tu such that T̂u = L forsome literal L in �0. Let �u be the renaming appliedto L in T̂10. Let U2 be the multiset of vertices whichrepresent one of the literals of �0 in T̂20. Each u in U2is the root of some tree Tu such that T̂u = L for someliteral L in �0. Let �u be the renaming applied to Lin T̂20. The resolution we will directly perform is thefollowing �0 _A [[ �10 ]] :A0 _�0 [[ �20 ]]�0� _�0 [[A� := A0 ^ �10� ^ �20 ]]The clause :A0 _�0 [[ �20 ]] is not actually a clause.It is only a part of a clause. The inference is performedon all clauses that contain :A0 _�0 [[ �20 ]].To perform the resolution, we add a replacementhyperedge e labelled by the equational constraintA� := A0 ^ �10� ^ �20. If u is a vertex in U2 then ewill contain a resolution edge from u2 to u labelledwith �u. If u is a vertex in U1 then e will contain aresolution edge from u2 to u labelled with �u�. If uis a vertex in U1 above u1 in T10, then there is somepath � from u to u1 in T10. So the edge from u2 to uwill be labelled by the path �.



Additionally, we may need to modify the path in-formation on some existing paths. If u is a vertex inU2 below u2 such that an edge eu is added from u2 tou. let �u be the path from u2 to u. Then, for everyedge e0 of the form < �1;�u;�2 >, from some vertexv1 to some vertex v2, a new edge is added from v1 to v2which has the same label as e0 except that path infor-mation is < �1; eu;�2 > instead of < �1;�u;�2 >.When the new replacement hyperedge is addedto the graph, several resolution inferences are per-formed. Let T3 be the tree formed from T2 by re-moving the hyperedge from u2 in T2 and adding e andT1, then removing all the edges and vertices no longerreachable from the root of T3. Then T3 represents��0 _�[[A�0 := A0 ^ �1�0 ^ �2 ]], where �0 = �� and �is the renaming applied to :A0. The only di�erencebetween this and the inference we wanted to performis that the renaming may be di�erent.We give two illustrations of the resolution rule.First consider Figure 2. The reader may verify thatthe hyperedge on the left is created from a resolutioninference among p _ q _ r and :r _ s _ t. The hy-peredge on the right is created by an inference amongthe clauses p_ q _ s _ t and :t_ p0. According to theabove notation, T1 is the tree representing p_ q_ s_ tand T2 represents :t _ p0. Then T10 is the subtree ofT1 representing :r _ s _ t and T20 is the subtree of T2representing :t. Therefore we must add a hyperedge,consisting of an edge from the vertex labelled by :t tothe vertex labelled by :r and an edge from the vertexlabelled by :t to the vertex labelled by s. Note thatthis also performs the inference we originally wantedto perform.For another example, consider Figure 4. As men-tioned earlier, there are four hyperedges in the graph.The hyperedge directed from the vertex labelled by ais from a paramodulation inference, and we will dis-cuss that below. Suppose we want to perform thefollowing resolution inference::P (b)_Q :Q:P (b)Using the above notation, T1 is the tree rooted atthe vertex labelled by the second from the left _ sym-bol, containing the hyperedge directed from the vertexlabelled a. T10 is the same tree. u1 is the node labelledQ. u2 is the node labelled :Q. The only element ofU1 is the node u labelled by :P . To perform the res-olution inference, we must add an edge from u2 tou. But since u is above u1, we must label the edgewith the path < (:P; a)(a;Q) > from u to u1. As wementioned earlier, without the path information, theconclusion to the inference would be :P (b)_Q, which

is not correct.After this inference, we can resolve :P (b) and P (b).So u1 is the vertex labelled by P and u2 is the vertexlabelled by :P . Let u be the vertex labelled by Q.We need to add a resolution edge from u2 to u. Butsince an edge exists between u2 and u1 labelled by thepath from u2 to u, we must add another edge from u2to u1 labelled by the edge from u2 to u.The other inference rules are similar. Consider pos-itive factoring. � _A _A0 [[ � ]]� _A [[A := A0 ^ � ]]Let T represent the clause �_A_A0 [[ � ]]. Let u1 bethe vertex that represents A in T . Let u2 be the vertexwhich represents A0 in T . Let T10 be the smallestsubtree of T which has u1 as a root and u1 representsA. Then T̂10 is a clause of the form �10 _A [[ �10 ]]. LetT20 be the smallest subtree of T which has u2 as a rootand u2 represents A0. Then T̂20 is a clause of the form�20 _A0 [[ �20 ]].Let U1 be the multiset of vertices which representone of the literals of �10 in T̂10. Each u in U1 is theroot of some tree Tu such that T̂u = L for some literalL in �10. Let �u be the renaming applied to L in T̂10.Let U2 be the multiset of vertices which represent oneof the literals of �20 in T̂20. Each u in U2 is the rootof some tree Tu such that T̂u = L for some literal L in�20. Let �u be the renaming applied to L in T̂20.To perform the positive factoring, we add a replace-ment hyperedge e labelled by the equational constraintA := A0^�10^�20. If u is a vertex in U1[U2 then e willcontain a resolution edge from u2 to u labelled with�u. Also, e will contain a resolution edge from u2 tou1. As in resolution, this may cause path informationon other edges to be modi�ed.Consider the paramodulation inference rule.� _ s � t [[ �1 ]] L[s0]_�[[ �2 ]]�� _ L[t]_�[[ s� := s0 ^ �1� ^ �2 ]]Let T1 be the tree which represents the clause � _s � t [[ �1 ]], and T2 the tree which represents the clauseL[s0]_�[[ �2 ]]. Let u0 be the vertex that represents s,u1 the vertex that represents t and u3 the vertex thatrepresents s � t in T1. Let u2 be the vertex whichrepresents s0 in T2. Let T10 be the smallest subtreeof T1 which has the same root as T1 and for whichu3 represents s � t0 for some t0 and u0 represents s ins � t0. Then T̂10 is a clause of the form �0_s � t0 [[ �10 ]].Let T20 be the smallest subtree of T2 which has u2 asa root and u2 represents s0. Then T̂20 is a clause of



the form L0[s0] _�0 [[ �20 ]]. Let U1 be the multiset ofvertices which represent one of the literals of �0 inT̂10. Each u in U1 is the root of some tree Tu suchthat T̂u = L1 for some literal L1 in �0. Let �u be therenaming applied to L1 in T̂10. Let U2 be the multisetof vertices which represent one of the literals of �0 inT̂20. Each u in U2 is the root of some tree Tu suchthat T̂u = L2 for some literal L2 in �0. Let �u be therenaming applied to L2 in T̂20.To perform the paramodulation, we add a replace-ment hyperedge e labelled by the equational constraints� := s0 ^ �10� ^ �20. The hyperedge e will contain anedge from u2 to u1, labelled with �� where � is therenaming applied to t0 in T̂10. If u is a vertex in U2then e will contain an edge from u2 to u labelled with�u. If u is a vertex in U1 then e will contain an edgefrom u2 to u labelled with �u�. If u is a vertex inU1 above u3 in T10, then there is some path � fromu to u3 in T10. So the edge from u2 to u will also belabelled by the path �. Path information may needto be modi�ed as in resolution.For an example of a paramodulation inference, con-sider Figure 4. In that example a paramodulation isperformed among the clauses Q _ a � b and :P (a).A replacement hyperedge is added which is comprisedof a resolution edge from the vertex labelled by a tothe vertex labelled by Q, and a rewrite edge from thevertex labelled by a to the vertex labelled by b.Another example of paramodulation is in �gure 3.Here, T1 and T2 are the same tree, s0 represents f(x),s represents f(f(x)) and t represents f(g(x)). To per-form the paramodulation we add the rewrite edge inthe graph. We called the renaming �, so that is thelabel of the rewrite edge, and the replacement hyper-edge is labelled with the constraint f(f(x))� := f(x).Finally, we consider Equation Resolution.s 6� t _ � [[ � ]]� [[ s := t ^ � ]]Let T be the tree which represents the clause s 6�t_� [[ � ]]. Let u0 be the vertex that represents s 6� t inT . Let T 0 be the smallest subtree of T which is rootedat u0 and u0 represents s 6� t. Then T 0 represents aclause of the form s 6� t _ �0 [[ �0 ]].Let U be the multiset of vertices which representone of the literals of �0 in T̂ 0. Each u in U is the rootof some tree Tu such that T̂u = L for some literal L in�0. Let �u be the renaming applied to L in T̂ 0.To perform the equation resolution, we add a re-placement hyperedge e labelled by the equational con-straint s := t^ �0. If u is a vertex in U then e will con-

tain an edge from u0 to u labelled with �u. The pathinformation may need to be modi�ed as in resolution.Redundant clauses may be removed by not requir-ing an inference if the desired inference has redun-dant premises. This is crucial in a standard theoremproving derivation, because otherwise the search spacegrows too large. But we are considering other ways ofreducing the search space, and it seems to be less nec-essary in this context. For instance, it may be moree�ort to check if a clause is a tautology than to per-form a resolution inference involving that tautology.And because of our structure sharing, such an infer-ence may need to be performed anyway, because theliteral resolved away may exist in another clause.We prefer to focus on methods of redundancy whichmay be performed by local examination of the graph.For instance, after the Basic Paramodulation infer-ence, the right premise may be removed if s � t isthe only literal in the left premise and the constraints� := s0 ^ �1� is a renaming or >. This is called de-modulation or simpli�cation. One way to do it is thefollowing. Suppose a replacement hyperedge e fromnode u is added because of an equation s � t. Fur-ther, suppose that e only contains a rewrite edge fromu to v and e has an equational constraint which is justa renaming substitution or >. Then e can be con-sidered as a simpli�cation edge. For most trees, werequire that if the tree contains u then it must con-tain e leading out of u. The only exception we makeis when u represent the root of one side of an equations � t0 with t0 � t. In that case, we require that notree containing u has e leading out of it. The reason isthat we do not want to let an equation simplify itselfor something smaller.In a resolution inference, the right premise may beremoved if A is the only literal in the left premiseand the constraint A := A0 ^ �1� is a renaming or >.This is called subsumption. We perform subsumptionthe same way we search for the empty clause as givenin the beginning of this section. Whenever a vertex2 [[' ]] is added to v̂, then v is considered to repre-sent only the empty clause if ' is a renaming or >.Any node which represents the empty clause is thenconsidered as the empty clause. If this subsumptionrule is performed, there is no need to check for theempty clause in the ground case, because the emptyclause will automatically be propagated up to one ofthe nodes labelled by _.Now we give the soundness and completeness re-sults. We can de�ne a theorem proving derivationexactly as before. The only di�erence is that an in-ference (or several inferences) is performed by adding



an edge to the graph and several deletions may beperformed by removing an edge from the graph. SoSi+1 is created from Si by adding the conclusions ofall those inferences or deleting all those clauses.Theorem 2 PWD is sound and complete.The completeness is because for each inference de-sired, the edge added to the graph adds the desiredconclusion. The soundness is because adding a clauseonly performs inferences where the conclusion followsfrom the premises.5 ComplexityWe show that PWD polynomially decides certainclasses. For all these classes, only polynomially manyedges can be added to the graph, and it only takespolynomial time to perform the next inference at anypoint. For these complexity arguments we assume thatall inferences and redundancy removals are performedby adding an edge to the graph or removing an edgefrom the graph. Any inference, which can be, willbe considered as a simpli�cation or subsumption. Weassume that it is possible to calculate the selectionrule in polynomial time. We call the inference rulesPWD, PWD+, PWD� or PWDmax to correspondto the selection rules of Basic Paramodulation.Theorem 3 PWD polynomially decides HC.Proof. Let S0 2 HC. Let n be the number of literalsin S0. Only the resolution inference rule is applicableto this class, so no positive literals will have outgoinghyperedges. Suppose that u is the root of T1 whichrepresents � _ A, which is the left premise of an in-ference and u1 represents A in � _ A. If � _A 62 S0,then there must be some smaller tree with root u suchthat u1 represents A. This is true, because the hy-peredge from u must have u1 as a target. Therefore,all necessary inferences involve a member of S0 and anegative literal. There are only n2 of these inferences,so only n2 edges can be added to the graph. The onlyother thing necessary to check is that the selectionrule for all clauses is decidable in polynomial time. Inother words, for a given literal, it must be decidablein polynomial time if that literal is selected in someclause. This must be done carefully, because a graphmay represent exponentially many clauses. However,it is possible to decide in polynomial time if a literalbelongs to a clause, or if a set of literals belong to thesame clause. So, for instance, selection rules based onan ordering of the clauses can be decided in polyno-mial time. A smarter method is to select all negativeliterals in each goal clause. That saves the time of

checking the selection rule, and is very e�cient in thismethod. Note that this argument also holds in thenon�ground case. But in that case, it is undecidableif 2 exists with a satis�able constraint. 2Theorem 4 PWD+ polynomially decides CN .Proof. Since the set is saturated by Paramodulation,we know that no inferences are necessary into positiveliterals. So we only need inferences whose left premiseis a clause in S0. The argument is similar to the ar-gument for HC. 2Theorem 5 PWD polynomially decides UE . There-fore Completion is polynomial.Proof. Let S0 2 UE. Let n be the number of sym-bols in S0. Since the clauses are unit clauses, the onlyreplacement hyperedges are the ones generated fromBasic Paramodulation which contain one rewrite edgeor the ones from Equation Resolution which containno edges. Only one rewrite edge can appear betweenany two vertices. There can only be n vertices in thegraph, hence there are no more than n2 rewrite edgesand therefore no more than n2+n replacement hyper-edges. Since the clauses are ground, each replacementhyperedge is a simpli�cation hyperedge, so each sym-bol labelled by � stands for only one equation. Wehave to be careful, because the graph may contain ex-ponentially large clauses. However, by an extension ofthe Patterson-Wegman or Martelli-Montanari uni�ca-tion algorithms [12, 14], the uni�cation could still beperformed in linear time. It is only necessary not towrite out each clause. 2Theorem 6 PWD� polynomially decides HCE .Proof. The left premise is a unit positive equation inevery inference, since we perform subsumption. Thenthe argument is the same as for UE. 26 ConclusionWe have presented data structures which createmassive structure sharing of a Paramodulation Theo-rem Prover. This gives theorem proving a polynomialsearch space for some important subclasses of �rst or-der logic with equality. Alternately, this can be viewedas a new inference mechanism for �rst order logic withequality. This is the view we have taken in the imple-mentations of this procedure which we have begun.AcknowledgementsI thank the members of the PROTHEO group atINRIA for their comments. Particularly, I thank
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