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Abstract. Data Encryption/Decryption has become an essential part of perva-

sive computing systems. However, executing these cryptographic algorithms 

often introduces a high overhead. In this paper, we select nine widely used 

cryptographic algorithms to improve their performance by providing hardware-

assisted solutions. For each algorithm, we identify the software performance 

bottleneck, i.e., those “hotspot functions” or “hot-blocks” which consume a 

substantial portion of the overall execution time. Then, based on the percentage 

of execution time of a specific function and its relationship with the overall al-

gorithm, we select candidates for our hardware acceleration. We design our 

hardware accelerators of the chosen candidates. The results show that our im-

plementations achieve speedups as high as 60 folds for specific functions and 

5.4 for the overall algorithm compared with the performance of the software-

only implementation. Through the associated hardware cost analysis, we point 

to an opportunity to perform these functions in an SIMD fashion. 

Keywords: cryptography; hardware acceleration; performance analysis; hotspot 

function 

1 Introduction 

Data security is important in pervasive computing systems because the secrecy and 

integrity of the data should be retained when they are transferred among mobile de-

vices and servers in this system. The cryptography algorithm is an essential part of the 

pervasive computing security mechanism. By performing encryption, decryption, and 

hash operations on transmitted data, intruders should not be able to identify the 

hacked cipher text without decrypting schemes, and even a minute modification of the 

data shall be detected with a good data integrity verification process. 

However, performance is one concern regarding cryptography algorithms: these al-

gorithms are extremely expensive in terms of execution time. To make cracking the 

code more difficult, many arithmetic and logical operations are bound to be executed 



during the encryption/decryption process. Furthermore, a huge amount of data needs 

to be transferred between the CPU and the memory. Using a general-purpose proces-

sor for this purpose would not be a cost-effective solution, and the performance is not 

that satisfying either. This paper attempts to address this issue. We first deployed 

execution-based profiling to identify the hotspot (performance-intensive) part of an 

application: in each benchmark, we select candidates for hardware acceleration based 

on certain aspects, such as the percentage of total execution time belonging to hotspot 

functions, the relationship between the hotspot points and the entire application, etc. 

We then implemented these hotspot points in hardware. We compared the hardware 

and software implementation from two perspectives: performance and hardware cost. 

Our ultimate goal is to provide hardware-assisted solutions along these lines, so as to 

improve the performance of the crypto-computations in pervasive computing systems.  

The rest of the paper is organized as follows: We review related work in Section 2. 

We specify the cryptography algorithms in Section 3. We introduce the performance 

analyzer tool VTune, and describe how we employ it to identify the hotspot functions 

and hot-blocks across the set of benchmarks in Section 4. In Section 5, we describe 

the criteria for selecting the candidate algorithms for hardware acceleration. The im-

plementation of the hardware accelerator for the chosen benchmarks is described in 

Section 6. In Section 7, we describe the effort to investigate the hardware cost of our 

hardware implementation. Finally, conclusions are drawn in Section 8.    

2 Related Work 

Many previous research efforts have improved different parts of the pervasive 

computing system. For example, Tang et al. [21-37] employed hardware–assisted 

approach to accelerate selected middleware execution, and used prefetching tech-

niques in mobile systems. Different from them, ours is focused on addressing the 

issue of improving performance of cryptographic computations. With the multithread-

ing features which have been recently added to many programming languages, the 

straightforward software solution is to increase the level of concurrency. For example, 

Bielecki et al. [6] has attempted to deal with the performance issue and focused on 

parallel programming approaches. If purely focusing on a software strategy, however, 

the performance improvement would be limited since a general-purpose processor is 

not as efficient as a dedicated cryptography coprocessor.  

Many people have strived to implement cryptography operations on a single chip.  

Hodjat et al. [17] has used a dedicated cryptographic coprocessor to alleviate the load 

on the CPU. Bertoni et al. [20] had implementations at a finer granularity via instruc-

tion set extension: they implemented different stages of AES algorithm into custom-

ized instructions. The concept of applying SIMD architecture, such as graphic pro-

cessing unit (GPU), in asymmetric and some modes of symmetric encryption algo-

rithms was also employed to improve the performance of the cryptography algo-

rithms. Harrison et al. [18] implemented the AES Encryption ECB mode on GPUs.       

Compared with previous work targeting a specific computation-intensive part of an 

algorithm for hardware acceleration, we work on a set of algorithms which have cer-

tain program structures and crypto-computation operations in common. We employed 



dynamic-based profiling (also described in Chang et al. [28]): to profile the perfor-

mance behavior when running the benchmark and identify the parts that take up the 

most of execution time as hotspot points. When implementing these hotspot points 

into hardware accelerators, not only did they have superior performance than running 

on general-purpose processors, but also in some cases, the hardware costs are ex-

tremely low. We can duplicate the hardware accelerators for the hotspot points so that 

multiple data elements can be processed on these accelerators in a parallel fashion.  

3 Cryptography Algorithms 

We choose nine popular cryptography algorithms as benchmarks for our study: 

AES [3], RSA [4], 3DES [8], RC5 [9], MD5 [10], IDEA [11], SHA1 [12], Blowfish 

[13], and ECC [14]. The reason for our choice is that we feel the program structures 

of these algorithms are quite representative of the contemporary cryptography algo-

rithms. For example, some algorithms like 3DES, Blowfish, and RC5 use the Feistel 

cipher proposed by Luby et al. [1]; other algorithms, such as AES, IDEA, MD5, and 

SHA1 use the iterative cipher designed by Rijmen et al. [2]. ECC and RSA are public 

key (asymmetric) algorithms [16], which are neither Feistel cipher nor iterative ci-

pher. Comparing with the other seven algorithms, ECC and RSA seem to be more 

complex. However, in these algorithms, each data can be encrypted or decrypted in-

dependently and the operations can be performed in parallel to improve their overall 

performance. Another common feature shared by these algorithms is the operation 

they use to encrypt / decrypt the data. Memory access operations are used by 3DES, 

AES, and Blowfish. This is because these three algorithms need to access lookup 

tables). Modular arithmetic operations are also heavy in modern cryptography algo-

rithms, because they need to keep the plaintext as secure as possible.  

4 Hotspot Function Identification 

We profile the dynamic computation characteristics of the benchmarks and utilize 

VTune [5] from INTEL® as our performance analyzer to identify the hotspots. 

VTune analyzes the software performance on IA-32 and Intel64-based machines. It 

collects performance data on applications running on the host system, organizes and 

displays the data in an interactive way. VTune’s call graph view provides a tree struc-

ture to show the call relationship among all functions along with their execution time. 

This would help us identify the “hotspot” functions and percentage of the hotspot 

functions occupying the total execution time of each benchmark.  

We define HF-Rate as the percentage of the execution time belonging to hotspot 

functions of each algorithm. Figure 1 shows the HF-Rate for each algorithm. It should 

be noted that for the execution time, we only consider the crypto computation (key 

setup, encryption, and decryption) part of an application, excluding the file I/O or 

certain system calls within the dynamic-link library (DLL).  
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Fig. 1. HF-Rate for different algorithms 

We can see that the execution time of the hotspot functions account for a majority 

of the total execution time for most of the benchmarks. In 3DES, MD5, and AES 

Decryption, the hotspot functions occupy more than 80% of the execution time of the 

entire algorithm. For AES Encryption, Blowfish, IDEA, MD5, and RSA, this number 

reaches or even exceeds 70%. However, SHA1 is an exception because most of its 

execution time is spent on I/O operations called by the crypto computation functions, 

such as reading from a file, which means that there is really no hotspot function to 

isolate. Overall, the function breakdown helps us identify the software bottleneck of 

the application.  

5 Acceleration Candidate  

When selecting our candidates for hardware acceleration, we need to consider two 

aspects of the hotspot function(s):  

• Its HF-Rate  

• The relationship between the hotspot function(s) and the overall algorithm.  

The first aspect is evident: based on the Amdahl’s Law, we would prefer to choose 

a hotspot function with a high HF-Rate, which is the percentage of total execution 

time dedicated to the hotspot function and is our target for acceleration. In the formula 

of Amdahl’s law, HF-Rate corresponds to Fractionenhanced, the percentage of the over-

all execution during which the performance enhancement was applied. If the HF-Rate 

is too low, the performance of the application cannot be significantly enhanced even 

if the performance of the hotspot point can be much improved. 
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Given the first criterion, as Fig. 1 indicates, SHA1 would not be taken into consid-

eration due to its low HF-Rate of the hotspot function. The second aspect is equally 

important:  if a hotspot function is the entire process of the overall algorithm, such as 

the encryption/decryption part, the hardware cost would be too high, because we 

would need to implement many hardware instructions and correspondingly many 

hardware components which would occupy too large a die area. Thus, a good candi-

date for hardware acceleration is a hotspot function with both a high HF-Rate and 

small size.  

Next let us consider the hardware implementation for specific hotspot functions. 

The hotspot function of RSA is a function called Power(), which calculates two to the 

power of N, accounting for 67.6% of the RSA execution time. From the profiling we 

know that the maximum value of N is 31. It takes just one 32-bit barrel shifter to fin-

ish the operation.  

The encryption/decryption of AES has four stages. The stages of encryption are 

SubBytes(), ShiftRows(), MixColumns(), and RoundKey(), while those of decryption 

are InvSubBytes(), InvShiftRows(), InvMixColumns(), and RoundKey(). The hotspot 

function of AES encryption is SubBytes(), the first stage of each round. In AES de-

cryption, the three hotspot functions are InvSubBytes(), InvMixColumns(), and Sub-

Bytes(), corresponding to the first, third and fourth stages of AES decryption, respec-

tively. Among them, SubBytes() and InvSubBytes() are memory access operations, 

replacing a byte with another one according to a prebuilt lookup table (SBox). In re-

cent hardware implementations, the SBox is put into the cache so that the access time 

could be significantly reduced, according to Mourad et al [19]. For InvMixColumns(), 

its instructions can be implemented by a set of AND, shift, and table lookup opera-

tions according to [3]. SubBytes() in AES encryption contributes 78.5% of the total 

execution time, while the InvSubBytes(), SubBytes(), and InvMixColumns() in AES 

decryption contribute 55.8%, 17.5%, and 10.8% of the total execution time.   

For Blowfish, the hotspot function is F() which contributes 73.13% of the total ex-

ecution time. Blowfish has 16 rounds of data transformation and F() is executed once 

in each round. F() takes the 32-bit input and splits it into four eight-bit inputs and 

access four pre-built lookup tables (SBoxes) in parallel.  The outputs are then XORed 

and added. Again, the four lookup tables can be placed in the cache and two adders, 

shifters, and one Exclusive-OR gate would be sufficient to implement the rest of the 

function. Thus, AES, RSA, and Blowfish would be good choices for us to perform the 

hardware acceleration. 

As for 3DES, IDEA, MD5, and RC5, our analysis points to the hotspot function 

being the entire function of crypto computation. If we exclude this hotspot function, 

the rest of the algorithm is simply the initialization, the execution time of which is 

comparatively negligible. As mentioned previously, these algorithms are not good 

candidates for hotspot function acceleration since the hardware cost would be too 

high.  

 In this situation, we need to consider reducing the granularity for acceleration.  We 

need to look inside each function and determine whether there is a “hot-line” or “hot-

block” of code which contributes a significant amount of execution time and with low 

hardware overhead to qualify for acceleration. We employed the sampling wizard of 



VTune to show the number of consumed clock cycles by each line of code. We go 

deeper into the functions and view the performance at a finer granularity.   

 For RC5, the hotspot function is the rc5_key() for the key expansion work. The 

hot-block is named KEYXP_RC5. KEYXP_RC5 accounts 37.9% of the whole algo-

rithm. For 3DES, the hotspot function is des_crypt(). The hot-block is named 

ROUND_3DES, which handles memory access and address translation. This hot-

block ROUND_3DES accounts for 58.7% of the whole algorithm. The hot-block of 

MD5 is P_MD5, which consists of four rounds where each round is composed of 

sixteen function-based stages. The main operations for P_MD5 are Modular additions 

and left rotations. P_MD5 contributes 73.3% of the total MD5 algorithm.  

MUL_IDEA is the hot-block of IDEA. The input data is processed with the keys by 

the modular arithmetic and logic operations. The main operations for MUL_IDEA are 

modulo addition and multiplication operations. MUL_IDEA consumes 61.2% of the 

execution time of the entire algorithm.  

6 Accelerator Implementation 

Now we are ready to implement the hotspot function(s) of selected benchmarks 

(RSA, AES, and Blowfish) in hardware. We take the state transitions scheme for 

hardware implementation.  First, we translate the function(s) into finite state machine.  

Note that although the instructions are executed in sequential order, if we find there is 

no data dependency among the instructions, we can execute them in parallel and put 

them into the same state in the finite state machine.  For RSA, one 32-bit barrel shifter 

can shift left a number by 0 to 31 bits and we just need one state. For InvSubBytes() of 

AES Decryption and SubBytes() of AES Decryption and Encryption, it is only a re-

placement operation for a byte according to a pre-built lookup table. Some logic com-

ponents would be sufficient as it is one state of memory access. 

The implementation of InvMixColumns() using Rijindael mix columns requires six 

states. In the first state, the input array is read into the tentative storage used for the 

later states. The inverse mix column operates on the data by multiply numbers in 

Rijndael Galois Field, which takes four states because four dependent instructions 

need to be executed. In the final state, the results will be stored back to the array. 

Thus, a total of six states are required to implement this function.  

The F() of Blowfish needs three states. In the first state, a 32-bit input is split into 

four 8-bit inputs as an index to access the lookup table. In the second state, the four 

lookup tables are accessed in parallel and they produce four outputs. In the third state, 

four outputs are combined into one using the modulo addition and XOR operations.   

Next, we discuss the hardware implementation of the hot-blocks of RC5, 3DES, 

MD5, and IDEA. The hot-block KEYXP_RC5 in RC5 is inside a for-loop structure. 

We need three states to implement the operations of mixing secret keys to the key 

table.   

The 3DES’s hot-block ROUND_3DES has three states. In the first state the input 

will be operated on using different calculations in parallel and two outputs will be 

generated. In the second state, the outputs are used as indices to access one of the pre-



built lookup tables. Then, in the third state, the values from the second state will be 

used to access eight other pre-built lookup tables and to perform the XOR operation 

on these outputs to obtain the result.  

The hot-block of MD5 is P_MD5.  As we know, MD5 is composed of 64 function-

based stages. The first, second, third, and final 16 stages are grouped together as one 

round with a slightly different translation functions. We thus just need to implement 

four stages as four hardware modules separately with different functions.  During the 

first round, the first hardware module will be called; the second module is called in 

the second round, and so on. Each module just needs two states. The first state is to 

execute the function with the given input. The second state is to perform some simple 

operations based on the output of the first state.  

Table 1. Hardware acceleration speedup 

Hotspot Function /   

Benchmark 

FSM 

Stages 

Function 

Speedup 

Algorithm 

Speedup 

Power() / RSA 1 26 2.9 

SubBytes() / AES  

Encryption 
1 56 4.4 

InvSubBytes() / AES  

Decryption 
1 48 1.2 

5.4 
SubBytes()/ AES  

Decryption 
1 60 2.2 

InvMixColumns() /  

AES Decryption 
6 9 1.1 

F() / Blowfish 3 2 1.7 

KEYXP_RC5 / RC5 3 4 1.4 

ROUND_3DES /  

3DES 
3 2 1.5 

P_MD5 / MD5 8 9 2.9  

MUL_IDEA / IDEA 4 5 2.0 

 

The hot-block MUL_IDEA of IDEA takes four states to complete. The first state is 

for initialization and the following three states are for set of shift, add, and multiplica-

tion operations on the input data and key.   

We implemented the hardware-assisted cryptographic functions as the accelerator 

connected with Microblaze using the PLB bus on the Xilinx XUPV5-LX110T devel-

opment system. We measured and compared the performance in terms of the number 

of clock cycles and of the hardware and software implementation.   

Table 1 summarizes the number of stages of finite state machine needed by each 

hotspot function, the hardware acceleration speedups we achieved over specific func-

tions and over the entire algorithm. The results show that for hotspot function acceler-

ation we can achieve 2 to 60 folds of performance improvement; for hot-block accel-

eration, we can achieve 2 to 9 folds of performance improvement; as for the entire 



cryptographic algorithm, hardware acceleration can achieve performance improve-

ments of 1.4 to 5.4 folds, depending on the program structure.  

7 Hardware Cost Analysis 

Given the superior performance of the hardware accelerator implementation of 

hotspot functions and hot-blocks of the candidate benchmarks, we now look into im-

plementing them in an ASIC design, hardware cost being our top-most concern.  

We measured the hardware resource utilization based on the number of hardware 

slices (#slices), the number of flip-flops (#FF), and the number of look-up tables 

(#LUT).  Table 2 summarizes the hardware resource utilization of these implementa-

tions. 

Table 2. Hardware Resource Utilization 

Hotspot Function / Benchmark #Slices   #FF #LUT 

InvSubBytes() / AES Decryption 5 17 14 

InvMixColumns() / AES Decryption 524 226 174 

SubBytes()/ AES Decryption 5 17 14 

SubBytes() / AES Encryption 5 17 14 

Power() / RSA 5 17 14 

F() / Blowfish 26 33 96 

MUL_IDEA / IDEA 58 73 102 

KEYXP_RC5 / RC5 137 175 423 

ROUND_3DES / 3DES 6 19 19 

P_MD5 / MD5 37 74 107 

 

Based on the criteria we listed in Section 5 in the selection of the functions for 

hardware acceleration, the hardware overhead incurred with the accelerator is simply 

minimal, as shown in Table 2. For comparison, let us consider a very simple in-order 

MIPS processor design [7], the resource utilization of which requires 10,450 hardware 

slices, 10,400 flip-flops, and 19,500 look-up tables. Thus, if we implement the hotspot 

functions or hot-blocks in the form of a hardware accelerator, we need much fewer 

hardware resources compared to modern general-purpose processors as platforms on 

which we normally run cryptographic applications. 

From the hardware cost, we observe that the hardware accelerator implementation 

is not only superior in performance but also matches the low cost of modern chip 

design. Given the several orders of magnitude difference between the hardware and 

software implementations, it is worthwhile for us to consider implementing the 

hotspot functions in the form of special functional units. We can achieve huge data 

parallelism by duplicating these function units. That is, we can extend our work to 

build a SIMD machine by grouping multiple data elements together and performing 

the operations using special processing units all at once.  



8 Conclusions 

In this study we have designed, implemented, and evaluated hardware acceleration 

approaches for cryptographic algorithms. We used the VTune performance analyzer 

to extract the hotspot functions and hot-blocks as identified by their high HF-Rate and 

low hardware overhead. We then translated the hotspot functions and hot-blocks into 

finite state machines and implemented them as hardware accelerators. Compared to 

previous research, we used a “hardware-assisted” method, i.e., we move the computa-

tion intensive part of the cryptography application into hardware so that the general-

purpose computing resource can be released to perform other useful tasks. Our results 

indicate that for hotspot function acceleration we can achieve 2 to 60 folds of perfor-

mance improvement; for hot-block acceleration, we can achieve 2 to 9 folds of per-

formance improvement; for overall cryptographic algorithm execution, we can 

achieve 1.4 to 5.4 folds of speedups, compared with the traditional general-purpose 

processor. Through the hardware overhead investigation, we observe that the minimal 

hardware overhead is incurred during the accelerator implementation. This provides 

us an inspiration that we may build a SIMD machine to perform the hardware accel-

eration simultaneously, taking advantage of the data parallelism, which will be the 

focus of our future work. 
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