
Introduction to
Computer Programming

With C++

Spring 2014

Alexis Maciel
Department of Computer Science

Clarkson University

Copyright c© 2014 Alexis Maciel

ii

Contents

Preface v

1 Basic Concepts 1
1.1 A Running Pace Calculator 1
1.2 High-Level Languages and Compilers 2
1.3 Output and Data . 3
1.4 Structure of a Simple C++ Program 6
1.5 Input and Variables . 9
1.6 Arithmetic Operations . 13
1.7 More on Variables . 17
1.8 Conditional Statements . 19

2 Repetition 29
2.1 Adding Repetition to the Running Pace Calculator 29
2.2 More on Loops . 35
2.3 Loops and Variables . 39
2.4 Nested Loops . 41

3 File Input and Output 47
3.1 A Pay Calculator . 47
3.2 File Streams . 47
3.3 Detecting the End of the File 51
3.4 Different Wages . 60
3.5 More on Strings . 61
3.6 Error Checking . 64
3.7 Extending the Pay Calculator 67
3.8 Compile-Time Constants . 69
3.9 Formatting of Floating-Point Numbers 72

iii

iv CONTENTS

4 Functions 75
4.1 Introduction . 75
4.2 A Rounding Function . 77
4.3 Functions in the Pay Calculator 79
4.4 Reference Arguments . 84
4.5 Reference Arguments in the Pay Calculator 90
4.6 Modularity and Abstraction 95
4.7 Documentation . 100

5 Vectors 103
5.1 A Simple File Viewer . 103
5.2 Vector Basics . 104
5.3 Object-Oriented Programming 109
5.4 Design and Implementation of the File Viewer 112
5.5 Multiway Branches . 121
5.6 More on Vectors . 123
5.7 More on Strings . 126
5.8 A Simple Text Editor . 133
5.9 Adding More Error-Checking to the File Viewer 143
5.10 Arrays . 150

6 Structures 155
6.1 Extending the Pay Calculator 155
6.2 Improving the Design of the Text Editor 164

7 Algorithms and Generic Programming 169
7.1 Introduction . 169
7.2 Generic Programming . 170
7.3 Some Simple Algorithms . 174
7.4 Algorithms in the STL . 179

Bibliography 185

Index 187

Preface

These notes are for a first course on computer programming. Before we start,
it is useful to ask what exactly is computer programming and why is it impor-
tant?

Computers and computer-related technology, usually called information
technology, is everywhere in modern society, so much so that it is very easy
to take it for granted. But most of this technology is at most a few decades
old and its widespread use has had a profound impact in how people live their
lives.

Consider the writing of formal documents, such as reports — and these
notes. These used to be typewritten. Editing such documents was painful
since it often required retyping many pages. Spell-checking was tedious since
it involved looking up words one by one in a dictionary. And the documents
didn’t look very professional since most people could not afford the services
of a professional typesetter and printer. Nowadays, everybody — not only
businesses but individuals too — has access to typesetting programs such as
OpenOffice Writer, Microsoft Word and LaTeX that are either free or rela-
tively cheap. These programs make it easy to edit, spell-check and produce
documents that can look as good as a professionally typeset book.

Consider access to information. Looking up information that wasn’t in the
home encyclopedia or in the day’s newspaper typically required a trip to the
local public library. And if that one was too small, a trip to the main city
library was required — unless you lived in a small town and then you were
out of luck. What this meant is that a lot of information was, for all practical
purposes, inaccessible to most people. Nowadays, with the World Wide Web,
most people have access to pretty much all the knowledge in the world, from
their homes or anywhere on their smart phones, through programs called Web
browsers. And search engines allow you to find what you need almost instantly.

Consider communication. People who didn’t live near each other used to

v

vi PREFACE

communicate mainly by letter and, occasionally, by phone. Nowadays, with
email, “letters” can be sent without the hassle of paper, envelopes and stamps,
and without the delay of the postal system. Friends can keep in touch easily,
and instantly, through programs such as facebook. And you can broadcast
your thoughts to the entire world — or at least to anybody who cares —
through your own blog.

We could go on and on. There’s eCommerce, animation, games, simulators,
expert systems such as IBM’s Jeopardy-playing Watson, as well as business
computing and scientific and engineering computation. And it’s not over. (For
example, see Exponentials R Us: Seven Computer Science Game-Changers
from the 2000s, and Seven More to Come by Ed Lazowska [Laz].1)

Most of these technological breakthroughs are made possible by three key
ingredients: digital data, extensive communication networks, and automation.

Digital data, whether it is text, images, audio or video, is data that is
represented as sequences of 0’s and 1’s. This makes it easier to store, edit
and transmit the data. And this data can be easily transmitted and accessed
because most people’s computers and smart phones are connected together
through vast and powerful communication networks. This is what enables
the Internet and the World Wide Web. But none of this is possible without
automation: the fact that computers can automatically perform complex tasks
at incredible speeds.

The focus of this course is on automation. More precisely, a computer’s
hardware, its physical components, consists mainly of memory and a processor
(which is often called a central processing unit or CPU). Memory holds data.
A computer’s memory also holds the instructions that tell the processor what
to do. These instructions are arranged into programs, which are sequences of
instructions designed to accomplish a particular task. A computer’s programs
are called the software of the computer.

As mentioned earlier, these notes are an introduction to computer program-
ming, the writing of computer programs. Which means that we will focus on
software. After reading these notes and working on the exercises, you will be
able to create relatively simple programs. You will also be prepared to con-
tinue your study of computer science and software development, including the
creation of much larger and more complex programs.

These notes use the programming language C++ but the main focus is
not on the language itself (even though you will learn all the relevant features

1Link on the course web site.

vii

of C++). The main focus is on programming: most of the concepts and
techniques you will learn apply equally well to programming in any language.

Feedback on these notes is welcome. Please send comments to
alexis@clarkson.edu.

viii PREFACE

Chapter 1

Basic Concepts

In this chapter, we will create our first program, a running pace calculator. In
the process, we will learn how to make programs perform input and output
as well as conditional execution. We will also be introduced to the important
concept of a variable.

1.1 A Running Pace Calculator

Runners often like to know how fast they run but not in miles per hour.
Instead, runners typically like to know their pace in minutes per mile. In
addition, they like to express that pace in minutes and seconds, not in minutes
and a fraction of a minute. For example, a running pace of 8 minutes and 15
seconds per mile would be expressed as 8:15 and not 8.25.

Calculating running paces like these is a bit tricky to do mentally. There-
fore, in this chapter, we will create a calculator for this purpose. Figure 1.1
shows a sample session of the calculator. In this example, the user answered
the questions Distance? and Time? with the numbers 3.5 and 0:28:45.
The rest of the text is produced by the program.

Note that this is only a first version of the calculator. Later in this chapter,
we will add some other features to it — and learn the concepts necessary to
program them.

1

2 CHAPTER 1. BASIC CONCEPTS

Welcome to the running pace calculator.

Please enter distances in miles and times in the format
hours:minutes:seconds, as in 0:32:27.

Distance? 3.5
Time? 0:28:45

Pace: 8:13 minutes per mile.

Figure 1.1: A sample session of the running pace calculator

1.2 High-Level Languages and Compilers

As mentioned in the preface, a program is a sequence of instructions that
tell the computer how to accomplish a particular task. These instructions are
executed by the computer’s processor. Each processor is designed to execute
a specific set of instructions. This set of instructions constitutes the language
of the computer and this type of programming language is called machine
language.

Conceptually, a computer’s processor turns out to be a surprisingly sim-
ple device. In particular, the instructions it can execute are very simple. It’s
the fact that processors can execute these instructions at extremely high speed
that gives computers their amazing power. The fact that these instructions are
very simple makes it very tedious for people to write programs directly in ma-
chine language. So computer scientists have designed high-level languages,
such as C++, in which instructions correspond to more complex concepts. It
is much easier to write a complex program in a high-level language than in
machine language.

However, computers do not understand high-level languages. Therefore,
programs written in a high-level language must be translated into machine
language by a special program called a compiler. The compiler also verifies
that the high-level program is written properly, according to the rules of the
language.

Some additional terminology. Programming instructions are often referred
to as code. Code written in a high-level language is often called source
code. The machine language code produced by a compiler is called object

1.3. OUTPUT AND DATA 3

code. The machine language program produced by a compiler is often called
an executable.

Study Questions

1.2.1. What is a computer program?

1.2.2. What is a machine language?

1.2.3. What is a high-level language?

1.2.4. What two tasks do compilers perform?

1.2.5. What is code, source code and object code?

1.2.6. What is an executable?

1.3 Output and Data

We now start writing our running pace calculator. We will do it very gradually
and explain what we are doing as we go along.

Let’s start by making the program display on the computer’s screen the
welcome sentence:

Welcome to the running pace calculator.

This can be accomplished as follows:

std::cout << "Welcome to the running pace calculator.";

The first element in this code, std::cout (usually read as standard c-
out), is an output stream. An output stream is normally associated with
an output device and data inserted into (or sent to) the stream will be sent to
the output device, in the order that it is inserted into the stream. The output
stream std::cout is called standard output and is normally associated with
the computer’s screen. Therefore, data sent to std::cout will appear on the
screen.

In the above code, we are sending the string

"Welcome to the running pace calculator."

4 CHAPTER 1. BASIC CONCEPTS

to std::cout. A string is simply a sequence of characters. The double quotes
serve to mark the beginning and end of the string. Those quotes are not part
of the string and will not appear on the screen.

The string is sent to std::cout by using the output operator<<, which
is also called the stream insertion operator. Operators in C++ are like
mathematical operators such as + and ×. They have operands and perform an
operations on those operands. In C++, output operators are binary operators,
meaning that they have two operands. The left operand is an output stream
and the right operand is data:

output stream << data;

The job of the operator is to send the data that’s on the right to the stream
that’s on the left.

The output operator can output other types of data besides strings. One
example is numbers such as 3, −5 and 25.5. Another example is single char-
acters such as ’a’, ’B’ and ’ ’. This last character is a blank space. Single
characters are surrounded by single quotes, just as strings are surrounded by
double quotes.

Note that it is possible to output more than one piece of data with a single
output statement, as in

cout << 1 << 2 << 3;

Therefore, the general form of an output statement is as follows:

output stream << data1 << data2 << ... ;

The data is sent to the stream in the order that it appears in the output
statement, from left to right.

The last element in the code

std::cout << "Welcome to the running pace calculator.";

is a semicolon. In C++, most instructions are called statements. And most
C++ code consists of sequences of statements. The semicolon is used to mark
the end of each statement. As you will soon see, C++ programs typically
contain lots of semicolons. . .

Returning to our program, after the welcome sentence, we need to print
the instruction sentence. This can be done with a single output statement as
follows:

1.3. OUTPUT AND DATA 5

#include <iostream>

int main()
{

std::cout << "Welcome to the running pace calculator.\n\n"
<< "Please enter distances in miles and times in the "
<< "format\n"
<< "hours:minutes:seconds, as in 0:28:45.\n\n";

return 0;
}

Figure 1.2: The beginning of the running pace calculator

std::cout << "Welcome to the running pace calculator.\n\n"
<< "Please enter distances in miles and times in the "
<< "format\n"
<< "hours:minutes:seconds, as in 0:28:45.\n\n";

The characters \n at the end of some of these strings. This is called an escape
sequence. The escape sequence \n represents the new line character . This
special character causes the program’s output to move to the next line. Two
new line characters in a row produce a blank line in the output. Other useful
escapes sequences are \" and \\. The first one represents the double quotes
character while the second one represents a backslash.

The first line of the instruction sentence was split into two strings. This
was simply to avoid a very long line of code. Long lines of code don’t fit within
the margins of these notes but, more importantly, they make programs harder
to read, just as very long lines of text would make a document hard to read.

Note that individual strings cannot extend beyond the end of the line. So
the following code is not valid:

std::cout << "Please enter distances in miles and times in the
format\n";

So we now know how to write code that will produce the welcome and
instruction sentences. To be able to compile and run this code, we need to
wrap it with some additional code, as shown in Figure 1.2. We will explain
this additional code in the next section.

6 CHAPTER 1. BASIC CONCEPTS

Study Questions

1.3.1. What is an output stream associated with?

1.3.2. What is the output (or stream insertion) operator used for?

1.3.3. In what order does the data sent to a stream appear on the output
device?

1.3.4. What are most instructions called in C++?

1.3.5. What symbol is used to separate statements in C++?

1.3.6. What is a string?

1.3.7. Besides strings, what are two other types of data that can be printed
by the output operator?

1.3.8. What character does the escape sequence \n represent?

Exercises

1.3.9. Create a program that prints your name and hometown, as in the fol-
lowing example:

Alexis Maciel
Potsdam, NY

1.4 Structure of a Simple C++ Program

We now explain the additional code that was included in Figure 1.2. First,
std::cout is actually not part of the C++ language itself. It is part of a
library called iostream. A library is a collection of prewritten code. This
particular library is one of C++’s standard libraries and contains code that
allows us to perform input and output. To be able to use this code, we must
include the library into our program by using the directive

#include <iostream>

Second, C++ programs must contain at least one function called main.
In our program, that function is represented by the code

1.4. STRUCTURE OF A SIMPLE C++ PROGRAM 7

int main()
{

...

return 0;
}

Functions are an important concept that we will study in detail later. For
now, all we will say is that every program must contain a main function and
that our code must be placed within that function as indicated in Figure 1.2.

We end this section with a few additional comments. First, in C++ pro-
grams, white space, such as blank spaces and new lines, is only used to separate
the various program elements. In particular, the amount of white space is not
important. The particular layout of our program is only for the benefit of hu-
man readers. In principle, as far as the compiler is concerned, the code could
all be written on a single line.1

Second, C++ code is often bundled into groups called namespaces. For
example, the standard output stream cout belongs to the std (standard)
namespace. Normally, to access a component of a namespace, you need to
specify the namespace, as in std::cout. An alternative is to tell the compiler,
once and for all, that we will be using std::cout. This is done with the
declaration

using std::cout;

This declaration can be placed at the top of the file, right after the directive
that includes the iostream library. This then makes it possible to simply
write cout anywhere in the program, as shown in Figure 1.3.

Third, C++ programs usually include comments that describe the entire
program or explain the purpose of a line or section of code. In the program
shown in Figure 1.3, there are two comments, which begin with // and end at
the end of the line. The first comment describes the entire program while the
second one states the purpose of the following output statement. Comments
are ignored by the compiler but can be very useful to human readers, including
the person writing the program. In particular, every non-trivial line of code
should be accompanied by a comment. (Of course, what is trivial for one
person may not be for another...)

1In practice, this may not work because of internal compiler limitations.

8 CHAPTER 1. BASIC CONCEPTS

// Running pace calculator.

#include <iostream>
using std::cout;

int main()
{

// Print welcome and instructions.
cout << "Welcome to the running pace calculator.\n\n"

<< "Please enter distances in miles and times in the "
<< "format\n"
<< "hours:minutes:seconds, as in 0:28:45.\n\n";

return 0;
}

Figure 1.3: Running pace calculator with a using declaration and a comment

Finally, if the program of Figure 1.3 is executed on his own on a computer
running the Windows operating system, the result will normally be that a
Command Prompt window will flash on the monitor without letting the user
see the output of the program. The simplest way to prevent this behavior is
to include the following statement just before return 0:

std::system("pause"); // For Windows only.

This will cause the program to pause and wait until the user presses a key
before closing the window. The system function is defined in the library
cstdlib which must then be included in the program:

#include <cstdlib> // For system.

Study Questions

1.4.1. What is a library?

1.4.2. What C++ standard library relates to input and output?

1.4.3. What is the purpose of the directive #include <iostream>?

1.5. INPUT AND VARIABLES 9

1.4.4. What is a namespace?

1.4.5. What is the purpose of the declaration using std::cout?

1.4.6. Where does a comment begun with // terminate?

1.4.7. How can we prevent a Windows Command Prompt window from closing
automatically when a program terminates?

1.5 Input and Variables

After the running pace calculator prints the welcome and instruction sentences,
it needs to ask the user to enter a distance and time, as shown in Figure 1.1.
Asking for the distance is easy

cout << "Distance? ";

The user will then enter a number. The program will eventually use that
number to compute the running pace but, in the mean time, the program
needs to remember that number. The easiest way to do that is for the program
to write the number to the computer’s memory. And the easiest way to do
that is through the important concept of a variable.

A programming variable is a memory location to which a name has been
associated. For example, the code

double distance;

allocates (or reserves) a memory location and associates the name distance

with that location.
The above code is called a variable declaration. The general form of a

simple variable declaration is

Type name;

In the above example, the type of distance is double, which is appropri-
ate for real numbers. Other possible types are int, for integers, char, for
individual characters, and string, for strings.

Once a variable is declared, it can be used to store data. For example, our
running pace calculator can read the distance entered by the user and store
that number in the variable distance as follows:

10 CHAPTER 1. BASIC CONCEPTS

std::cin >> distance;

The first element of that statement, std::cin (usually read as standard c-
in), is an input stream. An input stream is normally associated with an input
device and data extracted (or read) from the stream will come from that device,
in the order that it was entered on the device. The input stream std::cin is
called standard input and is normally associated with the computer’s keyboard.
Therefore, data read from std::cin will come from the keyboard.

Data can be read from an input stream by using the input operator>>,
which is also called the stream extraction operator. The left operand of
the input operator is an input stream and the right operand is a variable:

input stream >> variable;

The input operator causes the program to pause and wait for data to become
available from the input device. The input operator then stores that data in
the variable. The data coming from the device must be of the same type as
the variable. (If it’s not, a reading error occurs. We will learn how to detect
and handle reading errors later in these notes.)

A single input statement can be used to read multiple values:

input stream >> variable1 >> variable2 >> ... ;

The data is read from the stream in the order given by the variables, from left
to right.

Note that std::cin is a buffered input stream. This means that the user
must press the Enter key for any data typed on the keyboard to become
available from std::cin. After the user presses Enter, the data is stored in a
temporary memory location called a buffer. The input operator causes data
to be extracted from that buffer.

For example, consider the following input statement:

std::cin >> x >> y >> z;

where the variables x, y and z are of type double. Now suppose that the user
types 3.5 28 followed by the Enter key. The first input operator will cause
the number 3.5 to be removed from the buffer and stored in the variable x.
The second input operator will cause the number 28 to be removed from the
buffer and stored in the variable y. The third input operator will cause the
program to wait for the user to enter more data on the keyboard.

Figure 1.4 shows a version of the running pace calculator that reads a
distance and time from the user. The instruction

1.5. INPUT AND VARIABLES 11

#include <iostream>
using std::cin;
using std::cout;

int main()
{

cout << "Welcome to the running pace calculator.\n\n"
<< "Please enter distances in miles and times in the "
<< "format\n"
<< "hours:minutes:seconds, as in 0:28:45.\n\n";

cout << "Distance? ";
double distance;
cin >> distance;

cout << "Time? ";
int hours;
cin >> hours;
cin.get(); // colon
int minutes;
cin >> minutes;
cin.get(); // colon
int seconds;
cin >> seconds;

cout << distance << ’\n’
<< hours << ’:’ << minutes << ’:’ << seconds << ’\n’;

return 0;
}

Figure 1.4: Running pace calculator with reading of data from the user

12 CHAPTER 1. BASIC CONCEPTS

cin.get();

causes a single character to be read from standard input. A comment is
included in the program that indicates that this is to read the colons that
occurs in the times.

The last output statement in the program of Figure 1.4 is not part of the
running pace calculator. It was added to the program temporarily to allow us
to test that the data was read and stored properly. If the user enters 3.5 and
0:28:45, this will cause the program to print

3.5
0:28:45

Note how printing a variable causes the value of the variable, not its name, to
be printed. This can be further illustrated by the fact that the statement

cout << "distance = " << distance << ’\n’;

would cause the program to print

distance = 3.5

Study Questions

1.5.1. What is a variable?

1.5.2. What C++ type is typically used for real numbers?

1.5.3. What is an input stream associated with?

1.5.4. What is the input (or stream extraction) operator used for?

1.5.5. When data is entered on the keyboard, where is it temporarily stored?

1.5.6. How can a single character be read from cin?

1.6. ARITHMETIC OPERATIONS 13

Please enter your birthday using numbers only.
Year: 1994
Month: 7
Day: 17

You were born on 7/17/1994.

Figure 1.5: Sample session for Exercise 1.5.8

Exercises

1.5.7. Create a program that asks the user for his or her age, as in the following
example:

How old are you? 19
You are 19 years old.

The number 19 on the first line is typed by the user while the other text
is produced by the program.

1.5.8. Create a program that asks the user for his or her birthday. The program
should be behave as shown in Figure 1.5.

1.6 Arithmetic Operations

Now that our running pace calculator is able to read a distance and time from
the user, the next step is to have the program calculate and print the running
pace.

First, we convert the time into a total number of minutes:

double total minutes =
hours∗60 + minutes + seconds/60.0;

This computes the total number of minutes that corresponds to the time and
stores that value in a new variable called total minutes.

The general form of the above variable declaration is

Type name = initial value;

14 CHAPTER 1. BASIC CONCEPTS

This creates a variable and sets its initial value. The initial value can be given
by any expression that produces a value of the right type.

In our example, the initial value is given by an arithmetic expression. This
expression contains three arithmetic operators: ∗, + and /. They correspond
to multiplication, addition and division, respectively. Another common arith-
metic operator is −, for subtraction.

Note that when used on two integers, the division operator performs in-
teger division, meaning that the fractional part of the result is dropped. For
example, the expression 45/60 evaluates to 0, not 0.75. This is why, in the
above code, we divide the seconds by 60.0 instead of 60. This turns one of the
integers into a real number and causes the operator to perform real division.

The running pace can then be computed and printed as follows:

double pace = total minutes/distance;

This pace will have a fractional part, as in 8.75. We must now convert this
into minutes and seconds, as in 8:45.

This can be done as follows

int pace minutes = pace;
int pace seconds = std::round((pace − pace minutes) ∗ 60);

The first instruction initializes the integer variable pace minutes to a
double. This causes pace minutes to be initialized to the integer part of
the double. In other words, the fractional part of the double is lost. For
example, if pace is 8.75, then pace minutes is initialized to 8.

The second instruction computes the number of seconds that is represented
by the fractional part of the pace. For example, if pace is 8.75 then the
following computation will occur

(8.75− 8) · 60 = 0.75 · 60 = 45

Note that the number of seconds is rounded to the nearest integer by using
the function std::round. This function is defined in the library cmath.

We briefly mentioned the concept of a function in Section 1.4. All we said
there is that main was a function and that every program needed to include
a main function. Let’s say a bit more now. A function is a block of code that
performs a particular task. In this case, the function round takes a number
and rounds it to the nearest integer. The number to be rounded is given to the

1.6. ARITHMETIC OPERATIONS 15

function as an argument, as in round(x). We say that the function is called
with argument x. Note that the function call round(x) is an expression that
evaluates to the rounded value of x. For example, round(34.72) evaluates to
35. We also say that the function returns the rounded value of its argument.
For example, round(34.72) returns 35.

All that is left to do now is to print the running pace:

cout << "\nPace: " << pace minutes << ’:’ << pace seconds
<< " minutes per mile.\n";

Figure 1.6 shows the complete first version of our running pace calculator.

Study Questions

1.6.1. What are the four basic arithmetic operators?

1.6.2. What happens when the division operator / is used on two integers?

Exercises

1.6.3. Create a program that calculates a person’s age, as in the following
example:

What year were you born in? 1995
You are 18 years old.

Assume that the current date is December 31, 2013.

1.6.4. Create a program that converts temperatures in degrees Celsius to de-
grees Fahrenheit. The program should be behave as follows:

Temperature in degrees Celsius? 20
The equivalent in degrees Fahrenheit is 68.

Use the following formula:

F = C × 9/5 + 32

where F is the temperature in degrees Fahrenheit and C is the temper-
ature in degrees Celsius.

16 CHAPTER 1. BASIC CONCEPTS

#include <cmath>

#include <iostream>
using std::cin;
using std::cout;

int main()
{

cout << "Welcome to the running pace calculator.\n\n"
<< "Please enter distances in miles and times in the "
<< "format\n"
<< "hours:minutes:seconds, as in 0:28:45.\n\n";

cout << "Distance? ";
double distance;
cin >> distance;

cout << "Time? ";
int hours;
cin >> hours;
cin.get(); // colon
int minutes;
cin >> minutes;
cin.get(); // colon
int seconds;
cin >> seconds;

double total minutes = hours∗60 + minutes + seconds/60.0;

double pace = total minutes/distance;
int pace minutes = pace;
int pace seconds = std::round((pace − pace minutes) ∗ 60);

cout << "\nPace: " << pace minutes << ’:’ << pace seconds
<< " minutes per mile.\n";

return 0;
}

Figure 1.6: The first version of the running pace calculator

1.7. MORE ON VARIABLES 17

What is your income? 42000
How many dependents do you have? 2

Your income tax is 7700.
Your effective tax rate is 18.3%.

Figure 1.7: Sample session of the income tax program of Exercise 1.6.5

Please enter your birthday using numbers only.
Year: 1995
Month: 7
Day: 17

You are 18 years old.

Figure 1.8: Sample session of the age calculating program of Exercise 1.6.6

1.6.5. Create a program that computes the user’s income tax. The program
should be behave as shown in Figure 1.7. Use the following formula to
calculate the tax:

T = (I − 10000−D × 5000)× 35%

where T is the tax, I is the income and D is the number of dependents.
The effective tax rate is T/I.

1.6.6. Expand the age calculating program so it behaves as shown in Fig-
ure 1.8. Assume that the current date is January 22, 2014. Hint : Con-
vert dates to a single number of days.

1.7 More on Variables

We have described a programming variable as a memory location to which a
name has been associated. This corresponds closely with what happens during
the execution of a program. Under this perspective, we say that a variable
holds a value, and that a value is stored in a variable.

But there is another way of viewing variables: a variable can be viewed as
being simply a pair that consists of a name and a value. This is a more abstract

18 CHAPTER 1. BASIC CONCEPTS

view since it doesn’t refer to the computer’s memory. In this perspective, we
say that a variable has a value and that a variable is set to a value.

Both perspectives are valid and useful. Some programmers prefer one over
the other but most switch freely between the two. You should be comfortable
with both.

Some of the variable names we used in the running pace calculator are
distance, hours, total minutes, pace and pace seconds. Each of these
names describes the value held by the variable. These names are descriptive
without being too verbose. This makes the program easier to read and under-
stand. And that’s important because it makes it easier to work on the program
and reduces the chances that we’ll make mistakes.

Variable names must also follow certain rules. First, they must consist
of a letter or underscore () followed by any number of letters, underscores
and digits. Second, certain names are reserved in C++ and cannot be used
as variable names. These include names such as int, double, return and
using.

Note that all of the above variable names consist of lowercase letters with
words separated by underscores. This is the style that we will use in these
notes for most variable names. It will help us distinguish variables from other
elements of our code. It’s useful to choose a particular naming style and use
it consistently.

In the previous section, when we declared the variables total minutes,
pace, pace minutes and pace seconds, we also initialized them right away.
For example,

double pace = total minutes/distance;

It turns out that it’s a good idea to initialize every variable as soon as it is
declared, so we don’t forget to do it later. One reasonable exception is if
the variable will be initialized in the statement that immediately follows the
declaration. For example, this is what we did with distance:

double distance;
cin >> distance;

In C++, every variable must have a type. The type of a variable determines
how much memory will be allocated for it, what operations can be performed
on this variable, and how those operations will be performed. It is better for
the type of a variable to correspond as precisely as possible to the type of value

1.8. CONDITIONAL STATEMENTS 19

Welcome to the running pace calculator.

Please enter distances as a number with units
(either mi or K). Enter times in the format
hours:minutes:seconds, as in 0:28:45.

Distance? 5K
Time? 0:28:45

Pace: 9:12 minutes per mile.

Figure 1.9: A sample session of the revised running pace calculator

that the variable will hold. For example, since the value of hours will be an
integer, it is better for this variable to be of type int instead of double. This
typically causes the variable to use less computer memory, it ensures that only
appropriate operations are used on the variable, and that the operations used
on the variable are performed correctly and efficiently.

Study Questions

1.7.1. Why should variable names be descriptive?

1.7.2. What rules must variable names follow?

1.7.3. Why is it better to initialize variables as soon as they are declared?

1.7.4. What are three advantages of the fact that every C++ variable must
have a type?

1.8 Conditional Statements

In this section, we are going to expand the running pace calculator so the user
can enter distances in either miles or kilometers, as shown in Figure 1.9.

First, when the program reads the distance, it will have to read a string in
addition to a number. This can be done as follows:

string units;
cin >> units;

20 CHAPTER 1. BASIC CONCEPTS

Note that the string data type is not built into the language. Instead, it is
defined in the library string and included in the namespace std. Therefore,
the above code will compile only if the following is included in our program:

#include <string>
using std::string;

Now, in our program, we already have code that computes the pace when
the distance is given in miles. To be able to use that code even if the user
enters the distance in kilometers, we would need to test to see if the user
entered the distance in kilometers and, if that’s the case, convert the distance
from kilometers to miles. This can be done as follows:

if (units == "K") distance = distance / 8 ∗ 5;

The above is an if statement, which is a particular type of conditional
statement. The general form of an if statement is

if (condition) statement

The effect of an if statement is that the statement will be executed if
the condition is true. On the other hand, if the condition is false, the
statement will not be executed. The condition of an if statement is some-
times called the test of the if statement.

The condition units == "K" is an example of a Boolean expression,
an expression that evaluates to either true or false. This particular Boolean
expression evaluates to true if the value of units is equal to "K".

Boolean expressions typically include comparison operators such as ==

(equal to). Other examples of operators are < (less than), <= (less than or
equal to), > (greater than), >= (greater than or equal to) and != (not equal
to). The == and != operators can be applied to strings as well as numbers
and single characters. The inequality operators can of course be used with
numbers but they also work with strings by using alphabetical order. The
inequality operators should not be used with single characters.

In the above if statement, the statement

distance = distance / 8 ∗ 5;

is an example of an assignment statement. The general form of an assign-
ment statement is

1.8. CONDITIONAL STATEMENTS 21

variable = expression;

The equality symbol (=) represents the assignment operator . (Be careful not
to confuse it with the equality testing operator ==.) When an assignment
statement is executed, the expression on the right is evaluated and the resulting
value is assigned to the variable on the left.

The expression on the right can be as simple as a value, as in
distance = 10, or another variable, as in distance = other distance.
It can also be more complex. In our case, the expression refers to the variable
itself and causes distance to be assigned its current value divided by 8 and
multiplied by 5. For example, if the current value of distance is 4, then the
expression on the right evaluates to 2.5 and this value becomes the new value
of distance.

Now, if the user enters anything besides K as units, the program will simply
assume that the user meant miles. Let’s fix that. First, we will make the
program also accept either km or kms for kilometers. This can be done by
modifying the earlier test:

if (units == "K" | | units == "km" | | units == "kms")
distance = distance / 8 ∗ 5;

The symbol | | represents the logical OR operator. This is an example of
a Boolean operator, an operator that applies to Boolean expressions. In
general, if e1 and e2 are Boolean expressions, then the expression

e1 | | e2

evaluates to true if either e1 or e2 (or both) evaluate to true. In our case,
the condition of the above if statement evaluates to true if units is equal
to K, km or kms.

Two other examples of Boolean operators are the logical AND operator &&
and the logical NOT operator !. If e1 and e2 are Boolean expressions, then

e1 && e2

evaluates to true if both e1 and e2 evaluate to true. If e is a Boolean
expression, then

!e

22 CHAPTER 1. BASIC CONCEPTS

evaluates to true if e is false. Note that Boolean operators are sometimes
called logical operators.

Just like arithmetic operators, Boolean and comparison operators are sub-
ject to precedence rules. Table 1.1 lists the rules that apply to all to the
arithmetic, Boolean and comparison operators we have seen so far in these
notes. For example, the table indicates that == has higher precedence than
| | . This implies that the Boolean expression

units == "K" | | units == "km" | | units == "kms"

will be interpreted as

(units == "K") | | (units == "km") | | (units == "kms")

which is what we want.

The associativity properties given in Table 1.1 specify what happens when
several operators with the same precedence occur one after the other. For
example, the fact that addition and subtraction have left-to-right associativity
implies that the expression 8− 5 + 3 will be interpreted as (8− 5) + 3 and not
as 8− (5 + 3). Note that these last two expressions have different values.

Parentheses can always be used to override the normal precedence rules.
But note that parentheses can also be used to make complicated expressions
easier to understand.

Now, in our running pace calculator, it is still true that if the user enters
as units anything besides K, km or kms, the distance will be assumed to be in
miles. We can fix that by adding another test to the program right after the
reading of the units, as shown in Figure 1.10. If the units are not equal to one
of mi, miles, mile, K, km or kms, then the program prints an error message.
Otherwise, the program asks the user for a time and computes the running
pace.

This code uses a more general kind of if statement that can be called an
if-else statement The general form of an if-else statement is

if (condition)
statement

else
statement

1.8. CONDITIONAL STATEMENTS 23

Precedence Operator Description Associativity

1 ! Logical NOT Right-to-left

− Unary minus

2 ∗ Multiplication Left-to-right

/ Division

3 + Addition Left-to-right

− Subtraction

4 < Less than Left-to-right

<= Less than or equal

> Greater than

>= Greater than or equal

5 == Equal Left-to-right

!= Not equal

6 && Logical AND Left-to-right

7 | | Logical OR Left-to-right

Table 1.1: Precedence rules

24 CHAPTER 1. BASIC CONCEPTS

if (units != "mi" && units != "miles" && units != "mile" &&
units != "K" && units != "km" && units != "kms") {
cout << "The units \"" << units << "\" are not recognized.\n";

} else {
cout << "Time? ";
int hours;
cin >> hours;
cin.get(); // colon
int minutes;
cin >> minutes;
cin.get(); // colon
int seconds;
cin >> seconds;

if (units == "K" | | units == "km" | | units == "kms")
distance = distance / 8 ∗ 5;

double total minutes = hours∗60 + minutes + seconds/60.0;

double pace = total minutes/distance;
int pace minutes = pace;
int pace seconds = std::round((pace − pace minutes) ∗ 60);

cout << "\nPace: " << pace minutes << ’:’;
if (pace seconds < 10) cout << ’0’;
cout << pace seconds << " minutes per mile.\n";

}

Figure 1.10: Testing for valid units

1.8. CONDITIONAL STATEMENTS 25

If the condition is true, then the first statement is executed; otherwise,
the second statement is executed. The first statement is called the if branch
of the if-else statement. The second statement is called the else branch.

In the code of Figure 1.10, the else branch consists of more than one
statement. This is possible as long as those statements are enclosed within
braces. In other words, an if-else statement can also have the following
form:

if (condition) {
statements

} else {
statements

}

Simple if statements can also involve multiple statements:

if (condition) {
statements

}

(A sequence of statements enclosed within braces is often called a compound
statement.)

Note that if braces are used for one branch of an if-else statement, it is
a good idea to also use them for the other branch, even if that branch consists
of a single statement. This is what we did in Figure 1.10. It is also a good
idea to use braces if a branch consists of a single statement that spans more
than one line.

At the bottom of the code shown in Figure 1.10, in the printing of the
running pace, we added a new if statement. Its purpose is to ensure that a
number of seconds with a single digit is printed with a leading 0. Otherwise, a
running pace of 7:01 would appear as 7:1. This fixes an error in our program,
one that we didn’t catch earlier.

Programming errors, or bugs, as they are as often called, can be difficult
to avoid and difficult to find. (What would make us think that single-digit
running paces would be a problem?) Which is why it is important to test
programs extensively. Since even the best programmers make mistakes, it is
important for a good programmer to also be a good tester and a good debugger.

It is fairly common for the else branch of an if-else statement to consist
of a single if statement. For example, suppose that someone’s age is stored

26 CHAPTER 1. BASIC CONCEPTS

if (age < 18) {
cout << "minor";

} else {
if (age < 65)

cout << "adult";
else

cout << "senior";
}

if (age < 18)
cout << "minor";

else if (age < 65)
cout << "adult";

else
cout << "senior";

Figure 1.11: A multipart if statement

in a variable called age and that we need to print either minor, adult or
senior, depending on the age. This could be done as shown in Figure 1.11.
That code is shown twice, using two different styles. The second style is the
one that is more commonly used. It is more compact and avoids excessive
indentation.

Study Questions

1.8.1. What is the general form of an if statement?

1.8.2. What is the general form of an if-else statement?

1.8.3. What is the general form of an assignment statement?

1.8.4. What is a Boolean expression?

1.8.5. What are six examples of comparison operators?

1.8.6. What are three examples of Boolean (or logical) operators?

1.8.7. What is a compound statement?

1.8.8. What is a bug?

1.8. CONDITIONAL STATEMENTS 27

Degrees Celsius Interpretation

38 and above Very hot

28 to 37 Hot

18 to 27 Comfortable

8 to 17 Cool

-12 to 7 Cold

Below -12 Very cold

Table 1.2: Interpretation of temperatures in degrees Celsius

Exercises

1.8.9. Create a program that interprets outside temperatures in degrees Cel-
sius as follows:

Temperature in degrees Celsius? 20
Interpretation: comfortable.

Interpret temperatures according to Table 1.2.

1.8.10. Expand the Celsius to Fahrenheit conversion program of Exercise 1.6.4
so that the user can convert temperatures in both directions, as shown
in Figure 1.12.

1.8.11. Modify the tax income program of Exercise 1.6.5 to include tax brack-
ets. Define taxable income as

I − 10000−D × 5000

where I is the income and D is the number of dependents. Then compute
the tax by using Table 1.3.

1.8.12. Redo Exercise 1.6.6 but this time use if statements.

28 CHAPTER 1. BASIC CONCEPTS

Please choose:
1. Celsius to Fahrenheit
2. Fahrenheit to Celsius

Choice? (1 or 2) 1

Temperature in degrees Celsius? 20
The equivalent in degrees Fahrenheit is 68.

Figure 1.12: Sample session of the expanded temperature conversion program
of Exercise 1.8.10

Taxable income Tax

100,000 and above 25,000 plus 40% of taxable income above 100,000

50,000 to 100,000 10,000 plus 30% of taxable income above 50,000

50,000 or less 20% of taxable income

Table 1.3: Income tax

Chapter 2

Repetition

In this chapter, we will expand the running pace calculator by allowing the
user to perform more than one calculation in a single session. In the process,
we will learn how to program repetition.

2.1 Adding Repetition to the Running Pace

Calculator

The running pace calculator we created in the previous chapter only allows
the user to calculate one running pace. To perform another calculation, the
user must restart the program. In this chapter, we will modify the running
pace calculator so the user calculate more than one running pace in a single
session, as shown in Figure 2.1.

To achieve this, the program needs to repeat the code that asks the user for
a height and weight and performs a single running pace calculation. Since we
don’t know how many calculations the user will want to do, we can’t simply
repeat the code itself a certain number of times. What we need is a mechanism
that allows the execution of this code (not the code itself) to be repeated. In
most programming languages, this is accomplished through a construct called
a loop.

C++ provides several types of loops. One is the do-while loop, whose
general form is as follows:

do statement while (condition);

29

30 CHAPTER 2. REPETITION

Welcome to the running pace calculator.

Please enter distances as a number with units
(either mi or K). Enter times in the format
hours:minutes:seconds, as in 0:28:45.

Distance? 5K
Time? 0:28:45

Pace: 9:12 minutes per mile.

Another calculation? (y or n) y

Distance?

Figure 2.1: A sample session of the revised running pace calculator

The statement is called the body of the loop. As in the case of if statements,
the condition is a Boolean expression that’s often called the test of the loop.
When a do-while loop is executed, the body of the loop will be repeated as
long as the condition is true.

As in the case of if statements, the body of a loop can be a compound
statement:

do {
statements

} while (condition);

Figure 2.2 shows how a do-while loop can be added to our running pace
calculator. Most of the body of the loop consists of the code that was already
present in the running pace calculator. That’s the code that asks the user
for a distance, checks if the units are valid, asks the user for a time and then
computes and prints the running pace. (The reading of the time and the
calculation of the pace are replaced by three dots to allow the entire loop to
fit in one page.) But at the end of both branches of the if statement, the
programs asks the user if another calculation should be performed, or if the
user wants to try entering the distance again. The user’s answer is stored in
the variable answer. The test used as a condition for the loop is

2.1. ADDING REPETITION TO THE RUNNING PACE CALCULATOR31

string answer;
// To the questions "Another calculation?" or "Try again?"

do {
cout << "Distance? ";
double distance;
cin >> distance;
string units;
cin >> units;

if (units != "mi" && units != "miles" && units != "mile" &&
units != "K" && units != "km") {
cout << "The units \"" << units << "\" are not
recognized.\n";

cout << "\nTry again? (y or n) ";
} else {

cout << "Time? ";
...

cout << "\nPace: " << pace minutes << ’:’;
if (pace seconds < 10) cout << ’0’;
cout << pace seconds << " minutes per mile.\n";

cout << "\nAnother calculation? (y or n) ";
}

cin >> answer;
cout << ’\n’;

} while (answer == "y" | | answer == "yes");

Figure 2.2: Running pace calculator with a loop

32 CHAPTER 2. REPETITION

answer == "y" | | answer == "yes"

That is, the loop is repeated as long as the user says yes.

Note that the variable answer is declared before the beginning of the loop.
An alternative would be to declare the variable inside the loop, immediately
before the variable is used. This is what we do with all the other variables:
we declare them just before we use them. However, this would not work here.
The reason is that a variable declared inside the body of a loop exists only
within the body of that loop. Such a variable is said to be local to the body
of the loop, and the body of the loop is called the scope of that variable. This
implies that a variable declared inside the body of a loop cannot be used in
the Boolean expression that serves as the condition of that loop. Therefore,
we declared answer before the loop because we need to test that variable in
the condition of the loop.

Note that a similar observation applies to if statements: a variable de-
clared within a branch of an if statement is local to that branch and cannot
be used in the other branch of the if statement or outside the if statement.

Study Questions

2.1.1. What is the general form of a do-while loop?

2.1.2. What does it mean to say that a variable declared inside a loop is local
to that loop?

2.1.3. What is the scope of a variable?

Exercises

2.1.4. Expand the Celsius to Fahrenheit conversion program of Exercise 1.8.10
so that the user can convert more than one temperature, as shown in
Figure 2.3.

2.1.5. Modify the program of the previous exercise so it behaves as shown in
Figure 2.4.

2.1. ADDING REPETITION TO THE RUNNING PACE CALCULATOR33

Please choose:
1. Celsius to Fahrenheit
2. Fahrenheit to Celsius

Choice? (1 or 2) 1

Temperature in degrees Celsius? 20
The equivalent in degrees Fahrenheit is 68.

More? (y or n) y

Please choose:
1. Celsius to Fahrenheit
2. Fahrenheit to Celsius

...

More? (y or n) n

Goodbye!

Figure 2.3: Sample session for Exercise 2.1.4

34 CHAPTER 2. REPETITION

Please choose:
1. Celsius to Fahrenheit
2. Fahrenheit to Celsius
3. Quit

Choice? 1

Temperature in degrees Celsius? 20
The equivalent in degrees Fahrenheit is 68.

Please choose:
1. Celsius to Fahrenheit
2. Fahrenheit to Celsius
3. Quit

Choice? 3

Goodbye!

Figure 2.4: Sample session for Exercise 2.1.5

2.2. MORE ON LOOPS 35

int count = 0;
do {

cout << ’−’;
++count;
// count equals the number of dashes that have been printed.

} while (count < n);

Figure 2.5: Printing a line of dashes with a do-while loop

2.2 More on Loops

In the previous section, we added a do-while loop to the running pace calcu-
lator. The purpose was to allow the user to calculate multiple running paces
in one session. In this section, we explore other uses of loops as well as other
forms of loops.

Suppose that n is an integer variable and that, for some reason, we need
to print a line consisting of n dashes. Figure 2.5 shows one way to do this.
The loop uses a variable to count the number of dashes that are printed. The
counter is initialized to 0 and incremented by 1 every time a dash is printed.
While the count is less than n, the loop continues repeating. Once the count
reaches n, the loop stops.

The value of count is incremented by 1 by using the increment operator
++. This is a unary operator whose operand must be a variable. The effect of
the operator is simply to add 1 to the variable.1

Note that we could have incremented count with the following assignment
statement:

count = count + 1;

1The increment operator has two forms: prefix, as in ++i, and postfix, as in i++. When
used on their own, as a statement and not as part of an expression, the two forms of the
operator perform the same function but the prefix version runs a little faster. In these notes,
we will only use the prefix version. When used in an expression, the difference between the
two forms is in the value they evaluate to. The prefix form evaluates to the new value of the
variable while the postfix form evaluates to the old value of the variable, as if the expression
was evaluated before the variable was incremented. For example, if i is 4, then ++i evaluates
to 5 while i++ evaluates to 4. In both cases, the value of i is changed to 5. Code that takes
advantage of this difference between the two versions of the ++ operator tends to be harder
to understand. In these notes, we will avoid this and never use the operator in expressions.

36 CHAPTER 2. REPETITION

int count = 0;
while (count < n) {

// count is the number of dashes that have been printed.
cout << ’−’;
++count;

}

Figure 2.6: Printing a line of dashes with a while loop

Recall that when an assignment statement is executed, the expression on the
right is evaluated and its value becomes the new value of the variable on the
left. Therefore, if count is 3, then the expression count + 1 evaluates to 4
and the value of count becomes 4.

C++ also has a decrement operator (−−) that subtracts 1 from a variable.
For example,−−count has the same effect as count = count − 1.

The loop of Figure 2.5 correctly prints n dashes as long as the value of n
is positive. For example, if n is 0, then a dash will be printed, count will be
increased to 1, the test count < n will fail (because 1 is not less than 0) and
the loop will stop. So if n is 0, the loop will incorrectly print one dash.

To fix this and have the loop print nothing if n is 0, we need to test count
before the body of the loop is executed for the first time. This can be achieve
with another form of loop called a while loop:

while (condition) statement

As in the case of a do-while loop, when a while loop is executed, the body of
the loop will be repeated as long as the condition is true. The only difference
is that the test is performed before the first iteration of the loop, making it
possible for the body of the loop not to be executed at all. In contrast, the
body of a do-while loop is always executed at least once.

Figure 2.6 shows a while loop that correctly prints n dashes even if n is
0. (In case n is negative, nothing will be printed, which seems reasonable.)

It is very common to write loops that must count in order to perform some
action some number of times. For these situations, there is another type of
loop in C++ that’s usually more convenient. But understanding this other
type of loop requires a change of perspective.

When the while loop of Figure 2.6 is executed, it performs an action (the
printing of a dash) for each value of count in the sequence 0, 1, 2, . . . , n − 1.
So we can view the job of this loop as follows:

2.2. MORE ON LOOPS 37

for (int i = 1; i <= n; ++i)
cout << ’−’;

Figure 2.7: Printing a line of dashes with a for loop

For each value 0, 1, 2, . . . , n− 1, print a dash.

This produces the same result but without the need to explicitly refer to
counting.

The idea of repeating some action for each value in some sequence can be
programmed in C++ by using a for loop. The general form of a for loop is
as follows:

for (initialization; condition; update) statement

The initialization and update are statements. The condition is, as usual, a
Boolean expression.

When a for loop is executed, the initialization action is performed and
then the body of the loop is repeated as long as the condition is true. In
addition, the update action is performed after each execution of the body,
before the condition is reevaluated. In fact, a for loop is equivalent to the
following while loop:

initialization
while (condition) {

statement
update

}

We said that for loops are often used for repeating some action for each
value in a sequence. This is done as follows. The initialization part of the for
loop is used to set a variable to the initial value of the sequence. The condition
states that the variable has not gone beyond the end of the sequence. The
update statement takes the variable to the next value in the sequence.

For example, Figure 2.7 shows how n dashes can be printed with a for

loop. This prints a dash for each value in the sequence 1, 2, . . . , n. The result
is that n dashes are printed.

The code of Figure 2.7 is somewhat shorter than the previous versions. But,
more importantly, it’s also simpler because it does not require the explicit

38 CHAPTER 2. REPETITION

for (int i = 1; i < n; i = i + 1)
cout << i << ", ";

cout << n;

Figure 2.8: Printing 1 through n

use of a counter. And this is important because simpler code is easier to
understand and easier to write correctly.

As a further example of the usefulness of for loops, suppose that n is once
again an integer variable and that we need to print the integers 1 through n,
on a single line, separated by commas. For example,

1, 2, 3, 4, 5

In other words, we want to do the following:

For each value 1, 2, . . . , n, print that value.

This task can be carried out by the simple for loop of Figure 2.8. The
fact that no comma should be printed after the last number introduces a small
complication. In fact, this code can be more accurately described as follows:

For each value 1, 2, . . . , n−1, print that value followed by a comma.
Then print n.

Note that when the loop stops, the variable i has the value n. But we could
not have replaced the statement cout << n by cout << i. The reason is that
any variable declared in the initialization of a for loop is local to that loop.
It can be used in the condition, update and body of the loop, but not after
the loop.

Study Questions

2.2.1. What is the general form of a while loop?

2.2.2. What is the difference between a while loop and a do-while loop?

2.2.3. What is the general form of a for loop?

2.2.4. What C++ loop is the most convenient for repeating an action for each
value in some sequence?

2.2.5. What is the effect of ++i?

2.3. LOOPS AND VARIABLES 39

int sum = 0;
for (int i = 1; i <= n; ++i)

sum = sum + i;

Figure 2.9: Computing the sum of 1 through n

Exercises

2.2.6. Suppose that n is an integer variable. Write code that prints the first
n even, positive integers, on a single line, separated by commas. For
example, if n is 5, your code should print 2, 4, 6, 8, 10.

2.2.7. Suppose that n is an integer variable. Write code that prints the first
n odd, positive integers, on a single line, separated by commas. For
example, if n is 5, your code should print 1, 3, 5, 7, 9.

2.2.8. Suppose that n is an integer variable. Write code that prints the first n
positive squares, on a single line, separated by commas. For example, if
n is 5, your code should print 1, 4, 9, 16, 25.

2.3 Loops and Variables

In the previous section, we used variables to control the execution of our loops.
We used the variable count as a counter in the while loops that printed n

dashes. We also had the variable i take on the values 1 through n, or 1 through
n − 1, in the for loops. In this section, we will learn that variables can be
used in other ways in conjunction with loops.

For example, suppose that n is an integer variable and that we want to
compute the sum of the first n positive integers: 1 + 2 + · · · + n. There is a
well-known formula for this sum:

1 + 2 + · · ·+ n =
n(n+ 1)

2

But pretend that we don’t know this formula. Or that we want to verify it.
We can compute the sum as follows: start with the sum initialized to 0 and
then add each value 1, 2, . . . , n to the sum. This can be easily implemented by
the loop shown in Figure 2.9.

40 CHAPTER 2. REPETITION

int factorial = 1;
for (int i = 2; i <= n; ++i)

factorial = factorial ∗ i;

Figure 2.10: Computing n!

In this loop, the variable i is again used to go through the sequence of
values 1 through n. But the variable sum is used for a new purpose: it is used
as an accumulator.

Here’s another example. Suppose once again that n is an integer variable
and that we want to compute the product of the first n positive integers:
1 · 2 · · ·n. This product is called the factorial of n and denoted n!.

There is a formula that gives a good approximation of n!:

n! ≈
√

2πn
(n
e

)n

where e ≈ 2.71828 is the base of the natural logarithm. (Don’t worry if you
don’t know what this is.) This approximation is called Stirling’s approxima-
tion. However, there is no formula that gives the exact value of n!. Fortunately,
it is not hard to compute n!: start with a product initialized to 1 and then
multiply this product by each of the values 1, 2, . . . , n. Figure 2.10 shows
how this can be easily coded with a for loop. Note that this loop skips the
multiplication of factorial by 1 since this has no effect.

In both of these loops, we had to update the value of a variable. In the first
loop, we added i to sum while in the second loop, we multiplied factorial

by i. C++ provides convenient operators for such operations. For example,
the add and assign operator (+=) is a binary operator that adds the value of
the expression on the right to the variable on the left, as in sum += i. Three
other similar operators are subtract and assign (−=), multiply and assign (∗=)
and divide and assign (/=). For example, factorial ∗= i is equivalent to
factorial = factorial ∗ i.

Study Questions

2.3.1. What is the effect of x += y?

2.4. NESTED LOOPS 41

Please enter the various incomes of your household.
Income 1: 42000

Another income? (y or n) y
Income 2: 28000

Another income? (y or n) n

How many adults in your household? 2
How many dependents in your household? 2

Your total income is 70000.
Your taxable income is 40000.
Your income tax is 8000.
Your effective tax rate is 11.4%.

Figure 2.11: Sample session of the income tax program of Exercise 2.3.3

Exercises

2.3.2. Verify that the formula for the sum of the first n positive integers is
correct. Do this by modifying the loop of Figure 2.9 as follows: for each
i, in addition to adding i to sum, print the value of sum (which, at this
point, equals 1 + 2 + · · ·+ i) as well as the value i(i+ 1)/2.

2.3.3. Modify the income tax program of Exercise 1.8.11 to allow the user to
enter multiple incomes for a single household. The program should be
behave as shown in Figure 2.11. Define taxable income as

I − A× 10000−D × 5000

where I is the income, A is the number of adults and D is the number
of dependents. Compute the tax by using Table 1.3.

2.4 Nested Loops

In an earlier section, we learned how to write a loop that prints a line consisting
of n dashes. Now suppose that we need to print a box filled with stars (∗). The

42 CHAPTER 2. REPETITION

for (int i = 1; i <= height; ++i) {
for (int j = 1; j <= width; ++j)

cout << ’∗’;
cout << ’\n’;

}

Figure 2.12: Printing a box filled with stars

dimensions of the box are given by the integer variables width and height.
For example, here’s a box of width 5 and height 3:

∗∗∗∗∗
∗∗∗∗∗
∗∗∗∗∗

We know how to print a line consisting of width stars. All we need to do
is repeat that height times. The code of Figure 2.12 achieves this.

Because the second loop is contained within the body of the first loop, we
say that the second loop is nested within the first one. We also say that the
second loop is the inner loop and that the first loop is the outer loop.

Note that we are using different variables for controlling the two loops.
This is not absolutely necessary here but it makes the code clearer. Viewing
the box as a table, we are using i for row numbers and j for column numbers.
(If we had used i for both loops, within the inner loop, the i variable of the
inner loop would have hidden the i variable of the outer loop.)

Now suppose that we want the inside of the box to be empty. In other
words, we want the box to have a border of stars:

∗∗∗∗∗
∗ ∗
∗∗∗∗∗

This requires the top and bottom rows to be different from the middle rows.
The code of Figure 2.13 achieves this. Note how the initialization and test of
the middle loop ensure that i goes from 2 to height− 1.

Here’s one more example of a nested loop. Suppose that we want to print
the multiplication table shown in Figure 2.14. This can be easily done by the
code shown in Figure 2.15.

2.4. NESTED LOOPS 43

// Print first row.
for (int j = 1; j <= width; ++j)

cout << ’∗’;
cout << ’\n’;

// Print middle rows.
for (int i = 2; i < height; ++i) {

cout << ’∗’;
for (int j = 2; j < width; ++j)

cout << ’ ’;
cout << "∗\n";

}

// Print last row.
for (int j = 1; j <= width; ++j)

cout << ’∗’;
cout << ’\n’;

Figure 2.13: Printing a box with a border of stars

1 2 3 4 5 6 7 8 9 10 11 12
2 4 6 8 10 12 14 16 18 20 22 24
3 6 9 12 15 18 21 24 27 30 33 36
4 8 12 16 20 24 28 32 36 40 44 48
5 10 15 20 25 30 35 40 45 50 55 60
6 12 18 24 30 36 42 48 54 60 66 72
7 14 21 28 35 42 49 56 63 70 77 84
8 16 24 32 40 48 56 64 72 80 88 96
9 18 27 36 45 54 63 72 81 90 99 108
10 20 30 40 50 60 70 80 90 100 110 120
11 22 33 44 55 66 77 88 99 110 121 132
12 24 36 48 60 72 84 96 108 120 132 144

Figure 2.14: A multiplication table

44 CHAPTER 2. REPETITION

for (int x = 1; x <= 12; ++x) {
for (int y = 1; y <= 12; ++y)

cout << std::setw(5) << x ∗ y;
cout << ’\n’;

}

Figure 2.15: Printing the multiplication table of Figure 2.14

In this code, setw is a stream manipulator. A stream manipulator is
sent to an output stream, just like a piece of data. But instead of causing a
value to be printed, a steam manipulator affects the behavior of the stream.

For example, setw(5) causes each number to be printed in a field that’s
five characters wide. Blank spaces are added as needed to fill the empty space.
For example, 72 is printed preceded by 3 spaces.

By default, numbers are printed to the right of their respective fields. The
stream manipulator left can change this (and right can bring it back to the
right).

Note that setw only applies to the next value that’s printed. On the other
hand, the effect of left and right lasts until another manipulator changes
it.

Standard stream manipulators such as setw, left and right are defined
in the library iomanip and are part of the namespace std.

Study Questions

2.4.1. What is a nested loop?

2.4.2. What is the effect of the stream manipulators setw, left and right?

Exercises

2.4.3. Suppose that n is an integer variable. Write code that prints a lower
left triangle of dimension n. Here’s an example when n is 3:

∗
∗∗
∗∗∗

2.4. NESTED LOOPS 45

2.4.4. Repeat the previous exercise for an upper right triangle:

∗∗∗
∗∗
∗

2.4.5. Repeat again but this time print a diamond:

∗
∗∗∗
∗∗∗∗∗
∗∗∗
∗

Assume that n is odd.

46 CHAPTER 2. REPETITION

Chapter 3

File Input and Output

In this chapter, we will create a pay calculator. We will learn how to read data
from files and how to write data to files. We will also learn a bit more about
string variables and we will be introduced to error checking.

3.1 A Pay Calculator

In most businesses, every week or two, someone finds out how many hours each
employee has worked and then figures how much each employee should be paid.
In a large company, this is a tedious and time-consuming task. But it’s also a
fairly routine task and, therefore, a perfect candidate for automation.

In this chapter, we will create a pay calculator that reads a file containing
one line per employee. On each line contains an employee number followed
by the number of hours that employee has worked. The program will produce
another file that also contains one line per employee. Each line in that file
contains an employee number, the number of hours that employee as worked
as well as the amount that employee should be paid.

For example, suppose hat the program reads the input file shown in Fig-
ure 3.1. Then, assuming that every employee is paid $20 per hour, the program
would produce an output file similar to that shown in Figure 3.2.

3.2 File Streams

The main new thing we will learn in the creation of the pay calculator is how
to read from files and how to write to files. But this will turn out not to be

47

48 CHAPTER 3. FILE INPUT AND OUTPUT

12 43
23 37.5
37 40.33

Figure 3.1: A sample input file

12 43 860
23 37.5 750
37 40.33 806.6

Figure 3.2: A sample output file

very difficult.
Let’s start with file output. We already know how to display data on the

computer’s screen by sending the data to cout. This output stream is already
defined for us, in the standard library iostream.

In contrast, to write data to a file, we need to create our own output stream
and associate it with the file. This can be done as follows:

ofstream ofs pay("pay.txt");

This declaration creates an output stream ofs pay, which is a value of type
ofstream (for output file stream). The declaration also associates the stream
with the file pay.txt and opens the file so the program can write to it. If
the file does not exist, it is created. If the file already exists, it is overwritten.
(We may learn later how to avoid this.)

The general form of the above declaration is

ofstream stream name(file name);

The stream name must be a valid variable name. The file name can be any
string of characters, although some operating systems put some restrictions,
such as not allowing blank spaces.

The type ofstream is defined in the standard library fstream. This
library must be included in any program that uses ofstream. This type is
also part of the namespace std, so it must be referenced as std::ofstream,
unless the program includes the directive using std::ofstream.

In the above example, the name of the stream begins with the prefix ofs.
This is to indicate that this variable is an output file stream. This is not
required but it makes the code easier to understand.

3.2. FILE STREAMS 49

int main() {
std::ifstream ifs hours("hours.txt");
std::ofstream ofs pay("pay.txt");

int employee number;
ifs hours >> employee number;

double num hours;
ifs hours >> num hours;

double pay = num hours ∗ 20;
ofs pay << employee number << ’ ’ << num hours << ’ ’ << pay

<< ’\n’;

return 0;
}

Figure 3.3: A first version of the pay calculator

Let’s now turn to file input. Just as writing to a file is done through an
output file stream, reading from a file is done through an input file stream, a
value of type ifstream. For example, the declaration

ifstream ifs hours("hours.txt");

creates the input stream ifs hours, associates it with the file hours.txt

and opens the file for reading. If the file does not exist, an error occurs and
every subsequent attempt to read from the stream fails. (We will learn how
to detect this type of error later in this chapter.)

The general form of the above declaration is

ifstream stream name(file name);

The type ifstream is also defined in the standard library fstream and is
also part of the std namespace. Note the use of the prefix ifs in the above
example.

Figure 3.3 shows a very preliminary first version of the pay calculator.
This version computes the pay of only the first employee in the input file.
This version also assumes that the input file is always called hours.txt and
that the output file should always be called pay.txt

50 CHAPTER 3. FILE INPUT AND OUTPUT

Enter employee number 0 when done.

Employee number: 12
Hours: 43

Employee number: 23
Hours: 37.5

Employee number: 0

Figure 3.4: A sample session of the program that creates hours.txt

Study Questions

3.2.1. What is the general form of an output file stream declaration?

3.2.2. When an output file stream is created and a file is opened, what happens
if the file does not exist?

3.2.3. When an output file stream is declared as we saw in this section, if the
file already exists, what happens to its original contents?

3.2.4. What is the general form of an input file stream declaration?

3.2.5. When an input file stream is created and a file is opened, what happens
if the file does not exist?

3.2.6. In what library are the types ofstream and ifstream defined?

Exercises

3.2.7. Create a program that allows the user to generate the file hours.txt

read by our pay calculator. Refer to Figure 3.1 for the format of the file.
Your program should interact with the user as shown in Figure 3.4.

3.2.8. Modify the income tax program of Exercise 1.8.11 so that in addition
to interacting with the user as shown in Figure 1.7, the program also
writes the data to a file called tax return.txt. That file should begin
with the income followed by the number of dependents, the tax and the
effective tax rate, as shown in Figure 3.5.

3.3. DETECTING THE END OF THE FILE 51

42000
2
4400
10.5

Figure 3.5: Sample tax return file for the program of Exercise 3.2.8

Income: $42000
Number of dependents: 2

Income tax: $4400
Effective tax rate: 10.5%

Figure 3.6: Sample output for the program of Exercise 3.2.9

3.2.9. Create a program that reads the tax return file produced by the program
of the previous exercise and displays the tax return on the computer’s
screen, as shown in Figure 3.6.

3.3 Detecting the End of the File

In this section, we expand the program of the previous previous section so it
computes the pay of all the employees in the input file, not just the first one.
This requires a way of detecting when we have read all the employees that are
present in the file. There are several ways in which this can be done.

The simplest way is probably to require that the file begin with the number
of employees. The program can then start by reading this number and using
a for loop to compute the pay of all the employees, as shown in Figure 3.7.
(The declaration of the streams as well as the opening and closing of the files
is omitted. It should be done as shown in Figure 3.3.)

An alternative that’s somewhat more flexible is to have the last employee
be followed by a special value called a sentinel. The sentinel cannot be a
valid employee number so we can distinguish it from an employee number.
The number 0 can be used in the pay calculator. Figure 3.8 shows a sample
input file with a sentinel value. In other programs, the sentinel may need to
be some other value.

52 CHAPTER 3. FILE INPUT AND OUTPUT

int num employees;
ifs hours >> num employees;

for (int i = 1; i <= num employees; ++i) {
int employee number;
ifs hours >> employee number;
double num hours;
ifs hours >> num hours;

double pay = num hours ∗ 20;
ofs pay << employee number << ’ ’ << num hours << ’ ’ << pay

<< ’\n’;
}

Figure 3.7: A version of the pay calculator that uses a count

12 43
23 37.5
37 40.33
0

Figure 3.8: A sample input file with a sentinel

3.3. DETECTING THE END OF THE FILE 53

int employee number;
do {

ifs hours >> employee number;

if (employee number != 0) {
double num hours;
ifs hours >> num hours;

double pay = num hours ∗ 20;
ofs pay << employee number << ’ ’ << num hours << ’ ’ << pay

<< ’\n’;
}

} while (employee number != 0);

Figure 3.9: A version of the pay calculator that uses a sentinel

Figure 3.9 shows a revised pay calculator that uses the sentinel to detect
the end of the file.

The do-while loop of Figure 3.9 is somewhat messier than the for loop
of Figure 3.7. The reason is that the test

employee number != 0

occurs twice: once in the body of the loop and then again as the condition of
the loop. Not only does this make the code look awkward, it is also inefficient
since that test will be done twice for each employee.

Figure 3.10 shows a better way of setting up this loop. The number of the
first employee is read before the loop. If that number is not 0, then the body
of the loop reads the hours, computes the pay and reads the number of the
next employee. This repeats until the number of the next employee turns out
to be 0.

Note that the code of Figure 3.10 repeats the reading of the employee
number. But this doesn’t affect the execution time of the program since each
employee number is read only once. In contrast, as we said earlier, the test
employee number != 0 not only occurs twice in the code of Figure 3.9, it is
also executed twice for each employee.

There is another way in which we can read the input file, one that is even
more flexible because it doesn’t require adding either a count or a sentinel
value to the file.

54 CHAPTER 3. FILE INPUT AND OUTPUT

int employee number;
ifs hours >> employee number;

while (employee number != 0) {
double num hours;
ifs hours >> num hours;

double pay = num hours ∗ 20;
ofs pay << employee number << ’ ’ << num hours << ’ ’ << pay

<< ’\n’;

ifs hours >> employee number;
}

Figure 3.10: A simplified loop

Suppose that the file does not end in a sentinel value and that after com-
puting the pay of the last employee, we go ahead and attempt to read another
employee number. Then the reading operation will fail because the file does
not contain another integer. And when a reading operation fails, the stream
enters an error state.

There are several ways in which we can test if a stream is in an error state.
The easiest way is to simply use the stream as a Boolean expression, as in

if (ifs hours) ...

When used as a Boolean expression, a stream is considered false if it is in
an error state, and true if it’s not.

For example, consider the following code:

ifs hours >> employee number;
if (ifs hours) ...

This reads an employee number. Then, if the reading is successful, the code
represented by the three dots is executed. If the reading fails, that code is not
executed.

Streams can also be used in the test of a loop. Here’s an example:

3.3. DETECTING THE END OF THE FILE 55

int employee number;
ifs hours >> employee number;

while (ifs hours) {
double num hours;
ifs hours >> num hours;

double pay = num hours ∗ 20;
ofs pay << employee number << ’ ’ << num hours << ’ ’ << pay

<< ’\n’;

ifs hours >> employee number;
}

Figure 3.11: A version of the pay calculator that detects the end of the file

ifs hours >> employee number;
while (ifs hours) {

...
ifs hours >> employee number;

}

This reads an employee number. If the reading is successful, the loop is ex-
ecuted. Otherwise, it is skipped entirely. At the end of each iteration of the
loop, another employee number is read. If the reading succeeds, the test of
the loop will be true and the loop will execute again. If instead the reading
fails, then the test will be false and the loop will terminate. The net effect
is that this loop will run if a first employee number can be read and as long
as another employee number can be read.

Figure 3.11 shows how we can take advantage of this in the pay calculator.
The loop will run as long as an employee number can be read from the file.
This code works without the need to add either a count or a sentinel value to
the file.

In Figure 3.11, the code that reads the employee number occurs twice. It
is possible to eliminate this repetition. The key observation is that a reading
operation such as

ifs hours >> employee number

56 CHAPTER 3. FILE INPUT AND OUTPUT

evaluates to the stream (just as 2 + 3 evaluates to 5). This implies that we
can use a reading operation as the condition of an if statement or a loop.

For example, consider again the following code:

ifs hours >> employee number;
if (ifs hours) ...

This code can be read as follows:

Read an employee number.
If the reading is successful, . . .

By using the fact that the reading operation evaluates to the stream, we
can combine these two statements into one:

if (ifs hours >> employee number) ...

The test of the if statement is evaluated first, which implies that the reading
operation is executed first. Since this operation evaluates to the stream, it
is the stream that is used as the test of the if statement. If the reading
is successful, the stream is true and the code represented by the three dots
is executed. If the reading fails, the stream is false and that code is not
executed. The end result is the same as before: if the reading is successful,
then the code represented by the three dots is executed.

Now, you may find the code

if (ifs hours >> employee number) ...

a little harder to read than the earlier two-statement version. In part, that’s
because the reading operation now serves two different purposes: it reads an
employee number and it is used as the test of the loop. Here’s one possible
way to read this code:

If an employee number can be read from the file, . . .

This makes sense and is, in fact, fairly natural as long as it is understood that
if an employee number can be read, it will actually be read.

Reading operations can also be used in the test of a loop. For example,
consider again the following code:

3.3. DETECTING THE END OF THE FILE 57

ifs hours >> employee number;
while (ifs hours) {

...
ifs hours >> employee number;

}

We know what this code does: the loop runs if a first employee number can
be read and as long as another employee number can be read.

We can eliminate the repetition of the reading operation by using the read-
ing operation directly in the test of the loop:

while (ifs hours >> employee number) {
...

}

When the test of this loop is evaluated, the reading operation executes and
evaluates to the stream. If the reading is successful, the stream is true and
the body of the loop is executed. If the reading fails, the stream is false

and the body of the loop is not executed. And this keeps repeating. The end
result is the same as before: the loop runs if a first employee number can be
read and as long as another employee number can be read.

This new loop not only avoids the repetition of the reading operation, it
also reads very well:

While an employee number can be read, . . .

In fact, the new loop reads much better than the earlier one since a direct
reading of that loop would have been fairly awkward:

Read an employee number.
While the reading is successful, execute the body of the loop and
read another employee number.

Figure 3.12 shows a revised pay calculator that uses the reading of the
employee number as the test of the loop. This version is simpler than the
earlier versions in two ways: one, it doesn’t require that the input file contain
a count or a sentinel value; two, it doesn’t have to repeat either a test or the
reading of the employee number.

As we just saw, the fact that a reading operation evaluates to the stream
allows us to simplify loops. But it also has another advantage: it allows us to
read multiple values with a single input statement, as in

58 CHAPTER 3. FILE INPUT AND OUTPUT

int employee number;
while (ifs hours >> employee number) {

double num hours;
ifs hours >> num hours;

double pay = num hours ∗ 20;
ofs pay << employee number << ’ ’ << num hours << ’ ’ << pay

<< ’\n’;
}

Figure 3.12: A more concise way version of the pay calculator that detects the
end of the file

ifs hours >> employee number >> hours

What happens here is that this expression is evaluated from left to right, as if
it had been written with parentheses:

(ifs hours >> employee number) >> hours

The first input operation reads an employee number and evaluates to
ifs hours. This value is then used as the left operand of the second in-
put operation, which causes the hours to be read.

The same is true of output statements such as

ofs pay << employee number << ’ ’ << num hours

This is evaluated from left to right. Each output operation evaluates to the
stream ofs pay and this value is used as the left operand of the next output
operation.

Study Questions

3.3.1. What is a sentinel value?

3.3.2. What does an input or output operation evaluate to?

3.3.3. When used as a Boolean expression, what does an input or output
stream evaluate to?

3.3. DETECTING THE END OF THE FILE 59

42000
28000
−1
2
2
70000
40000
8000
11.4

Figure 3.13: Sample tax return file for the program of Exercise 3.3.5

Exercises

3.3.4. Modify the latest version of the pay calculator program so that it prints
to the screen the average number of hours worked by each employee and
the total pay of all the employees.

3.3.5. Modify the income tax program of Exercise 2.3.3 so that in addition to
interacting with the user, the program writes the data to a file called
tax return.txt. That file should begin with the various incomes fol-
lowed by the sentinel value −1, the number of adults, the number of
dependents, the total income, the taxable income, the tax and the effec-
tive tax rate. Figure 3.13 shows the file that corresponds to the sample
session of Figure 2.11.

3.3.6. Create a program that reads the tax return file produced by the program
of the previous exercise and displays the tax return on the computer’s
screen, as shown in Figure 3.14. The program should be able to handle
any number of incomes.

3.3.7. Suppose that the file temperatures.txt contains the maximum tem-
perature recorded in one location for each day of the year. Create a
program that computes and prints to the computer’s screen the average
daily maximum for the year.

3.3.8. Create a program that computes the outcome of a referendum. The
program reads a file called results.txt. In this file, each line contains
a district number, a number of yes votes and a number of no votes.

60 CHAPTER 3. FILE INPUT AND OUTPUT

Income 1: $42000
Income 2: $28000
Number of adults: 2
Number of dependents: 2

Total income: $70000
Taxable income: $40000
Income tax: $8000
Effective tax rate: 11.4%

Figure 3.14: Sample output for the program of Exercise 3.3.6

Those three numbers are separated by a single space. The program
should compute the total number and percentage of yes and no votes,
and prints those numbers in the following format:

Yes: 456 (53.4%)
No: 398 (46.6%)

3.4 Different Wages

Up until now, our pay calculator has been assuming that every employee gets
paid $20 per hour. We now modify this to make the program more realistic.
The program will read a file called wages.txt that contains one line per
employee. Each line contains an employee number and the wage that employee
earns, that is, the amount he or she should be paid for every hour of work.
The employees occur in the same order in both files.

Figure 3.15 shows the revised pay calculator. The only novelty here is that
the program reads from two input files at the same time.

Exercises

3.4.1. Modify the program of Exercise 3.3.7 so that instead of reading from
one file temperatures.txt, the program reads from two files potsdam
.txt and cancun.txt. The program should print the average daily
maximum for both locations.

3.5. MORE ON STRINGS 61

std::ifstream ifs hours("hours.txt");
std::ifstream ifs wages("wages.txt");
std::ofstream ofs pay("pay.txt");

int employee number;
while (ifs hours >> employee number) {

double num hours;
ifs hours >> num hours;

double wage;
ifs wages >> employee number >> wage;

double pay = num hours ∗ wage;
ofs pay << employee number << ’ ’ << num hours << ’ ’ << pay

<< ’\n’;
}

Figure 3.15: A version of the pay calculator in which employees earn different
wages

3.5 More on Strings

In this section, we make our pay calculator more flexible by having the user
specify the names of the input and output files. The program will interact
with the user as follows:

Name of input file containing the hours: hours.txt
Name of output file for the pay: pay.txt

After asking the user for a file name, the program can store the string
entered by the user in a variable of type string. For example,

string hours file name;

Strings can be read in at least two different ways. We are already familiar
with the input operator:

cin >> hours file name

62 CHAPTER 3. FILE INPUT AND OUTPUT

But this is probably not the best choice here because when reading a value of
type string, the input operator works as follows: it skips white space and
then reads characters until it sees another white space. White space means a
blank space, a tab character (\t) or a new line character (\n). This implies
that the input operator would not be able to read a file name that contains
any blank spaces.

An alternative way of reading a string is to use the getline function:

getline(cin, hours file name)

This function takes two arguments, an input stream and a string variable.
Starting at the current position in the stream, getline reads characters,
including white space, all the way to the end of the current line and stores
those characters in the string variable. The new line character is read but not
stored in the string. In other words, while the input operator essentially
reads words, the getline function reads lines.

Once a file name is stored in a string variable, we can use it to declare
an input file stream and open the file as follows:1

std::ifstream ifs hours(hours file name);

Figure 3.16 shows the revised pay calculator. (Portions of the program
that did not change have been omitted.) The program ends by telling the user
that the hours file has been read and that the pay file has been written.

Data types such as int, double and char are called primitive or funda-
mental because they are part of the C++ language itself. In contrast, data
types such as string, ifstream and ofstream are not part of the language
but are instead defined in its standard library.

The latest version of the pay calculator is available on the course web site
under Pay Calculator as pay calculator 1 3 file names.cpp.

1Note that opening a file by directly using a string variable is possible only in the latest
version of C++, which is called C++11 (because it was finalized in the year 2011). In older
versions of C++, the value of type string first needs to be converted into another type of
string called a C string :

std::ifstream ifs hours(hours file name.c str());

This is what must be done with compilers that still don’t support the new features of
C++11. Note that on some compilers it is necessary to set an option to turn on the new
features of C++11.

3.5. MORE ON STRINGS 63

cout << "Name of input file containing the hours: ";
string hours file name;
getline(cin, hours file name);

cout << "Name of output file for the pay: ";
string pay file name;
getline(cin, pay file name);

std::ifstream ifs hours(hours file name);
std::ifstream ifs wages("wages.txt");
std::ofstream ofs pay(pay file name);

int employee number;
while (ifs hours >> employee number) {

...
}

cout << "\nHours read from " << hours file name
<< " and pay written to " << pay file name << ".\n";

Figure 3.16: A version of the pay calculator that reads the file names from the
user

64 CHAPTER 3. FILE INPUT AND OUTPUT

Study Questions

3.5.1. When reading a string variable, when does the input operator stop
reading?

3.5.2. What function can be used to read an entire line of text into a string

variable?

Exercises

3.5.3. Modify the temperature program of Exercise 3.3.7 so the user can specify
the name of the temperature file as follows:

Name of temperature file: potsdam.txt

3.5.4. Modify the program of the previous exercise as follows. The input file
now specifies, for each day, not just the maximum temperature but also
a description of the weather for that day. The description is one of the
following four strings: "sunny", "mostly sunny", "mostly cloudy",
"cloudy". (The quotes are not included in the file.) Each line in the
file specifies the maximum temperature and weather description for one
day, as in

73 mostly sunny

Revise the temperature program so that the output now includes the
percentage of days to which each description applies:

Sunny: 22%
Mostly sunny: 26%
Mostly cloudy: 22%
Cloudy: 30%

3.6 Error Checking

In this section, we add some error checking to our pay calculator. We will
consider only one possible type of error: the fact that a file may not open
properly. In the case of an input file, this can occur because the file does not
exist. In the case of an output file, this can occur because the file does not

3.6. ERROR CHECKING 65

exist and our program does not have permission to create a new file in the
current directory/folder, or because the file exists but some other program has
already opened it and has a lock on the file.

If a file does not open properly, this is considered an error and causes the
stream to enter an error state, just like when a reading error occurs. And
we already know that we can test for this by using the stream as a Boolean
expression.

For example, the following code attempts to open the hours file and prints
an error message in case of failure:

std::ifstream ifs hours(hours file name);
if (!ifs hours)

cout << "Could not open file " << hours file name << ".\n";

As explained in Section 1.8, the symbol ! represents the logical NOT operator.
So the above code will print an error message if ifs hours is false, that is,
if the opening of the file failed.

Figure 3.17 shows how this error checking can be incorporated into the pay
calculator. The wage file is opened first because there is no point asking the
user for the names of the other files if the wage file won’t open.

In case any of these files does not open, the program prints an error message
and terminates the program by using the statement

return 1;

This is an example of a return statement. We will learn more about return
statements later. In this context, that is, in the main function, a return
statement causes the program to terminate. Recall that our programs normally
end with

return 0;

The value 0 usually indicates that the program terminated normally, without
errors. A positive value, such as 1, usually indicates that an error occurred
and that the program terminated abnormally.

The latest version of the pay calculator is available on the course web site
under Pay Calculator as pay calculator 1 4 error checking.cpp.

Exercises

3.6.1. Add error checking to the programs you created for the last two exercises
of Section 3.2.

66 CHAPTER 3. FILE INPUT AND OUTPUT

std::ifstream ifs wages("wages.txt");
if (!ifs wages) {

cout << "Could not open file wages.txt.\n";
return 1;

}

cout << "Name of input file containing the hours: ";
string hours file name;
getline(cin, hours file name);
std::ifstream ifs hours(hours file name);
if (!ifs hours) {

cout << "Could not open file " << hours file name << ".\n";
return 1;

}

cout << "Name of output file for the pay: ";
string pay file name;
getline(cin, pay file name);
std::ofstream ofs pay(pay file name);
if (!ofs pay) {

cout << "Could not open file " << pay file name << ".\n";
return 1;

}

Figure 3.17: Error checking in the pay calculator

3.7. EXTENDING THE PAY CALCULATOR 67

12 7 8 7.5 7.75 8.5 0 0
23 8 8 8.25 9 5 3 0
37 5 5.5 6 5 5 2 3

Figure 3.18: A revised input file

double num hours = 0;
for (int i = 1; i <= 7; ++i) {

double num hours one day;
ifs hours >> num hours one day;
num hours += num hours one day;

}

Figure 3.19: Computing the total number of hours worked

3.7 Extending the Pay Calculator

Right now, the input file read by the pay calculator specifies, for each employee,
the total number of hours worked by that employee for the entire pay period.
In this section, we will expand the program so that it calculates those totals.
In other words, the input file will specify, for each employee, the number of
hours that employee worked on each day of the pay period, as illustrated in
Figure 3.18.

This turns out to be an easy extension of our program. Right now, for each
employee, the program reads the total number of hours worked with a simple
input statement:

ifs hours >> num hours

We just need to replace this by a loop that reads the daily numbers and
computes the total, as shown in Figure 3.19. This assumes that the pay period
is a seven-day week. If that’s not the case, then the number 7 in the condition
of the loop should be replaced by the number of days in the pay period.

Note that we now have in our program two nested loops that are controlled
in very different ways. The inner loop, which is shown in Figure 3.19, simply
runs seven times. The outer loop (see Figure 3.15) runs while another employee
number can be read from the file. This illustrates the fact that most non-trivial
programs are created by combining a variety of different techniques, often in
interesting and creative ways.

68 CHAPTER 3. FILE INPUT AND OUTPUT

2
39227 75 83
42993 80 79
44371 92 87

Figure 3.20: Sample input file gradesheet.txt for Exercise 3.7.2

The latest version of the pay calculator is available on the course web site
under Pay Calculator as pay calculator 2 0 daily hours.cpp.

Exercises

3.7.1. Modify the temperature program of Exercise 3.3.7 so it computes the
average daily maximum for each month. The averages should be printed
to the screen one per line, preceded by the month number:

1: 24
2: 27
3: 37
...

To keep things simple, assume that a year always consists of 12 months
of exactly 30 days. (To test your program without having to create a
file with 360 temperatures, you can create a version of the program that
assumes that there are only two months with three days each.)

3.7.2. Create a program that computes course grades for all the students in
a class. The program reads a file gradesheet.txt that contains the
grades that students have earned on all the assessments in the class. The
first line of the file contains the number of assessments that have been
conducted. Each following line contains a student number followed by
the grade that the student earned in each of the assessments. Figure 3.20
shows an example. A student’s course grade is the average of the grades
earned in those assessments. The program should create an output file
coursegrades.txt that lists the course grades of all the students, as
shown in Figure 3.21.

3.7.3. Modify the course grade program of Exercise 3.7.2 to use student names
instead of student numbers. In the input file, the name of a student is

3.8. COMPILE-TIME CONSTANTS 69

39227 79
42993 79.5
44371 89.5

Figure 3.21: Sample output file coursegrades.txt for Exercise 3.7.2

2
Tracy Brown
75 83
Erin Smith
80 79
John White
92 87

Figure 3.22: Sample input file gradesheet.txt for Exercise 3.7.3

given on one line and the grades of that student are given on the next
line, as shown in Figure 3.22. The output file should list each student’s
name and course grade on the same line, as shown in Figure 3.23.

3.8 Compile-Time Constants

In an earlier section, we checked that the wages file opens properly by using
the following code:

std::ifstream ifs wages("wages.txt");
if (!ifs wages) {

cout << "Could not open file wages.txt.\n";
return 1;

}

Tracy Brown 79
Erin Smith 79.5
John White 89.5

Figure 3.23: Sample output file coursegrades.txt for Exercise 3.7.3

70 CHAPTER 3. FILE INPUT AND OUTPUT

Notice that the string "wages.txt" occurs twice in this code. And this is
not great: if ever we needed to change the name of that file, we would have to
remember to change both occurrences of the name.

A better approach is to store the file name in a variable and then use the
variable instead of using the value directly. For example,

string wages file name = "wages.txt";
std::ifstream ifs wages(wages file name);
if (!ifs wages) {

cout << "Could not open file " << wages file name << ".\n";
return 1;

}

Then, if ever we needed to change the file name, we would need to change it
in only one place.

Note that the value of the variable wages file name is set when the
variable is declared and that this value is not supposed to change during the
execution of the program. As a precaution, we can prevent that value from
being changed by accident by declaring that the value of the variable is con-
stant :

const string wages file name = "wages.txt";

In addition, the value of that variable is determined before the program
runs. In fact, that value is determined before the program is even compiled.
Such values, and the variables that hold them, are called compile-time con-
stants.

Compile-time constants often play a special role in programs, as we will
see later. For this reason, it is useful to distinguish them from other variables.
One way is by using a different style for their names. In these notes, names
of compile-time constants will begin with the prefix k followed by words in
mixed-case format, that is, words separated only by the fact that their first
letter is in uppercase. For example,

const string kWagesFileName = "wages.txt";

A value such as "wages.txt" that occurs explicitly in a program is called
a literal constant . In general, it is better to give a name to each literal constant
by storing it in a variable, even if the literal constant occurs only once in the
program. It makes programs easier to understand.

3.8. COMPILE-TIME CONSTANTS 71

double num hours = 0;
for (int i = 1; i <= kLengthPayPeriod; ++i) {

double num hours one day;
ifs hours >> num hours one day;
num hours += num hours one day;

}

Figure 3.24: Computing the total number of hours worked

const int kLengthPayPeriod = 7;
const string kWagesFileName = "wages.txt";

int main() {
...

}

Figure 3.25: Global compile-time constants

For example, in our pay calculator, the loop that reads the daily number of
hours for one employee is controlled by the literal constant 7 (see Figure 3.19).
The condition of that loop becomes easier to understand if we use instead a
named constant:

const int kLengthPayPeriod = 7;

The revised loop is shown in Figure 3.24.

It is also a good idea to place these named compile-time constants in an
easy to find place, such as at the very beginning of the program. This makes
the program easier to modify.

In fact, we can even place these constants before the main function, as
shown in Figure 3.25. This not only makes the constants easy to find, it
also gives them global scope, which means that they are visible anywhere in
the program. In contrast, variables declared within main only exist within
that function. It makes sense to make a constant global when its value is a
parameter that affects the behavior of the entire program. Global compile-
time constants play a more significant role in larger programs that consist of
multiple functions. We will see examples later.

72 CHAPTER 3. FILE INPUT AND OUTPUT

Study Questions

3.8.1. What is a compile-time constant?

3.8.2. Why is it better to use a different naming style for compile-time con-
stants?

3.8.3. What is a literal constant?

3.8.4. Why is it better to name literal constants and place their declaration in
an easy to find place?

3.8.5. What is a global constant?

Exercises

3.8.6. Modify the first version of the pay calculator, the one shown in Fig-
ure 3.3, by changing all literal constants into compile-time constants.

3.9 Formatting of Floating-Point Numbers

Up until now, we haven’t worried about the exact appearance of the numbers
produced by the program. As illustrated in Figure 3.2, the numbers may
appear in various formats, with or without a decimal point, and with various
numbers of digits after the decimal point.

This is perfectly fine if another program is going to read those numbers, but
not if the output file is meant to be read by a person. In this section we will
revise the program to ensure that the numbers of hours and the pay amounts
always appear with exact two digits after the decimal point. In addition, we
will make sure these numbers are lined up neatly in columns.

We have already seen how to line up numbers in columns by using the
stream manipulator setw. So the main new thing we need to learn is how
to control the appearance of numbers that are not integers. In programming,
non-integers are usually called floating-point numbers. We already know
that in C++, floating-point numbers are normally stored in variables of type
double.

Floating-point numbers can be printed in either fixed-point or scientific
format. The fixed-point format is the format we use in everyday life: at

3.9. FORMATTING OF FLOATING-POINT NUMBERS 73

ofs pay << std::setw(6) << employee number
<< std::fixed << std::setprecision(2)
<< std::setw(7) << num hours
<< std::setw(9) << pay << ’\n’;

Figure 3.26: Output formatting in the pay calculator

least one digit possibly followed by a decimal point and other digits. For
example, 12.3 and 0.0123.

The scientific format is one digit followed possibly by a decimal point,
more digits, the letter e and an integer. The number that follows the letter e is
an exponent. For example, 1.23e+1 represents the number 1.23× 101 = 12.3
and 1.23e−2 represents the number 1.23× 10−2 = 0.0123.

The output format of floating-point numbers can be set to either fixed-
point or scientific by using the stream manipulators fixed and scientific.
For example,

cout << fixed;

sets to fixed-point the format of floating-point numbers printed to cout. This
format will be in effect until it is changed.

By default, the format will vary from fixed-point to scientific depending on
various factors. This is appropriate only if the format of the numbers doesn’t
matter. When the format of the numbers matters, it is best to set it explicitly
to either fixed-point or scientific.

Now, in either the fixed-point or scientific formats, the number of digits
that appears after the decimal point can be specified by the setprecision

manipulator. Numbers are rounded and trailing 0’s are added, as needed. For
example, in fixed-point format, with the precision set to 3, 12.3 is printed as
12.300 and 0.0123 is printed as 0.012.

Figure 3.26 shows how we can use these stream manipulators to format
the output of the pay calculator. This produces three columns that separated
by two spaces and are wide enough to accommodate employee numbers with
6 digits, numbers of hours up to 99.99 and pay amounts up to 9999.99. In
addition, the numbers of hours and the pay amounts are printed in fixed
format with exactly two digits after the decimal point.

Just like setw, the stream manipulators setprecision, fixed and
scientific are defined in the library iomanip and are part of the namespace

74 CHAPTER 3. FILE INPUT AND OUTPUT

std.
The latest version of the pay calculator is available on the course web site

under Pay Calculator as pay calculator 2 1 formatting.cpp.

Study Questions

3.9.1. What is the general form of a number in scientific format?

3.9.2. What is the general form of a number in fixed-point format?

3.9.3. What is the effect of setprecision in each of these two formats?

Exercises

3.9.4. Revise the program you wrote for Exercise 3.2.9 so that all numbers are
printed in fixed-point format. The income and the tax should be printed
as whole numbers while the tax rate should be printed with one digit
after the decimal point.

Chapter 4

Functions

In this chapter, we will redesign the pay calculator of the previous chapter to
make it modular. This has a number of advantages, which we will discuss.
Our main tool will be the important concept of a function.

4.1 Introduction

In these notes, we have already seen two examples of functions. In the running
pace calculator, we used the round function to round a number to its nearest
integer (see Figure 1.6). In the pay calculator, we used the getline function
to read file names from the user (see Figure 3.16).

As explained earlier, a function is a block of code that performs a particular
task. Functions take arguments and may return a value. For example, round
takes a number as argument and returns the value of that number rounded to
the nearest integer. This means that a function call such as round(x) is an
expression that evaluates to the rounded value of x.

There are a number of benefits to using functions in programs. In the case
of library functions such as round and getline, the most obvious benefit
is convenience: by using these functions, we didn’t have to write that code
ourselves. Instead, we were able to reuse code written by somebody else.

So the reuse of standard library components such as round and getline

makes it easier to implement our programs. But it also makes them more
reliable: since library code has already been used many times before, it is
usually more reliable than new code we could write ourselves.

In this chapter, we will learn to write our own functions. This will allow

75

76 CHAPTER 4. FUNCTIONS

us to reuse not only library code but also our own code. For example, imagine
that we had written our own round function and that we needed to round
several numbers. Then instead of repeating the rounding code several times,
we would call the rounding function whenever needed, in effect reusing the
code of that function. This is not only more convenient, it also makes our
programs easier to modify. That’s because if the rounding code needed to
be modified, then we would only need to modify the rounding function. In
contrast, if the rounding code was repeated, we would need to track down and
modify every occurrence of that code.

So because they allow us to reuse software, functions make our programs
more reliable and easier to implement and modify. But there’s more to it.
Functions also isolate the details of different programming tasks within sepa-
rate functions. For example, in the running pace calculator, the details of the
rounding of a number are contained within the round function and isolated
from the rest of the program. This makes the main function of the running
pace calculator easier to understand. In general, when a program consists of
several functions that perform different tasks, this allows us to focus on one
task at a time when trying to understand how the program works.

This isolation of different tasks within different functions also makes pro-
grams easier to implement because it allows us to focus on one task at a time
when writing the code. In addition, in team projects, the implementation of
the various functions can be easily divided among the different programmers.

Functions also make programs easier to test because functions can be tested
in isolation. This makes it easier to locate where problems are.

Finally, functions make programs easier to modify not only because they
reduce repeated code, but also because a change to a program may affect only
one or a few functions. Those functions can then be modified in isolation,
minimizing the risk that the rest of the program is broken by accident.

To summarize, through reuse and isolation, the use of functions makes
programs more reliable and easier to implement, understand, test and modify.

Study Questions

4.1.1. What are two advantages of software reuse?

4.1.2. What is a disadvantage of repeated code?

4.1.3. How do functions make programs easier to understand?

4.2. A ROUNDING FUNCTION 77

int round(double x)
{

int result = x;
x −= result;
if (x >= 0.5) ++result;
if (x <= −0.5) −−result;
return result;

}

Figure 4.1: The definition of round

4.1.4. How do functions make programs easier to implement?

4.1.5. How do functions make programs easier to test?

4.1.6. How do functions make programs easier to modify?

4.1.7. What are five advantages of the use of functions in programs?

4.2 A Rounding Function

In this section, we create our first function. It will be our own version of the
library function round.

To create this function, we need to define it. Figure 4.1 shows a possible
definition for round. A function definition consists of a header and a body. The
header specifies the return type, the name and the arguments of the function,
in that order. In this case, the header of round indicates that the function
returns an integer and takes a single number of type double as argument.

The body of the function follows the header and is placed between braces.
The body of a function is the code that is executed when the function is called.
In other words, the body specifies how the function performs its task. The
body of a function is often called its implementation. To implement a function
means to write its body.

The last statement in the implementation of round is a return statement.
A return statement has two effects: it terminates the execution of the function
and it specifies the value returned by the function.

When a function has more than one argument, they should be separated
by commas in the function header, as in

78 CHAPTER 4. FUNCTIONS

int round(double x);

int main()
{

...
}

int round(double x)
{

...
}

Figure 4.2: The function round implemented after main

double some function(int x, string s)

Functions can also have no arguments. For example, consider the main func-
tion that must be included in every C++ program:

int main()

This function has no arguments, as indicated by the empty parentheses fol-
lowing the name of the function.

Note that a function must be declared before it is used. In the running
pace calculator, this can be achieved by placing the definition of round before
the definition of main since round is used within main. It is also possible to
implement round after main but only if round is declared before main, as
illustrated in Figure 4.2. A function declaration consists of a function header
followed by a semicolon. Some programmers prefer to begin a program with
a declaration of all the functions followed by the implementation of main and
then the implementation of the functions used by main.

Study Questions

4.2.1. What three pieces of information does a function header always include?

4.2.2. What is the body of a function?

4.2.3. What does it mean to implement a function?

4.2.4. What does a return statement do?

4.3. FUNCTIONS IN THE PAY CALCULATOR 79

Exercises

4.2.5. Create a function called negative that takes a number as argument
and returns the same number but with the opposite sign. For exam-
ple, negative(3.7) returns −3.7 and negative(−4) returns 4. The
argument of the function is of type double.

4.2.6. Create a function called abs that takes a number as argument and
returns the absolute value of that number. For example, abs(3.7)

returns 3.7 and abs(−4) returns 4. The argument of the function is of
type double.

4.2.7. Create a function called sum that takes two numbers as arguments and
returns their sum. For example, sum(3.7, −2.3) returns 1.4. The
arguments of the function are of type double.

4.3 Functions in the Pay Calculator

We now turn to our pay calculator. We will redesign that program by breaking
up main into several functions. This will not reduce repeated code but it will
simplify main by isolating several of the tasks that the program performs
into separate functions. As stated earlier in this chapter, this will make the
program easier to understand and modify. If we had designed the program in
this way from the beginning, it would have also been easier to implement and
easier to test.

In this section, we will add four functions to the program. They are shown
in Figure 4.3.

The first function is compute pay. It receives a number of hours and
a wage as arguments and returns the corresponding pay. The arguments of
the function have the same names as variables that are declared in main.
But note that main’s variables and compute pay’s arguments are separate
variables. In fact, main’s variables are local to main and cannot be accessed
by compute pay while compute pay’s arguments are local to compute pay

and cannot be accessed by main. It is fairly common for the same name to be
reused for the local variables or arguments of several different functions.

The function print pay receives an employee number, a number of hours,
a pay amount and an output stream as arguments and prints the data to the
stream. Note that the output stream is of type ostream. This is more general

80 CHAPTER 4. FUNCTIONS

double compute pay(double num hours, double wage)
{

return num hours ∗ wage;
}

void print pay(int employee number, double num hours, double pay,
std::ostream & out)

{
out << std::setw(6) << employee number

<< std::fixed << std::setprecision(2)
<< std::setw(7) << num hours
<< std::setw(9) << pay << ’\n’;

}

double read hours(std::istream & in)
{

double total hours = 0;
for (int i = 1; i <= kLengthPayPeriod; ++i) {

double num hours one day;
in >> num hours one day;
total hours += num hours one day;

}
return total hours;

}

double read wage(std::istream & in)
{

int employee number;
int wage;
in >> employee number >> wage;
return wage;

}

Figure 4.3: Functions for the pay calculator

4.3. FUNCTIONS IN THE PAY CALCULATOR 81

int employee number;
while (ifs hours >> employee number) {

double num hours = read hours(ifs hours);
double wage = read wage(ifs wages);
double pay = compute pay(num hours, wage);
print pay(employee number, num hours, pay, ofs pay);

}

Figure 4.4: Using the functions of Figure 4.3 in the pay calculator

than ofstream, which allows the function to print not only to an output file
stream but to any type of output stream, including cout, for example. Note
also the ampersand (&) between the stream type and the argument name. This
is required for all stream arguments. We will explain why later in this chapter.

The function print pay does not return a value. This is indicated by
the return type void in the function header. Such functions are called void
functions in C++. Non-void functions are sometimes called valued func-
tions. A void function returns after the last statement of the function’s body
is executed. If we need the function to return from somewhere else, this can
be achieved with an empty return statement:

return;

The function read hours reads the hours worked by an employee each day
of the pay period and returns the total. The function read wage is similar.
Note that these two functions assume that the data that needs to be read is
the next data that is available from the stream received as argument.

Figure 4.4 shows a portion of the main function of the pay calculator that
uses those four functions. For comparison, Figure 4.5 shows the same code
before the introduction of the functions. The version of main that uses the
functions is clearly much simpler and much easier to read and understand.

Note that the function read hours uses the global constant
kLengthPayPeriod. This is possible only because this constant has global
scope. If the constant was local to main, it would have to be passed as an
argument to read hours. Therefore, the fact that the constant has global
scope simplifies the declaration and calling of read hours.

But note that this idea should not be abused. In particular, it is a bad
idea to declare variables to have global scope. In a program with no global

82 CHAPTER 4. FUNCTIONS

int employee number;
while (ifs hours >> employee number) {

double num hours = 0;
for (int i = 1; i <= kLengthPayPeriod; ++i) {

double num hours one day;
ifs hours >> num hours one day;
num hours += num hours one day;

}

double wage;
ifs wages >> employee number >> wage;

double pay = num hours ∗ wage;
ofs pay << std::setw(6) << employee number

<< std::fixed << std::setprecision(2)
<< std::setw(7) << num hours
<< std::setw(9) << pay << ’\n’;

}

Figure 4.5: The code of Figure 4.4 without functions

4.3. FUNCTIONS IN THE PAY CALCULATOR 83

variables, the only variables that can be modified by a function are those that
are passed as arguments to the function. But in a program that has global
variables, a function can modify a global variable that is not mentioned in
the function call. Such hidden side-effects make programs usually harder to
understand. As a general rule, only constants should have global scope and it
is best to reserve this for compile-time constants that truly affect the behavior
of the entire program.

Study Questions

4.3.1. What does the return type void indicate?

4.3.2. Is every function required to include a return statement in its body?

4.3.3. Why is it a bad idea for variables to have global scope?

Exercises

4.3.4. Create a function called print date that prints a date to an output
stream. The arguments of the function are the date and the output
stream. The date is passed as three separate integers, one for the month
of the date, one for the day and one for the year, in that order. The date
is printed in the format m/d/y.

4.3.5. Create a function called println that takes a stream and an integer as
arguments and prints the integer to the stream followed by a new line
character.

4.3.6. Modify the pay calculator as described below. For each part, modify
only one of the program’s functions.

a) Employees are paid time and a half for every hour worked beyond
40 hours.

b) The number of hours is no longer printed to the output file.

c) The wage file contains the name of the employee. More precisely,
the data for each employee consists of three lines, one for the em-
ployee number, one for the employee name and one for the numbers
of hours worked each day of the pay period.

84 CHAPTER 4. FUNCTIONS

int round(double x)
{

int result = x;
x −= result;
if (x >= 0.5) ++result;
if (x <= −0.5) −−result;
return result;

}

Figure 4.6: The function round

4.4 Reference Arguments

Suppose that y is a variable of type double. The function round we created
earlier in this chapter (and shown again in Figure 4.6) can be used to easily
print the rounded value of y:

cout << round(y);

Or to set another variable to the rounded value of y:

i = round(y);

The function can also be used to round the value of y, in the sense of setting
y to its rounded value:

y = round(y);

This last application of round is not as elegant as the others because the
name of y needs to be repeated. One solution is to create another function that
instead of returning the rounded value of its argument, would set its argument
to its rounded value. Let’s call this function make rounded. The function
could then be used to round y with a simple function call:

make rounded(y);

Figure 4.7 shows how make rounded can be defined. The function is
very similar to round. One difference is that instead of returning result,
make rounded sets its argument x to the value of result. The other dif-
ference is that the declaration of the argument includes an ampersand (&).

4.4. REFERENCE ARGUMENTS 85

void make rounded(double & x)
{

int result = x;
x −= result;
if (x >= 0.5) ++result;
if (x <= −0.5) −−result;
x = result;

}

Figure 4.7: The function make rounded

Understanding what this does, and how this works, requires taking a closer
look at how arguments are passed to functions.

We see in Figure 4.6 that the argument of round was declared without
this ampersand. What this indicates is that the argument of round is passed
by value. This means that the function receives the value of the expression
that is provided in the function call. For example, suppose that the function
is called as follows:

round(y)

Then the argument x of the function is set to the value of y. This implies that
x is a copy of y. In particular, if round modifies the value of x, the value of
y won’t be affected.

In contrast, the ampersand in the declaration of the argument of
make rounded indicates that the argument of the function is passed by ref-
erence. This means that this argument will be set to refer to the expression
that’s provided in the function call. For example, suppose that the function
is called as follows:

make rounded(y)

Then the argument x of the function will refer to y. The main consequence is
that when make rounded modifies the value of x, then, at the same time, it
also modifies the value of y.

So reference arguments allow a function to modify the value of a variable
that belongs to the calling function. This avoids the need for awkward code
such as

y = round(y);

86 CHAPTER 4. FUNCTIONS

string read name()
{

cout << "What is your name? ";
string name;
getline(cin, name);
return name;

}

Figure 4.8: A function that reads a name

void read name(string & name)
{

cout << "What is your name? ";
getline(cin, name);

}

Figure 4.9: A version of read name that uses a reference argument

But reference arguments have other important benefits.
One is that reference arguments can improve the efficiency of programs.

For example, suppose that we want to ask the user for his or her name and
then store that name in variable user name. Figure 4.8 shows a function that
we could create for this purpose. The function would then be used as follows:

string user name = read name();

Figure 4.9 shows another version of this function, one that uses a reference
argument. This version would be used as follows:

string user name;
read name(user name);

In terms of convenience, there is little difference between these functions,
although some programmers prefer one style over the other. But there could be
a large difference in terms of efficiency. That’s because with the first version,
the returned string needs to be copied into the variable of the calling function
(user name). But with the second version, this copying is not needed: the
reference argument essentially allows read name to read the name straight

4.4. REFERENCE ARGUMENTS 87

void read name and hometown(string & name, string & hometown)
{

cout << "What is your name? ";
getline(cin, name);
cout << "What is your hometown? ";
getline(cin, hometown);

}

Figure 4.10: A function that reads a name and hometown

into the variable of its calling function. If the string is long, this may lead to
significantly faster code.

To illustrate another benefit of reference arguments, suppose that we need
to extend read name to ask the user for his or her name and hometown. And
let’s say that we want these two strings stored separately. A valued version
of the function would need to return two strings but this is not possible. The
simplest solution to this problem is to use two reference arguments, as shown
in Figure 4.10.

To summarize, reference arguments allow a function to directly modify the
variables of its calling function. This has three main benefits: it can simplify
the code of the calling function, it can improve the overall efficiency of the
program, and it allows a function to pass back multiple values to its calling
function.

We end this section with several additional notes about reference argu-
ments. First, there is another way in which reference arguments can improve
the efficiency of programs. Suppose that we’d like to create a function println

that takes a string as argument and prints the string and moves to a new line.
How should the string argument be passed to the function? If it is passed by
value, then the string will be unnecessarily copied during the function call. So
it is more efficient to pass the string by reference, as shown in Figure 4.11.
This allows the function to directly print the string held by the calling function
instead of first wasting time copying the string.

Note, however, that in this case, there is a disadvantage to passing the
string by reference: while we don’t want the println to modify the string
held by its calling function, it could happen by accident. This is not possible
if the argument is passed by value but it can happen when the argument is
passed by reference. One way to prevent this while still avoiding the copying

88 CHAPTER 4. FUNCTIONS

void println(string & s)
{

cout << s << ’\n’;
}

Figure 4.11: A function that prints a string and moves to the next line

void println(const string & s)
{

cout << s << ’\n’;
}

Figure 4.12: A version of println in which the argument is passed by constant
reference

of the string is to declare that the string argument is constant, as shown in
Figure 4.12. We say that such an argument is passed by constant reference.

So we now know three ways in which arguments can be passed to a function:
by value, by reference and by constant reference. Arguments passed by value
or constant reference can only be used to send data to the function. This is
the case with the arguments of round and println. We can say that these
arguments are inputs to the function.

In contrast, reference arguments can be used by the function to send data
back to its calling function by directly modifying a variable of the calling
function. In some cases, a function can use its reference arguments to both
receive data from its calling function and send data back to it. This is how the
argument of make rounded is used. In other cases, reference arguments are
only used to send data back to the calling function. This is how the arguments
of the two read functions are used. So we can say that a reference argument
is an output of the function or, in some cases, both input and output.

We can chose between passing by value, reference or constant reference as
follows. If the function needs to modify a variable held by its calling function,
then the corresponding argument needs to be passed by reference. This was
the case with the arguments of make rounded and of the two read functions.
If the function should not modify a variable held by its calling function, then
it is safer to pass the corresponding argument by value or constant reference.
This is how we passed the arguments of round and println. If the function

4.4. REFERENCE ARGUMENTS 89

does not need a copy of the value that’s passed to it and if copying that value
can take a significant amount of time, then it is more efficient to pass the
argument by constant reference. This is what we did in the case of println
because println does not need a copy of the string and because string

arguments can be large. Otherwise, the argument can be passed by value.
This is how the argument of round is passed. In general, it is fine to pass int,
double and char arguments by value.

Note that when an argument is passed by value or constant reference,
then when the function is called, any expression (of the correct type) can be
provided as argument. For example,

i = round(y + 1.2);
println("hello");

are all valid function calls. But when an argument is passed by reference, then
a variable must be provided in the function call. For example, the following
are not valid:

make rounded(y + 1.2);
read name("hello");

This makes sense because if an argument is passed by reference, then what
the argument refers to must be able to change. So it has to be a variable.

In the previous section, we noted that stream arguments must always be
passed by reference (but we didn’t use this terminology at the time). This is
simply because every time a stream variable is used to read from or write to
a file, the value of the stream variable changes. Mostly because the variable
keeps track of the location where the next operation should be performed in
the file. But also because, in case of an error, the state of the stream variable
will be set to error. This is what causes the stream variable to evaluate to
false when as a Boolean expression.

Study Questions

4.4.1. What happens when an argument is passed by value?

4.4.2. What happens when an argument is passed by reference?

4.4.3. What does a reference argument allow a function to do?

90 CHAPTER 4. FUNCTIONS

4.4.4. What are three benefits of reference arguments?

4.4.5. When should an argument be passed by reference?

4.4.6. When should an argument be passed by value?

4.4.7. When should an argument be passed by constant reference?

4.4.8. Why should stream arguments always be passed by reference?

Exercises

4.4.9. Create a function called negate that takes a number as argument and
reverses its sign. For example, negate(x) changes the value of x from
3.7 to −3.7, or from −4 to 4. The argument of the function is of type
double.

4.4.10. Create a function called add that takes three numbers as arguments
and sets the third one to be the sum of the first two. For example,
add(3.7, −2.3, x) sets the value of x to 1.4. The arguments of the
function are of type double.

4.4.11. Create a function called read date that reads a date from an input
stream. The arguments of the function are the input stream and three
separate integers, one for the month of the date, one for the day and one
for the year, in that order. In the stream, the date is assumed to be in
the format m/d/y.

4.4.12. Create a function called println that takes a string and a stream as
arguments and prints the string to the stream followed by a new line
character.

4.5 Reference Arguments in the Pay Calcula-

tor

We return to our pay calculator. We will add one more function to the pro-
gram, a function to which main will delegate the opening of the files. This
will result in the main function shown in Figure 4.13. Not only is this version
of main much simpler than before, at 29 lines it is also reasonably short. It is

4.5. REFERENCE ARGUMENTS IN THE PAY CALCULATOR 91

int main() {
std::ifstream ifs wages;
std::ifstream ifs hours;
std::ofstream ofs pay;
string hours file name;
string pay file name;

if (!open files(ifs wages, ifs hours, ofs pay, hours file name,
pay file name))

return 1;

int employee number;
while (ifs hours >> employee number) {

double num hours = read hours(ifs hours);
double wage = read wage(ifs wages);
double pay = compute pay(num hours, wage);
print pay(employee number, num hours, pay, ofs pay);

}

cout << "\nHours read from " << hours file name
<< " and pay written to " << pay file name << ".\n";

return 0;
}

Figure 4.13: The main function of the pay calculator

92 CHAPTER 4. FUNCTIONS

useful from a programmer’s point of view when the body of a function is short
enough that most of it can fit on a computer screen.

Figure 4.14 shows the definition of the open files function. The function
receives as arguments three file streams and two strings. The function’s job is
to open the wage, hours and pay files, in that order, and associate them with
those streams. The names of the hours and pay files are obtained from the
user and returned to main through the string arguments. In case any of the
files fails to open, the function immediately prints an error message, closes all
the files and returns the value false.

The implementation of open files is straightforward but includes two
novelties. One is the return type bool. This type consists of the two Boolean
values true and false.

The second novelty is the way in which the files are opened. Up until now,
every file has been opened at the same time that we declared the associated
file stream variable. But here, the declaration of the file stream variables,
which occurs in main, is separate from the opening of the files, which occurs
in open files. To open a file and associated it with a stream, open files

uses code of the following general form:

file stream.open(file name);

Later, to close a file, the following code is used:

file stream.close();

The redesign of our pay calculator is complete. The program now consists
of six functions that each have a well-defined task. Various aspects of the
program are now isolated within separate functions, including the opening of
the files (open files), the reading of the hours and wage (read hours and
read wage), the computing of the pay (compute pay), the printing of the
pay (print pay), and the overall control of the program (main).

We end this section by addressing an issue of style. Some programmers
prefer to write code that satisfies the following guidelines:

1. The name of a void function should be a verb phrase that describes the
action performed by the function.

2. The name of a Boolean function (a function that returns a Boolean value,
that is, a function with return type bool) should be a predicate (a verb
phrase that is either true or false).

4.5. REFERENCE ARGUMENTS IN THE PAY CALCULATOR 93

bool open files(std::ifstream & ifs wages,
std::ifstream & ifs hours,
std::ofstream & ofs pay,
string & hours file name,
string & pay file name)

{
ifs wages.open(kWagesFileName);
if (!ifs wages) {

cout << "Could not open file " << kWagesFileName << ".\n";
return false;

}

cout << "Name of input file containing the hours: ";
getline(cin, hours file name);
ifs hours.open(hours file name);
if (!ifs hours) {

cout << "Could not open file " << hours file name << ".\n";
ifs wages.close();
return false;

}

cout << "Name of output file for the pay: ";
getline(cin, pay file name);
ofs pay.open(pay file name);
if (!ofs pay) {

cout << "Could not open file " << pay file name << ".\n";
ifs wages.close();
ifs hours.close();
return false;

}

return true;
}

Figure 4.14: The function open file

94 CHAPTER 4. FUNCTIONS

int main() {
std::ifstream ifs wages;
std::ifstream ifs hours;
std::ofstream ofs pay;
string hours file name;
string pay file name;

if (!files open successfully(ifs wages, ifs hours, ofs pay,
hours file name, pay file name))

return 1;

int employee number;
while (ifs hours >> employee number) {

double num hours = hours read from(ifs hours);
double wage = wage read from(ifs wages);
double pay = pay computed from(num hours, wage);
print pay(employee number, num hours, pay, ofs pay);

}

cout << "\nHours read from " << hours file name
<< " and pay written to " << pay file name << ".\n";

return 0;
}

Figure 4.15: The main function of the pay calculator

3. The name of any other valued function should be a noun phrase that
describes the value returned by the function.

Mainly as an exercise, let’s revise our pay calculator so it meets these
guidelines. One way to achieve this is simply to rename some of the functions.
The resulting main function is shown in Figure 4.15.

Now, if we wanted to keep the original function names, which were all
non-predicate verb phrases, then we would need to redesign the program so
that all the functions are void. Figures 4.16 to 4.18 show the result. All
the previously valued functions now have an additional reference argument
that they use to send back to main the value that they used to return. This
lengthens the implementation of main and open files but shortens that of

4.6. MODULARITY AND ABSTRACTION 95

read hours and read wage. The difference is not significant but main is
not as simple as it used to be.1

When a function has more than one argument, a useful guideline is to gen-
erally order the arguments as follows: arguments used only as input (that is,
arguments passed by value or constant reference), arguments used as both in-
put and output, arguments used only as output. Within these categories, more
important arguments typically come first. For example, the pay argument of
compute pay was placed after the others because it is used as output. And
the arguments of open files were placed in decreasing order of importance
with respect to the purpose of the function. But we made an exception when
we placed the stream argument of the read functions at the end. In this case,
we preferred to be consistent with the order of the arguments of print pay.

4.6 Modularity and Abstraction

In this chapter, we redesigned our pay calculator by breaking it up into a
collection of six separate functions. This has a number of benefits, as discussed
earlier in this chapter.

A program that consists of multiple functions is often said to be modular.
But modularity is a concept that’s more general than just the use of functions.
Understanding what modularity is helps us better understand the benefits of
modularity.

A program is modular if it consists of components (or modules) that
satisfy the following two conditions:

1. Each component performs a well-defined task.

2. The components are as independent as possible from each other, in the
sense that a change to one component affects other components as little
as possible.

Components are often functions but they can also be programmer-defined data
types.

Note that modularity is a matter of degree since components can be more
or less independent from each other. The goal is to design programs that are
as modular as possible.

1You may have an opinion about which style you prefer but, in any case, it is good to
be familiar and comfortable with code written in a variety of different styles.

96 CHAPTER 4. FUNCTIONS

void compute pay(double num hours, double wage, double & pay)
{

pay = num hours ∗ wage;
}

void print pay(int employee number, double num hours, double pay,
std::ostream & out)

{
out << std::setw(6) << employee number

<< std::fixed << std::setprecision(2)
<< std::setw(7) << num hours
<< std::setw(9) << pay << ’\n’;

}

void read hours(double & num hours, std::istream & in)
{

num hours = 0;
for (int i = 1; i <= kLengthPayPeriod; ++i) {

double num hours one day;
in >> num hours one day;
num hours += num hours one day;

}
}

void read wage(double & wage, std::istream & in)
{

int employee number;
in >> employee number >> wage;

}

Figure 4.16: Functions for the pay calculator

4.6. MODULARITY AND ABSTRACTION 97

void open files(std::ifstream & ifs wages,
std::ifstream & ifs hours,
std::ofstream & ofs pay,
string & hours file name,
string & pay file name,
bool & success)

{
ifs wages.open(kWagesFileName);
if (!ifs wages) {

cout << "Could not open file " << kWagesFileName << ".\n";
success = false;
return;

}

cout << "Name of input file containing the hours: ";
getline(cin, hours file name);
ifs hours.open(hours file name);
if (!ifs hours) {

cout << "Could not open file " << hours file name << ".\n";
ifs wages.close();
success = false;
return;

}

cout << "Name of output file for the pay: ";
getline(cin, pay file name);
ofs pay.open(pay file name);
if (!ofs pay) {

cout << "Could not open file " << pay file name << ".\n";
ifs wages.close();
ifs hours.close();
success = false;
return;

}

success = true;
}

Figure 4.17: The function open file

98 CHAPTER 4. FUNCTIONS

int main() {
std::ifstream ifs wages;
std::ifstream ifs hours;
std::ofstream ofs pay;
string hours file name;
string pay file name;

bool success;
open files(ifs wages, ifs hours, ofs pay, hours file name,

pay file name, success);
if (!success) return 1;

int employee number;
while (ifs hours >> employee number) {

double num hours;
read hours(num hours, ifs hours);

double wage;
read wage(wage, ifs wages);

double pay;
compute pay(num hours, wage, pay);
print pay(employee number, num hours, pay, ofs pay);

}

cout << "\nHours read from " << hours file name
<< " and pay written to " << pay file name << ".\n";

return 0;
}

Figure 4.18: The main function of the pay calculator

4.6. MODULARITY AND ABSTRACTION 99

Earlier in this chapter, we mentioned that the use of functions in programs
has a number of advantages. But these advantages actually follow from the
more general concept of modularity.

1. Modular programs are easier to understand because each of their com-
ponents focuses on one well-defined task and because each component
can be understood in isolation. In addition, modular programs contain
less repeated code, which also helps make them easier to read.

2. Modular programs are easier to implement because components can be
coded one at a time and because the implementation work can be divided
among various programmers. In addition, modularity makes it easier to
reuse components from other programs, which saves work.

3. Modular programs are easier to test because components can be tested
in isolation. This simplifies locating and fixing errors.

4. Modular programs are easier to modify because they contain less re-
peated code and because changes to one component often only affect
that component.

5. Modularity increases the reliability of programs by making it easier
to reuse software components that often have already been extensively
tested.

Independence between software components usually occurs when one com-
ponent does not depend on some aspect of another component. We then say
that this aspect of the second component is hidden from the first one. This is
called information hiding.

With functions, a high degree of information hiding, and therefore in-
dependence, is essentially automatic. For example, consider the function
compute pay of the pay calculator. The main function depends on what
compute pay does, the fact that it computes the pay. But main does not de-
pend on how compute pay computes the pay. Those implementation details
are hidden in the body of the function.

The previous example illustrates the usual way in which information hiding
and independence are achieved: by having the users of a component depend
on its purpose (what the component does) but not on its implementation (how
the component does what it does). This is called abstraction. In the case of
functions, we call it procedural abstraction.

100 CHAPTER 4. FUNCTIONS

Abstraction is one of the most important techniques for the design of mod-
ular programs. Abstraction is automatic with functions but it isn’t with other
kinds of software components such as data types. With those components,
abstraction must be designed into the software. This is why it is important to
understand what abstraction is and how it is achieved.2

Note that abstraction leads to two clearly separate perspectives on each
software component. From the point of view of its users, a component can be
seen as having a purpose but no implementation: it is an abstract component.
This is the outside or public view of the component. This view concerns only
what the component does and it includes the interface of the component, which
is the information needed to use, or communicate with, the component. In the
case of a function, this is the name of the function, as well as its arguments
and return type.

The developer who’s implementing a component has a different view: he
or she also sees the implementation of the component. This is the inside or
private view. It concerns how the component does what it does and it includes
the inner workings of the component.

Study Questions

4.6.1. What exactly is a modular program?

4.6.2. What are five advantages of modularity?

4.6.3. What is abstraction?

4.7 Documentation

Many of the advantages of modularity we described in the previous section
require that we have a clear understanding of what each component does. For
example, if the implementation of the components is divided among various
programmers, then the programmer who’s implementing a component and
the programmer who’s using that component must agree precisely on what
the component does. And if a component is going to be reused in another
program, the developer of that program will have to know exactly what the

2At Clarkson, data abstraction is one of the main focuses of the course CS142 Introduction
to Computer Science II.

4.7. DOCUMENTATION 101

component does. The best approach is to carefully write down the purpose of
each component. This is one form of documentation that all programs should
include.

The purpose of each function of a program can be described in a separate
document or in the source code itself. If it is done in the source code, it is
usually better to put all the documentation at the top of each source file.
Figure 4.19 show one way of doing this.

The code of our schedule viewer program is contained in a single file. Af-
ter the include directives and using declarations, the global constants and
the functions are declared and documented. Recall that the declaration of a
function is its header followed by a semicolon. After the declaration and doc-
umentation of all the functions, the source file of the program continues with
the implementation (body) of those functions.

The latest version of the pay calculator is available on the course web site
under Pay Calculator as pay calculator 3 2 documentation.cpp.

Study Questions

4.7.1. Why is it important to document the purpose of each function?

102 CHAPTER 4. FUNCTIONS

// Computes the pay corresponding to the given number of hours and
// wage. The pay is returned.
double compute pay(double num hours, double wage);

// Opens the wage, hours and pay files, in that order. The names
// of the hours and pay files are obtained from the user. Those
// names are returned through the corresponding arguments. In case
// one of the files does not open, an error message is immediately
// printed, all the files are closed and the function returns
// false.
bool open files(std::ifstream & ifs wages,

std::ifstream & ifs hours,
std::ofstream & ofs pay,
string & hours file name,
string & pay file name);

// Prints, for each employee, the number of that employee, the
// number of hours worked and the pay earned.
void print pay(int employee number, double num hours, double pay,

std::ostream & out);

// Reads the number of hours worked each day by an employee and
// returns the total. The next data in the stream is assumed to
// be the numbers of hours worked each day by the employee. The
// total is returned.
double read hours(std::istream & in);

// Reads the wage of the next employee. The next data in the
// stream is assumed to be the number and wage of the employee.
double read wage(std::istream & in);

// Runs the pay calculator.
int main();

Figure 4.19: Declaration and documentation of the pay calculator functions

Chapter 5

Vectors

In this chapter, we will learn how to use vectors to store large amounts of data.

5.1 A Simple File Viewer

We will create a simple file viewer that allows the user to view the contents of
a text file. The file viewer is not an editor: the user can only view the contents
of the file, not modify it.

Figure 5.1 shows what the interface of this program will look like. The
program displays the name of the file that is currently being viewed, if any,
followed by a certain number of lines from that file surrounded by a border.
Below the text, a menu of commands is displayed followed by the prompt
“choice:”. The user types the first letter of a command, the command
executes and everything is redisplayed.

The commands next and previous cause the file viewer to display the next
or previous “pages”. The command open causes the program to ask the user
for the name of another file to open.

We will design and implement the file viewer later in this chapter. A main
issue in the design of the program is the access to the file contents. Because
the user can page forward and backward through the file, the program may
have to display some lines multiple times. These lines would then also have
to be read from the file multiple times. Since files are typically stored on a
secondary storage device such as a disk, file input and output operations are
relatively slow, much slower than operations that can be performed on the
computer’s main memory.

103

104 CHAPTER 5. VECTORS

preface.txt
−−

1 After a few computer science courses, students may start to
2 get the feeling that programs can always be written to
3 solve any computational problem. Writing the program may
4 be hard work. For example, it may involve learning a
5 difficult technique. And many hours of debugging. But
6 with enough time and effort, the program can be written.
7
8 So it may come as a surprise that this is not the case:
9 there are computational problems for which no program
10 exists. And these are not ill−defined problems (Can a
−−

next previous open quit
−−−−−−−
command: o
file: introduction.txt

Figure 5.1: Sample interface of the file viewer

Therefore, a more efficient alternative is to store the contents of the file in
main memory, that is, in the program’s variables. How exactly could this be
done? One option would be to read each line as a string and store those strings
in separate variables. But this is not possible since we don’t know ahead of
time how many lines the file contains. Even if we were willing to put a limit
on that number, say, 10,000 lines, it would totally impractical to declare and
work with 10,000 separate variables.

Ideally, what we would like is a way to store a large number of strings in a
single variable. This is what vectors will allow us to do.

5.2 Vector Basics

A vector is a container that holds a (finite) sequence of values called elements.
These elements can be of pretty much any type but in an individual vector, all
elements have to be of the same type. The type of element held by a particular
vector is specified at the time that the vector is created. For example,

vector<int> v;

5.2. VECTOR BASICS 105

creates a vector v that holds integers.
Vectors can be created in many different ways. The above declaration

produces an empty vector, one that contains no elements. On the other hand,

vector<int> v = {12, 37, 18};

creates a vector that contains the given integers.
Larger vectors can be created by specifying their size. For example,

vector<int> v(n, e);

creates a vector that contains n elements initialized to be copies of e. On the
other hand,

vector<int> v(n);

creates a vector that contains n elements initialized to a default value deter-
mined by their type. For example, numbers are initialized to 0 and strings are
initialized to be empty.

Vectors are dynamic in the sense that they can grow and shrink as needed.
For example,

v.push back(e);

adds a new element to the back of v and initializes that element be a copy
of e. On the other hand,

v.pop back();

deletes the last element of v. And

v.clear();

deletes all the elements of v, resulting in an empty vector.
Individual vector elements are numbered starting at 0. These numbers are

called indices and can be used to access the elements of a vector. For example,

cout << v[i];

(“c-out v-i”) prints the element in v that has index i. The square brackets
represent the indexing operator.

The indexing operator returns a reference to the requested element, which
implies that the operator can be used not only to retrieve an element but also
to modify that element. For example

106 CHAPTER 5. VECTORS

v[i] = e;

assigns the value e to element v[i]. (In other words, the above code stores a
copy of e at index i in v.)

The contents of a vector can be printed by using a range-for loop. For
example,

for (int x : v) cout << x;

prints all the elements of v. This can be read as

For every integer x in v, print x to cout.

Range-for loops can also be used to modify the elements of a vector. For
example,

for (int & x : v) ++x;

adds 1 to all the elements of v. Note that this requires that x be declared to be
a reference to an integer. In fact, the element of a range-for loop is declared
just like a function argument, which means that it can also be a constant
reference.

The general form of a range-for loop is

for (element declaration : container) statement

As in the case of other loops, the body of a range-for loop can also be a
compound statement:

for (element declaration : container) {
statements

}

An alternative way of performing an operation on every element of a vector
is to use an ordinary for loop controlled by an index. For example,

for (int i = 0; i < v.size(); ++i) cout << v[i];

prints all the elements of v. The code v.size() returns the number of ele-
ments in v. Note that the indices in a vector range from 0 to the size of the
vector minus 1.

If an operation needs to be performed on every element of a vector, a range-
for loop is more convenient. But if an operation needs to be performed on only
a portion of a vector, a loop controlled by an index is both more convenient
and more efficient. For example,

5.2. VECTOR BASICS 107

for (int i = 0; i < 10; ++i) cout << v[i];

prints the first 10 elements of v.
Note that the indexing operator is not safe. When using the operator to

access vector elements, it is very important to make sure that the index is valid,
that is, at least 0 and less than the size of the vector. Otherwise, the operator
will access a memory location outside of the memory currently occupied by
the vector, possibly causing the program to crash or the value of some other
variable to change. This type of bug can be very difficult to find.

Table 5.1 shows the vector operations we discussed in this section. These
are also the operations we will need for the file viewer program. Several ad-
ditional vector operations will be presented later in this chapter. The type
vector is defined in the library file vector and included in the std names-
pace.

Study Questions

5.2.1. What is a vector?

5.2.2. In what way are vectors dynamic?

5.2.3. What operator can be used to access individual vector elements?

5.2.4. What is the general form of a range-for loop?

5.2.5. What is an example of a situation where an ordinary loop is preferable
to a range-for loop for working with a vector?

Exercises

5.2.6. Suppose that v is a vector of integers. Write code that replaces the
contents of v with the numbers 10, 20, . . . , 1000.

5.2.7. Suppose that v is a vector of strings. Write a range-for loop that prints
the contents of the vector to cout, one string per line.

5.2.8. Suppose that v is a vector of integers. Write a loop that prints the last
ten integers of the vector to cout. Assume that v contains at least ten
integers.

108 CHAPTER 5. VECTORS

vector<T> v

vector<T> v(n)

vector<T> v(n, e)

vector<T> v = {elements}
Creates a vector v that can hold elements of type T. The vector
is initialized to be empty, or to contain n elements of type T, or n

copies of element e, or copies of the given elements.

v.size()

Returns the number of elements contained in vector v.

v[i]

Returns a reference to the element at index i in vector v.

v.push back(e)

Adds a copy of element e to the back of vector v.

v.pop back()

Deletes the last element of vector v.

v.clear()

Deletes all the elements of vector v.

Table 5.1: Some basic vector operations

5.3. OBJECT-ORIENTED PROGRAMMING 109

5.2.9. Create a function called sum that takes as argument a vector of integers
v returns the sum of all the integers in v.

5.2.10. Create a function called fill that takes as arguments a vector of
integers v and an integer x and replaces every element of v by a copy
of x.

5.2.11. Create a function called read that takes as arguments an input stream
in, a vector of integers v and an integer n and fills v with n integers read
from in. The integers read from in are assumed to be separated by white
space. The original contents of v is deleted.

5.2.12. Create a function called read that takes as arguments an input file
stream in and a vector of integers v and fills v with integers read from
in. Integers are read until the end of the file is reached. The integers
read from in are assumed to be separated by white space. The original
contents of v is deleted.

5.3 Object-Oriented Programming

In the previous section, we learned what vectors are and some basic operations
that can be performed on them. Later in this chapter, we will use vectors to
implement our file viewer program. And note that we will do that without
knowing how vectors are implemented. In other words, to use vectors, all
we need to know is the purpose of a vector, that is, what data it holds (a
sequence of elements) and what operations it provides (e.g., push back and
the indexing operator). We don’t need to know how the vector works, that
is, how the data is stored and how the operations work. This is a great
example of abstraction. And since vectors are a data type, not a function,
this is actually an example of data abstraction. (Recall that in the case of
functions, abstraction is called procedural abstraction. See Section 4.6.)1

So vectors are a great example of data abstraction. But they also are a
good example of object-oriented programming. This section briefly discusses

1Note that even though code that uses vectors does not depend on the implementation of
vectors, only on their purpose, it is still worthwhile to learn the techniques used in a typical
implementation of vectors. Mainly because these techniques have many other applications
but also because learning how vectors work gives us a deeper understanding of vectors,
which can help us use them more effectively. At Clarkson, the implementation of vectors is
covered in the course CS142 Introduction to Computer Science II.

110 CHAPTER 5. VECTORS

the basic idea and rationale behind object-oriented programming. It also in-
troduces some of the terminology. This is all useful for understanding why
vectors are designed the way they are.

Techniques like modularity and abstraction have been developed to help in
the creation of large programs. Object-oriented programming is another one
of those techniques.

The way most people usually learn to program is called imperative pro-
gramming. In imperative programming, a program is viewed as a sequence
of instructions that tell the computer what to do. Imperative programming
works well with small programs but it is not as effective with large programs.

In object-oriented programming (OOP), a program is viewed as a col-
lection of objects that work together to accomplish the overall goal of the
program. Each object has a certain set of responsibilities. Objects collaborate
by requesting services from each other. They do so by sending messages to
other objects. The receiver of a message responds by following a predeter-
mined method. The set of messages understood by an object, as well as the
methods used to respond to those messages, are determined by the type, or
class, of the object.

For example, if vectors were designed in an imperative way, then they would
come with a set of functions that allow us to perform various operations on
vectors. For example,

push back(v, e);

would add a copy of e to the back of vector v. But note how this code is
usually interpreted: we are modifying the vector. The vector itself is passive;
it just sits there waiting for us to perform operations on it.

In contrast, in the object-oriented view of programming, a vector is an
object with responsibilities. When needed, we ask a vector to add an element
to its back:

v.push back(e);

On receiving the message push back with argument e, v responds by exe-
cuting the corresponding method, which is determined by the fact that v is of
class vector.

Another aspect of object-oriented programming is that objects are always
properly initialized as soon as they are created. For example,

vector<int> v;

5.3. OBJECT-ORIENTED PROGRAMMING 111

creates a vector of integers and automatically initializes it to be empty. On
the other hand,

vector<int> v(n);

causes the vector to be initialized to contain n integers. This is in contrast to
a declaration such as

int x;

which leaves x with an arbitrary value.
The automatic initialization of an object is done by a special method called

a constructor. Like other methods, constructors can have arguments. The
declaration

vector<int> v(n);

automatically calls a constructor that takes a single integer as argument. The
declaration

vector<int> v;

automatically calls a constructor that has no arguments. This constructor is
called the default constructor. In general, the object constructed by the
default constructor of a class is called the default object of that class.

It is also possible to initialize a vector to be a copy of another vector:

vector<int> v(v2);

The constructor used in this case is called the copy constructor. Note that
the copy constructor can also be used with the following alternate syntax:

vector<int> v = v2;

In addition to being well-suited for thinking about large, complex pro-
grams, object-oriented programming naturally leads to a high degree of mod-
ularity. First, because it automatically produces a lot of data abstraction,
which results in a high degree of independence between components. Second,
OOP encourages software components to delegate as many tasks as possible
to other components, just as we would when organizing the members of a
group of people in the real world. This tends to lead to components that are

112 CHAPTER 5. VECTORS

highly cohesive, that is, well focused on a particular task. Recall that inde-
pendence and cohesion are the two defining characteristics of modularity (see
Section 4.6).

In pure OOP, every component of a program is an object. With lan-
guages such as C++ and Java, we use a mix of object-oriented and imperative
programming. Note that in the context of C++, methods are often called
member functions.

Study Questions

5.3.1. In OOP, how is an object viewed differently from just a piece of data?

5.3.2. What is a message? What is a method? What is a receiver?

5.3.3. What is a constructor? What is a default constructor? What is a copy
constructor?

5.3.4. What is the ultimate goal of both data abstraction and OOP?

5.4 Design and Implementation of the File

Viewer

We now use vectors to create the file viewer program we outlined at the be-
ginning of this chapter. We will build the program gradually, beginning with
a first version that always displays the entire file. In particular, the only two
commands available in this version of the program will be open and quit.
Figure 5.2 shows the main function of this version of the program. Figures 5.3
and 5.4 show the functions display and open files.

Figure 5.5 shows the main function of a second version of the program.
(Some portions of the code are omitted to allow the function to fit on one page.)
In this version, the program begins by asking the user for a window height, that
is, the number of lines to be displayed at one time. In addition, the commands
next and previous are now implemented. Note how the implementation of
these commands guarantees that they do not move too far in either direction.

Figure 5.6 shows the display function of the second version of the pro-
gram. (The open file function is the same as in the first version.) In the
implementation of display, the variable ix stop line is created for effi-
ciency reasons, to avoid unnecessarily redoing the addition

5.4. DESIGN AND IMPLEMENTATION OF THE FILE VIEWER 113

// Runs the file viewer.
int main() {

string file name;
vector<string> v lines;

bool done = false;
while (!done) {

display(file name, v lines);

cout << "command: ";
char command;
cin >> command;
cin.get(); // ’\n’

if (command == ’q’) {
done = true;

}
else if (command == ’o’) {

open file(file name, v lines);
}

}

return 0;
}

Figure 5.2: The main function of a first version of the file viewer

114 CHAPTER 5. VECTORS

// Displays the file name, all the document lines stored in the
// vector and the menu of commands.
void display(const string & file name,

const vector<string> & v lines)
{

const string long separator =
"−−";

const string short separator = "−−−−−−−";

cout << ’\n’;

if (file name == "")
cout << "<no file opened>\n";

else
cout << file name << ’\n’;

cout << long separator << ’\n’;

for (int i = 0; i < v lines.size(); ++i) {
cout << setw(6) << i+1 << " " << v lines[i] << ’\n’;

}

cout << long separator << ’\n’
<< " open quit\n";

cout << short separator << ’\n’;
}

Figure 5.3: The display function

5.4. DESIGN AND IMPLEMENTATION OF THE FILE VIEWER 115

// Asks the user for a new file name and reads the contents of the
// file into the vector. The name of the file is returned through
// the argument file name.
void open file(string & file name, vector<string> & v lines) {

cout << "file: ";
getline(cin, file name);
std::ifstream file(file name);
v lines.clear();
string line;
while (getline(file, line)) v lines.push back(line);

}

Figure 5.4: The open files function

ix current line + window height

at every iteration of the loop. Note how the function takes care not to access
lines that are not present in the document.

The last version of the program we will create in this section will perform
some error-checking. When the user attempts to open a file, if the file fails
to open, the program will print an error message. This will be accomplished
as follows. The main function will hold a variable error message that’s
initially empty. If a file fails to open, the open files function will assign a
value to that variable. The next time it is called, the display function will
display the error message and reset it to empty.

Figure 5.7 shows the main function of this version of the program. Fig-
ures 5.8 and 5.9 show the open files and display functions. In the imple-
mentation of the open command, note that the resetting of ix top line is
now done by the open files function. This is because we don’t want the
index to be reset if the file fails to open and it is simpler for main to delegate
that task to open files.

The three versions of the file viewer we created in this section are available
on the course web site under File Viewer.

Exercises

5.4.1. Add a jump command to the file viewer. This command asks the user for
a line number and redisplays the file with the requested line at the top. In

116 CHAPTER 5. VECTORS

// Runs the file viewer.
int main() {

cout << "Window height? ";
int window height;
cin >> window height;
cin.get(); // \n
cout << ’\n’;

string file name;
vector<string> v lines;
int ix top line = 0;

bool done = false;
while (!done) {

display(file name, v lines, ix top line, window height);

cout << "command: ";
...

if (command == ’q’) {
...

}
else if (command == ’n’) {

if (ix top line + window height < v lines.size())
ix top line += window height;

}
else if (command == ’p’) {

if (ix top line > 0) ix top line −= window height;
}

}

return 0;
}

Figure 5.5: The main function with next and previous commands

5.4. DESIGN AND IMPLEMENTATION OF THE FILE VIEWER 117

// Displays the file name, the required number of lines from the
// document stored in the vector, and the menu of commands.
void display(const string & file name,

const vector<string> & v lines,
int ix top line,
int window height)

{
const string long separator =

"−−";
const string short separator = "−−−−−−−";

cout << ’\n’;

if (file name == "")
cout << "<no file opened>\n";

else
cout << file name << ’\n’;

cout << long separator << ’\n’;

int ix stop line = ix top line + window height;
for (int i = ix top line; i < ix stop line; ++i) {

if (i < v lines.size())
cout << setw(6) << i+1 << " " << v lines[i];

cout << ’\n’;
}

cout << long separator << ’\n’
<< " next previous open quit\n";

cout << short separator << ’\n’;
}

Figure 5.6: A display function that no longer displays the whole file

118 CHAPTER 5. VECTORS

// Runs the file viewer.
int main() {

cout << "Window height? ";
...

string file name;
vector<string> v lines;
int ix top line = 0;
string error message;

bool done = false;
while (!done) {

display(error message, file name, v lines, ix top line,
window height);

cout << "command: ";
...

if (command == ’q’) {
done = true;

}
else if (command == ’o’) {

open file(file name, v lines, ix top line,
error message);

}
...

}

return 0;
}

Figure 5.7: The main function with error handling

5.4. DESIGN AND IMPLEMENTATION OF THE FILE VIEWER 119

// Asks the user for a new file name, reads the contents of the
// file into the vector and resets the index to the top line to 0.
// The name of the file is returned through the argument file name.
// In case the file does not open, the file name, vector and index
// are left unchanged and the argument error message is assigned a
// value.
void open file(string & file name, vector<string> & v lines,

int & ix top line, string & error message)
{

cout << "file: ";
string new file name;
getline(cin, new file name);
std::ifstream file(new file name);
if (!file) {

error message = "Could not open " + new file name;
}
else {

v lines.clear();
string line;
while (getline(file, line)) v lines.push back(line);
file name = new file name;
ix top line = 0;

}
}

Figure 5.8: An open files function that performs error checking

120 CHAPTER 5. VECTORS

// Displays an error message (if any), the file name, the required
// number of lines from the document stored in the vector and the
// menu of commands. The error message is reset to empty after
// being displayed.
void display(string & error message,

const string & file name,
const vector<string> & v lines,
int ix top line,
int window height)

{
const string long separator =

"−−";
const string short separator = "−−−−−−−";

cout << ’\n’;

if (error message != "") {
cout << "ERROR: " + error message << ’\n’;
error message = "";

}

...
}

Figure 5.9: A display function that displays an error message

5.5. MULTIWAY BRANCHES 121

case the user enters an invalid line number N, the program should print
the error message ERROR: N is not a valid line number. Modify
the program as little as possible. (Make sure that the previous command
still works after a jump.)

5.5 Multiway Branches

The main function of the file viewer program (see Figures 5.5 and 5.7) uses a
sequence of if-else statements to figure out which command was entered by
the user, and to perform the appropriate action. This is somewhat inefficient
since, in many cases, this requires multiple tests to be performed. This also
obscures the fact that what we are really coding here is a multiway branch,
where we want a different action to be performed for each of the four possible
commands.

An alternative way of coding this multiway branch is to use a different type
of conditional statement called a switch statement, as shown in Figure 5.10.
When this switch statement executes, the value of command determines which
of the cases is executed.

The general form of a switch statement is shown in Figure 5.11. The
expression must evaluate to an integer or a character (that is, a value of
type int or char). Depending on that value, the switch statement jumps to
the corresponding case and executes the specified statements. If the value of
the expression does not match any of the given cases, then the statements of
the default case are executed.

Note that the default case is optional. When one is not specified, then
nothing happens if the value of the expression does not match any of the cases.

The break statements at the end of each case are also optional. Without
them, the switch statement jumps to the case that matches the value of
the expression and then executes the statements of that case and every other
case that follows, until either a break statement or the end of the switch

statement is encountered.
The version of the file viewer with a switch statement is available on the

course web site under File Viewer.

Study Questions

5.5.1. What is the general form of a switch statement?

122 CHAPTER 5. VECTORS

int main() {
...

bool done = false;
while (!done) {

display(error message, file name, v lines, ix top line,
window height);

cout << "command: ";
char command;
cin >> command;
cin.get(); // ’\n’

switch (command) {
case ’q’: {

done = true;
break;

}
case ’o’: {

open file(file name, v lines, ix top line,
error message);

break;
}
case ’n’: {

if (ix top line + window height < v lines.size())
ix top line += window height;

break;
}
case ’p’: {

if (ix top line > 0) ix top line −= window height;
break;

}
}

}

return 0;
}

Figure 5.10: Using a switch statement in the file viewer

5.6. MORE ON VECTORS 123

switch (expression) {
case value1: {

statements
break;

}
case value2: {

statements
break;

}
...
default: {

statements
break;

}
}

Figure 5.11: The general form of a switch statement

Exercises

5.5.2. Redo Exercise 2.1.5 but this time use a switch statement.

5.6 More on Vectors

In Section 5.2, we learned several basic operations that can be performed on
vectors. These operations were sufficient for the implementation of our file
viewer program. But vectors support several additional operations, as shown
in Tables 5.2 and 5.3. In fact, the class supports several more, as described in
a reference such as [CPP].2

Note that in these tables, the vector operations are described by using an
object-oriented perspective. For example, the description of push back does
not say that this operation adds an element to the back of the vector. Instead,
it says that push back asks the vector to add an element to its back.

The second constructor value-initializes the elements of the vector. This
implies that if T is a class with at least one programmer-defined constructor,

2Some of these operations involve concepts that we have not covered, such as iterators,
ranges and capacity. You can ignore these operations for now.

124 CHAPTER 5. VECTORS

vector<T> v

vector<T> v(n)

vector<T> v(n, e)

vector<T> v({elements})
vector<T> v(v2)

Creates a vector v that can hold elements of type T. The vector is
initialized to be empty, or to contain n value-initialized elements of
type T, or n copies of element e, or copies of the given elements,
or copies of all the elements of vector v2.

v.size()

Asks vector v for the number of elements it currently contains.

v[i]

Returns a reference to the element at index i in vector v.

v.front()

v.back()

Asks vector v for a reference to its front or back element.

v.resize(n)

v.resize(n, e)

Asks vector v change its size to n. If n is smaller than the current
size of v, the last elements of v are deleted. If n is larger than the
current size, then v is padded with either copies of the default object
of class T or with copies of element e.

v.push back(e)

Asks vector v to add a copy of element e to its back end.

v.pop back()

Asks vector v to delete its last element.

v1 = v2

v1 = {elements}
Makes vector v1 contain copies of all the elements of vector v2, or
copies of the given elements. Returns a reference to v1.

Table 5.2: Some basic vector operations

5.6. MORE ON VECTORS 125

v.empty()

Asks vector v if it is empty.

v.max size()

Asks vector v for the maximum number of elements it can contain.

v.clear()

Asks vector v to delete all its elements.

v.assign(n, e)

v.assign({elements})
Asks vector v to change its contents to n copies of element e, or to
copies of the given elements.

v1.swap(v2)

Asks vector v1 to swap contents with vector v2 (without any ele-
ments being copied).

Table 5.3: Some additional vector operations

such as string and vector, then the elements are initialized with the default
constructor of the class. On the other hand, if T is a primitive data type, then
the elements are initialized to 0.

The argument of the fourth constructor is an initializer list, which is given
by a so-called brace list of elements separated by commas. That constructor
can also be used with the following syntax:

vector<T> v = {elements}

The fifth constructor is known as a copy constructor. It can also be used
with the equal sign syntax:

vector<T> v = v2

Note that vectors have push back and pop back methods but no
push front or pop front. The reason has to do with efficiency: it is pos-
sible to implement the operations at the back efficiently but doing so at the
front is more difficult.

As mentioned earlier, vectors are dynamic in the sense that they can grow
and shrink as needed. Even then, vector do have a maximum size, which

126 CHAPTER 5. VECTORS

is related to the value of the largest integer that can be stored in an int

variable. However, that maximum size, which can be retrieved by the method
max size, is typically much larger than what’s needed in most applications.
For example, for a vector of integers, a typical limit is approximately 1 billion
elements.

Vectors are also said to be generic because they can hold elements of var-
ious types. In fact, vectors belong to a portion of the C++ standard library
called the Standard Template Library (STL) and the word template in the
name of this library refers to a C++ construct that allows the creation of
generic software components. The STL includes several other generic compo-
nents, including other containers as well as functions that implement useful
algorithms.

Study Questions

5.6.1. In what way are vectors generic?

5.6.2. Why do STL vectors have no push front or pop front methods?

Exercises

5.6.3. Experiment with vectors by writing a test driver that creates more than
one type of vector and uses all the methods shown in Tables 5.2 and 5.3.

5.7 More on Strings

We have already used strings many times in these notes. And we know a few
operations that can be performed on strings. But it turns out that just like
vectors, strings support a large number of operations. And just like the type
vector, the type string is also a class, with constructors and methods.

Tables 5.4 to 5.7 show several string operations. Many more are described
in a reference such as [CPP].3

The second constructor provides a way for converting literal strings into
string objects. And this conversion is often done automatically: in any
situation where the compiler expects a string object and a literal string

3Once again, some of these operations involve concepts we still have not covered, such
as iterators, ranges, exceptions and capacity. You can ignore these operations for now.

5.7. MORE ON STRINGS 127

string s

string s(s2)

string s(s2, i, n)

string s(n, c)

Creates a string s and initializes it to be empty, or a copy of string
s2, or a copy of the substring of s2 that starts at index i and is of
length n, or n copies of character c. The argument s2 can also be a
literal string.

s.length()

s.size()

Asks string s for the number of characters it currently contains.

s.empty()

Asks string s if it is empty.

s.max size()

Asks string s for the maximum number of characters it can contain.

s[i]

Returns a reference to the character at index i in string s.

s1 = s2

Makes string s1 a copy of string s2. The right operand can also be
a C string or a single character. Returns a reference to s1.

s1.swap(s2)

Asks string s1 to swap contents with string s2.

s.clear()

Asks string s to delete all its characters.

s1 op s2

Compares string s1 with string s2 where the operator op is one of
==, !=, <, >, <= or >=. Uses alphabetical order. Returns true or
false. One of the operands must be a string object but the other
can be a literal string.

Table 5.4: Some string operations (part 1 of 4)

128 CHAPTER 5. VECTORS

s1 + s2

Returns a string that consists of a copy of string s1 followed by a
copy of string s2. One of the operands must be a string object
but the other can be a literal string or a single character.

s1 += s2

Appends a copy of string s2 to string s1. The right operand can also
be a literal string or a single character. A reference to s is returned.

s.resize(n)

s.resize(n, c)

Asks string s to change its size to n. If n is smaller than the current
size of s, the last characters of s are erased. If n is larger, s is
padded with the null character (\0) or with copies of character c.

s.substr(i, m)

s.substr(i)

Asks string s for a copy of the substring that starts at index i, and
is of length m or ends at the end of the string.

s.insert(i, s2)

Asks string s to insert into itself, at index i, a copy of string s2.
The second argument can be of any of the forms accepted by the
constructors. A reference to s is returned.

s.replace(i, m, s2)

Asks string s to replace the substring of length m that starts at index
i by a copy of string s2. The third argument can be of any of the
forms accepted by the constructors. A reference to s is returned.

s.erase(i, m)

s.erase(i)

Asks string s to delete m characters starting at index i, or all the
characters from index i to the end of the string. A reference to s is
returned.

Table 5.5: Some string operations (part 2 of 4)

5.7. MORE ON STRINGS 129

s1.find(s2)

s1.find(s2, i)

Asks string s1 for the index of the first occurrence of string s2 as a
substring. In the first version, the entire string is searched. In the
other, the search starts at index i. The argument s2 can also be a
literal string or a single character. If the search is unsuccessful, the
constant string::npos (“not a position”) is returned.

s1.rfind(s2)

s1.rfind(s2, i)

Similar to find except that the search is for the last occurrence and
that the search ends at index i.

s.c str()

Asks string s for a C string that contains the same characters as s.
(See text for explanation.)

stoi(s)

stod(s)

Converts string s into a number. Starting from the beginning of
the string, skips whitespace and then converts as many characters
as possible into a number. The first version returns an int while
the second version returns a double. The string is not modified.

to string(x)

Returns a string representing number x. The argument can be of
any of the usual numeric types.

Table 5.6: Some string operations (part 3 of 4)

130 CHAPTER 5. VECTORS

stream << s

Outputs the characters of string s. Returns a reference to the
stream.

stream >> s

Reads characters into string s. Skips leading white space and stops
reading at white space (blank, tab or newline). That terminating
character is not read. Returns a reference to the stream.

getline(stream, s)

Reads characters into string s until then end of the current line. The
newline character is read but not included in s. Returns a reference
to the stream.

Table 5.7: Some string operations (part 4 of 4)

is provided instead, the compiler will automatically use the constructor to
convert the literal string into a string object. This is called an implicit
conversion.

The find and rfind methods return the special value string::npos

(“not a position”) in case the search is unsuccessful. If s is a string, that
constant can also be accessed as s.npos.

The c str method converts a string object into a type of string called a
C string . Without getting into the details, C strings are the standard way in
which strings are stored in the older language C from which C++ is derived.
C++ strings (the class string) are much more convenient and also much safer
to use than C strings. But it is still possible to come across situations where
it is necessary to use C strings. This is when the c str method is useful.4

The functions stoi, stod and to string can be used to easily perform

4For example, consider the file stream constructor that takes a file name as argument,
as in

ifstream ifs(file name);

Before C++11, the latest version of C++, the file name argument had to be a C string. So
it was often necessary to convert the file name from a C++ string to a C string:

ifstream ifs(file name.c str());

This may still be necessary with compilers that don’t fully support C++11.

5.7. MORE ON STRINGS 131

#include <cstdlib>
#include <string>

int stoi(const std::string & s)
{

return std::atoi(s.c str());
}

Figure 5.12: An implementation of stoi

#include <sstream>
#include <string>

std::string to string(int x)
{

std::ostringstream oss;
oss << x;
return oss.str();

}

Figure 5.13: An implementation of to string

conversions between numbers and their string representations. But note that
some compilers do not properly support these functions.5

Some of the string operations presented in this section can be used to
simplify the display function of the file viewer program. The revised code
is shown in Figure 5.14. The new string operations that are used are one of
the constructors and the empty method. (Compare with the code shown in
Figures 5.6 and 5.9.)

The version of the file viewer with the new string operations is available

5These functions are new to C++11 but some compilers that support C++11 do not
properly support these functions. (As of February 14, this was still the case with the
version of the g++ compiler that comes with the Code::Blocks IDE.) In this case, the stoi
function can be implemented by using the C string atoi function as shown in Figure 5.12.
The stod function can be implemented by using atof in the same way. Figure 5.12 shows
the easiest implementation of to string. This implementation uses a string stream, a
type of stream that, at Clarkson, is normally covered in the course CS142 Introduction to
Computer Science II.

132 CHAPTER 5. VECTORS

void display(string & error message,
const string & file name,
const vector<string> & v lines,
int ix top line,
int window height)

{
const string long separator(50, ’−’);
const string short separator(8, ’−’);

cout << ’\n’;

if (!error message.empty()) {
cout << "ERROR: " + error message << ’\n’;
error message.clear();

}

if (file name.empty())
cout << "<no file opened>\n";

else
cout << file name << ’\n’;

...
}

Figure 5.14: A version of display that uses more string operations

5.8. A SIMPLE TEXT EDITOR 133

on the course web site under File Viewer.

Study Questions

5.7.1. How can we convert a literal string to a string object?

5.7.2. How can we convert a C++ string into a C string?

Exercises

5.7.3. Experiment with C++ strings by writing a test driver that uses all the
string operations presented in this section.

5.7.4. Create a function println(s) that takes a C++ string as argument
and behaves exactly as the code cout << s << endl. (But don’t use
this code in implementing the function.)

5.7.5. Write a code segment that starts with a string that contains a person’s
name in the format "John Doe". Assume that the name contains a sin-
gle blank space. Your code should produce another string that contains
the same name but in the format "Doe, John". Hint : Consider using
the method find and the operator +=.

5.8 A Simple Text Editor

In this section, we will further illustrate the usefulness of vectors by expanding
our file viewer into a simple text editor. This program will allow the user to
add, remove and replace entire lines of text. It won’t allow the user to edit
the contents of the lines. For example, it won’t be possible to insert a word
directly in the middle of a line. The only way to accomplish this will be by
replacing the entire line by a new one.

Here are more details on how the editor works. The editor has a buffer
that contains lines of text, usually an edited copy of the contents of some file.
The editor displays the name of the file, if any, followed by a certain number of
lines from the buffer, surrounded by a border. A cursor indicates the position
of the current line. Below the text, a menu of commands is displayed followed
by the prompt “choice:”. The user types the first letter of a command, the
command executes and everything is redisplayed. Some commands prompt

134 CHAPTER 5. VECTORS

co−op.txt
−−

1 List for Co−op
2
3 bread
4 yogurt

> 5 cumin
6 black beans
7 chick pea flour
8 toothpaste
9

−−
next jump insert open quit
previous replace delete save

−−−−−−−
choice: i
new line: ginger

Figure 5.15: Sample user interface of the text editor

the user for more information. Figure 5.15 shows what the user interface looks
like. The available editor commands are described in Figure 5.16.

Note that the displayed contents of the buffer always includes an extra
empty line we will call the end line. In Figure 5.15, the end line is the one
numbered 9. That line is not really part of the buffer but the cursor can move
there. This allows the user to insert a new line at the end of the buffer. In
addition, in the case of an empty buffer, the end line gives the cursor something
to point to.

As mentioned at the beginning of this section, the text editor can be created
by extending the file viewer. In this section, we will highlight the new code.

Figure 5.17 shows some key portions of the main function of the program.
In addition to keeping track of the index of the top line, the function also
keeps track of the index of the current line. Both indices are initialized to 0
and passed to the display function.

The revised portions of the display function are shown in Figure 5.18.
The loop that displays the lines was revised to print a cursor at the beginning

5.8. A SIMPLE TEXT EDITOR 135

next The next line becomes the current line.

previous The previous line becomes the current line.

jump Asks for a line number and makes that line become the
current line.

replace Asks for a new line and replaces the current line.

insert Asks for a new line and inserts it before the current line.

delete Deletes the current line.

open Asks for a file name and reads that file into the buffer.

save Asks for a file name and saves the contents of the buffer
to that file.

quit Stops the editor.

Figure 5.16: The commands of the text editor

of the current line and to print the end line, which is the line that has index
equal to the size of the vector.

Figure 5.19 shows the switch statement of the main function of the pro-
gram. In each case, an auxiliary function is called to perform the required
task.

Figures 5.20 and 5.21 show the functions move to next line,
move to previous line and save file. This code is fairly straightfor-
ward.

Figure 5.22 shows the insert line and erase line functions. These
functions use the vector methods insert and erase. The argument of erase
and the first argument of insert is

v lines.begin() + ix current line

This requires some explanation.
Both methods require an argument that indicates the position where the

insertion or deletion should be performed. This argument could be an index,
in which case the insert and erase methods could have been used simply
as follows:

136 CHAPTER 5. VECTORS

int main() {
cout << "Window height? ";
...

string file name;
vector<string> v lines;
int ix top line = 0;
int ix current line = 0;
string error message;

bool done = false;
while (!done) {

display(error message, file name, v lines, ix top line,
ix current line, window height);

cout << "command: ";
...

switch (command) {
...

}
}

return 0;
}

Figure 5.17: The main function of the text editor

5.8. A SIMPLE TEXT EDITOR 137

void display(string & error message,
const string & file name,
const vector<string> & v lines,
int ix top line,
int ix current line,
int window height)

{
...

int ix stop line = ix top line + window height;
for (int i = ix top line; i < ix stop line; ++i) {

if (i <= v lines.size()) {
if (i == ix current line)

cout << ’>’;
else

cout << ’ ’;
cout << setw(6) << i+1;
if (i < v lines.size())

cout << " " << v lines[i];
}
cout << ’\n’;

}

cout << long separator << ’\n’
<< " next jump insert open quit\n"
<< " previous replace delete save\n"
<< short separator << ’\n’;

}

Figure 5.18: The display function of the text editor

138 CHAPTER 5. VECTORS

switch (command) {
case ’q’: {

done = true;
break;

}
case ’o’: {

open file(file name, v lines, ix top line,
ix current line, error message);

break;
}
case ’n’: {

move to next line(v lines, ix current line,
ix top line, window height);

break;
}
case ’p’: {

move to previous line(ix current line,
ix top line);

break;
}
case ’d’: {

erase line(v lines, ix current line);
break;

}
case ’i’: {

insert line(v lines, ix current line, ix top line,
window height);

break;
}
case ’s’: {

save file(v lines, file name, error message);
break;

}
}

Figure 5.19: The switch statement of the main function of the text editor

5.8. A SIMPLE TEXT EDITOR 139

void move to next line(const vector<string> & v lines,
int & ix current line,
int & ix top line,
int window height)

{
if (ix current line < v lines.size()) {

++ix current line;
// check if window needs to be scrolled down
if (ix current line >= ix top line + window height)

++ix top line;
}

}

void move to previous line(int & ix current line,
int & ix top line)

{
if (ix current line > 0) {

−−ix current line;
// check if window needs to be scrolled up
if (ix current line < ix top line)

−−ix top line;
}

}

Figure 5.20: The move to next line and move to previous line func-
tions

140 CHAPTER 5. VECTORS

void save file(const vector<string> & v lines, string & file name,
string & error message)

{
cout << "file: ";
string new file name;
getline(cin, new file name);
std::ofstream file(new file name);
if (!file) {

error message = "Could not open " + new file name;
}
else {

for (const string & s : v lines) file << s << ’\n’;
file name = new file name;

}
}

Figure 5.21: The save file function

void insert line(vector<string> & v lines,
int & ix current line,
int & ix top line,
int window height)

{
cout << "new line: ";
string new line;
getline(cin, new line);
v lines.insert(v lines.begin() + ix current line, new line);
move to next line(v lines, ix current line, ix top line,

window height);
}

void erase line(vector<string> & v lines,
int & ix current line)

{
if (ix current line < v lines.size())

v lines.erase(v lines.begin() + ix current line);
}

Figure 5.22: The insert line and erase line functions

5.8. A SIMPLE TEXT EDITOR 141

v lines.insert(ix current line, new line);

and

v lines.erase(ix current line);

But the STL includes several other containers for which numerical indices are
not an efficient way to specify positions. Therefore, for the sake of uniformity,
the insert and erase methods use a different mechanism for specifying po-
sitions, a mechanism that can be used efficiently with all the different types
of containers included in the STL.

This mechanism is that of an iterator. An iterator is a general concept
and each type of STL container supplies its own type of iterator, implemented
in a way that’s appropriate for that container.

The main purpose of an iterator is simply to mark a position within a
container. When an iterator marks the position of an element in a container,
we say that the iterator points to that element.

In both the insert line and erase line functions, we need an iterator
that points to the current line. Such an iterator is obtained by adding the index
of the current line to the begin iterator of the vector, which is an iterator that
points to the first element of the vector:

v lines.begin() + ix current line

In general, v.begin() + i is an iterator that points to the element in v that
has index i. In other words, v.begin() + i points to v[i].

Table 5.8 shows some vector operations that involve iterators. (There are
others.)

The complete source code of the text editor is available on the course web
site under TextEditor.

Exercises

5.8.1. Modify the text editor as described below. Change the original program
as little as possible. Make sure it remains modular. Document any new
functions.

a) Implement the replace command. If the current line is the end line,
the line entered by the user should be added at the end of the buffer,
as if the user had inserted a line at that position.

142 CHAPTER 5. VECTORS

v.insert(itr, e)

v.insert(itr, {elements})
Asks vector v to insert, at the position indicated by the iterator itr,
a copy of element e or copies of the given elements.

v.erase(itr)

Asks vector v to delete the element that itr points to.

v.begin()

Asks vector v for a begin iterator.

Table 5.8: Some vector operations that involve iterators

b) Implement the jump command. This command asks the user for a
line number and redisplays the buffer with the requested line at the
top. The requested line also becomes the current line. In case the
user enters an invalid line number N, the program should print the
error message ERROR: N is not a valid line number.

c) Modify the save command so it uses the current file, if any, as a
default value. The default value, if any, should be displayed as
follows:

choice: s
file name: [co−op.txt]

If the user enters an empty file name, then the default is used.

d) Add a clear command that empties the buffer. The command also
resets the file name so that the string <no file opened> is dis-
played just like when the program is started.

e) Add Next and Previous commands that cause the editor to display
the next or previous “pages”, just like the next and previous com-
mands of the file viewer. After these commands are executed, the
new top line becomes the current line.

f) Add an Append command that inserts a new line after the current
one. If the current line is the end line, add a blank line and the
new line to the end of the buffer. After the insertion, the new line
becomes the current line.

5.9. ADDING MORE ERROR-CHECKING TO THE FILE VIEWER 143

g) The quit command currently stops the editor without ensuring that
the buffer was saved to a file. Similarly, the open and clear com-
mands delete the current contents of the buffer without ensuring
that this contents has been saved. Fix this. In case the buffer
has not been saved since it was last modified, clear, open and quit
should ask the user if he or she wants to save the current contents
of the buffer. If the user says yes, the save command should be exe-
cuted. Hint : Add to the program a Boolean variable that indicates
if the buffer was saved since the last modification.

5.9 Adding More Error-Checking to the File

Viewer

Our file viewer program performs some error checking: when executing the
open command, it checks it the file opens and prints an error message in case
it doesn’t. But the program behaves badly in case the user doesn’t enter a
number for the window height or a valid command when prompted for one.
We will fix this in this section.

The reading of the window height and commands is done in the main

function. In order not to clutter that function with error checking code, we
will remove the reading of those values from main and delegate it to two new
auxiliary functions get window height and get command.

Figure 5.23 shows the revised main function. The get window height

function keeps asking the user until he or she enters a valid window height. The
get command function, on the other hand, will prompt the user for a command
only once and set the error message argument in case the command entered
by the user is not valid.

Figure 5.24 shows another way in which this version of the main function
can be coded. In case the get command function sets the error message, a
continue statement is executed. This has the effect of skipping the remainder
of the body of the while loop and returning control to the top of the loop. In
other words, a continue statement stops the execution of the current iteration
of the loop and moves to the next iteration.

In general, continue statements are used to simplify code. In our case,
the main advantage is that with a continue statement, we don’t need to
indent the switch statement and nest it within an if statement. In other

144 CHAPTER 5. VECTORS

int main() {
int window height = get window height();

...

bool done = false;
while (!done) {

display(error message, file name, v lines, ix top line,
window height);

char command = get command(error message);
if (error message == "") {

switch (command) {
...

}
}

}

return 0;
}

Figure 5.23: A main function that delegates the reading of the window height
and commands

5.9. ADDING MORE ERROR-CHECKING TO THE FILE VIEWER 145

int main() {
int window height = get window height();

...

bool done = false;
while (!done) {

display(error message, file name, v lines, ix top line,
window height);

char command = get command(error message);
if (error message != "") continue;

switch (command) {
...

}
}

return 0;
}

Figure 5.24: A main function that uses a continue statement

146 CHAPTER 5. VECTORS

words, the continue statement makes the error checking code less obtrusive.
Note that if a continue statement occurs in nested loops, the continue

statement applies only to the innermost loop that contains the continue

statement. In the case of while and do-while loops, after a continue state-
ment is executed, the condition of the loop is evaluated. In the case of a for

loop, the update statement is executed first.
Figure 5.25 shows an implementation of the get window height func-

tion. Recall that if the reading of the window height fails, the stream cin

enters an error state, which causes cin to evaluate to false. Once a stream
is in an error state, every subsequent reading operation on that stream will
fail. To be able to read from the stream again, it is necessary to clear the
error state by sending the message clear to the stream.

In case a valid window height is extracted from the stream, the
get window height function then checks that the rest of the line is blank.
This is done with a range-for loop that examines each character of the rest
of the line. If one is found not to be blank, the all blank variable is set
to false and the execution of the range-for loop is terminated by using a
break statement. If all the characters in the rest of the line are blank, then
the all blank variable will still be true when the execution of the range-for
loop terminates.

A break statement is similar to a continue statement in that it only
affects the innermost, enclosing loop. But while a continue statement only
causes the execution of the current iteration of a loop to be terminated, a
break statement terminates the execution of the entire loop.

The get window height can be simplified by making it delegate to an-
other function the task of checking that the rest of the line is blank. The
revised function is shown in Figure 5.26. Figure 5.27 shows an implementa-
tion of the all blank function.

Figure 5.28 shows an implementation of the get command function. This
code is straightforward.

The latest version of the file viewer is available on the course web site under
File viewer as file viewer 2 0.cpp.

Study Questions

5.9.1. What is the effect of a continue statement?

5.9.2. What is the effect of a break statement?

5.9. ADDING MORE ERROR-CHECKING TO THE FILE VIEWER 147

int get window height()
{

int window height = 0;
bool done = false;
while (!done) {

cout << "Window height? ";
cin >> window height;
if (!cin | | window height <= 0) {

cout << "Please enter a positive number.\n\n";
cin.clear();
// flush rest of line
string rest of line;
getline(cin, rest of line);
continue;

}

// window height is good; check that rest of line is blank
string rest of line;
getline(cin, rest of line);
bool all blank = true;
for (char c : rest of line) {

if (c != ’ ’) {
all blank = false;
break;

}
}
if (!all blank) {

cout << "Please enter a positive number and "
<< "nothing else.\n";

continue;
}

// all good
done = true;

}
return window height;

}

Figure 5.25: The get window height function

148 CHAPTER 5. VECTORS

int get window height()
{

int window height = 0;
bool done = false;
while (!done) {

cout << "Window height? ";
cin >> window height;
if (!cin | | window height <= 0) {

cout << "Please enter a positive number.\n\n";
cin.clear();
// flush rest of line
string rest of line;
getline(cin, rest of line);
continue;

}

// window height is good; check that rest of line is blank
string rest of line;
getline(cin, rest of line);
if (!all blank(rest of line)) {

cout << "Please enter a positive number and nothing "
<< "else.\n";

continue;
}

// all good
done = true;

}
return window height;

}

Figure 5.26: A simplified get window height function

5.9. ADDING MORE ERROR-CHECKING TO THE FILE VIEWER 149

// Returns true if the argument contains only blank spaces.
bool all blank(const string & s)
{

for (char c : s) if (c != ’ ’) return false;
return true;

}

Figure 5.27: The all blank function

char get command(string & error message)
{

cout << "command: ";
string command;
cin >> command;

// check that rest of line is blank
string rest of line;
getline(cin, rest of line);
if (!all blank(rest of line)) {

error message = "Invalid command";
return ’x’;

}

// check that command is valid
if (command == "n" | | command == "next")

return ’n’;
else if (command == "o" | | command == "open")

return ’o’;
else if (command == "p" | | command == "previous")

return ’p’;
else if (command == "q" | | command == "quit")

return ’q’;

// command is not valid
error message = "Invalid command";
return ’x’;

}

Figure 5.28: The get command function

150 CHAPTER 5. VECTORS

T a[N]

T a[N] = {elements}
T a[] = {elements}

Creates an array a that can hold elements of type T. The array
is initialized to contain N default-initialized elements of type T, or
copies of the given elements. In case the number of given elements

is less than N, the remaining elements of a are value-initialized. N

must be a compile-time constant.

a[i]

Returns a reference to the element at index i in array a.

Table 5.9: Some basic array operations

Exercises

5.9.3. Add to the text editor the same error checking that we added to the file
viewer in this section.

5.10 Arrays

In this chapter, we learned that C++ vectors can be used to store sequences
of elements. But there is a simpler alternative: ordinary arrays. Table 5.9
shows how arrays can be created and how their elements can be accessed.

In the first form of array declaration, the elements of the array are default-
initialized. This implies that if T is a class, then the elements are initialized
with the default constructor of the class. On the other hand, if T is a primitive
data type, then the elements are not initialized.

In the second form of array declaration, elements that are not given ex-
plicit initial values are value-initialized. Recall that this implies that if T is a
class with at least one programmer-defined constructor, such as vector and
string, then these elements are initialized with the default constructor of the
class. On the other hand, if T is a primitive data type, then these elements
are initialized to 0.

Note that the list of given elements can be empty:

T a[N] = {}

5.10. ARRAYS 151

void display(const int a[10])
{

for (int i = 0; i < 10; ++i) cout << a[i] << ’ ’;
cout << ’\n’;

}

Figure 5.29: A function that displays the elements of an array of size 10

In that case, all the array elements are value-initialized.
The third form of array declaration produces an array that’s just large

enough to contain the given elements.
Note that in the last two forms of array declaration, the equal sign can be

omitted:

T a[N]{elements}
T a[]{elements}

This is common practice especially when a size is given and the list of elements
is empty:

T a[N]{}

Range-for loops can be used with arrays. For example,

for (int x : a) cout << x;

prints all the elements of a. However, range-for loops can only be used when
the array is a local variable of the function that contains the loop. In other
situations, an ordinary for loop controlled by indices must be used. For
example, Figure 5.29 shows a function that displays the elements of an array
of size 10. A range-for loop cannot be used here because the array is an
argument of the function.

When the function in Figure 5.29 is called, its argument must be an array
of size 10. This implies that the function can only display arrays of that size.
It is possible to create a more flexible function by not specifying the size of the
array argument, as shown in Figure 5.30. But note that it is then necessary to
also pass the size of the array as an argument to the function. This is because
there is usually no reliable way for a function to determine the size of an array
argument.

152 CHAPTER 5. VECTORS

void display(const int a[], int n)
{

for (int i = 0; i < n; ++i) cout << a[i] << ’ ’;
cout << ’\n’;

}

Figure 5.30: A function that displays the elements of an array of any size

Note that array arguments are always passed by reference. This is why the
array arguments of the display functions were declared constant. Recall that
this causes the arrays to be passed by constant reference and protects those
arrays from accidental modification.

Ordinary C++ arrays have two advantages over vectors. One is that they
are simpler to learn. The other is that in some cases, the array indexing
operator runs slightly more quickly than the vector indexing operator.

However, ordinary arrays have several major weaknesses compared to vec-
tors. In fact, vectors were developed precisely to address these weaknesses.

Perhaps the main weakness of ordinary C++ arrays is that they have a
predetermined size. Predetermined here means determined at compile time,
before the execution of the program. The size of an array is also fixed: it cannot
change during the execution of the program. This is a significant limitation
that can make a program fail in case an array is too small, or waste memory
in case an array is unnecessarily large.

In contrast, as we know, vectors can be declared to be of any size and that
size can be changed as needed during the execution of the program, by using
methods such as resize, push back and assign.

In C++, it is possible to create arrays that have a size that’s determined
at run time. However, this involves low-level techniques that are somewhat
inconvenient and prone to errors.6 In any case, all C++ arrays, no matter
how they are created, have several other weaknesses.

First, arrays are not aware of their size. In particular, as we said earlier,
there is usually no reliable way for a function to determine the size of an array
argument. This is why we must typically pass the size of an array as a separate
additional argument, as we did with the display function. One danger of this
setup, however, is that nothing guarantees that the value of the size argument

6At Clarkson, these techniques are covered in the course CS142 Introduction to Computer
Science II.

5.10. ARRAYS 153

is correct. In contrast, vectors are aware of their size and whenever we need
to know that size, we just have to ask by using the method size.

Second, the usual operators, such as =, == and <, don’t work with arrays.
(Actually, they can sometimes work but they don’t do what you would expect.)
In contrast, vectors support all the usual operators, including =, == and <.

Third, it is not easy to have a function return a copy of an array. In
particular, the return type of a C++ function cannot be an array. It is possible
to get around this problem but, once again, this involves low-level techniques
that are inconvenient and prone to errors. In contrast, functions can return
copies of vectors just as if they were a value of any of the primitive data types.7

To summarize, ordinary C++ arrays have the following four weaknesses:
(1) they have a fixed, predetermined size, (2) they don’t know their size, (3)
they don’t support the usual operators and (4) functions cannot easily return
copies of arrays.

Study Questions

5.10.1. What are two advantages of arrays over vectors?

5.10.2. What are four advantages of vectors over ordinary arrays?

Exercises

5.10.3. Modify the file viewer by using an array to implement the Buffer.
Use an array of size 100,000. In case a file called X is too large, the
program should print the error message ERROR: file X is too large and
redisplay the previous file.

5.10.4. Repeat the previous exercise but this time, in case the file is too large,
have the program use the array to store part of the file. When another
part is needed, the program reopens the file to read that part and store
it in the array.

5.10.5. Suppose that a is a array of integers of size N, where N is a compile-time
constant. Write code that replaces the contents of a with the numbers
10, 20, 30, . . .

7Note, however, that this is something that is usually done only with small vectors. It is
more efficient to avoid the copying of the vector by passing it to the function as a reference
argument.

154 CHAPTER 5. VECTORS

5.10.6. Create a function called sum that takes as arguments an array of inte-
gers a and its size n and returns the sum of all the integers in a.

5.10.7. Create a function called fill that takes as arguments an array of
integers a, its size n and an integer x and replaces every element of a by
a copy of x.

5.10.8. Create a function called read that takes as arguments an input stream
in, an array of integers a and an integer n and fills a with n integers
read from in. The integers read from in are assumed to be separated by
white space. The function assumes that a is of size at least n. The first
n elements of a are set by the function. The others are left unchanged.

Chapter 6

Structures

In this chapter, we will revisit two programs we created earlier in these notes.
More precisely, we will extend the pay calculator and improve the design of
the text editor. In the process, we will learn how to create structures.

6.1 Extending the Pay Calculator

In the latest version of the pay calculator, the input file read by the program
specifies, for each employee, the number of hours that the employee worked
on each day of the pay period. An example is shown in Figure 6.1. Each line
in this file consists of an employee number followed by exactly seven numbers
of hours.

In this section, we will extend the pay calculator so it includes the compu-
tation of the number of hours each employee works each day. In other words,
the input file read by the program will now only specify the times when the
employee started and stopped working each day, as illustrated in Figure 6.2.

Figure 6.3 shows the main function of the pay calculator. It should be
clear that to extend the pay calculator as we just described, all we will need

12 7 8 7.5 7.75 8.5 0 0
23 8 8 8.25 9 5 3 0
37 5 5.5 6 5 5 2 3

Figure 6.1: An input file for the pay calculator

155

156 CHAPTER 6. STRUCTURES

12
in 9:00
out 16:00
in 9:00
out 17:00
in 8:45
out 16:15
in 9:00
out 16:45
in 9:00
out 17:30
stop

23
in 9:00
out 17:00
in 9:00
out 17:00
in 9:00
out 17:15
in 9:00
out 18:00
in 9:00
out 15:00
in 14:15
out 17:15
stop

Figure 6.2: A revised input file

6.1. EXTENDING THE PAY CALCULATOR 157

int main() {
std::ifstream ifs wages;
std::ifstream ifs hours;
std::ofstream ofs pay;
string hours file name;
string pay file name;

if (!open files(ifs wages, ifs hours, ofs pay, hours file name,
pay file name))

return 1;

int employee number;
while (ifs hours >> employee number) {

double num hours = read hours(ifs hours);
double wage = read wage(ifs wages);
double pay = compute pay(num hours, wage);
print pay(employee number, num hours, pay, ofs pay);

}

cout << "\nHours read from " << hours file name
<< " and pay written to " << pay file name << ".\n";

return 0;
}

Figure 6.3: The main function of the pay calculator

to do is modify the implementation of the read hours function. (The fact
that only one function of the program will need to be modified to achieve this
extension is a very good illustration of the benefits of modularity.)

Figure 6.4 shows the current implementation of the read hours function.
It reads the various numbers of hours and adds each one of them to a running
total.

Figure 6.5 shows how the read hours function can be modified to achieve
the extension describe in this section. While it hasn’t reached the keyword
stop, the function reads a start time and a stop time, computes their difference,
in hours, and adds that number to the running total. The reading of the times,
as well as the computation of the difference between two times, is delegated

158 CHAPTER 6. STRUCTURES

double read hours(std::istream & in)
{

double total hours = 0;
for (int i = 1; i <= kLengthPayPeriod; ++i) {

double num hours one day;
in >> num hours one day;
total hours += num hours one day;

}
return total hours;

}

Figure 6.4: The read hours function

to two other functions.

The code of Figure 6.5 works but it is fairly awkward because the storage
of each time requires the use of two separate variables, one for the hours and
one for the minutes. All these variables must be declared and also passed to
the other functions.

This code would be much easier to write and understand if we had a Time

data type that represented an entire time. Each Time value would consist of
a number of hours and a number of minutes but read hours would be able
to handle each Time as a single unit, as shown in Figure 6.6. That code is
clearly much simpler.

Figure 6.7 shows how the Time data type can be created. This declaration
specifies that each Time value is a structure that consists of two integers
called hours and minutes. A structure is a construct that combines various
other variables into a single unit. These variables are called the members of the
structure. Individual Time structures can be declared and passed to functions
as any other variable, as shown in Figure 6.6.

Figure 6.8 shows the read and difference functions used by
read hours, as well as an additional function that prints times. These func-
tions can be viewed as performing operations on times. Note how they directly
access the members hours and minutes of individual Time structures by us-
ing the member selection operator , which is represented by a single dot (.).

When a Time structure is created, it is automatically initialized to the
value 99:99, as specified in Figure 6.7. This initial value was selected because
there is no obvious default initial value for a time. The fact that 99:99 is not a

6.1. EXTENDING THE PAY CALCULATOR 159

double read hours(std::istream & in)
{

double total hours = 0;
string keyword;
in >> keyword;
while (keyword != "stop") {

int start time hours;
int start time minutes;
read(start time hours, start time minutes, in);

in >> keyword; // "out"
int stop time hours;
int stop time minutes;
read(stop time hours, stop time minutes, in);

total hours += difference(stop time hours,
stop time minutes,
start time hours,
start time minutes);

in >> keyword;
}
return total hours;

}

Figure 6.5: A revised read hours function

160 CHAPTER 6. STRUCTURES

double read hours(std::istream & in)
{

double total hours = 0;
string keyword;
in >> keyword;
while (keyword != "stop") {

Time start time;
read(start time, in);

in >> keyword; // "out"
Time stop time;
read(stop time, in);

total hours += difference(stop time, start time);
in >> keyword;

}
return total hours;

}

Figure 6.6: A read hours function that uses a Time data type

struct Time
{

int hours = 99;
int minutes = 99;

};

Figure 6.7: The Time data type

6.1. EXTENDING THE PAY CALCULATOR 161

void read(Time & t, std::istream & in)
{

in >> t.hours;
in.get(); // colon
in >> t.minutes;

}

void print(const Time & t, std::ostream & out)
{

out << t.hours << ’:’;
if (t.minutes < 10) out << 0;
out << t.minutes;

}

double difference(const Time & t1, const Time & t2)
{

return (t1.hours + t1.minutes/60.0) −
(t2.hours + t2.minutes/60.0);

}

Figure 6.8: The Time functions

162 CHAPTER 6. STRUCTURES

valid time makes it easy to detect if we forget to later set a time to its proper
value.

The functions print and difference receive their Time arguments by
constant reference. This is because these functions do not need to modify
those arguments and to avoid copying two integers whenever a Time is passed
to these functions. For the sake of efficiency, it is safer to always pass structures
that don’t need to change by constant reference instead of by value.

Note that we chose for these functions short names such as read and
print instead of the longer, more descriptive read time and print time.
The shorter names are descriptive enough because the Time arguments of these
functions make it clear that the functions work on times.

The version of the pay calculator we created in this section is available on
the course web site under Pay calculator as pay calculator 4 0.cpp.

Study Questions

6.1.1. What is a structure?

6.1.2. How can the members of a structure be accessed?

Exercises

6.1.3. Create a function init(t, hours, minutes) that initializes Time t

to the given hours and minutes. The arguments hours and minutes

are integers.

6.1.4. Create a type of structure called Date. Each Date structure represents
a date such as January 22, 2014. Each date is stored as three integers,
month, day and year. Use January 1, 2000 as a default initial value. In
addition to the structure, create the following functions:

a) A function init(d, month, day, year) that initializes date to
the given month, day and year. The arguments month, day and
year are integers.

b) A function read(d, in) that reads Date d from input stream in.
Dates are typed as m/d/y where m, d and y are integers. No error-
checking is performed. The stream is returned.

6.1. EXTENDING THE PAY CALCULATOR 163

c) A function print(d, out) that prints Date d to output stream
out. Dates are printed in numerical format, as in 1/22/2014.

d) A function print in words(d, out) that also prints Date d to
output stream out but with the month in words, as in January

22, 2014.

6.1.5. Create a type of structure called ThreeDVector. Each ThreeDVector

structure consists of a three-dimensional vector of real numbers, such as
(3.5, 2.64,−7). Use (0, 0, 0) as a default initial value. In addition to the
structure, create the following functions:

a) A function init(v, x, y, z) that initializes ThreeDVector v

to (x, y, z), respectively. The arguments x, y and z are of type
double.

b) A function read(v, in) that reads ThreeDVector v from input
stream in. Vectors are entered in the format (x, y, z) where x,
y and z are real numbers. No error-checking is performed. The
stream is returned.

c) A function print(v, out) that prints ThreeDVector v to output
stream out. Vectors are printed in the format described for read.

d) A function add(v1, v2) that returns the sum of ThreeDVector’s
v1 and v2.

6.1.6. Create a type of structure called Fraction. Each Fraction structure
represents a fraction, that is, a number of the form a/b, where a is an
integer and b is a positive integer. Use 0/1 as a default initial value. In
addition to the structure, create the following functions:

a) Functions init(r, a) and init(r, a, b) that initialize
Fraction r to a and a/b, respectively. The arguments a and
b are integers and b is assumed to be positive. No error-checking
is performed.

b) A function read(r, in) that reads Fraction r from input stream
in. Fractions are entered in the format a/b where a is an integer
and b is a positive integer. No error-checking is performed. The
stream is returned.

164 CHAPTER 6. STRUCTURES

c) A function print(r, out) that prints Fraction r to output
stream out. Fractions are printed in the format described for read.
Fractions are not reduced.

d) A function print mixed(r, out) that prints Fraction r to out-
put stream out. Fractions are printed in mixed form n a/b where
n is an integer and a/b is an optional positive proper fraction (one
in which the numerator is less than the denominator). For example,
−5 6/8. The fraction is not reduced.

e) Functions add(r, s) and multiply(r, s) that return, respec-
tively, the sum and product of Fraction’s r and s. For example,
if r is 2/3 and s is 3/4, then add(r, s) returns a Fraction whose
value is 17/12 and multiply(r, s) returns 6/12. The returned
fractions are not reduced.

6.1.7. Create a function add minutes(t, num minutes) that adds to Time

t the given number of minutes. The argument num minutes is an inte-
ger that can be arbitrarily large and even negative. When a time goes
forward past 23:59, it simply cycles back to 0:00. When a time goes
backwards past 0:00, it cycles forward to 23:59.

6.2 Improving the Design of the Text Editor

Figure 6.9 shows a portion of the main function of the text editor we created
earlier in these notes. This code is somewhat cluttered because it involves a
relatively large number of variables that must be declared and then passed to
most of the other functions. This makes the code hard to read and understand.

In this section, we will simplify the code of the text editor in the same way
we simplified the code of the pay calculator in the previous section. We will
do this by creating a type of structure that combines, into a single unit, most
of the text editor variables.

One possibility is to create a type Buffer that combines all the variables
that relate to the contents and displaying of a buffer. Figure 6.10 shows the
declaration of this type.

Figure 6.11 shows a portion of a version of main that uses the Buffer

type. By comparing with Figure 6.9, we see that the declaration of the variable
buffer replaces the declaration of five different variables. And each function
call now involves one or two arguments, instead of possibly six. The new

6.2. IMPROVING THE DESIGN OF THE TEXT EDITOR 165

int main() {
string file name;
vector<string> v lines;
int ix top line = 0;
int ix current line = 0;
int window height;
string error message;

...

bool done = false;
while (!done) {

display(error message, file name, v lines, ix top line,
ix current line, window height);

...

switch (command) {
case ’o’: {

open file(file name, v lines, ix top line,
ix current line, error message);

break;
}
case ’n’: {

move to next line(v lines, ix current line,
ix top line, window height);

break;
}
case ’i’: {

insert line(v lines, ix current line, ix top line,
window height);

break;
}
...

}
}

return 0;
}

Figure 6.9: A portion of the main function of the text editor

166 CHAPTER 6. STRUCTURES

struct Buffer
{

string file name;
vector<string> v lines;
int ix top line = 0;
int ix current line = 0;
int window height = 0;

};

Figure 6.10: The Buffer data type

version of main is clearly simpler and easier to understand than the earlier
version.

Figure 6.12 shows the move to next line function before and after the
introduction of the Buffer type into the program. The main advantage of the
new version is that the four arguments are reduced to one. A disadvantage is
that accessing the various elements of the buffer (the vector, the indices and
the window height) now requires using the member selection operator, as in

b.ix current line

Another disadvantage is that in the earlier version, it was possible to declare
the vector constant, to prevent it from being modified by accident. In the new
version, the whole Buffer needs to be non-constant because some of its mem-
bers need to be modified. This is a bit less safe. Overall, however, the drastic
simplification of the main function probably outweighs these disadvantages.

The version of the text editor we created in this section is available on the
course web site under Text editor as text editor 2 0.cpp.

Exercises

6.2.1. Modify the text editor to allow the user to work on more than one
buffer during a single session. Add a buffer command that produces a
numbered list of all the existing buffers and allows the user to choose
one. There should also be an option to create a new buffer. All the
other commands should operate of the current buffer, that is, the one
currently displayed.

6.2. IMPROVING THE DESIGN OF THE TEXT EDITOR 167

int main() {
Buffer buffer;
string error message;

...

bool done = false;
while (!done) {

display(error message, buffer);
...

switch (command) {
case ’o’: {

open file(buffer, error message);
break;

}
case ’n’: {

move to next line(buffer);
break;

}
case ’i’: {

insert line(buffer);
break;

}
}

}

return 0;
}

Figure 6.11: A portion of a version of main that uses the Buffer data type

168 CHAPTER 6. STRUCTURES

void move to next line(const vector<string> & v lines,
int & ix current line,
int & ix top line,
int window height)

{
if (ix current line < v lines.size()) {

++ix current line;
// check if window needs to be scrolled down
if (ix current line >= ix top line + window height)

++ix top line;
}

}

void move to next line(Buffer & b)
{

if (b.ix current line < b.v lines.size()) {
++b.ix current line;
// check if window needs to be scrolled down
if (b.ix current line >= b.ix top line + b.window height)

++b.ix top line;
}

}

Figure 6.12: The two versions of the move to next line function

Chapter 7

Algorithms and Generic
Programming

In this chapter, we will learn several simple but useful algorithms. We will
learn to implement these algorithms in a generic way and we will also learn
how to use the implementations that are available in the Standard Template
Library.

7.1 Introduction

An algorithm is simply a sequence of steps for solving a computational prob-
lem. This informal definition is fairly broad. In fact, every program we write
can be considered an algorithm. But the term algorithm is usually reserved for
the solution to a single, well-defined and somewhat limited problem. This in
contrast to the multiple tasks typically performed by most programs. Here are
three problems that illustrate what we mean by a single well-defined problem:

1. Computing the maximum of two values.

2. Counting the number of occurrences of an element in a vector.

3. Sorting the elements of a vector into some order.

Algorithms have been developed for many such problems. Some of these
algorithms are trivial. For example, to compute the maximum of two values,
it is often sufficient to compare them by using the less-than operator (<).
Other algorithms are nontrivial but simple. A counting algorithm is one such

169

170 CHAPTER 7. ALGORITHMS AND GENERIC PROGRAMMING

if (x < y)
y is the maximum

else
x is the maximum

Figure 7.1: An algorithm that computes the maximum of two values

example. But some algorithms are fairly complex. This includes efficient
algorithms for sorting vectors.1

In this section, we will learn several simple but important algorithms. We
will also learn how to use the wide variety of algorithms that are available in
a portion of the C++ standard library called the Standard Template Library
(STL). For example, the STL includes functions that implement algorithms
for the three problems mentioned above. The function

max(a, b)

returns the maximum of a and b. The number of occurrences of element e in
vector v can be computed as follows:

count(v.begin(), v.end(), e)

And

sort(v.begin(), v.end())

rearranges the elements of vector v in increasing order. These functions are
called STL algorithms.

7.2 Generic Programming

Consider the problem of computing the maximum of two values. As mentioned
earlier, in the case of values that can be compared by using the less-than oper-
ator, this problem can be solved by the trivial algorithm shown in Figure 7.1.
This assumes that the two values to be compared are x and y.

1Examples are mergesort, heapsort and quicksort. At Clarkson, these algorithms are
normally covered in the courses CS142 Introduction to Computer Science II and CS344
Algorithms and Data Structures.

7.2. GENERIC PROGRAMMING 171

int max(const int & x, const int & y)
{

if (x < y)
return y;

else
return x;

}

Figure 7.2: A function that computes the maximum of two integers

string max(const string & x, const string & y)
{

if (x < y)
return y;

else
return x;

}

Figure 7.3: A function that computes the maximum of two strings

Since computing the maximum of two values is a problem that is likely to
occur often, it is convenient to create a function that implements the above al-
gorithm. For example, Figure 7.2 shows a function that returns the maximum
of two integers.

Now, suppose that we need to compute the maximum of two strings, defined
as the string that occurs later in the usual alphabetical order. The algorithm
of Figure 7.1 can be used on strings since the class string provides a less-than
operator. But the function of Figure 7.2 only works for integers. Therefore,
we need to create a new function, as shown in Figure 7.3.

What we have here is that the maximum algorithm of Figure 7.1 is generic,
in the sense that it can be used on more than one type of value. But the
functions of Figures 7.2 and 7.3 are not generic: they each work on only one
type of argument.

The process of creating a new function that implements a generic algorithm
on a different type of value is inconvenient and prone to errors. To simplify
this process and reduce the risk of errors, we could explicitly identify the type
that must be changed to produce a new version of the algorithm, as shown in

172 CHAPTER 7. ALGORITHMS AND GENERIC PROGRAMMING

// template: replace T by the desired type
T max(const T & x, const T & y)
{

if (x < y)
return y;

else
return x;

}

Figure 7.4: A template to generate functions that implement the max algorithm

Figure 7.4. The result is a template in which the generic name T is used for the
type of value being compared. Then, whenever a version of max is needed for
a particular type of value, all we have to do is copy the template and replace
every occurrence of T by the desired type.

What we just described is a fairly mechanical process, which means that
it’s a good candidate for automation. And, in fact, C++ compilers can do
just that. The key is to define a function template, as shown in Figure 7.5.
The template definition begins with the keyword template followed by a
declaration that identifies T as a template parameter. Then, for example,
when the function max is called with integer arguments, the compiler looks
for a max function that can take two integers as argument. When that fails,
the compiler then looks for a template that can be used to generate such a
function. The template of Figure 7.5 will work if T is set to int. The process
of generating a function out of a template is called template instantiation.2

Note how the documentation of the function template max clearly states a
condition that the type T must meet. It is important to clearly identify and
document such requirements when creating templates.

Strictly speaking, a function template is not a function but we can think of
it as a generic function, that is, a function that can work on more than one
type of argument. The creation of generic functions is an example of generic
programming, the writing of code that can be used on more than one type
of data. In C++, classes can also be generic. The class vector is an example

2The template declaration of Figure 7.5 uses the keyword typename to declare the tem-
plate parameter T. An alternative is to use the keyword class. This is allowed even if the
type may not be a class. Although the keyword typename is more accurate, the use of the
keyword class is widespread.

7.2. GENERIC PROGRAMMING 173

// Returns the maximum of x and y.
// Requirement on T: values can be compared by using the <
// operator.
template <typename T>
T max(const T & x, const T & y)
{

if (x < y)
return y;

else
return x;

}

Figure 7.5: The function template max

namespace my {

... (your code)

} // namespace my

Figure 7.6: A namespace

of a generic class.3

The exercises of this section ask you to create several generic functions.
Some of these functions have the same names as functions that are available
in the C++ standard library. To avoid possible conflicts, and to allow you to
choose which function you want to use in a particular piece of code, it is best
to place your functions in your own namespace, as shown in Figure 7.6. Then,
to use your own implementation of max, for example, you would specify the
namespace when calling the function (my::max) or you would include a using
declaration in your code (using my::max). Note that specifying a namespace
when calling a function is a way to override any other using declarations (such

3Bjarne Stroustrup, the original designer of C++, describes the language as a bet-
ter C that supports data abstraction, object-oriented programming and generic program-
ming [Str]. We briefly mentioned the concepts of data abstraction and object-oriented
programming in Section 5.3. At Clarkson, all of these concepts are covered in more detail in
the courses CS142 Introduction to Computer Science II and CS242 Advanced Programming
Concepts.

174 CHAPTER 7. ALGORITHMS AND GENERIC PROGRAMMING

as using std::max).4

Study Questions

7.2.1. What is an algorithm?

7.2.2. What is a generic function?

7.2.3. What C++ construct allows us to implement generic functions?

7.2.4. What is generic programming?

Exercises

7.2.5. Create the following generic functions. In each case, clearly document
any requirements on the template arguments.

a) A generic function min(x,y) that returns the minimum of its two
arguments.

b) A generic function average(x,y) that returns the average of its
two arguments.

7.3 Some Simple Algorithms

In this section, we will learn several basic but useful algorithms. But first, we
will improve the max generic function of the previous section in two ways.

Figure 7.7 shows the final result. One difference is the return value of
the function. By returning a constant reference to one of the arguments, the
function is more efficient, especially when the arguments are large. This can
be the case with strings, for example. In general, when designing generic
functions, it is usually safer to avoiding copying values of an unknown type.

The second difference is that this implementation of max uses the condi-
tional operator . The general form of this operator is

4Note that some library implementations contain using declarations that may be in-
advertently included in your programs. When this happens, then to use your own func-
tion, it becomes necessary to specify your namespace. For example, if the declaration
using std::max ends up being included in your program, then the only way to call your
own max would be as my::max.

7.3. SOME SIMPLE ALGORITHMS 175

// Returns the maximum of x and y.
// Requirement on T: values can be compared by using the <
// operator.
template <typename T>
const T & max(const T & x, const T & y)
{

return (x < y ? y : x);
}

Figure 7.7: An improved generic max algorithm

condition ? expression : expression

If the condition is true, then the operator evaluates to the value of the first
expression. Otherwise, the operator evaluates to the value of the second ex-
pression.5

As with an if statement or a loop, the condition must be a Boolean ex-
pression. As for the two expressions, they must evaluate to values that are
appropriate for the context in which the operator is used. In the implementa-
tion of the generic max, these expressions evaluate to values of type T.

The conditional operator does not make the max function more efficient.
But it results in more concise code. Note that not everybody would agree that
this improves readability.

We now turn to algorithms for other problems. Consider the problem
of swapping the values of two variables. Figure 7.8 shows a simple generic
algorithm that solves this problem.

The other problems we will consider in this section all concern vectors.
Figure 7.9 shows a generic algorithm that counts the number of occurrences
of an element in a vector.

Figure 7.10 shows a more flexible version of this algorithm. It counts the
number of occurrences of an element in the portion of a vector specified by two
indices. Note that in C++, the standard way of specifying a range of positions
with two indices is to interpret the indices as the endpoints of an interval that
is closed on the left and open on the right. In other words, the first index
specifies the first position we’re interested in while the second index specifies
the first position we’re not interested in.

5The conditional operator is sometimes called the ternary or ternary conditional opera-
tor. It is the only C++ operator that has three operands.

176 CHAPTER 7. ALGORITHMS AND GENERIC PROGRAMMING

// Swaps the values of x and y.
template <typename T>
void swap(T & x, T & y)
{

T original x = x;
x = y;
y = original x;

}

Figure 7.8: A generic swap algorithm

// Returns the number of occurrences of e in v.
// Requirement on T: values can be compared by using the ==
// operator.
template <typename T>
int count(const vector<T> & v, const T & e)
{

int n = 0;
for (int i = 0; i < v.size(); ++i)

if (v[i] == e) ++n;
return n;

}

Figure 7.9: A generic count algorithm

// Returns the number of occurrences of e in the range
// [start, stop) of v.
// Requirement on T: values can be compared by using the ==
// operator.
template <typename T>
int count(const vector<T> & v, int start, int stop, const T & e)
{

int n = 0;
for (int i = start; i < stop; ++i)

if (v[i] == e) ++n;
return n;

}

Figure 7.10: A more flexible count algorithm

7.3. SOME SIMPLE ALGORITHMS 177

// Returns the index of the first occurrence of e in the range
// [start, stop) of v. Returns stop if e is not found.
// Requirement on T: values can be compared by using the ==
// operator.
template <typename T>
int find(const vector<T> & v, int start, int stop, const T & e)
{

for (int i = start; i < stop; ++i)
if (v[i] == e) return i;

return stop;
}

Figure 7.11: A generic find algorithm

Figure 7.11 shows a generic algorithm that finds the first occurrence of an
element in a range of positions within a vector. The vector is scanned from
left to right (in increasing order of indices). This algorithm performs what is
called a sequential search of the vector. In case the element is not found
within the range of positions, the index that marks the right end of the range
is returned. This is a convenient (and standard) way of indicating failure.

Figure 7.12 shows a generic algorithm that copies elements from a vector
to another. The elements to be copied from the first vector are specified
by a range of positions. The destination of the copying, that is, the range
of positions where the elements should be copied to in the second vector,
is specified by a single index that marks the beginning of that range. The
function returns an index that marks the end of the destination range.

Note that the copy algorithm can be used to copy elements from a range
of positions to another within the same vector, as in

copy(v, 0, 10, v, 20)

But since the algorithm copies forward, from start to stop, it is typically
not useful when dest falls within the range [start,stop). (An exercise asks
you to explain why.)

Finally, Figure 7.13 shows a generic algorithm that returns the index of
the maximum element in a range of positions within a vector. The algorithm
scans the range of positions from left to right and stores in the variable ix max

the index of the largest element it has seen so far. The variable ix max is
initialized to the first index of the range.

178 CHAPTER 7. ALGORITHMS AND GENERIC PROGRAMMING

// Copies the elements in the range [start,stop) in v1 to a range
// of positions that begins at index dest in v2. Returns an index
// that marks the end of the destination range. Copies forward,
// from start to stop.
// Precondition: assumes that the destination range is large enough.
template <typename T>
int copy(const vector<T> & v1, int start, int stop,

vector<T> & v2, int dest)
{

for (int i = start; i < stop; ++i) {
v2[dest] = v1[i];
++dest;

}
return dest;

}

Figure 7.12: A generic copy algorithm

// Returns the index of the largest element in the range
// [start,stop) in v.
// Precondition: assumes that the range is not empty.
// Requirement on T: values can be compared by using the <
// operator.
template <typename T>
int max element(const vector<T> & v, int start, int stop)
{

int ix max = start;
for (int i = start + 1; i < stop; ++i)

if (v[ix max] < v[i]) ix max = i;
return ix max;

}

Figure 7.13: A generic max element algorithm

7.4. ALGORITHMS IN THE STL 179

Exercises

7.3.1. Explain why the generic algorithm copy is typically not useful when
dest begin falls within the range [start,stop)?

7.3.2. Create the following generic functions. In each case, clearly document
any requirements on the template arguments.

a) A generic function println(v, start, stop) that prints to
cout the elements in the range [start,stop) in v. The elements
are printed on a single line with consecutive elements separated by
a single space.

b) A generic function sum(v, start, stop) that returns the sum of
the elements in the range [start,stop) in v.

c) A generic function average(v, start, stop) that returns the
average of the elements in the range [start,stop) in v.

d) A generic function fill(v, start, stop, e) that sets to e ev-
ery element in the range [start,stop) in v.

e) A generic function replace(v, start, stop, x, y) that re-
places by y every occurrence of element x in the range
[start,stop) in v.

f) A generic function min element(v, start, stop) that returns
the index of the smallest element in the range [start,stop) in v.

g) A generic function reverse(v, start, stop) that reverses the
order of the elements in the range [start,stop) in v.

h) A generic function

copy backward(v1, start, stop, v2, dest)

that copies the elements in the range [start,stop) in v1 to a
range of positions that ends at index dest in v2. Returns an index
that marks the beginning of the destination range. Copies back-
ward, from stop to start.

7.4 Algorithms in the STL

As mentioned earlier in this chapter, the STL includes functions that imple-
ment a wide variety of standard algorithms. This section presents several of

180 CHAPTER 7. ALGORITHMS AND GENERIC PROGRAMMING

swap(x, y)

Swaps the values of x and y.

max(x, y)

min(x, y)

max({elements})
min({elements})

Returns the maximum or minimum of the given elements. Uses< to
compare elements.

Table 7.1: Some generic algorithms

these algorithms. Many more are described in a reference such as [CPP].
As the word template in the name of the STL indicates, most components

in this library are templates. This includes the class vector, as well as the
functions we will describe in this section. For example, Table 7.1 describes the
STL algorithms swap, max and min. These functions are generic so they can
be used on arguments of any type that satisfy certain requirements. (These
requirements are usually obvious.)

In the previous section, we designed several algorithms that work on vec-
tors. For example,

count(v, start, stop, e)

returns the number of occurrences of e in the range of positions
[start, stop) within v. The functions we created are generic because they
each work on more than one type of vector. But note that these functions only
work on vectors.

The corresponding STL algorithms are even more generic because they
work not only on multiple types of vectors but also on other types of containers.
This has an important consequence. As mentioned in Section 5.8, numerical
indices are not an efficient way of specifying positions in some of these other
types of containers. Therefore, instead of indices, the STL algorithms use
iterators to specify ranges of positions.

Recall that the main purpose of an iterator is simply to mark a position
within a container. Each type of STL container supplies its own type of
iterator, implemented in a way that’s appropriate for that container.

For example, the STL count algorithm has the following form:

7.4. ALGORITHMS IN THE STL 181

count(start, stop, e)

This function returns the number of occurrences of e in the range of positions
[start, stop). The arguments start and stop could be vector iterators
or iterators that point to elements in some other type of container.

Table 7.2 lists some STL generic algorithms that are designed to be used on
sequences such as vectors. Another example of a sequence is the STL container
list.6

Using the algorithms of Table 7.2 on vectors requires only a very basic
understanding of iterators. That’s in part because it is easy to convert between
vector indices and vector iterators. If i is an index, then v.begin() + i gives
an iterator that points to the element in v that has index i. So, for example,

count(v.begin() + i, v.begin() + j, e)

returns the number of occurrences of e in the range of positions [i, j) in v.
On the other hand, if itr is a vector iterator, then itr − v.begin()

gives the index of the element that itr points to. So, for example,

find(v.begin() + i, v.begin() + j, e) − v.begin()

gives the index of the first occurrence of e in the range of positions [i, j)

in v.
It is possible to apply the STL algorithms to entire vectors. For example,

count(v.begin() + 0, v.begin() + v.size(), e)

returns the number of occurrences of e in all of v. But the following is much
more convenient:

count(v.begin(), v.end(), e)

This works because v.begin() gives an iterator that points the first element
of v and v.end() gives an iterator that points to a position that’s just past
the last element of v.

The STL generic algorithm find performs a sequential search of the given
range. An alternative is to perform a binary search. This algorithm executes
much more quickly as long as two conditions are met: the elements in the range
are sorted and the iterators that specify the range meet certain conditions.

6At Clarkson, STL lists are covered in detail in the course CS142 Introduction to Com-
puter Science II.

182 CHAPTER 7. ALGORITHMS AND GENERIC PROGRAMMING

count(start, stop, e)

Returns the number of occurrences of element e in the range
[start,stop). Uses == on elements.

find(start, stop, e)

Returns an iterator to the first occurrence of element e in the range
[start,stop). Returns stop if e is not found. Uses == on ele-
ments.

max element(start, stop)

min element(start, stop)

Returns an iterator that points to the maximum or minimum el-
ement in the range [start,stop). Return stop if the range is
empty. Uses < on elements.

copy(start, stop, dest begin)

Copies the elements in the range [start,stop) to a range of posi-
tions that begins at dest begin. If n is the number of elements that
are copied, returns an iterator that points n positions to the right of
dest begin. Copies forward, from start to stop. Typically not
useful when dest begin falls within the range [start,stop).

copy backward(start, stop, dest end)

Copies the elements in the range [start,stop) to a range of po-
sitions immediately to the left of dest end. If n is the number
of elements that are copied, returns an iterator that points n po-
sitions to the left of dest end. Copies backward, from stop to
start. Use instead of copy when the destination range begins
within [start,stop).

fill(start, stop, e)

Sets all the elements in the range [start,stop) to be copies of
element e.

replace(start, stop, x, y)

Replaces all occurrences of element x by a copy of element y in the
range [start,stop). Uses == on elements.

reverse(start, stop)

Reverses the order of the elements in the range [start,stop).

Table 7.2: Some generic sequence algorithms

7.4. ALGORITHMS IN THE STL 183

binary search(start, stop, e)

lower bound(start, stop, e)

upper bound(start, stop, e)

Performs a binary search in the range [start,stop). Assumes that
the range is sorted with respect to <. Uses < on elements. The first
version returns true if element e is present in the range. Otherwise,
it returns false. The second version returns an iterator that points
to the first position where e could be inserted in the range while
preserving the order. The third version returns an iterator that
points to the last such position.

sort(start, stop)

Sorts the elements in the range [start,stop) using the< operator.
Requires random-access iterators.

Table 7.3: Some generic algorithms for searching and sorting

Without going into details, iterators that meet those particular conditions are
called random-access iterators. Vector iterators are an example of random-
access iterators. (List iterators are not.)7

The STL includes several versions of the binary search algorithm. These
are described in Table 7.3. This table also includes a description of a generic
sorting algorithm.

The generic algorithm swap is defined in the library file utility. The
other STL generic algorithms mentioned in this section are defined in the
library file algorithm. All of them are part of the std namespace.

Study Questions

7.4.1. What is an iterator?

7.4.2. How can we convert between vector indices and vector iterators?

7.4.3. Where do the iterators v.begin() and v.end() point to?

7At Clarkson, the binary search algorithm, as well as iterator categories such as random-
access iterators, are covered in detail in the course CS142 Introduction to Computer Sci-
ence II.

184 CHAPTER 7. ALGORITHMS AND GENERIC PROGRAMMING

Exercises

7.4.4. Experiment with the STL searching and sorting algorithms by writing
a test driver that uses all the algorithms shown in Table 7.3. To see
the difference between lower bound and upper bound, make sure you
search for an element that occurs multiple times in the sequence.

Bibliography

[CPP] cppreference.com. Web. Last accessed January 2014. http://

cppreference.com.

[Laz] Ed Lazowska. Exponentials R us: Seven computer science game-
changers from the 2000s. Xconomy, 2009. Web. Last accessed
January 2014. http://www.xconomy.com/seattle/2009/12/24/

exponentials−r−us−seven−computer−science−game−changers
−from−the−2000’s−and−seven−more−to−come.

[Str] Bjarne Stroustrup. The C++ programming language. Web. Last ac-
cessed October 2013. http://www.stroustrup.com/C++.html.

185

186 BIBLIOGRAPHY

Index

abstraction, 99
data, 109
procedural, 99

argument, 15
constant reference, 88
reference, 85
stream, 89
value, 85

bool, 92
Boolean expression, 20
brace list, 125
break, 121, 146
bug, 25

C string, 130
cin, 10
class, 110
code, 2

object, 3
source, 2

comment, 7
compiler, 2
compound statement, 25
constant

compile-time, 70
global, 71, 81
literal, 70

constructor, 111
copy, 111
default, 111

container, 104
continue, 143
copy constructor, 125
cout, 3

default, 121
documentation, 101
dynamic, 105

escape sequence, 5
executable, 3

file
input, 49
output, 48

floating-point numbers, 72
fixed-point format, 72
scientific format, 73

function, 14, 75
body, 77
declaration, 78
definition, 77
header, 77
valued, 81
void, 81

generic
algorithm, 171
container, 126
function, 172
programming, 172

getline, 62

187

188 INDEX

if statement, 20
if-else statement, 22
implicit conversion, 130
index, 105
information hiding, 99
initialization

default, 150
value, 123

initializer list, 125
input buffer, 10
iterator, 141, 180

Java, 112

language
high-level, 2
machine, 2

library, 6
loop, 29

do-while, 29
for, 37
nested, 42
range-for, 106
while, 36

main, 6
member function, 112
message, 110
method, 110
modularity, 95

new line character, 5

object, 110
default, 111

object-oriented programming (OOP),
110

operator
add and assign (+=), 40

assignment (=), 21
Boolean, 21
comparison, 20
conditional (?:), 174
decrement (−−), 36
divide and assign (/=), 40
increment (++), 35
indexing ([]), 105
input (>>), 10
logical, 22
logical AND, 21
logical NOT, 21
logical OR, 21
member selection (.), 158
multiply and assign (∗=), 40
output (<<), 4, 58
subtract and assign (−=), 40

program, 2
programming

imperative, 110

receiver, 110
return, 65, 77
return value, 15
round, 14

searching
binary search, 181
sequential search, 177

sentinel value, 51
Standard Template Library (STL),

126, 170
stream

error state, 54
input, 10
output, 3

stream manipulator, 44
fixed, 73

INDEX 189

left, 44
right, 44
scientific, 73
setw, 44

stream manipulators
setprecision, 73

string, 3
structure, 158
switch, 121

template
function, 172
instantiation, 172
parameter, 172

variable, 9
constant, 70
global, 81
local, 32, 79
naming, 18
scope, 32

vector, 104

