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List of SymbolsOther than ordinary text in variously sized fonts, and in roman, italic, bold-face, greek letters, ordinary mathematical symbols ([, 2, 62, �, n (set di�erence),;,1, :, _, etc.) and the �at-sign� @ used in email addresses, we use the followingmathematical symbols:� Relational symbols: � (equality in the formal language), = (equality in themeta language), 6� (negation of equality) <, �, >, �, 6<, 6> ;� Grouping symbols: [�], [�]p, [[�]], (�), f�g,� Miscellaneous ), j= (logical implication), 2 (empty clause), and sometimeswe put a bar over symbols, as in �L.We also use standard form for inferences, e.g.,C1 C2C3



Abstract. We present a modi�cation to the paramodulation inferencesystem, where semantic equality and non-equality literals are stored aslocal simpli�ers with each clause. The local simpli�ers are created whennew clauses are generated and inherited by the descendants of thatclause. Then the local simpli�ers can be used to perform demodulationand unit simpli�cation, if certain conditions are satis�ed. This reducesthe search space of the theorem proving procedure and the length ofthe proofs obtained. In fact, we show that for ground SLD resolutionwith any selection rule, any set of clauses has a polynomial length proof.Without this technique, proofs may be exponential. We show that thisprocess is sound, complete, and compatible with deletion rules (e.g., de-modulation, subsumption, unit simpli�cation, and tautology deletion),which do not have to be modi�ed to preserve completeness. We alsoshow the relationship between this technique and model elimination.



1 IntroductionThe paramodulation inference system is an extension of the resolution inferencesystem to deal with theorem proving in �rst order logic with equality (Robin-son & Wos (1969)). Unfortunately, the paramodulation inference system can bevery proli�c, creating many clauses when searching for a proof. Recently, somerestrictions on paramodulation have been developed to limit the search space(Bachmair & Ganzinger (1994), Bachmair et al (1995), Hsiang & Rusinowitch(1991), Nieuwenhuis & Rubio (1992), Nieuwenhuis & Rubio (1995), Peterson(1983), Pais & Peterson (1991), Zhang (1988)).A paramodulation theorem prover can be viewed as a Knuth-Bendix com-pletion procedure, extended to handle disjunctions of equations. Knuth-Bendixcompletion is fairly e�cient, because each equation generated can be simpli�edby the other equations, thereby saving many inferences and keeping equations ina reduced form. In paramodulation inference procedures, we may simplify clauseswith positive unit clauses1, exactly as we do in completion (Wos et al (1967)).Unfortunately, the e�ect of this is limited, because not many unit equations ex-ist. In this paper, we show how to increase the number of demodulations. Theidea is that if a paramodulation inference has been performed using equations = t, yielding equation C, then descendants of C may be simpli�ed by s = t.Sometimes this is not sound and other times it is not complete. In this paper,we show exactly which simpli�cations can be performed, preserving soundnessand completeness. We call this local simpli�cation, because the simpli�ers arelocal to clauses, and may not be used globally, as can unit equations.In Kirchner, Kirchner & Rusinowitch (1990), it was shown how constraintscould be used in theorem proving to limit the instances of a clause. Since thenmany papers (Bachmair et al (1995), Lynch & Snyder (1995), Nieuwenhuis &Rubio (1992), Nieuwenhuis & Rubio (1995), Nieuwenhuis & Rubio (1994), Vi-gneron (1994)) have appeared which use constraints to restrict the search space.These papers show that other restrictions on the search space can be representedas constraints. Constraints are built up as inferences are performed and used toremember earlier inferences. Local simpli�ers are similar to constraints in thatthey are inherited in the same way. In contrast, constraints are a way of restrict-ing the number of instances of a clause, but local simpli�ers are not. Therefore,local simpli�ers have an advantage over constraints in terms of redundancy rules,as we will show.Local Simpli�cation works as follows When an inference is performed, anequation is saved as an ancestor literal (as in Model Elimination (Loveland(1968), Loveland (1978)), along with some conditions. This is called a local sim-pli�er . When the conditions are met, that equation can be used to simplify theclause. This may limit the search space, but in contrast with other restrictionsit may also shorten the refutation. An advantage our local simpli�ers have overother constrained theorem provers is that they are not weakened when deletionrules, such as demodulation, unit simpli�cation and subsumption, are performed.1 This is called simpli�cation or demodulation.



To show the completeness, we use techniques from Bachmair & Ganzinger (1994)to remove redundant clauses. This paper is evidence to the power of these redun-dancy techniques, because we can show our completeness results by appealingto the proof in that paper.As a motivation of the need for local simpli�cation, consider the followingresolution refutation proof.:R R _ :P P _:Q :R R _ :P P _QR _QQPR2In this proof, the variable P has been removed from the clause P _ Q bythe �rst resolution inference. However, it later reappears, and the same set ofinferences is repeated. Local Simpli�cation allows us to avoid that repeated set ofinferences by remembering which variables are removed by resolution and thenimmediately removing them if they reappear. Local Simpli�cation would resultin the following proof.P _ :Q :R R _ :P P _QR _Q [[:P ]]Q [[:P;:R ]]P [[:P;:R;:Q ]]2In this proof, the literals are recorded as they are resolved away, and thenimmediately removed when they reappear. The literals :P , :Q and :R are savedas local simpli�ers. In the last step, the variable P reappears and is immediatelyremoved by a local simpli�cation step. (i.e., the clause P is replaced by theempty clause). This example shows how Local Simpli�cation limits the size ofproofs. It also reduces the search space, because the extra clauses do not needto be created. Local simpli�ers contain ancestor literals as in Model Elimination(Loveland (1968), Loveland (1978)), and the local simpli�cation step is similar toa reduction step in Model Elimination. The di�erence is that reduction is neededto preserve completeness and local simpli�cation is only used to reduce the searchspace and the length of proofs. 2 We can also use local simpli�cation to limit thesearch space of equational theorem provers and the size of paramodulation proofsas illustrated by the following example . Consider the following Paramodulationproof.2 We discuss more about the relationship with model elimination in the conclusion



:Q(b) :R R _ a � b :P (b) _Q(a) :R R _ a � b P (a)R _ P (b)P (b)Q(a)R _Q(b)Q(b)2In the �rst paramodulation inference, a is rewritten to b. In one of the de-scendants, a reappears. It is then necessary to perform the same sequence ofinferences as before. In local simpli�cation, we store a � b as a local simpli�erand immediately rewrite a to b whenever it appears. We call it Local Simpli�ca-tion because we can only perform this simpli�cation locally in this clause, andnot globally in other clauses. We now have the following proof.:Q(b) Q(a) _ :P (b) :R R _ a � b P (a)R _ P (b) [[ a� b ]]P (b) [[ a � b ]]Q(a) [[ a � b ]]Q(b) [[ a � b ]]2We only show the local simpli�er that was used, but there are other localsimpli�ers that could be saved. In this example, we recorded the fact that a �b, then when a reappeared, it was rewritten to b. In other words, the clausecontaining a is removed as the clause containing b is added. This cannot be donein Model Elimination.Unfortunately, Local Simpli�cation cannot always be applied. Consider thefollowing proof.:P (b) :R(b) R(a) _ a � b P (a)R(a) _ P (b) [[ a � b ]]R(b) _ P (b) [[ a � b ]]P (b) [[ a � b ]]2We record the fact that a � b then use it to rewrite a to b in a later step.Unfortunately, our initial set of clauses: fP (a), R(a) _ a � b;:R(b);:P (b)g issatis�able. Intuitively, the problem is that we used a � b to rewrite R(a) butthey both came from the same clause. Any descendant of R(a) would cause asimilar problem. To avoid that, we save literals with each ancestor literal, whichrecord where each clause came from. This is the only thing which is necessary to



preserve soundness. It is slightly more sophisticated than the Model Eliminationtechnique, which keeps track of the position of an ancestor literal in a clause.Another problem if we are not careful, is that Local Simpli�cation may notbe complete. We will discuss this in a later section.This paper is organized as follows. In section 2 we give the necessary de�ni-tions. In sections 3 and 4, we give the modi�cations necessary to the inferenceand deletion rules to handle local simpli�ers. In section 5, we give the local sim-pli�cation rules used to simplify clauses. Section 6 proves completeness. Section 7is a discussion of how the local simpli�cation rules react in combination withsome well known restrictions. In SLD resolution with ground non�equationalclauses, we show that every set of clauses has a linear refutation for every se-lection rule, whereas other goal directed inference rules have only exponentialrefutations of some sets of clauses with certain selection rules. This is for the non-equality case. However, we believe our results are especially powerful with equal-ity. Section 8 shows some ways that local simpli�ers can be simpli�ed. Finally,section 9 shows the relationship with related work, including model elimination.2 PreliminariesWe use the standard de�nitions of theorem proving (see Loveland (1968), Love-land (1978)).De�nition1. A term is built from function symbols, constants and variables.An atom is a predicate symbol applied to some terms. The equality symbolis a distinguished binary predicate symbol (�), written in in�x notation. Forexample s � t is an equality. Negative equalities :(s � t) are written as s 6� t.A literal is an atom or a negated atom. If L is a literal, then �L is the negation ofL, i.e., if L = A then �L = :A and if L = :A then �L = A. An undecorated clauseis a disjunction of literals. Sometimes clauses will be viewed as multisets. Werepresent clauses with the letters C and D, literals with L and M , and atomswith A and B.We next give the de�nition of decorated clause as used in this paper. Adecorated clause is an (undecorated) clause with some literals attached to it,which can be used to simplify the clause. These literals, which may be equations,are created when the clause is created and inherited by descendants of the clause.These literals are saved along with certain conditions that indicate when theymay be used to simplify the clause, remove a literal from the clause, or removethe entire clause.De�nition2. A (decorated) clause is of the formC [[ (L1; C1; S1); � � � ; (Lm; Cm; Sm) ]] where C is an undecorated clause, and each(Li; Ci; Si) is a local simpli�er on C. Each Li is an ancestor literal , which is usedfor simpli�cation of the clause. Each Ci is a disjunction of literals, and each Siis a set of undecorated clauses. Si and Ci determine when Li may be used forsimpli�cation.We use variables like ' and 	 to represent sets of local simpli�ers.Since they are sets, the order is unimportant.



When we refer to a clause, we may be referring to a decorated or an undec-orated clause, depending on the context.Substitutions are de�ned as usual.De�nition3. A substitution is a mapping from variables to terms, which is theidentity on all but �nitely many variables. We identify a substitution with itshomomorphic extension. If � is a substitution, then t� represents the result ofapplying � to t. In general, (C [[' ]])� = C� [['� ]]. If � and � are substitutions,then �� is de�ned so that x�� = (x�)� for all variables x. We say � � � if thereis an � such that �� = �. We call � a uni�er of s and t if s� = t�. We call �a most general uni�er of s and t (written mgu(s; t)) if � is a uni�er of s and tand for all uni�ers � of s and t, � � �.A multiset is an unordered collection with possible duplicate elements. Wedenote the number of occurrences of an object x in a multiset S by S(x). Aclause is viewed as a multiset of literals. A reduction ordering < is a well�founded ordering which is stable under context (i.e., if s < t then u[s] < u[t])and stable under substitution (i.e., if s < t then s� < t�). Let < be a reductionordering on the literals, total on ground terms. This ordering is extended to anordering on the clauses by identifying < with its multiset extension. In otherwords, if S and T are �nite multisets, then S < T if and only if there exists anL 2 T such that T (L) > S(L) and for all M > L, S(M ) = T (M ). We say thatA is maximal in a multiset S if there is no B in S such that B > A.One key di�erence between the local simpli�ers in this paper and the con-straints in other papers on constrained deduction is that we do not use the localsimpli�ers to determine ground instances.De�nition4. A ground clause (resp. term) is a clause (resp. term) withoutvariables. A substitution � grounds a clause (resp. term) C if C� is ground.In this paper, when we call � a ground substitution, we mean that � groundscertain terms which are obvious from the context. The set of ground instancesof C [[' ]], Gr(C [[' ]]) = fC�j� grounds Cg. And Gr(S) = f Gr(C) jC 2 Sg.The implication of this de�nition of ground instances is that it will not benecessary to weaken local simpli�ers when performing simpli�cation and sub-sumption.We will use the notation j= to mean logical implication.De�nition5. If S is a set of ground clauses and C is a ground clause or aliteral, then S j= C if and only if C is true in every model of S. If T is a set ofground clauses or literals, then S j= T if and only if S j= C for all C 2 T . Ingeneral, if S is a set of clauses and C is a clause or literal, then S j= C if andonly if Gr(S) j= Gr(C). A clause C is satis�able if and only if there is a modelthat makes C true. The empty clause 2 is unsatis�able. A set of clauses S issatis�able if and only if some model makes all of the clauses in S true.



A clause is redundant if it is implied by smaller clauses. The de�nition ofredundancy is adapted from Bachmair & Ganzinger (1994). Redundant clausesmay be removed, because they are not needed for �nding a proof.De�nition6. Let T be a set of clauses. A clause C is redundant at T in S if forall ground substitutions � there are clauses D1; � � � ; Dn 2 Gr(S), where n � 0such that1. D1; � � � ; Dn j= C�, and2. fDjg < T� for all j, 1 � j � n.C is redundant up to T in S if the < in condition 2 is replaced by �. For aclause D, C is redundant at D in S if C is redundant at fDg in S. A clause Cis redundant in S if C is redundant at C in S.The local simpli�ers are added when a clause is generated and inherited fromthe clause's ancestors. In the following de�nition, we show the meaning of thelocal simpli�ers.De�nition7. The clause C [[ (L1; C1; S1); � � � ; (Lm; Cm; Sm) ]] is said to be cor-rect in S if, for each i,1. Ci � C,2. Ci _ Li is redundant at Si in S, and3. Li 62 Ci.Conditions 1 and 3 are needed for soundness. Condition 2 will be neededfor completeness. It will assure us that a clause may be removed because theinference creating it is redundant. We only need to know the maximal elementsof Si so we may remove everything else from the set.For example, the clause P (a)_Q(b)_R(c) [[ (a � b;Q(b)_R(c); fD;Eg) ]] iscorrect in S if D = Q(b) _ P (c) and E = R(c) _ :P (c) _ a � b are clauses in S.If a clause is ever created where the �rst two conditions of the de�nitionhold, but the third condition does not (i.e., for some i's, Li 2 Ci), then we mayreplace each local simpli�er of the form (Li; Li _ C 0; Si) with (Li; C 0; Si). The�rst two conditions will still hold, so the clause is now correct. Therefore, whenchecking for correctness of a clause, we only check the �rst two conditions. Weassume that the above transformation is performed whenever a clause is created.3 The Inference RulesIn this section, we present the inference rules. They are the same as the inferencerules in Bachmair & Ganzinger (1994), except we show how the local simpli�ersare created by inference rules, and later inherited by descendants of the clause.Each inference rule will be of the formC1 � � �CnC�



where n � 1. The substitution � is the most general uni�er in the inference.This de�nition means that, if C1 � � �Cn are existing clauses, then the clauseC� must be added to the set of clauses.De�nition8. An inference rule is correct if, for all S such that C1; � � � ; Cn 2 Sand C1; � � � ; Cn are correct in S,1. S j= C�, and2. C� is correct in S.To restrict the literals of a clause that may be involved in an inference, wede�ne a selection rule to select certain literals from the clause. (see Bachmair& Ganzinger (1994), Bachmair et al (1995)). Only the selected literals may beinvolved in an inference.De�nition9. A selection rule Sel is a function from a clause C to a subsetof the literals in C. If L 2 Sel(C) we say that L is selected in C. A selectionfunction is valid if for each C, either a negative literal is selected in C or allmaximal literals of C are selected in C.Thus, for a valid selection rule, any clause containing a negative literal onlyneeds to select one literal, but it may be necessary to select more than one literalin a positive clause. When the inference rules are given, we assume a selectionrule has been de�ned. A set of inference rules can be thought of as being instan-tiated by a selection rule. It is known that a Paramodulation inference system iscomplete if it is instantiated by a valid selection rule. No invalid instantiationsare known to be complete.The inference rules are now stated and proved to be correct.Resolution is an inference rule for �rst order logic. It is also necessary in com-bination with paramodulation for �rst order logic with equality. Although, if allliterals are encoded as equations, then resolution can be encoded by paramodu-lation.Resolution C _A [[' ]] :A0 _D [[	 ]](C _D [[ (A;C; fC _Ag); (:A0; D; f:A0 _Dg); '0; 	 0 ]])�where � = mgu(A;A0) 3, A� is selected in (C _A [[' ]])� and :A0� is selected in(:A0 _D [[	 ]])�.Also, '0 is the same as ' with the following exception. For any triple in ' ofthe form (Li; C 0 _ A; Si) (i.e., any triple where Ci contains the literal that hasbeen resolved upon), that triple must be replaced in '0 by the triple (Li; C 0 _D;Si [ fD _ :A0g). This preserves the fact that Ci � C _ D, because of theassumption that Li 62 Ci.Similarly,	 0 is the same as 	 , except that any triple in 	 of the form (Mi; D0_:A0; Ti) is replaced in 	 0 by the triple (Mi; D0 _C; Ti [ fC _Ag).3 Variables are renamed so the clauses in an inference have di�erent variables.



Proposition10. Resolution is correct.Proof. The premises imply the conclusion, but we must also show that the con-clusion is correct. First we note that the second parameter of each new localsimpli�er in the conclusion is a subset of the clause, because C� � (C _D)�and D� � (C_D)� and each local simpli�er Ci or Di has been modi�ed so thatCi� � (C _D)� and Di� � (C _D)�.Now we must check the second condition of the de�nition of a correct clause.Trivially the new local simpli�ers satisfy the condition, because (C _ A)� j=A�_C� and (:A0_D)� j= :A0�_D�. In addition, we must examine each localsimpli�er that was modi�ed by the inference. For each ground substitution �,there is some S0 � Si�� such that S0 j= (C 0 _A _Li)��, therefore S0 [ f(:A0 _D)��g j= C 0�� _ D�� _ Li��. Similarly, there is some T 0 � Ti�� such thatT 0 j= (D0_:A0_Mi)��, therefore T 0[f(C_A)��g j= D0��_C��_Mi��. 2Factoring is needed in combination with resolution for completeness. How-ever, it is only necessary to factor positive literals.Positive Factoring C _A _A0 [[' ]](C _A [[' ]])�where � = mgu(A;A0) and A� is selected in (C _A _A0 [[' ]])�.Proposition11. Positive Factoring is correct.The proof follows directly from the de�nition of correctness.Paramodulation C _ s � t [[' ]] L[s0] _D [[	 ]](C _ L[t] _D [[ (s � t; C; fC _ s � tg); (s 6� t;D _ L[t]; fL[s0] _Dg); '0; 	 0 ]])�where � = mgu(s; s0), s� � t� is selected in (C _ s � t [[' ]])�, L[s0]� is selectedin (L[s0] _D [[	 ]])�, t� 6> s�, and s0 is not a variable.Also, '0 is the same as ', except that any triple in ' of the form (Li; C 0_s �t; Si) is replaced in '0 by the triple (Li; C 0 _ L[t]_D;Si [ fL[s0] _Dg).Similarly,	 0 is the same as 	 , except that any triple in 	 of the form (Mi; D0_L[s0]; Ti) is replaced in 	 0 by the triple (Mi; D0 _C _ L[t]; Ti [ fC _ s � tg).Paramodulation is an inference rule for �rst order equality that generalizesthe substitution of equals by equals. It reduces to Knuth�Bendix completion ifall clauses are unit equations.Proposition12. Paramodulation is correct.Proof. The premises imply the conclusion, but we must also show that the con-clusion is correct. First, we note that C� � (C _D)�, D� � (C _D)� and eachCi and Di has been modi�ed so that Ci� � (C _ D)� and Di� � (C _ D)�.Therefore the �rst condition holds.



Also, we see that for all ground substitutions �, (C _ s � t)�� j= (s �t)��_C�� and (L[s0]_D)�� j= (s 6� t)��_D��_L[t]��. So trivially, each newlocal simpli�er satis�es the second condition. In addition, we must examine eachlocal simpli�er that was modi�ed by the inference. There is an S0 � Si�� suchthat S0 j= (C 0 _ s � t_Li)��, therefore S0 [f(L[s0]_D)��g j= C 0�� _L[t]�� _D�� _Li��. Similarly, there is a T 0 � Ti�� such that T 0 j= (D0 _L[s0]_Mi)��,therefore T 0 [ f(C _ s � t)��g j= D0�� _C�� _ L[t]�� _Mi��. 2In paramodulation inference systems, in order not to lose completeness, wemust either allow paramodulation into the smaller side of an equation in somecases, or we must add an inference rule called Equation Factoring. Here we showhow the Equation Factoring inference rule would be used in our system.Equation Factoring C _ s � t _ s0 � t0 [[' ]](C _ t 6� t0 _ s0 � t0 [['0 ]])�where � = mgu(s; s0), s� � t� is selected in (C _ s � t _ s0 � t0 [[' ]])�, andt� 6> s�.Also, '0 is the same as ', except that any triple in ' of the form (Li; C 0_s �t; Si) is replaced in '0 by the triple (Li; C 0 _ t 6� t0 _ s0 � t0; Si).Proposition13. Equation Factoring is correct.Proof. The premise implies the conclusion and each Ci has been modi�ed so thatCi� � (C _ t 6� t0 _ s0 � t0)�. In addition, for any modi�ed local simpli�er andground substitution �, there is some S0 � Si�� such that S0 j= (C 0_s � t_Li)��,therefore S0 j= (C 0 _ t 6� t0 _ s0 � t0 _ Li)��. 2The last inference rule necessary for completeness is Equation Resolution. Itgeneralizes the notion of removing trivial disequations. An alternative to Equa-tion Resolution is to add the Re�exivity axiom x � x to the set of clauses.Equation Resolution C _ s 6� t [[' ]](C [['0 ]])�where � = mgu(s; t) and s� 6� t� is selected in (C _ s 6� t [[' ]])�.Also, '0 is the same as ', except that any triple of the form (Li; C 0_s 6� t; Si)is replaced by (Li; C 0; Si).Proposition14. Equation Resolution is correct.The proof follows directly from the de�nition of correctness.



4 The Deletion RulesIn this section we present some well-known deletion rules, (e.g., subsumptionand demodulation) to indicate how they are a�ected by the local simpli�ers. Thereader will note that, unlike other theorem provers with e�ciency constraints,the local simpli�er on the simpli�er and subsumer do not have to be modi�ed inorder to perform the deletion. Recall that the di�erence between an inference ruleand a deletion rule is that an inference rule must be performed and a deletionrule may be performed if desired. We present deletion rules in the form:T ) T 0where T and T 0 are sets of clauses.This means that, if T is a subset of the existing set of clauses, then we maydelete all the members of T and add all the members of T 0. Generally T and T 0have some elements in common. If those common elements exist, then we maydelete the members of T nT 0 as long as we add the members of T 0nT . SometimesT will be empty, meaning that the members of T may be deleted without addinganything. As in inference rules, the members of T are called the premises, andthe members of T 0 nT are the conclusions. A deletion rule may be performed atany time. We will de�ne it so that the deleted clauses are redundant .In addition to redundant clauses, we need to de�ne redundant inferences(Bachmair & Ganzinger (1994)). Redundant inferences do not need to be per-formed, because they are not needed for the proof.De�nition15. An inference C1 � � �CnC�is redundant in S if any of C1�; � � �Cn� is redundant or if C� is redundant atCn� in S.We de�ne a function called height for each clause.De�nition16. For all initial clauses C, height(C) = fCg. If a clause C� iscreated by the inference C1 � � �CnC�then height(C�) = fCn�g. However, as soon as C� has been used in an inferenceor a deletion rule, then height(C�) = fC�g.This function will be used to show redundancy. If a clause C is redundantat height(C), then either C is redundant or the inference used to create C isredundant. In either case, C can be removed.Now we de�ne what it means for a deletion rule to be correct.De�nition17. A deletion rule is correct if, for all S such that T � S and eachC in T is correct in S,



1. S j= C for all C 2 T 0,2. C is correct in S for all C 2 T 0, and3. for each member C of T nT 0, either C is redundant at height(C) in S nT [T 0or there is a member D of S n T [ T 0 such that D� = C for some �.If T 0 = ;, cases 1 and 2 are not necessary and case 3 says that each member ofT is redundant in S.As mentioned above, the clauses deleted by correct deletion rules are re-dundant or were produced by a redundant inference. In this section, we willpresent deletion rules which remove redundant clauses. In the section on LocalSimpli�cation, we will present deletion rules which remove clauses produced byredundant inferences.The deletion rules are as follows:Subsumption fC [[' ]]; C� _D [[	 ]]g ) fC [['0 ]]gwhere � is any substitution, and '0 = ' [ f(Li; Ci; Si) 2 	 jCi � Cg.Subsumption is interesting because, in constrained theorem proving systemswe must remove constraints from' in order to perform the subsumption, whereasin our case we don't have to remove local simpli�ers from '. In fact, we mayactually add local simpli�ers to '.Proposition18. Subsumption is correct.Proof. The left premise is smaller than and implies the right premise, thereforethe right premise is redundant. But this deletion rule is slightly di�erent fromthe other deletion rules. In this rule, we modi�ed '. So we must show that themodi�cation of ' is correct. The only thing that needs checking is that any(Li; Ci; Si) added to ' has the property that Ci � C. But that must be true,because that is the condition that allows us to add it. 2Unit Simpli�cationfL [[' ]]; �L� _D [[	 ]]g ) fL [[' ]]; D [[	 0 ]]gwhere � is any substitution.	 0 is the same as 	 , except that every local simpli�er of the form (Li; �L� _C0; Si) is replaced by (Li; C 0; Si [ fLg).Proposition19. Unit Simpli�cation is correct.Proof. The conclusion is implied by the premises. The right premise is redundantin the presence of the left premise and the conclusion. We must show that theconclusion is correct. Since the right premise is correct, we know that C 0 � D.Also, for any modi�ed local simpli�er and ground substitution �, there exists anS0 � Si� such that S0 j= (�L� _C 0_Li)�, therefore S0 [fL�g j= (C 0_Li)�. 2



Demodulationfs � t [[' ]]; L[s�] _D [[	 ]]g ) fs � t [[' ]]; L[t�] _D [[	 0 ]]gfor any substitution �, if s� > t�.The local simpli�er 	 0 is the same as 	 , except that every occurrence of(Li; L[s�] _C 0; Si) is replaced by (Li; L[t�] _C 0; Si [ fs � tg)Proposition20. Demodulation is correct.Proof. The conclusion is implied by the premises. The right premise is redundantin the presence of the left premise and the conclusion. We must show that theconclusion is correct. Since the right premise is correct, we know that C 0_L[t�] �D. For any modi�ed local simpli�er and ground substitution �, there existsan S0 � Si� such that S0 j= (L[s�] _ C 0 _ Li)�, therefore S0 [ fs� � t�g j=(L[t�] _C 0 _ Li)�. 2We now de�ne other deletion rules, which are often not presented in theo-retical papers because they follow from the de�nition of redundancy. However,these are rules which are often used in practice. We present them here to makeexplicit the way that local simpli�ers are handled. Each of the correctness proofsfollows immediately from the de�nition of correctness.Tautology Deletion fC _A _ :A [[' ]]g ) ;Proposition21. Tautology Deletion is a correct deletion rule.This is trivially redundant, i.e., n = 0 in the de�nition of redundancy.Equational Tautology DeletionfC _ s � s [[' ]]g ) ;Proposition22. Equational Tautology Deletion is correct.Thinning fC _ L _ L [[' ]]g ) fC _ L [[' ]]gProposition23. Thinning is correct.Equational ThinningfC _ s 6� s [[' ]]g ) fC [['0 ]]gThe local simpli�er '0 is the same as ', except that any triple of the form(Li; C 0 _ s 6� s; Si) is replaced by (Li; C 0; Si).Proposition24. Equational Thinning is correct.Proof. The premise implies the conclusion, and the conclusion is smaller thanand implies the premise. To see that the conclusion is correct, we note that anyS0 that implies some instance of C 0_s 6� s_Li must also imply the same instanceof C 0 _ Li. 2



5 Local Simpli�cationIn the previous sections we showed how the local simpli�ers are generated andhow they are inherited from their ancestors. In this section, we show the sig-ni�cant result of this paper. We show how the local simpli�ers can be used toperform simpli�cations on their associated clauses. The rules in this section arecalled local simpli�cation rules. The �rst rule, called Local Subsumption showshow the local simpli�ers of a clause can be used to delete that clause. The localsimpli�cation rules Local Unit Simpli�cation, Local Demodulation and Self De-modulation limit the search space by simplifying a clause, and also may shortenthe length of the proof. We will have a strong and weak version of each localsimpli�cation rule. The strong version allows us to delete a clause, while theweak version does not.Local simpli�cation rules are deletion rules, which may be applied to a clauseimmediately after that clause is formed by an inference. This is the reason wehave de�ned the function height. In practice it makes sense to simplify a clauseimmediately after it is created. Therefore, as de�ned in the section on DeletionRules, when a clause C is created, height(C) is set to detect if the inferencecreating C was redundant. However, an implementation may decide to performlocal simpli�cation later. In that case, if a clause has been used in an inferenceor another deletion rule, height(C) is set to detect that C is redundant.A Local Simpli�cation rule is a special deletion rule that uses the informationstored with each clause to detect if the inference producing a clause is redundant.Therefore, it is de�ned as a deletion rule. We call it a strong local simpli�cationif it is a correct deletion rule. We call it a weak local simpli�cation if it satis�esproperties 1 and 2 of the de�nition of a correct deletion rule. In the case of a weaklocal simpli�cation, it is possible to add the new clauses which are generated,but not to delete the old clauses. This could potentially be useful, because thereare some cases when a clause can be simpli�ed even though the original clausemay not be deleted.The �rst local simpli�cation we present is called local subsumption, becausewe show that a clause may be removed since a subset of it is implied by smallerclauses. 4Local Subsumption fC _L [['[(L0; Ci; Si)] ]]g ) ;where � = mgu(L;L0), (C _L)� = C _L 5, and Si� < height(C _L [[' ]]). Recallthat height(C _ L [[' ]]) is the right premise of the inference which producedC _ L, when C _ L is created. If local subsumption is performed after C _ L isused in an inference or a deletion rule, then the height is the clause itself. Thisis a strong local simpli�cation.4 The notation '[(L0; Ci; Si)] means that ' contains the local simpli�er (L0; Ci; Si).5 A special case of this is when L = L0, though it is not the only case.



Proposition25. Local Subsumption is correct.Proof. We assume that C _ L [['[(L0; Ci; Si)] ]] is correct. We must show that itis redundant at height(C _ L [[' ]]) in S. Since it is correct, we know that forall ground substitutions �, there exists an S0 such that S0 � Si�� and S0 j=L�� _Ci��. Since Ci�� � C��_L��, we know S0 j= C�� _L�� = C�_L�. AndS0 � Si�� < height(C _ L [[' ]])�. So C _ L is redundant at height(C _ L [[' ]])in S. 2Note that it is not enough that the ancestor literal in the local simpli�ermatches onto the literal in the clause. For instance, if we have the clause q(x) _p(a) [[ (p(x); q(x); Si) ]] then for all ground substitutions � there exists an S0 � Si�such that S0 j= (p(x) _ q(x))� but it is not necessarily the case that S0 j=(q(x)_p(a))�. Similarly, given the clause q(a)_p(x) [[ (p(b); q(a); Si) ]] then thereexists an S0 such that S0 j= p(b) _ q(a) but it is not necessarily the case thatfor every ground substitution �, S0 j= (q(a) _ p(x))�. So it is also not enough tosay that the literal in the clause matches onto the ancestor literal in the localsimpli�er.In local unit simpli�cation, one of the literals in the clause may be deleted.Local Unit Simpli�cationfC _ �L [['[(L0; Ci; Si)] ]]g ) f(C [['0 ]])�gwhere � = mgu(L;L0) and �L 62 Ci. This is the weak version of local unit simpli-�cation. The strong version is when, in addition, C� = C.The local simpli�er '0 is the same as ', except that any local simpli�er ofthe form (Lj ; C 0 _ �L; Sj) is replaced by (Lj; C 0 _Ci; Sj [ Si).Proposition26. Local Unit Simpli�cation is correct.Proof. We assume that C _ �L [['[(L0; Ci; Si)] ]] is correct. We must show that(C [['0 ]])� is correct. We see that C 0 _ Ci � C, because �L 62 Ci. For everyground substitution �, there exists an S0 � Si�� such that S0 j= Ci�� _ L0��.Also, there exists an S00 � Sj�� such that S00 j= C 0�� _ �L�� _ Lj��. Therefore,S0 [ S00 j= Ci�� _C 0�� _ Lj��.To prove condition 2, S0 [ fC�� _ �L��g j= C�� since Ci � C. So the weakversion of local unit simpli�cation is correct.For the strong version, C� = C j= C _ �L, therefore C _ �L is redundant atheight(C _ �L [[' ]]) in S [ fC�g. 2As an example of the use of local unit simpli�cation, consider the clauses p_q,:q _ r and :r _ :q. If we resolve the �rst two clauses, we get p _ r [[ (q; p; fp_qg); (:q; r; f:q _ rg) ]]. This can now be resolved with :r _ :q resulting in p _:q [[ (q; p; fp_ qg); (:q;2; f:q_ r;:r_:qg); (r; p; fp_ rg); (:r;:q; f:q_:rg) ]].Note that by de�nition 7, the local simpli�er (:q;:q; f:q _ r;:r _ :qg shouldhave appeared in the clause. However, by the assumption following de�nition 7,



the local simpli�er was modi�ed to (:q;2; f:q_ r;:r _:qg. We can perform aunit simpli�cation to remove the literal :q resulting in the clause p.6To show why we need the condition that �L 62 Ci, consider the followingexample. Suppose we are given the clauses p _ q, :q _ r and :p _ :q, with q >p > r. If we resolve the �rst two clauses, we get p_ r [[ (q; p; fp_ qg); (:q; r; f:q_rg) ]]. This can now be resolved with :p _ :q resulting in :q _ r [[ (q;:q; fp _q;:p _ :qg); (:q; r; f:q_ rg); (p; r; fp_ rg); (:p;:q; f:p_ :qg) ]]. If we ignoredthe condition, we could perform a unit simpli�cation to remove the literal :qresulting in the clause r with some local simpli�ers. This does not follow fromthe original clauses. However, the second local simpli�er allows us to perform alocal subsumption to remove the clause entirely. Of course, we could remove theclause anyway, because it already exists.For the strong version of Local Unit Simpli�cation, it is not enough that theancestor literal in the local simpli�er matches onto the literal in the clause. Forinstance, if we have the clause q(x)_:p(a) [[ (p(x); q(x); Si) ]] then for all groundsubstitutions �, there exists an S0 � Si� such that S0 j= (p(x)_ q(x))� thereforeS0[fq(x)_:p(a)g j= q(a). So we are allowed to add the clause q(a) but we maynot delete q(x) _ p(a). However, given the clause q(a) _ :p(x) [[ (p(b); q(a); Si) ]]then for every ground substitution � there exists an S0 � Si� such that S0 [fq(a) _ :p(x)g j= p(b) _ q(a) but it is not necessarily the case that S0 j= q(a).Now we present two forms of local demodulation. The �rst version is similarto local unit simpli�cation, except that it deals with equalities.Local DemodulationfC _ L[s0] [['[(s � t; Ci; Si)] ]]g ) f(C _ L[t] [['0 ]])�gwhere � = mgu(s; s0) and L[s0] 62 Ci. This is the weak version. The strong versionis where, in addition, Si� < height(C _ L[s0] [[' ]]), s� > t�, and (C _ L[s0])� =C _L[s0].The local simpli�er '0 is the same as ', except that any local simpli�er ofthe form (s 6� t; C 0 _ L[s0]; Sj) is replaced by (s 6� t; C 0 _ L[t]; Sj), and anylocal simpli�er of the form (Lj ; C 0 _L[s0]; Sj) where Lj 6= (s 6� t) is replaced by(Lj ; C 0 _Ci _ L[t]; Sj [ Si).Proposition27. Local Demodulation is correct.Proof. We assume that C _ L[s0] [['[(s � t; Ci; Si)] ]] is correct. We must showthat (C _ L[t] [['0 ]])� is correct. For the case where Lj is di�erent from s 6� t,we see that C 0 _ Ci _ L[t] � C _ L[t] because L[s0] 62 Ci. In addition, for everyground substitution �, there exists an S0 � Si�� such that S0 j= (Ci _ s � t)��.Also, there exists an S00 � Sj�� such that S00 j= (C 0 _ L[s0] _ Lj)��. Therefore,S0 [ S00 j= (Ci _C 0 _L[t] _ Lj)��.The case where s 6� t is simpler. In that case, S00 j= (s 6� t _ C 0 _ L[s0])��.Therefore S00 j= (s 6� t _C 0 _ L[t])��.6 We will see in section 8 that the local simpli�ers on unit clauses can be removed.



For condition 2, S0 [ fC�� _ L[s0]��g j= C�� _ L[t]�� since Ci � C. Thisproves the correctness of weak local demodulation.Now we prove the strong version. Since S0 j= (Ci _ s � t)�� and Ci�� �C��, then S0 [ f(C _ L[t])��g j= (C _ L[s0])�� = (C _ L[s0])�. And since S0 �Si�� < height(C _ L[s0] [[' ]])�, C _ L[s] is redundant at height(C _ L[s0] [[' ]])in S [ f(C _L[t])�g. 2There is a generalization of the paramodulation rule called parallel paramod-ulation. In that rule, whenever C _ s � t is paramodulated with L[s0]_D, everyposition where s0 is a subterm of L[s0] _ D, is replaced by t. This cuts downthe search space, especially if there are lots of clauses involving equations witha left hand side of s. We can simulate that inference rule, because paramod-ulation would save s � t as an ancestor literal in a local simpli�er and localdemodulation would be used to apply it to all the other positions in which s0appears.We give an example of local demodulation. Suppose we have an orderingwhere all equality predicates are smaller than all non-equality predicates. Con-sider the paramodulation of c � d _ a � b and P (a) _ Q(c). The result isc � d _ P (b) _ Q(c) [['1 ]], where one of the local simpli�ers in '1 is (a �b; c � d; fa � b _ c � dg). If we then resolve this clause with :Q(c) _ R(a),we get c � d _ P (b) _ R(a) [['2 ]], and '2 also contains the local simpli�er(a � b; c � d; fa � b _ c � dg). Then we can apply the local demodulationrule to simplify c � d _ P (b) _R(a) to c � d _ P (b) _ R(b). Supposing that wedid not have the local demodulation rule. If :Q(c) was selected, we could haveinstead performed a paramodulation among the clause c � d_ a � b to result ina clause which factored out to the same clause. But we would not have knownthat we could delete the clause c � d _ P (b) _ R(a), and if the equation c � dhad disappeared by a later inference, we couldn't have even done the factoring.That illustrates the bene�t of local demodulation.For the same reasons as in local unit simpli�cation, in order to perform stronglocal demodulation we needed to require that (C _ L[s0])� = C _ L[s0]. We alsoneeded that Si < height(C _ L[s0] [[' ]]) to preserve completeness. This is so wecan guarantee that a clause is being simpli�ed by smaller clauses.The next version of the local simpli�cation rule does not use the local sim-pli�er for simpli�cation. Instead, it uses a negative equality in the clause. Thestrong version of this rule is originally from Boyer & Moore (1979) and calledcontextual rewriting . It does not use the local simpli�ers, but we present it herebecause it �ts neatly into our framework.Self Demodulationfs 6� t _C _ L[s0] [[' ]]g ) f(s 6� t _C _ L[t] [['0 ]])�gThis is the weak version. The strong version is where � is the identity and s > t.The local simpli�er '0 is just like ', except that any local simpli�er of theform (Lj ; C 0 _ L[s0]; Sj) is replaced by (Lj ; C 0 _ L[t]_ s 6� t; Sj).



Proposition28. Self Demodulation is correct.Proof. We assume that s 6� t _ C _ L[s0] [[' ]] is correct. We must show that(s 6� t_C _ L[t] [['0 ]])� is correct. Trivially, C 0 _L[t]_ s 6� t � s 6� t_C _ L[t].In addition, for all ground substitutions �, there exists an S0 � Sj�� such thatS0 j= (C 0 _ L[s0] _ Lj)��. Therefore, S0 j= (C 0 _ L[t] _ s 6� t _ Lj)��. Forcondition 2, (s 6� t_C _L[s0])�� j= (s 6� t_C _L[t])��. For the strong version,(s 6� t _C _ L[t])�� j= (s 6� t _C _ L[s])�, so s 6� t _ C _ L[s] is redundant atheight(s 6� t _C _ L[s0] [[' ]]) in S [ f(s 6� t _C _ L[t])�g. 26 CompletenessIn this section we prove the completeness of the inference system given in thispaper. The de�nitions of correctness imply that the inference system is sound.To prove completeness, we use results from Bachmair & Ganzinger (1994) andBachmair et al (1995).From Bachmair & Ganzinger (1994), we get the de�nition of a fair theoremproving derivation, meant to model an automated theorem prover.De�nition29. A (�nite or countably in�nite) sequence S0; S1; S2; : : : of sets ofclauses is called a theorem proving derivation if each set Si+1 can be obtainedfrom Si by adding a clause which is a consequence of Si or by deletion of aredundant or subsumed clause in Si. A clause C is said to be persisting if thereexists some j such that for every k � j, C 2 Sk. The set of all persisting clauses,denoted S1, is called the limit of the derivation.Let Sel be a selection rule. Let ISel be the inference rules in this paperinstantiated by Sel. A set of clauses S is Sel-saturated if every inference fromISel applied to clauses in S is redundant in S. A theorem proving derivation iscalled Sel-fair if S1 is Sel-saturated. A derivation is called fair if it is Sel-fairfor some valid Sel.The set of inference rules proved complete in Bachmair & Ganzinger (1994)and Bachmair et al (1995) is just ISel for a valid Sel, ignoring the local simpli-�ers. Therefore, the completeness results from those papers can be used. Thisillustrates the beauty of that abstract de�nition of an inference system. We donot need to re�prove their completeness proof. We only need to apply it to oursituation. The way it has been applied to our situation is to show that the localsimpli�cation rules remove redundant clauses, which we have done by showingthe correctness of those rules.Theorem30. Let S0; S1; S2; : : : be an fair theorem proving derivation. If S0 isunsatis�able then 2 2 S1.See Bachmair & Ganzinger (1994) and Bachmair et al (1995) for the proofof the theorem. This says that any fair theorem proving derivation will producethe empty clause. We must show that this completeness result applies to the



local simpli�cation inference system. Let D be the set of deletion rules in thispaper and L be the set of local simpli�cation rules. Then the following theoremimmediately follows from the correctness of the local simpli�cation rules.Theorem31. Let S0 be a set of (undecorated) clauses. Consider the sequenceS0; S1; S2; : : : where each Si+1 is obtained from Si by applying a rule from I, L,or D to clauses from Si. If the sequence is fair, then 2 2 S1 if and only if S0is unsatis�able.Proof. Since the inference rules I are the same as in Bachmair and Ganzinger(1994) and Bachmair et al (1995), the proof follows from the correctness of theinference and deletion rules. By the correctness of these rules, each clause thatis created is correct. Therefore, each clause that is added, logically follows fromthe existing clauses. Also, by de�nition of correct deletion rule, each clause thatis removed is redundant or the inference that has just created it is redundant.So the proof follows directly from the previous theorem. 27 Complexity of SLD ResolutionWhen restrictions on inference rules are proposed, it is generally not showntheoretically that the restriction makes theorem proving more e�cient. Ideally,it would be helpful to show that a restriction reduces the search space. We cannotshow that theoretically in this case. But we can show theoretically that LocalSimpli�cation reduces the sizes of the proofs in some settings. In particular, weshow that for ground horn clauses, with any selection rule, SLD resolution has apolynomial proof (this yields a variant of an algorithm from Dowling & Gallier(1984). However, without local simpli�cation, we exhibit a set of clauses and aselection rule so that SLD resolution only has exponential proofs.A horn clause is a clause with at most one positive literal. A clause withexactly one positive literal is called a program clause and a clause with no positiveliterals is called a goal clause. SLD resolution is an inference system containingthe rules given in this paper applied to horn clauses, except that the selection ruleis modi�ed so that the positive literal is selected in each program clause and anegative literal is selected in each goal clause. Notice that the resolution inferencerule is the only one that applies to horn clauses. SLD resolution has been provedcomplete for horn clauses. The SLD resolution selection rule cannot be encodedby the selection rule in this paper. Therefore, to discuss local simpli�cation inSLD resolution, we must show how to use the selection rule in this paper toshow completeness of SLD resolution. First we de�ne some sets used to give anordering.De�nition32. Given a set S of clauses, we de�ne a hierarchy of sets of positiveliterals. Let M0 = fAjA 2 Gr(S)g. For n � 0,Mn+1 = fAj:B1_� � �_:Bm_A 2Gr(S) and fB1; � � � ; Bmg � Mng. Let M1 = Sn�0Mn. If a literal A is in M0,we say that A is at level 0. If A is in Mn+1 but not in Mn, we say that A isat level n+ 1. Now we de�ne a total ordering � on the ground literals with theproperty that for all positive ground literals A and B, A � B if



� A is at level i, B is at level j and i > j or� A 62M1 and B 2M1.We have not speci�ed how to compare A and B if they are both at level i forsome i, or if neither are in M1. In those cases we do not care. The ordering isextended to negative literals so that, for all i, :A � B for all literals A;B atlevel i. Also A � B if and only if :A � :B.Using this ordering, we can prove some facts about ground horn clauses. Firstwe de�ne the following sets given a set S of clauses from which M0;M1;M2; � � �have been de�ned. Let T0 = fC j 9A 2 C such that A 62 M1g. Let T1 =fC j 9 :A 2 C such that A 62 M1g. T2 = fC j 9 :A;B 2 C such that A is atlevel i, B is at level j and i � jg.Proposition33. Let C be a ground horn clause in S. If C 2 T2 then C isredundant in S.Proof. Let C be of the form :A _ B _ � where A is at level i, B is at level jand i � j. Then there must be a set of clauses fC1; � � � ; Cng � S which impliesB such that each Ck is smaller than C. Therefore C is redundant in S. 2Proposition34. Let C1 and C2 be ground horn clauses in S. If C1 2 T0 [ T1or C2 2 T0 [T1 and D is the conclusion of a resolution inference among C1 andC2, then D 2 T0 [ T1.Proof. Let C1 = � _ A and C2 = :A _� such that C1 or C2 is in T0 [ T1. IfA 2M1 then there exists some literal B or :B in � or � such that B is not inM1. Therefore D 2 T0 [ T1. If A 62M1 then there exists some literal :B in �such that B is not in M1 so D 2 T0 [ T1. 2We de�ne a selection rule to be an SLD selection rule if it selects a negativeliteral in each goal clause and the positive literal in each program clause. Wede�ne a selection rule to be a Max selection rule if it selects a negative literal ineach goal clause and all maximal literals in each program clauses. An inferenceusing an SLD selection rule is called an SLD inference. An inference using a Maxselection rule is called aMax inference. Two selection rules are called compatibleif they select the same literal in each goal clause. We have the following usefulproposition.Proposition35. Let SelSLD be an SLD selection rule and SelMax be a Maxselection rule, such that SelSLD is compatible with SelMax. If C 62 T0 [ T1 [ T2,then SelSLD and SelMax select the same literal in C.Proof. If C is a goal clause, then the proposition is true by compatibility. If Cis a program clause not in T0 [ T1 [ T2 then C is of the form � _ A where Ais at level j for some j and each B 2 � is at level i for some i such that i < j.Therefore, A is maximal in C. So SelMax and SelSLD both select A. 2



Now we can prove the completeness of SLD resolution using the completenessof Max resolution. This will show that local simpli�cation can be performed inSLD resolution without losing completeness.Theorem36. Let Sel be an SLD selection rule. Let S be a set of unsatis�ablehorn clauses. Let S0; S1; S2; � � � be a Sel-fair theorem proving derivation from S.Then 2 2 S1.Proof. Let S� be the set of clauses formed by closing S1 under non�redundantMax inferences for some Max selection rule compatible with Sel. By proposi-tion 35, all of these Max inferences involve some clause in T0 [ T1 [ T2. Other-wise, they would have already been performed and would now be redundant. Byproposition 33, none of the Max inferences involve clauses from T2. Therefore,all the Max inferences involve some clause from T0 [ T1. By completeness, weknow that 2 2 S�. By proposition 34, the proof of 2 does not involve clausesfrom T0 [ T1. Therefore, 2 2 S1. 2This shows the completeness of SLD resolution. These results are similarto results from Bachmair & Ganzinger (1991). It shows that all the notions ofredundancy apply to SLD resolution. Therefore local simpli�cation applies. Nowwe show that any set of ground horn clauses has a polynomial local simpli�cationproof under any SLD selection rule. Then we will show this is not the case withoutlocal simpli�cation.Theorem37. Let S be an unsatis�able ground set of clauses and Sel be an SLDselection rule. Let n be the number of distinct positive literals in S. Then S hasa proof, using selection rule Sel, containing at most n+ 1 clauses.Proof. We may assume that S contains no clauses from T0[T1[T2 and only onegoal clause. Otherwise, we may remove clauses to make it so without disturbingunsatis�ability. In addition, we assume a proof where local unit simpli�cation isapplied whenever it is applicable. Each inference performed is a resolvent amonga goal clause C and a program clause of the form A _ � . This generates a newgoal clause D which inherits all the local simpli�ers of C with modi�cations andadds one new local simpli�er of the form (A;�; fA_�g) to the new goal clause.Since A 62 T0 [T1[T2, we know that B � A for all B 2 � . For the same reason,further inferences can only make the elements of � smaller. Therefore, every localsimpli�er whose ancestor literal is positive will be of the form (A;�; S) whereevery element of � is smaller than A. That means that whenever A appears ina clause with local simpli�er (A;�; S), A will be immediately removed from theclause since A 62 � . Therefore it will only be possible in the proof to perform oneinference containing A as a positive literal. Which implies that the length of theproof will be the number of positive literals removed plus one for the originalclause. 2However, without local simpli�cation rules, there are some sets of groundhorn clauses and SLD selection rules which only have exponential proofs. Con-sider the following set of clauses.



:p1p1 _ :p2 _ :p3p2 _ :p3 _ :p4...pn�2 _ :pn�1 _:pnpn�1 _ :pnpnSuppose that the :pi with the largest value of i is selected in each goal clause.Then each clause with a positive pi will be used fib(i) times in any proof, wherefib(i) is the ith Fibonacci number. Therefore the proof length is exponential inn. There are some selection rules which have linear proofs for this set of clausesbut only if negative factoring is allowed. However, it is impossible to know whatis a good selection rule in advance, and negative factoring is rarely used in SLDresolution. Of course other resolution refutations always give linear proofs forhorn clauses, but they are not goal-directed.8 Simplifying Local Simpli�ersNow we show some useful local simpli�er simpli�cations, which either removelocal simpli�ers that are no longer useful, or move local simpli�ers to a placewhere they will be more useful.Suppose we have a clause of the formC [[ (L; �L_C 0; S); ' ]]. The local simpli�er(L; �L_C 0; S) cannot be used for any of the local simpli�cation rules, so we removethe local simpli�er and convert the clause to C [[' ]].If a clause is of the form C [[ (L;C; S); ' ]], then the local simpli�er (L;C; S)is also useless, because since L depends on the whole clause it can never be usedfor any local simpli�cations. So we remove the local simpli�er and convert theclause to C [[' ]].The above local simpli�er modi�cations only remove information that is nolonger necessary. However, the following local simpli�er simpli�cation allows usto use local information globally. Suppose we have a local simpli�er of the formC [[ (L;2; S); ' ]]. This says that L is true by equations less than or equal to Sand depends on nothing in the clause. A local simpli�er of this form could arise,because a local simpli�er of the form (L;L; S) is converted into (L;2; S). SinceL depends on nothing in C, it may be useful for simplifying other clauses. So wemay remove it from this clause and add it to a list of global simpli�ers. Then(L;2; S) may be treated as if it was a local simpli�er in every clause.For a particular example, consider a unit clause. Every local simpli�er in aunit clause either depends on the entire clause or nothing. In the �rst case, thelocal simpli�er is removed. In the second case, the local simpli�er is moved to aset of global simpli�ers.



We note that in every case it is possible to take a local simpli�er (L;C; S) anduse it as a global simpli�er. However, to apply it to a clauseD, it is necessary thatC � D, which is not likely to be the case. Therefore, we think that in practiceit only makes sense to make it a global simpli�er when C = 2, or possibly whenC contains only one literal. Otherwise, the storage of it might not be worth thelimited number of times it is used.9 ConclusionWe have shown the completeness of the local simpli�cation inference systemin combination with a selection rule. Instead of a selection rule, most theoremprovers use other kinds of restrictions on the inference rules, like ordered resolu-tion, hyperresolution, set of support resolution, semantic resolution, SLD reso-lution, ordered paramodulation, strict superposition and hyperparamodulation.All of these restrictions can be simulated by the selection rule we give. In thenext few paragraphs, we show how these inference rules can be proved completeby encoding them with valid selection rules. Therefore the local simpli�cationrules apply. We discuss how the local simpli�cation rules a�ect the e�ciency ofeach selection rule.Ordered resolution is the resolution inference system where all maximal lit-erals are selected in each clause. Local simpli�cation has a limited bene�t forordered resolution. For a ground clause C [[ (Li; Ci; Si); ' ]] formed by orderedresolution, all literals in Ci are less than Li and Ci < Si, so the local simpli�-cation rules have no bene�t. will never be able to be used This illustrates thereason that ordered resolution is an e�cient inference rule. It prevents the needto resolve a literal in a clause which was already resolved and removed by an an-cestor of the clause. Strict superposition is the paramodulation inference systemwhere all maximal literals are selected in each clause. The above property forordered resolution is no longer true in this settings, so the local simpli�cationsrules are useful there. Therefore, we believe that the greatest bene�t of localsimpli�cation is in the paramodulation setting.Local simpli�cation has more of a bene�t when combined with the otherresolution restrictions. Many of them are goal directed, so they cannot have theproperty mentioned of ordered resolution above. Local simpli�cation can be seenas a way of partially retrieving that property.Hyperresolution is another useful restriction for �rst order logic. It is a reso-lution inference system which resolves all the negative literals in a clause at thesame time, by positive clauses (clauses containing only positive literals). Theconclusion of a hyperresolution inference is a positive clause. Hyperresolutioncan be simulated by a selection rule which always selects some negative literalif a clause has one. This generates intermediate clauses, but each intermediateclause has a negative literal selected so it cannot be used for anything else butan intermediary of a hyperresolution inference. The local simpli�cation rules arehelpful in combination with hyperresolution. Hyperparamodulation is the infer-ence system where all negative literals in a clause are paramodulated into by



positive clauses until another positive clause results. This can be viewed as oneinference as in hyperresolution. Or it can be encoded like hyperresolution, wherea negative literal is selected whenever possible and lots of intermediate clausesare added which can only serve as intermediate clauses.Semantic resolution is an inference rule where a model I is given and no twoclauses are resolved if they are made true by I. In set of support resolution, notwo initial clauses are resolved if they are made true by I. These two inferencerules can be shown equivalent to hyperresolution under an appropriate mappingfrom literals true in I to negative literals. The mapping is the following. Con-sider a set S of ground clauses and I a model. Let S0 be a new set of clauses,except that each literal L in S which is made true by I is mapped to a literal:AL in S0 and the complement of L is mapped to AL. Then S is satis�ableif and only if S0 is satis�able and hyperresolution from S derives the emptyclause if and only if semantic resolution from S0 derives the empty clause. Thisproves that semantic resolution is complete in the ground case. Therefore, by astandard lifting argument, semantic resolution is complete in general. This sameargument proves that set of support resolution is complete. These arguments donot work for equality because paramodulation inferences are not preserved bythe translation. In fact, set of support paramodulation is not complete.In section 7, we showed how to simulate SLD resolution. We also showedthat for every selection rule, every ground set of unsatis�able horn clauses hasan SLD refutation (with local simpli�cation) that is linear in the number ofliterals. However, we exhibit an unsatis�able set of horn clauses and a selectionrule where every SLD refutation (without local simpli�cation) is exponentialin the number of literals. Other resolution proof strategies always have linearrefutations for horn clauses, but they are not goal directed.Model elimination theorem provers (Loveland (1968), Loveland (1978)) alsoemploy the strategy of saving literals involved in a resolution, so that they canbe used to simplify the clause. In model elimination, there are two kinds ofliterals: B-literals which are the literals in the clause and A-literals (ancestorliterals) which are the literals we put in local simpli�ers. In model elimination,the literal resolved against is stored as an A-literal. The position of the A-literalin the clause tells which literals it can simplify. In local simpli�cation, we use thesecond parameter of the local simpli�er to tell which literals can be simpli�ed.The reduction rule of model elimination is similar to the weak unit simpli�cationrule given in this paper. We show how to do this in a resolution framework andshow that local simpli�cation is compatible with restrictions and deletion rules. Itis our strong local simpli�cation rules that exploit redundancy criteria and allowclauses to be removed. We show local simpli�cation in a paramodulation setting,combined with the other known restrictions of paramodulation and deletionrules. The reduction rule fromModel elimination with Paramodulation is similarto weak local demodulation, however function re�exivity and paramodulationinto variables is required for completeness and it is not compatible with deletionrules or rewrite techniques (Loveland (1978)).In this paper, we take advantage of the powerful redundancy criteria of Bach-
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