
Hardware Acceleration for Cryptography Algorithms by

Hotspot Detection

Jed Kao-Tung Chang1, Chen Liu
1
, and Jean-Luc Gaudiot

2

 1 Department of Electrical and Computer Engineering, Clarkson University, Potsdam, NY

jchang@clarkson.edu

cliu@clarkson.edu
2 Department of Electrical Engineering and Computer Science, University of California, Irvine,

Irvine, CA

gaudiot@uci.edu

Abstract. Data Encryption/Decryption has become an essential part of perva-

sive computing systems. However, executing these cryptographic algorithms

often introduces a high overhead. In this paper, we select nine widely used

cryptographic algorithms to improve their performance by providing hardware-

assisted solutions. For each algorithm, we identify the software performance

bottleneck, i.e., those “hotspot functions” or “hot-blocks” which consume a

substantial portion of the overall execution time. Then, based on the percentage

of execution time of a specific function and its relationship with the overall al-

gorithm, we select candidates for our hardware acceleration. We design our

hardware accelerators of the chosen candidates. The results show that our im-

plementations achieve speedups as high as 60 folds for specific functions and

5.4 for the overall algorithm compared with the performance of the software-

only implementation. Through the associated hardware cost analysis, we point

to an opportunity to perform these functions in an SIMD fashion.

Keywords: cryptography; hardware acceleration; performance analysis; hotspot

function

1 Introduction

Data security is important in pervasive computing systems because the secrecy and

integrity of the data should be retained when they are transferred among mobile de-

vices and servers in this system. The cryptography algorithm is an essential part of the

pervasive computing security mechanism. By performing encryption, decryption, and

hash operations on transmitted data, intruders should not be able to identify the

hacked cipher text without decrypting schemes, and even a minute modification of the

data shall be detected with a good data integrity verification process.

However, performance is one concern regarding cryptography algorithms: these al-

gorithms are extremely expensive in terms of execution time. To make cracking the

code more difficult, many arithmetic and logical operations are bound to be executed

during the encryption/decryption process. Furthermore, a huge amount of data needs

to be transferred between the CPU and the memory. Using a general-purpose proces-

sor for this purpose would not be a cost-effective solution, and the performance is not

that satisfying either. This paper attempts to address this issue. We first deployed

execution-based profiling to identify the hotspot (performance-intensive) part of an

application: in each benchmark, we select candidates for hardware acceleration based

on certain aspects, such as the percentage of total execution time belonging to hotspot

functions, the relationship between the hotspot points and the entire application, etc.

We then implemented these hotspot points in hardware. We compared the hardware

and software implementation from two perspectives: performance and hardware cost.

Our ultimate goal is to provide hardware-assisted solutions along these lines, so as to

improve the performance of the crypto-computations in pervasive computing systems.

The rest of the paper is organized as follows: We review related work in Section 2.

We specify the cryptography algorithms in Section 3. We introduce the performance

analyzer tool VTune, and describe how we employ it to identify the hotspot functions

and hot-blocks across the set of benchmarks in Section 4. In Section 5, we describe

the criteria for selecting the candidate algorithms for hardware acceleration. The im-

plementation of the hardware accelerator for the chosen benchmarks is described in

Section 6. In Section 7, we describe the effort to investigate the hardware cost of our

hardware implementation. Finally, conclusions are drawn in Section 8.

2 Related Work

Many previous research efforts have improved different parts of the pervasive

computing system. For example, Tang et al. [21-37] employed hardware–assisted

approach to accelerate selected middleware execution, and used prefetching tech-

niques in mobile systems. Different from them, ours is focused on addressing the

issue of improving performance of cryptographic computations. With the multithread-

ing features which have been recently added to many programming languages, the

straightforward software solution is to increase the level of concurrency. For example,

Bielecki et al. [6] has attempted to deal with the performance issue and focused on

parallel programming approaches. If purely focusing on a software strategy, however,

the performance improvement would be limited since a general-purpose processor is

not as efficient as a dedicated cryptography coprocessor.

Many people have strived to implement cryptography operations on a single chip.

Hodjat et al. [17] has used a dedicated cryptographic coprocessor to alleviate the load

on the CPU. Bertoni et al. [20] had implementations at a finer granularity via instruc-

tion set extension: they implemented different stages of AES algorithm into custom-

ized instructions. The concept of applying SIMD architecture, such as graphic pro-

cessing unit (GPU), in asymmetric and some modes of symmetric encryption algo-

rithms was also employed to improve the performance of the cryptography algo-

rithms. Harrison et al. [18] implemented the AES Encryption ECB mode on GPUs.

Compared with previous work targeting a specific computation-intensive part of an

algorithm for hardware acceleration, we work on a set of algorithms which have cer-

tain program structures and crypto-computation operations in common. We employed

dynamic-based profiling (also described in Chang et al. [28]): to profile the perfor-

mance behavior when running the benchmark and identify the parts that take up the

most of execution time as hotspot points. When implementing these hotspot points

into hardware accelerators, not only did they have superior performance than running

on general-purpose processors, but also in some cases, the hardware costs are ex-

tremely low. We can duplicate the hardware accelerators for the hotspot points so that

multiple data elements can be processed on these accelerators in a parallel fashion.

3 Cryptography Algorithms

We choose nine popular cryptography algorithms as benchmarks for our study:

AES [3], RSA [4], 3DES [8], RC5 [9], MD5 [10], IDEA [11], SHA1 [12], Blowfish

[13], and ECC [14]. The reason for our choice is that we feel the program structures

of these algorithms are quite representative of the contemporary cryptography algo-

rithms. For example, some algorithms like 3DES, Blowfish, and RC5 use the Feistel

cipher proposed by Luby et al. [1]; other algorithms, such as AES, IDEA, MD5, and

SHA1 use the iterative cipher designed by Rijmen et al. [2]. ECC and RSA are public

key (asymmetric) algorithms [16], which are neither Feistel cipher nor iterative ci-

pher. Comparing with the other seven algorithms, ECC and RSA seem to be more

complex. However, in these algorithms, each data can be encrypted or decrypted in-

dependently and the operations can be performed in parallel to improve their overall

performance. Another common feature shared by these algorithms is the operation

they use to encrypt / decrypt the data. Memory access operations are used by 3DES,

AES, and Blowfish. This is because these three algorithms need to access lookup

tables). Modular arithmetic operations are also heavy in modern cryptography algo-

rithms, because they need to keep the plaintext as secure as possible.

4 Hotspot Function Identification

We profile the dynamic computation characteristics of the benchmarks and utilize

VTune [5] from INTEL® as our performance analyzer to identify the hotspots.

VTune analyzes the software performance on IA-32 and Intel64-based machines. It

collects performance data on applications running on the host system, organizes and

displays the data in an interactive way. VTune’s call graph view provides a tree struc-

ture to show the call relationship among all functions along with their execution time.

This would help us identify the “hotspot” functions and percentage of the hotspot

functions occupying the total execution time of each benchmark.

We define HF-Rate as the percentage of the execution time belonging to hotspot

functions of each algorithm. Figure 1 shows the HF-Rate for each algorithm. It should

be noted that for the execution time, we only consider the crypto computation (key

setup, encryption, and decryption) part of an application, excluding the file I/O or

certain system calls within the dynamic-link library (DLL).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

3D
ES

AE
S D

ec
ry

pt

M
D
5

AE
S E

nc
ry

pt

ID
EA

Blo
w
fis

h
R
SA

R
C
5

EC
C

SH
A
1

Fig. 1. HF-Rate for different algorithms

We can see that the execution time of the hotspot functions account for a majority

of the total execution time for most of the benchmarks. In 3DES, MD5, and AES

Decryption, the hotspot functions occupy more than 80% of the execution time of the

entire algorithm. For AES Encryption, Blowfish, IDEA, MD5, and RSA, this number

reaches or even exceeds 70%. However, SHA1 is an exception because most of its

execution time is spent on I/O operations called by the crypto computation functions,

such as reading from a file, which means that there is really no hotspot function to

isolate. Overall, the function breakdown helps us identify the software bottleneck of

the application.

5 Acceleration Candidate

When selecting our candidates for hardware acceleration, we need to consider two

aspects of the hotspot function(s):

• Its HF-Rate

• The relationship between the hotspot function(s) and the overall algorithm.

The first aspect is evident: based on the Amdahl’s Law, we would prefer to choose

a hotspot function with a high HF-Rate, which is the percentage of total execution

time dedicated to the hotspot function and is our target for acceleration. In the formula

of Amdahl’s law, HF-Rate corresponds to Fractionenhanced, the percentage of the over-

all execution during which the performance enhancement was applied. If the HF-Rate

is too low, the performance of the application cannot be significantly enhanced even

if the performance of the hotspot point can be much improved.

enhanced

enhanced
enhanced

overall

Speedup

Fraction
Fraction

Speedup

+−

=

)1(

1
 (1)

Given the first criterion, as Fig. 1 indicates, SHA1 would not be taken into consid-

eration due to its low HF-Rate of the hotspot function. The second aspect is equally

important: if a hotspot function is the entire process of the overall algorithm, such as

the encryption/decryption part, the hardware cost would be too high, because we

would need to implement many hardware instructions and correspondingly many

hardware components which would occupy too large a die area. Thus, a good candi-

date for hardware acceleration is a hotspot function with both a high HF-Rate and

small size.

Next let us consider the hardware implementation for specific hotspot functions.

The hotspot function of RSA is a function called Power(), which calculates two to the

power of N, accounting for 67.6% of the RSA execution time. From the profiling we

know that the maximum value of N is 31. It takes just one 32-bit barrel shifter to fin-

ish the operation.

The encryption/decryption of AES has four stages. The stages of encryption are

SubBytes(), ShiftRows(), MixColumns(), and RoundKey(), while those of decryption

are InvSubBytes(), InvShiftRows(), InvMixColumns(), and RoundKey(). The hotspot

function of AES encryption is SubBytes(), the first stage of each round. In AES de-

cryption, the three hotspot functions are InvSubBytes(), InvMixColumns(), and Sub-

Bytes(), corresponding to the first, third and fourth stages of AES decryption, respec-

tively. Among them, SubBytes() and InvSubBytes() are memory access operations,

replacing a byte with another one according to a prebuilt lookup table (SBox). In re-

cent hardware implementations, the SBox is put into the cache so that the access time

could be significantly reduced, according to Mourad et al [19]. For InvMixColumns(),

its instructions can be implemented by a set of AND, shift, and table lookup opera-

tions according to [3]. SubBytes() in AES encryption contributes 78.5% of the total

execution time, while the InvSubBytes(), SubBytes(), and InvMixColumns() in AES

decryption contribute 55.8%, 17.5%, and 10.8% of the total execution time.

For Blowfish, the hotspot function is F() which contributes 73.13% of the total ex-

ecution time. Blowfish has 16 rounds of data transformation and F() is executed once

in each round. F() takes the 32-bit input and splits it into four eight-bit inputs and

access four pre-built lookup tables (SBoxes) in parallel. The outputs are then XORed

and added. Again, the four lookup tables can be placed in the cache and two adders,

shifters, and one Exclusive-OR gate would be sufficient to implement the rest of the

function. Thus, AES, RSA, and Blowfish would be good choices for us to perform the

hardware acceleration.

As for 3DES, IDEA, MD5, and RC5, our analysis points to the hotspot function

being the entire function of crypto computation. If we exclude this hotspot function,

the rest of the algorithm is simply the initialization, the execution time of which is

comparatively negligible. As mentioned previously, these algorithms are not good

candidates for hotspot function acceleration since the hardware cost would be too

high.

 In this situation, we need to consider reducing the granularity for acceleration. We

need to look inside each function and determine whether there is a “hot-line” or “hot-

block” of code which contributes a significant amount of execution time and with low

hardware overhead to qualify for acceleration. We employed the sampling wizard of

VTune to show the number of consumed clock cycles by each line of code. We go

deeper into the functions and view the performance at a finer granularity.

 For RC5, the hotspot function is the rc5_key() for the key expansion work. The

hot-block is named KEYXP_RC5. KEYXP_RC5 accounts 37.9% of the whole algo-

rithm. For 3DES, the hotspot function is des_crypt(). The hot-block is named

ROUND_3DES, which handles memory access and address translation. This hot-

block ROUND_3DES accounts for 58.7% of the whole algorithm. The hot-block of

MD5 is P_MD5, which consists of four rounds where each round is composed of

sixteen function-based stages. The main operations for P_MD5 are Modular additions

and left rotations. P_MD5 contributes 73.3% of the total MD5 algorithm.

MUL_IDEA is the hot-block of IDEA. The input data is processed with the keys by

the modular arithmetic and logic operations. The main operations for MUL_IDEA are

modulo addition and multiplication operations. MUL_IDEA consumes 61.2% of the

execution time of the entire algorithm.

6 Accelerator Implementation

Now we are ready to implement the hotspot function(s) of selected benchmarks

(RSA, AES, and Blowfish) in hardware. We take the state transitions scheme for

hardware implementation. First, we translate the function(s) into finite state machine.

Note that although the instructions are executed in sequential order, if we find there is

no data dependency among the instructions, we can execute them in parallel and put

them into the same state in the finite state machine. For RSA, one 32-bit barrel shifter

can shift left a number by 0 to 31 bits and we just need one state. For InvSubBytes() of

AES Decryption and SubBytes() of AES Decryption and Encryption, it is only a re-

placement operation for a byte according to a pre-built lookup table. Some logic com-

ponents would be sufficient as it is one state of memory access.

The implementation of InvMixColumns() using Rijindael mix columns requires six

states. In the first state, the input array is read into the tentative storage used for the

later states. The inverse mix column operates on the data by multiply numbers in

Rijndael Galois Field, which takes four states because four dependent instructions

need to be executed. In the final state, the results will be stored back to the array.

Thus, a total of six states are required to implement this function.

The F() of Blowfish needs three states. In the first state, a 32-bit input is split into

four 8-bit inputs as an index to access the lookup table. In the second state, the four

lookup tables are accessed in parallel and they produce four outputs. In the third state,

four outputs are combined into one using the modulo addition and XOR operations.

Next, we discuss the hardware implementation of the hot-blocks of RC5, 3DES,

MD5, and IDEA. The hot-block KEYXP_RC5 in RC5 is inside a for-loop structure.

We need three states to implement the operations of mixing secret keys to the key

table.

The 3DES’s hot-block ROUND_3DES has three states. In the first state the input

will be operated on using different calculations in parallel and two outputs will be

generated. In the second state, the outputs are used as indices to access one of the pre-

built lookup tables. Then, in the third state, the values from the second state will be

used to access eight other pre-built lookup tables and to perform the XOR operation

on these outputs to obtain the result.

The hot-block of MD5 is P_MD5. As we know, MD5 is composed of 64 function-

based stages. The first, second, third, and final 16 stages are grouped together as one

round with a slightly different translation functions. We thus just need to implement

four stages as four hardware modules separately with different functions. During the

first round, the first hardware module will be called; the second module is called in

the second round, and so on. Each module just needs two states. The first state is to

execute the function with the given input. The second state is to perform some simple

operations based on the output of the first state.

Table 1. Hardware acceleration speedup

Hotspot Function /

Benchmark

FSM

Stages

Function

Speedup

Algorithm

Speedup

Power() / RSA 1 26 2.9

SubBytes() / AES

Encryption
1 56 4.4

InvSubBytes() / AES

Decryption
1 48 1.2

5.4
SubBytes()/ AES

Decryption
1 60 2.2

InvMixColumns() /

AES Decryption
6 9 1.1

F() / Blowfish 3 2 1.7

KEYXP_RC5 / RC5 3 4 1.4

ROUND_3DES /

3DES
3 2 1.5

P_MD5 / MD5 8 9 2.9

MUL_IDEA / IDEA 4 5 2.0

The hot-block MUL_IDEA of IDEA takes four states to complete. The first state is

for initialization and the following three states are for set of shift, add, and multiplica-

tion operations on the input data and key.

We implemented the hardware-assisted cryptographic functions as the accelerator

connected with Microblaze using the PLB bus on the Xilinx XUPV5-LX110T devel-

opment system. We measured and compared the performance in terms of the number

of clock cycles and of the hardware and software implementation.

Table 1 summarizes the number of stages of finite state machine needed by each

hotspot function, the hardware acceleration speedups we achieved over specific func-

tions and over the entire algorithm. The results show that for hotspot function acceler-

ation we can achieve 2 to 60 folds of performance improvement; for hot-block accel-

eration, we can achieve 2 to 9 folds of performance improvement; as for the entire

cryptographic algorithm, hardware acceleration can achieve performance improve-

ments of 1.4 to 5.4 folds, depending on the program structure.

7 Hardware Cost Analysis

Given the superior performance of the hardware accelerator implementation of

hotspot functions and hot-blocks of the candidate benchmarks, we now look into im-

plementing them in an ASIC design, hardware cost being our top-most concern.

We measured the hardware resource utilization based on the number of hardware

slices (#slices), the number of flip-flops (#FF), and the number of look-up tables

(#LUT). Table 2 summarizes the hardware resource utilization of these implementa-

tions.

Table 2. Hardware Resource Utilization

Hotspot Function / Benchmark #Slices #FF #LUT

InvSubBytes() / AES Decryption 5 17 14

InvMixColumns() / AES Decryption 524 226 174

SubBytes()/ AES Decryption 5 17 14

SubBytes() / AES Encryption 5 17 14

Power() / RSA 5 17 14

F() / Blowfish 26 33 96

MUL_IDEA / IDEA 58 73 102

KEYXP_RC5 / RC5 137 175 423

ROUND_3DES / 3DES 6 19 19

P_MD5 / MD5 37 74 107

Based on the criteria we listed in Section 5 in the selection of the functions for

hardware acceleration, the hardware overhead incurred with the accelerator is simply

minimal, as shown in Table 2. For comparison, let us consider a very simple in-order

MIPS processor design [7], the resource utilization of which requires 10,450 hardware

slices, 10,400 flip-flops, and 19,500 look-up tables. Thus, if we implement the hotspot

functions or hot-blocks in the form of a hardware accelerator, we need much fewer

hardware resources compared to modern general-purpose processors as platforms on

which we normally run cryptographic applications.

From the hardware cost, we observe that the hardware accelerator implementation

is not only superior in performance but also matches the low cost of modern chip

design. Given the several orders of magnitude difference between the hardware and

software implementations, it is worthwhile for us to consider implementing the

hotspot functions in the form of special functional units. We can achieve huge data

parallelism by duplicating these function units. That is, we can extend our work to

build a SIMD machine by grouping multiple data elements together and performing

the operations using special processing units all at once.

8 Conclusions

In this study we have designed, implemented, and evaluated hardware acceleration

approaches for cryptographic algorithms. We used the VTune performance analyzer

to extract the hotspot functions and hot-blocks as identified by their high HF-Rate and

low hardware overhead. We then translated the hotspot functions and hot-blocks into

finite state machines and implemented them as hardware accelerators. Compared to

previous research, we used a “hardware-assisted” method, i.e., we move the computa-

tion intensive part of the cryptography application into hardware so that the general-

purpose computing resource can be released to perform other useful tasks. Our results

indicate that for hotspot function acceleration we can achieve 2 to 60 folds of perfor-

mance improvement; for hot-block acceleration, we can achieve 2 to 9 folds of per-

formance improvement; for overall cryptographic algorithm execution, we can

achieve 1.4 to 5.4 folds of speedups, compared with the traditional general-purpose

processor. Through the hardware overhead investigation, we observe that the minimal

hardware overhead is incurred during the accelerator implementation. This provides

us an inspiration that we may build a SIMD machine to perform the hardware accel-

eration simultaneously, taking advantage of the data parallelism, which will be the

focus of our future work.

ACKNOWLEDGEMENTS

This work is partly supported by the National Science Foundation under grants num-

ber CCF-1065448 and ECCS-1301953. Any opinions, findings, and conclusions or

recommendations expressed in this material are those of the authors and do not neces-

sarily reflect the views of the National Science Foundation.

References:

1. Luby, Michael; Rackoff, Charles (April 1988), "How to Construct Pseudorandom Permuta-

tions from Pseudorandom Functions", SIAM Journal on Computing 17 (2): 373–386

2. V. Rijmen, "Cryptanalysis and design of iterated block ciphers," Doctoral Dissertation, Oc-

tober 1997, K.U.Leuven.

3. NIST (National Institute of Standards and Technology), “Advanced Encryption Standard

(AES) – FIPS Pub. 197,” November 2001.

4. Rivest, R. L., A. Shamir, L. Adleman, “A Method for Obtaining Digital Signatures and Pub-

lic-Key Cryptosystems,” Communications of ACM, Vol.21, No. 2, Feb. 1978, pp. 120-126.

5. Intel VTune, http://software.intel.com/en-us/intel-vtune/

6. Wńodzimierz Bielecki and Dariusz Burak, “Parallelization Method of Encryption Algo-

rithms”, Advances in Information Processing and Protection, 2008, pp. 191-204

7. The eMips project. http://research.microsoft.com/en-us/projects/emips/default.aspx

8. D.W. Davies and W.L. Price. Security for Computer Networks. Wiley, 1989.

9. R.L. Rivest. The RC5 encryption algorithm. In Proceedings of the 2ndWorkshop on Fast

Software Encryption, pages 86-96, Springer, 1995.

10. R.L. Rivest. The MD5 message-digest algorithm, Request for Comments (RFC1320), Inter-

net Activities Board, Internet Privacy Task Force, 1992.

11. Xuejia Lai. On the Design and Security of Block Ciphers. Hartung-Gorre Verlag, 1992.

12. FIPS 180-1. Secure hash standard, NIST, US Department of Commerce, Washington D.C.,

Springer-Verlag, 1996.

13. Counterpane Systems. http://www.counterpane.com.

14. Koblitz, N.: Elliptic curve cryptosystems. Mathematics of Computation 48 (1987)203–209

15. IEEE 1363: Standard Specifications for Public-Key Cryptography

http://grouper.ieee.org/groups/1363/

16. Bruce Schneier, Applied Cryptography. John Wiley & Sons, 1996

17. Alireza Hodjat, “Interfacing a high speed crypto accelerator to an embedded CPU”, Pro-

ceedings of the 38th Asilomar Conference on Signals, Systems, and Computers, 2004, pp.

488-492

18. Owen Harrison and John Waldron, “AES Encryption Implementation and Analysis on

Commodity Graphics Processing Units”, Proceedings of the 9th international workshop on

Cryptographic Hardware and Embedded Systems, 2007, pp. 209-226

19. Ould-cheikh Mourad, Si-Mohamed Lotfy, Mehallegue Noureddine, Bouridane Ahmed,

Tanougast Camel, "AES Embedded Hardware Implementation," ahs, pp.103-109, Second

NASA/ESA Conference on Adaptive Hardware and Systems (AHS 2007), 20002

20. Guido Marco Bertoni, Luca Breveglieri, Farina Roberto, Francesco Regazzoni , “Speeding

up AES by extending a 32 bit processor instruction set”, in Proceedings of the IEEE 17th In-

ternational Conference on Application-specific Systems, Architectures and Processors,

(ASAP 2006), pp. 275-282

21. Jie Tang, Shaoshan Liu, Zhimin Gu, Xiao-Feng Li and Jean-Luc Gaudiot, “Hardware-

Assisted Middleware: Acceleration of Garbage Collection Operations”, Proceedings of the

21st IEEE International Conference on Application-Specific Systems, Architectures and

Processors (ASAP 2010),2010

22. Jie Tang, Shaoshan Liu, Zhimin Gu, Chen Liu, and Jean-Luc Gaudiot, “Prefetching in Em-

bedded Mobile Systems Can Be Energy-Efficient,” Computer Architecture Letters, DOI:

http://doi.ieeecomputersociety.org/10.1109/L-CA.2011.2, February, 2011

23. Jie Tang, Pollawat Thanarungroj, Chen Liu, Shaoshan Liu, Zhimin Gu, and Jean-Luc Gau-

diot, :Pinned OS/Services: A Case Study of XML Parsing on Intel SCC”, Journal of Com-

puter Science and Technology, in press

24. Jie Tang, Shaoshan Liu, Chen Liu, Zhimin Gu and Jean-Luc Gaudiot, “Acceleration of

XML Parsing Through Prefetching”, IEEE Transactions on Computers, in press.

25. Jie Tang, Shaoshan Liu, Zhimin Gu, Chen Liu and Jean-Luc Gaudiot, “Memory-Side Accel-

eration for XML Parsing”, The 8th IFIP International Conference on Networking and Paral-

lel Computing (NPC 2011), Changsha, Hunan, China, October 21-23, 2011

26. Jie Tang, Shaoshan Liu, Zhimin Gu, Xiao-Feng Li and Jean-Luc Gaudiot, “Achieving Mid-

dleware Execution Efficiency: Hardware-Assisted Garbage Collection Operations”, Journal

of Supercomputing, DOI: 10.1007/s11227-010-0493-0, November, 2010

27. Shaoshan Liu, Richard Neil Pittman, Alessandro Forin, and Jean-Luc Gaudiot, “Minimizing

the Runtime Partial Reconfiguration Overheads in Reconfigurable Systems”, Journal of Su-

percomputing, DOI: 10.1007/s11227-011-0657-6, July 22, 2011

28. Jed Kao-Tung Chang, Chen Liu, Shaoshan Liu, and Jean-Luc Gaudiot, “Workload Charac-

terization of Cryptography Algorithms for Hardware Acceleration”, Proceedings of the 2nd

ACM International Conference on Performance Engineering (ICPE 2011), Karlsruhe, Ger-

many, March 14-16, 2011

