Outline

- **Introduction**
- Virtual LAN concepts
- Common Attack Methods
 - Overview of Attacks
 - Why They Are Effective
 - Mitigation Strategies
- Future Work in Virtualized Environments
 - Planned Attacks
 - Planned Test Scenarios
- Questions
Introduction

- Researching Layer 2 network security in virtualized environments
- Already conducted successful experiments using:
 - MAC flooding
 - Open vSwitch based virtual networks are vulnerable!
 - Results made public at DerbyCon 4.0
 - Submitted vulnerability report to http://cert.org and security@openvswitch.org
- DHCP attacks
 - Multiple scenarios evaluated on each platform
 - All tested platforms were found vulnerable!
MAC Flooding Summary

<table>
<thead>
<tr>
<th>Test Environments</th>
<th>Eavesdropping</th>
<th>Performance Affected</th>
</tr>
</thead>
<tbody>
<tr>
<td>OS Xen w/ Linux Bridging</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>OS Xen w/ Open vSwitch 1.11.0</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>OS Xen w/ Open vSwitch 2.0.0</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Citrix XenServer 6.2</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>MS Server 2008 R2 w/Hyper-V</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>MS Hyper-V 2008 Free</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>VMware vSphere (ESXi) 5.5</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>
DHCP Attack Summary

<table>
<thead>
<tr>
<th>Test Environments</th>
<th>Shell Shock</th>
<th>Poisoned DNS</th>
<th>Invalid DG</th>
<th>Malicious DG</th>
</tr>
</thead>
<tbody>
<tr>
<td>OS Xen w/ Linux Bridging</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>OS Xen w/ Open vSwitch 1.11.0</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>OS Xen w/ Open vSwitch 2.0.0</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Citrix XenServer 6.2</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>MS Server 2008 R2 w/Hyper-V</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>MS Hyper-V 2008 Free</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>VMware vSphere (ESXi) 5.5</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Next Step

- Next step: evaluate VLAN security in virtualized environments:
 - All virtual switch products support the creation of VLANs
 - VLANs allow service providers to *logically* separate and isolate multi-tenant virtual networks within their environments
- Do the current known vulnerabilities in commonly used VLAN protocols apply to virtualized networks?
 - Could allow for:
 - Eavesdropping of traffic on restricted VLANs
 - Injection of packets onto a restricted VLAN
 - DoS attacks
 - Covert channels
Outline

- Introduction
- **Basic VLAN concepts**
- Common Attack Methods
 - Overview of Attacks
 - Why They Are Effective
 - Mitigation Strategies
- Future Work in Virtualized Environments
 - Planned Attacks
 - Planned Test Scenarios
- Questions
Virtual LAN Concepts

- Virtual LAN (VLAN)
 - Allows for separation of physical network into multiple logical networks
 - Each logical network is considered as a single broadcast domain
 - Layer 2 connectivity
 - Broadcast traffic reaches all logically connected nodes
 - Separated by Layer 3 devices (*routers*)
 - Broadcast domains can span multiple network segments by the use of a *bridge* or *switch*
Virtual LAN Concepts

• Switch Ports *(managed switches)*
 • *Trunk port*
 • Port on switch configured to carry traffic for multiple VLANs to other connected switches
 • Allows VLANs to expand beyond a single switch
 • *ie.* between buildings
 • *Access port*
 • Port on switch configured to provide access to a single VLAN
 • Tags all traffic entering port from connected devices with associated VLAN ID *(ie.* VLAN 102)*
 • No need to configure connected device with specific VLAN information
Virtual LAN Concepts

- Types of VLANs
 - **Native VLAN**
 - Allows for the passing of un-tagged frames between devices
 - Trunk connections between switches
 - CDP, DTP, VTP messages between switches
 - VLAN 1 traffic between devices on a network
 - Typically used for management purposes
 - Default VLAN on an un-configured switch
 - Defaults to VLAN 1
Virtual LAN Concepts

• Types of VLANs (cont.)
 • Access VLAN
 • Restricted VLAN used for client access to a logical network
 • All traffic is tagged with the ID of the access VLAN
 • Un-tagged traffic or traffic tagged with a different VLAN ID is prevented from accessing the logically separated broadcast domain
 • Used to isolate traffic on a network
 • Separate traffic from different departments
 • Increase security by preventing unauthorized access to network resources
Virtual LAN Concepts

- Standard Ethernet frames consist of the following fields:
 - Destination MAC address
 - Source MAC address
 - Type of frame or frame length
 - The data payload
 - A frame check sequence

<table>
<thead>
<tr>
<th>Dst MAC</th>
<th>Src MAC</th>
<th>Type/Len</th>
<th>Data</th>
<th>FCS</th>
</tr>
</thead>
</table>
Virtual LAN Concepts

- Ethernet frames are modified for VLAN traffic:
 - Addition of a 802.1q VLAN header
 - 32 bits of extra information wedged in

<table>
<thead>
<tr>
<th>Dst MAC</th>
<th>Src MAC</th>
<th>802.1q VLAN Tag</th>
<th>Type/Len</th>
<th>Data</th>
<th>FCS</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>TPID</th>
<th>TPI</th>
<th>DEI</th>
<th>VID</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x8100</td>
<td>(3 bits)</td>
<td>(1 bit)</td>
<td>(12 bits)</td>
</tr>
</tbody>
</table>

- 4 Bytes
- 2 Bytes
Virtual LAN Concepts

- The IEEE 802.1ad standard also known as Q-in-Q allows for the addition of multiple 802.1q VLAN tags to a frame
- Useful for:
 - Provider bridging
 - Stacked VLANs

```
<table>
<thead>
<tr>
<th>Dst MAC</th>
<th>Src MAC</th>
<th>802.1q VLAN Tag</th>
<th>Type/Len</th>
<th>Data</th>
<th>FCS</th>
</tr>
</thead>
</table>
```

```
<table>
<thead>
<tr>
<th>Dst MAC</th>
<th>Src MAC</th>
<th>802.1q VLAN Tag</th>
<th>802.1q VLAN Tag</th>
<th>Type/Len</th>
<th>Data</th>
<th>FCS</th>
</tr>
</thead>
</table>
```
Outline

- Introduction
- Virtual LAN concepts
- **Common Attack Methods**
 - Overview of Attacks
 - Why They Are Effective
 - Mitigation Strategies
- Future Work in Virtualized Environments
 - Planned Attacks
 - Planned Test Scenarios
- Questions
VLAN Hopping

- VLAN Hopping
 - An attack method used to gain unauthorized access to another Virtual LAN on a packet switched network
 - Consists of attacker sending frames from one VLAN to another that would otherwise be inaccessible

- Two methods
 - Switch Spoofing
 - Double Tagging
Switch Spoofing
Switch Spoofing

- CVE-2005-1942
 - “Cisco switches that support 802.1x security allow remote attackers to bypass port security and gain access to the VLAN via spoofed Cisco Discovery Protocol (CDP) messages.”
Switch Spoofing

- Cisco Discovery Protocol
 - Cisco proprietary Layer 2 protocol
 - Allows connected Cisco devices to share information
 - Operating system
 - IP address
 - Routing information
 - Duplex settings
 - VTP domain
 - VLAN information
Switch Spoofing

- CVE-1999-1129
 - “Cisco Catalyst 2900 Virtual LAN (VLAN) switches allow remote attackers to inject 802.1q frames into another VLAN by forging the VLAN identifier in the trunking tag.”

- Combine with ...

- **DTP**: Dynamic Trunking protocol. "If a switch port were configured as DTP auto and were to receive a fake DTP packet, it might become a trunk port and it might start accepting traffic destined for any VLAN" (Cisco).
 - **DTP Auto is the default setting!**
Switch Spoofing

- Dynamic Trunking Protocol
 - Cisco proprietary Layer 2 protocol
 - Allows automatic configuration of trunk ports on Cisco switches
 - Automatically configures VLAN trunking for all supported VLANs
 - Provides ability to negotiate the trunking method with neighbor devices
 - Pair this with CDP and your Cisco devices can pretty much configure themselves \textit{(not very securely!)}
Switch Spoofing

All ports configured in dynamic desirable mode by default

VLAN 1 - Native VLAN
VLANs 2,3 - Access VLANs
Switch Spoofing

All ports configured in dynamic desirable mode by default

VLAN 1 - Native VLAN
VLANs 2,3 - Access VLANs
Switch Spoofing

All ports configured in dynamic desirable mode by default

VLAN 1 - Native VLAN
VLANs 2,3 - Access VLANs

Attacker sends spoofed DTP packet to switch
Switch Spoofing

All ports configured in dynamic desirable mode by default

VLAN 1 - Native VLAN
VLANs 2,3 - Access VLANs
Switch Spoofing

All ports configured in dynamic desirable mode by default

VLAN 1 - Native VLAN
VLANs 2,3 - Access VLANs
Switch Spoofing

- Consequences
 - Attacker's system has a trunk connection to the switch
 - Attacker can generate frames for any VLAN supported by the trunk connection
 - Attacker can communicate with any device on any of the associated VLANs
 - Two-way communication can occur between the attacker and a targeted node because the attacker can actually place themselves on the VLAN
 - Also allows attacker to eavesdrop on the traffic within a target VLAN
Switch Spoofing

- Mitigation
 - Disable unused switch ports
 - Disable CDP and DTP
 - Or use on an as need, per port basis!
 - Restrict the amount of trunk ports
 - Should only be configured when connecting devices require it (ie. other switches)
 - Limit VLAN access on trunk ports to only what the connected segments require
 - Configure all other ports as access ports (no trunking) with no access to the native VLAN
 - Don't use Cisco switches...
Double Tagging
Double Tagging

- CVE-2005-4440
 - [CVE Details](http://www.cvedetails.com/cve/CVE-2005-4440/)
 - "The 802.1q VLAN protocol allows remote attackers to bypass network segmentation and spoof VLAN traffic via a message with two 802.1q tags, which causes the second tag to be redirected from a downstream switch after the first tag has been stripped."
- A.K.A: "Double-Tagging VLAN jumping attack"
Double Tagging

VLAN 1 - Native VLAN
VLANs 2,3 - Access VLANs
Double Tagging

- **VLAN 1** - Native VLAN
- VLANs 2,3 - Access VLANs
Double Tagging

<table>
<thead>
<tr>
<th>Dst MAC</th>
<th>Src MAC</th>
<th>Type/Len</th>
<th>Data</th>
<th>FCS</th>
</tr>
</thead>
</table>

Standard 802.3 Ethernet Frame:

4 Bytes

<table>
<thead>
<tr>
<th>Dst MAC</th>
<th>Src MAC</th>
<th>802.1q VLAN Tag</th>
<th>Type/Len</th>
<th>Data</th>
<th>FCS</th>
</tr>
</thead>
</table>

802.3 Ethernet Frame Tagged with 4 Byte 802.1q header:

4 Bytes 4 Bytes

<table>
<thead>
<tr>
<th>Dst MAC</th>
<th>Src MAC</th>
<th>802.1q VLAN Tag</th>
<th>802.1q VLAN Tag</th>
<th>Type/Len</th>
<th>Data</th>
<th>FCS</th>
</tr>
</thead>
</table>

802.3 Ethernet Frame Tagged with multiple 4 Byte 802.1q headers – Q-in-Q:
Double Tagging

VLAN 1 - Native VLAN
VLANs 2,3 - Access VLANs
Double Tagging

VLAN 1 - Native VLAN
VLANs 2,3 - Access VLANs
Double Tagging

- Consequences
 - Attacker can send packets to a target VLAN
 - Targeted system cannot respond back
 - Attacking system is on the native VLAN
 - Target is on an access VLAN isolated from the native VLAN broadcast domain
 - Not a good attack for eavesdropping
 - Excellent method for DoS attacks
 - Can be used as one way covert channels
Double Tagging

- Mitigation Techniques
 - Do not assign any hosts to VLAN 1 (*native VLAN*)
 - If necessary significantly limit access
 - Disable VLAN 1 on unnecessary ports
 - Change native VLAN on all trunk ports to something different than VLAN 1
 - Restrict access to switches by MAC address
 - Can spoof MAC addresses to get around this
 - Heart of this attack is having access to the native VLAN!
 - This is the default VLAN for all ports on a switch!
Outline

• Introduction
• Virtual LAN concepts
• Common Attack Methods
 • Overview of Attacks
 • Why They Are Effective
 • Mitigation Strategies
• Future Work in Virtualized Environments
 • Planned Attacks
 • Planned Test Scenarios
• Questions
Future Work

• What can be done in Virtualized environments?
• **Switch Spoofing**
 • Targets vulnerability in Cisco proprietary protocols
 • Would be useless on non-Cisco based vSwitches
 • Testing on Cisco Nexus 1000v switches is planned
• **Double Tagging**
 • Targets vulnerability in 802.1q standard
 • 802.1ad sub-standard
 • Could potentially work on any vSwitch
 • Attack requires two or more switches to be successful
 • Many scenarios can be explored
Future Work

- Scenarios:
 - Switch Spoofing
 - DTP/CDP spoofing attacks
 - Cisco Nexus 1000v switch (*advanced and essentials editions*)
 - VM → vSwitch (DTP) → VM (VLAN XX)
 - PC → Switch → vSwitch (DTP) → VM (VLAN XX)
 - VM → vSwitch (DTP) → Switch → PC (VLAN XX)
Future Work

• Scenarios (cont.):
 • Double Tagging (*requires at least 2 switches*)
 • PC → Switch → vSwitch → VM
 • VM → vSwitch → Switch → PC
 • VM → vSwitch → vSwitch → VM
 • Between different environments and vSwitches
 • VM → vSwitch → Switch → vSwitch → VM
 • Between different environments and vSwitches
Future Work

- Lab infrastructure upgrades and design changes are required to safely support test scenarios
 - Addition of multiple physical switches that support VLANs to lab and server rack (acquired!)
 - Direct 1Gb Ethernet connection from lab switch to server rack switch (waiting on approval)
 - Connections currently go through multiple campus switches
 - Requires facilities to install cabling between lab on 3rd floor and server room in basement.
- Isolation of lab network with router (locating hardware)
- Approval of VLAN ID usage from SUNY Poly ITS administrators (waiting on approval)
Future Work

- Infrastructure and design changes (cont.)
 - Addition of Cisco Nexus 1000v essentials & advanced vSwitches in VMWare environments
 - Two Servers (*locating hardware*)
 - Software license fees ~$5000.00 (*acquired funding*)
 - Academic VMWare vSphere Essentials (*purchased*)
 - Academic VMWare vCenter (*purchased*)
 - Cisco Nexus 1000v Advanced Edition (*purchased*)
 - DTP/CDP Switch spoofing scenarios
 - Configuration of VLAN IDs (*once approved*) on all physical and virtual switches
 - Allocation of new target virtual machines on each of the test VLANs
Outline

• Introduction
• Virtual LAN concepts
• Common Attack Methods
 • Overview of Attacks
 • Why They Are Effective
 • Mitigation Strategies
• Future Work in Virtualized Environments
 • Planned Attacks
 • Planned Test Scenarios
• Questions

References

References

References

References

References

References

• Open vSwitch. How to install open vswitch on linux, freebsd and netbsd. Retrieved December 4, 2013 from http://git.openvswitch.org/cgi-bin/gitweb.cgi?p=openvswitch;a= blob_plain;f=INSTALL;hb=HEAD/.
References

• Rouiller, S. VLAN Security: weaknesses and countermeasures - v1.4b. SANS Institute.

