Adaptive Resource Partitioning in Simultaneous MultiThreading Architectures

Chen Liu
Prof. Jean-Luc Gaudiot, Electrical Engineering & Computer Science Dept.
The Henry Samueli School of Engineering
University of California, Irvine

What is a general purpose processor?

- Here is one of Intel’s most recent commodity processors

What do we want?

- Execute as many instructions as we can and as fast as we can

Houston, we have a problem!

- How do we distribute the system resources among threads to achieve best performance?

This is Houston!

Two choices:

- Dynamic Sharing: threads compete for resources among themselves
- Static Partitioning: each thread has a pre-assigned cap on resources

Can we do better?

- The behavior of a program can be divided into different phases, based for instance on the number of committed instructions
- The need for system resources at different phases is different
- Static partitioning fails to meet the varying needs of the threads at different phases

Can we do that?

- Due to the sequential programming model, we can only exploit limited instruction-level parallelism (ILP), because of:
 - Data hazards
 - Control hazards
 - Structure hazards

What can we do then?

- Exploit Thread-Level Parallelism (TLP) in addition to ILP

Let’s see what happens.

- SMT achieve the best resource utilization (different color represents different threads)

Adaptive Resource Partitioning:

- Resource distribution varies according to the performance of the thread, approaching optimal performance

What do we really need?

- Behavior divided into commit-bound and issue-bound phases based on a per-thread counter
- For threads in commit-bound phase, assign more entries in the ROB buffer, fewer entries in the instruction queues
- For threads in issue-bound phase, assign fewer entries in ROB buffer, more entries in the instruction queues
- Stall fetching from threads over quota

Processor of the future?

- Fit into heterogeneous multi-core systems with one core dedicated to resource usage analysis and resource distribution.