
A Study of Passwords and Methods Used in Brute-Force
SSH Attacks

Jim Owens and Jeanna Matthews
Department of Computer Science

Clarkson University
8 Clarkson Avenue, MS 5815

Potsdam, NY 13699

{owensjp, jnm}@clarkson.edu

ABSTRACT

In its Top-20 Security Risks report for 2007, the SANS Institute
called brute-force password guessing attacks against SSH, FTP
and telnet servers “the most common form of attack to
compromise servers facing the Internet.” A recent study also
suggests that Linux systems may play an important role in the
command and control networks for botnets. Defending against
brute-force SSH attacks may therefore prove to be a key factor in
the effort to disrupt these networks. In this paper, we report on a
study of brute-force SSH attacks observed on three very different
networks: an Internet-connected small business network, a
residential system with a DSL Internet connection, and a
university campus network. The similarities observed in the
methods used to attack these disparate systems are quite striking.
The evidence suggests that many brute-force attacks are based on
pre-compiled lists of usernames and passwords, which are widely
shared. Analysis of the passwords used in actual malicious traffic
suggests that the common understanding of what constitutes a
strong password may not be sufficient to protect systems from
compromise. Study data are also used to evaluate the effectiveness
of a variety of techniques designed to defend against these attacks.

1. INTRODUCTION
Major security threats to networked computer systems appear to
be reaching crisis proportions in recent years. For example,
Barracuda Networks, a major supplier of email and Web security
appliances, estimates that spam email accounted for between 90
and 95 percent of all email sent during 2007 [2]. In addition, new
phishing attacks increased by 18% during the first half of 2007
[27], and by the final quarter of last year phishing incidents
accounted for nearly 60% of all security incidents reported [29].
Commercial malware kits such as MPack [24], including
maintenance and support agreements for client hackers, are now
being offered for sale on the Internet for as little as $500. These
trends have continued to grow since Bruce Schneier told the
audience at the Hack in the Box Security Conference in Kuala
Lumpur, Malaysia that in his estimation the security war was
being lost [19].

Perhaps the single biggest security threat for networked systems
going forward is represented by botnets, defined as collections of
compromised computer systems used for a variety of criminal
activities, including distributed denial-of-service attacks,
spamming, traffic sniffing, keylogging, identity theft, and click
fraud [7]. The most highly publicized botnet of 2007 was the
Storm worm botnet, which is estimated to control as many as 50
million computers [5].

For most of the recorded history of botnets, dating back to 1999,
the robot computers, or zombies, that populate them have been
understood to consist primarily of compromised systems running
a version of the Microsoft Windows operating system [7,22].
Propagation of zombie code has been observed to occur through a
number of Windows-specific worms, viruses, Trojans, and other
forms of malware [3]. More recently, vulnerabilities in Linux
machines are being recognized as an important part of the
problem. In October 2007 Dave Cullinane, chief information and
security officer at eBay, announced at the Trust Online conference
that an internal investigation of the security threats faced by the
online auction service had been traced to “rootkitted Linux
boxes.” [20] Alfred Huger, vice president for Symantec Security
Response, echoed Cullinane's comments, saying that
compromised Linux machines were frequently observed to make
up a large portion of the command and control networks for
botnets.

While it is true that computers running Linux are not subject to
the many worms, viruses, and other malware that target Windows
platforms, the Linux platform is known to be vulnerable to other
forms of exploitation. A 2004 study conducted by the London-
based security analysis and consulting firm mi2g found that Linux
systems accounted for 65% of “digital breaches” recorded during
the twelve-month period ending in October 2004 [6].

Recent studies of vulnerability trends point to two primary attack
vectors: brute-force attacks against remote services such as SSH,
FTP, and telnet, and Web application vulnerabilities [4,25]. In its
Top-20 2007 Security Risks report, the SANS Institute called
brute-force password guessing attacks against SSH, FTP and
telnet servers “the most common form of attack to compromise
servers facing the Internet.” The report notes that unpatched flaws
such as buffer overflow vulnerabilities in the authentication
functions of these services can allow arbitrary code execution;
however, the report also points up a much more mundane threat.
Weak passwords are specifically identified as a potential Achilles
heel in these systems, since “brute forcing passwords can be a
used as a technique to compromise even a fully patched system.”

In this paper, we focus specifically on brute-force SSH attacks. In
particular, we analyze data collected from a large number of SSH
brute-force attacks against Linux systems connected to different
kinds of networks. We discuss patterns in the passwords used in
these attacks, as well as the methods employed. We also use the
data we collected to evaluate the effectiveness of various
countermeasures that have been suggested for protecting systems
against SSH brute-force attacks.

The remainder of this paper is organized as follows. Section 2
provides an overview of the project, including the experimental
setup, an overview of attack activity, and a high-level summary of

usernames and passwords used in attacks. In Section 3, malicious
traffic is analyzed in detail, providing insight into the methods
used by attackers. In Section 4, we evaluate a number of
commonly recommended defenses against brute-force SSH
attacks. Section 5 describes related work, followed by a
description of future work in Section 6. We conclude in Section 7.

2. PROJECT OVERVIEW

2.1 Experimental Setup
In order to collect as much data on actual attacks as possible, from
a variety network types, we deployed SSH honeypots in three very
different network environments:

• An Internet-connected small business network

• A residential system with a DSL Internet connection

• Our campus network

The honeypots consisted of low-end PCs with minimal Linux
server installations. Each system ran two SSH servers. The first
was a patched version of OpenSSH Server version 4.7 [10] that
listened for attack traffic on TCP port 22. The second server,
intended for maintenance and control of the honeypots, ran the
SSH server software provided with the Linux distribution and
listened on a nonstandard high port. The three networks hosting
the honeypots are completely separate, with no explicit or logical
links to connect them. In addition, each network used a different
Internet service provider.

We implemented and applied two modifications to the SSH server
software for the honeypots. First, we added a line to the password
authentication function to log the passwords used in all login
attempts. Second, we also hard-coded the function’s return value
to always indicate a failed login attempt, as we were not interested
in allowing attackers to access the honeypots. In addition, we
wrote a collection of scripts to extract attack data from the
honeypot log files and insert it into a local database. The local
databases were regularly synchronized with a central database
server for aggregation and analysis.

We operated the honeypots in two phases, for periods of 5-6
weeks each. The first phase ran from mid-July through late-
August 2007. The second phase ran from mid-December 2007
until early-February 2008.

2.2 Overview of Attack Activity
In this section, we begin with a basic overview of the brute-force
attacks we observed. Over the course of approximately 11 weeks,
the three honeypots were subjected to nearly 300 separate attacks,
consisting of more than 103,000 login attempts, originating from
279 IP addresses.

The number of login attempts observed during each attack varied
widely across the honeypots, from 1 or 2 up to hundreds or even
thousands of attempts. The largest number of attempts observed
during a single attack session was 9,311. This attack, observed on
the honeypot located on the residential DSL connection, lasted for
117 minutes and accounted for nearly half of the login attempts
observed on this honeypot.

Of the 279 IP addresses involved in attacks across the three
systems, only 8 addresses were observed in attacks on more than
one of the honeypots. No IP addresses were observed in attacks

on all three. Thus, we recorded a total of 271 distinct IP addresses
in our research. Overall statistics are presented in Table 1, broken
down by individual honeypot.

Table 1. Overall honeypot attack activity

 Campus Business Residence Totals

Attacks 109 125 64 298

Login attempts 42,031 43,131 18,669 103,831

Source IPs 96 119 64 279

2.3 Common Usernames and Passwords
As one might expect, the username observed most often in
malicious login attempts was root. Overall, the root account was
targeted in just over a quarter of all login attempts. Other
usernames commonly targeted are often associated with temporary
accounts, such as test, guest or user. System accounts were

also commonly targeted. Table 2 presents the “top ten” usernames
observed, along with their respective percentages of total login
attempts. Interestingly, database systems appear to dominate the
list of system accounts.

Beyond the root, system and temporary account names, the vast
majority of usernames used in attacks were first names (e.g.
michael or cheryl). We saw very little effort to target

usernames such as those used in many U.S. organizations, which
often combine all or part of the user’s surname with the first and
sometimes the middle initial. In fact, a search for such usernames
based on the top ten American surnames from the 2000 U.S.
Census [28] yielded just nine examples among all the usernames
collected in our research.

Table 2. “Top 10” usernames observed in SSH attacks

Username % Used

root 25.7

admin 2.1

test 1.6

a 0.9

guest 0.9

user 0.6

oracle 0.4

postgres 0.4

webmaster 0.3

mysql 0.3

Passwords based on account usernames were by far the most
common in the attacks on our honeypots. In fact, identical
username/password pairs (e.g. root/root, guest/guest,

michael/michael) were used in nearly 49 percent of login

attempts across all three honeypots. Passwords based on simple
variations to the username were observed in another 8 percent of
attempts. The most common variation was simply appending
“123” to the username to form the password (e.g.
root/root123). Other variations included passwords that were

alternate forms of the username, such as the password walter

used with username walt, or the opposite male-female form,

such as the password samantha used with the username sam.

Another common variation was to simply double or triple the
username to form the password, such as forming the password
testtest from username test. Dictionary words accounted

for just over 11 percent of all passwords collected. Table 3 lists
the passwords seen most frequently in attacks on our honeypots,
along with their overall percentages of total login attempts.
Passwords based on the simple variations of the username
discussed above are represented by %username%.

Table 3. “Top 10” passwords observed in SSH attacks

Password % Used

%username% 56.9

123456 3.6

password 1.4

test 0.8

12345 0.6

test123 0.5

123 0.5

1234 0.5

passwd 0.4

admin 0.4

The results presented thus far correlate very well with those of
earlier studies of malicious SSH login attempts [23,26]. These
studies tended to focus on the most frequently observed
usernames and passwords in their analyses, as a prelude to the
study of the actions taken by attackers who gained access to high-
interaction honeypots. In our research, we have chosen to focus
on developing and evaluating recommendations for defending
against brute-force attacks. We present the results of that analysis
in the next section.

3. ATTACK PATTERNS
In this section, we dig deeper into the attack patterns we observed.
We begin with an examination of the different types of passwords
used in the attacks on the honeypots, followed by a discussion of
some interesting attack scenarios.

3.1 Passwords and Attack Dictionaries
For SSH servers that permit password authentication, the
passwords themselves are an obvious area of vulnerability. So we
begin our analysis with an examination of the different kinds of
passwords and dictionaries used in the attacks on our honeypots.

3.1.1 Passwords
One of the first questions raised in our analysis concerned the
degree commonality that might exist in the passwords used in
attacks across the honeypots. In the previous section, we
presented the overall “Top 10” list of passwords collected, which
was headed by passwords that were variations on the username.
Of course, these passwords vary with the username. Putting
passwords based on the username aside, we generated a list of the
most frequently occurring passwords collected in each of the

honeypots and compared them side-by-side. We found the
similarity among these lists rather astonishing. Figure 1 below
presents the 20 passwords seen most frequently in each honeypot.
The passwords in the bold font are those that were found among
the top 20 in all three honeypots. The passwords in italics were
recorded in two of the lists. When evaluating these lists, we again
point out that these passwords were generated in attacks
originating from 279 IP addresses. Only eight of these IP
addresses were observed in attacks on more than one honeypot.

Overall, 12 passwords were found in the top 20 list among all
three honeypots, with another 5 occurring in two of the lists.
These results might have been even more striking were it not for
the presence of three of the longest passwords found in the
Business honeypot’s list:

asutcmhack123@

40232046bad
!@#asutcmhack!@#

These passwords were used hundreds of times each in
combination with different usernames in a single attack on the
Business honeypot. These passwords are also the strongest found
in this list. In fact, the password asutcmhack123@ received a

“Best” rating when tested with Microsoft’s online Password
Checker tool [8], while the remaining two were rated as
“Medium.”

Campus Business Residence

123456

password

12345

test

admin

1234

123

root

qwerty
abc123
administrator
12345678

user

linux

test123

guest
mysql

1234567
apache

master

123456

password

test

admin

test123
asutcmhack123@
passwd

40232046bad
!@#asutcmhack!@#

root

12345

qwerty
1234

mysql

123

apache

master

user

linux

guest

123456

password

test

12345

123

1234

test123
passwd

1
12

root

admin
changeme
abc123

qwerty

guest

1q2w3e

user

newpass
asdfgh

Figure 1. The “Top 20” passwords from each honeypot.

3.1.2 Attack Dictionaries
The striking similarity we observed among the passwords most
commonly used in attacks on the three honeypots led us to suspect
that attackers might be using shared dictionaries of usernames and
passwords. In fact, by examining the number of login attempts
involved in attacks on the three honeypots and manually
comparing the individual usernames and passwords used in each
attack, we found evidence of at least five such dictionaries.

The criteria we used to identify these attack dictionaries were
quite strict. Specifically, we considered two attack sessions to be

using the same dictionary only if they used exactly the same
username/password pairs in precisely the same order. We also
observed numerous partial runs of similar username/password
lists; however, these were not counted.

Table 4 below provides some statistics on the frequencies with
which the dictionaries we identified were used in attacks. We
named the dictionaries according to the number of
username/password pairs contained in each. The total of 51
attacks using these dictionaries accounted for 17 percent of all the
brute-force SSH attacks observed on the honeypots. Given the
strict criteria used to define each dictionary, we find this result
quite striking. Additional information on the individual
dictionaries is provided in the following paragraphs.

Table 4. Username/password dictionaries used in SSH attacks

 Campus Business Residence Total

Dictionary-9 7 4 6 17

Dictionary-66 1 2 0 3

Dictionary-168 8 6 10 24

Dictionary-363 1 1 2 4

Dictionary-373 2 0 1 3

Totals 19 13 19 51

3.1.2.1 Dictionary-9
The smallest of the 5 dictionaries we observed, including 9
username/password pairs, was used in a total of 17 attacks
involving all 3 of the honeypots. As shown in Figure 2 below, the
usernames and passwords used are quite simple. This dictionary
was clearly designed to permit exploration of a large number of
potentially vulnerable servers in a very short period. The average
time required to complete the 17 attacks observed using this
dictionary was just under 22 seconds.

Usernames Passwords

test test

guest guest

admin admins

user user

root password

root root

root 123456

test 123456

Figure 2. Usernames/passwords included in Dictionary-9.

3.1.2.2 Dictionary-66
All username/password pairs contained in this dictionary were
specifically directed at the root account. The passwords used
include a small number of the sort found in the Top 20 lists
above, as well as some simple phrases like changeme and

trustno1. However, the majority of the passwords found in this

dictionary are based on simple keyboard patterns:

qazwsxedc

qpwoeiruty

1q2w3e4r

!@#$%^

3.1.2.3 Dictionary-168
This dictionary proved to be the most popular choice for attacks
on the honeypots. It includes a large variety of usernames
including root; various system accounts; generic and/or temporary
account names such as staff, sales, and recruit; as well as proper
names. The included passwords are quite simple throughout, with
the vast majority being limited to the username or a simple
variation thereon. We identified three distinct versions of this
dictionary, each of which individually met the criteria described
above for defining dictionaries. That is, each version was used in
attacks on multiple honeypots, using the exact same
username/password pairs occurring in precisely the same order.
Each version incorporated a small number of modifications (10 or
fewer) to the usernames, passwords, or both from other versions.
Interestingly, despite these minor differences, each version of
Dictionary-168 contained the same number of username/password
pairs.

3.1.2.4 Dictionary-363 and Dictionary-373
These dictionaries include a diverse collection of usernames and
passwords and may simply represent a conglomeration of smaller
dictionaries. The root account and various system accounts are
well represented, with passwords of varying types including
common English words, proper names, keyboard patterns, and
“leets,” which replace letters with numbers or symbols that
resemble the replaced letter. For example, these dictionaries
include these variations on the word password:

p@ssw0rd

p@ssword

passw0rd

pa$$word

pa55word

pa55w0rd

Both of these dictionaries also include more than a hundred
identical username/password pairs based on proper names.

3.2 Attack Methods
As noted in the previous section, the number of login attempts
observed during individual attack sessions varied widely. More
than a third consisted of ten or fewer login attempts, while other
attackers attempted hundreds or even thousands of logins in a
single session. In fact, in about 10 percent of attacks, more than
1,000 login attempts were recorded.

While the vast majority of attacks seemed fairly straightforward,
we recently observed a small number of attacks that appear
specifically designed to evade detection by intrusion prevention
systems. We provide details of these attacks in the paragraphs
below.

3.2.1 A Slow-motion Brute-force SSH Attack
Beginning on January 1 and continuing through January 8, 2008,
we observed a total of 21 separate attack sessions on a single
honeypot originating from the same IP address. The number of
logins attempted during each session varied somewhat, but the
number of logins attempted during a single session never
exceeded nine. The total number of login attempts over the eight
days was 130, all of which targeted the root account.

The passwords used in the initial 50 or so attempts over the first 3
days were quite simple. They consisted mostly of common
English words, proper names, and simple phrases such as
newuser, stuffedturkey, and youareok. The passwords

used in the next session, consisting of nine login attempts,
consisted mostly of “leets” such as c4bl3m0d3m

(cablemodem), c4l3nd4r (calendar), and c4lif0rni4

(california).

Beginning with session number 11 and continuing throughout the
remaining attacks sessions, the passwords were much stronger. In
fact, of the passwords used in the last 73 login attempts, 53
percent were rated as “Strong” by Microsoft Corporation’s
Password Checker tool [8]. A representative sample of these
passwords is presented in Figure 3 below.

U50s8AdF

OxZBA4xOMd

35t3K6OZ

Zh59EPu5mQxq

8Nv9YUpQu0v

K48v87GR8Rf

QcxC3OuZUH

848TmMf57

bC28s9R7Weg

nezBh57yi1jm

Kqr17tJ89Tan

Figure 3. “Strong” passwords used during a slow-motion

brute-force SSH attack on a single honeypot.

3.2.2 A Distributed Brute-force SSH Attack
We observed another attack apparently designed to evade
detection by intrusion prevention systems. This attack consisted of
a coordinated series of login attempts originating from 10
consecutive IP addresses from the same Class C network. A total
of 33 logins were attempted in just over 3 minutes, with no more
than 5 attempts originating from a single IP address. The sequence
of login attempts is shown in Figure 4 below. Interestingly, the
username/password pairs used in this attack are identical to the
first 32 pairs found in one version of the attack dictionary
designated as Dictionary-168 in the previous section. Although
distributed among 10 different source IPs addresses, the
username/password pairs used in this attack were in exactly the
same order as in other attacks originating from a single IP.

Time Username Password IP Address

10:42:34 staff staff aaa.bbb.ccc.131

10:42:39 sales sales aaa.bbb.ccc.136

10:42:44 recruit recruit aaa.bbb.ccc.131

10:42:51 alias alias aaa.bbb.ccc.137

10:42:58 office office aaa.bbb.ccc.137

10:43:03 samba samba aaa.bbb.ccc.137

10:43:08 tomcat tomcat aaa.bbb.ccc.131

10:43:13 webadmin webadmin aaa.bbb.ccc.136

10:43:21 spam spam aaa.bbb.ccc.138

10:43:29 virus virus aaa.bbb.ccc.134

10:43:36 cyrus cyrus aaa.bbb.ccc.139

10:43:41 oracle oracle aaa.bbb.ccc.136

10:43:46 michael michael aaa.bbb.ccc.134

10:43:51 ftp ftp aaa.bbb.ccc.137

10:43:57 test test aaa.bbb.ccc.135

10:44:05 webmaster webmaster aaa.bbb.ccc.138

10:44:10 postmaster postmaster aaa.bbb.ccc.134

10:44:15 postfix postfix aaa.bbb.ccc.139

10:44:21 postgres postgres aaa.bbb.ccc.139

10:44:26 paul paul aaa.bbb.ccc.131

10:44:32 root root aaa.bbb.ccc.131

10:44:38 guest guest aaa.bbb.ccc.133

10:44:43 admin admin aaa.bbb.ccc.139

10:44:49 linux linux aaa.bbb.ccc.138

10:44:54 user user aaa.bbb.ccc.140

10:45:00 david david aaa.bbb.ccc.139

10:45:06 web web aaa.bbb.ccc.136

10:45:11 apache apache aaa.bbb.ccc.137

10:45:17 pgsql pgsql aaa.bbb.ccc.132

10:45:22 mysql mysql aaa.bbb.ccc.134

10:45:30 info info aaa.bbb.ccc.138

10:45:35 tony tony aaa.bbb.ccc.135

10:45:45 core core aaa.bbb.ccc.138

Figure 4. A distributed brute-force SSH attack.

We believe that these attacks represent fledgling efforts to lower
the volume of brute-force SSH attacks, and thereby avoid
detection. We fully expect to see more sophisticated attacks using
these and similar methods to extend the time periods between
login attempts and distribute the attempts among a greater number
of IP addresses. In fact, distributed SSH attacks would seem to be
a likely application for large, distributed botnets.

4. EVALUATION OF COMMON

DEFENSES AGAINST SSH ATTACKS
Having collected and analyzed a large amount of data on brute-
force SSH attacks, we now offer an evaluation of a variety of
mitigation techniques that are commonly recommended for
protecting SSH servers, in light of the insights gained from our
research. We also suggest some additional defense strategies
based on our study data.

Enforcing strong passwords with password checking

programs or libraries. Much has been written on what
constitutes a strong password. A quick Web search turns up a long
list of sites offering advice on this topic. One such site is
Microsoft Corporation’s page: “Strong passwords: How to create
and use them” [9]. The advice offered on this page reflects the
broad consensus of the criteria that constitute a strong password:

• Make it lengthy

• Combine letters, numbers, and symbols.

• Use words and phrases that are easy for you to
remember, but difficult for others to guess

Microsoft’s site also offers a six-step tutorial for creating a strong,
memorable password. The final step includes a link to Microsoft’s
Password Checker tool [8], a utility that helps users determine the
strength of candidate passwords.

While many resources are available for helping users choose
strong passwords, the challenge for many system administrators is
to get their users to actually select and use strong passwords.

Fortunately, password checking libraries that can prevent users
from choosing weak or vulnerable passwords are readily
available. Perhaps the most commonly used are the Openwall
Project’s pam_passwdqc PAM module [17] and the cracklib
library [18].

The pam_passwdqc module is simple to install, highly
configurable, provides support for passphrases, and subjects
candidate passwords to a number of checks including minimum
password length and the presence of weak substrings. The
pam_passwdqc module can also generate random passwords.

The cracklib module provides for similar checking. Candidate
passwords are tested for strings related to the username and
GECOS data, as well as simple patterns and dictionary words.
Administrators can also incorporate checks against password lists.
The cracklib project Web site provides one such list, which
currently contains more than 1.6 million words culled from a
variety of sources, including the passwords captured in our
honeypots.

We believe that enforcing strong passwords is arguably the most
important step system administrators can take to protect SSH
servers from brute-force password attacks. As noted in the SANS
Institute’s most recent Security Risks report, even fully patched
systems are vulnerable to brute force password-guessing attacks.
Password-checking libraries such as cracklib can prevent users
from inadvertently choosing vulnerable passwords such as those
based on their usernames. Cracklib’s ability to check password
choices against restricted systematic approaches to generating
passwords is every bit as important, we believe. Our research
shows that a significant percentage of malicious login attempts are
based on dictionaries of usernames and passwords. While the
majority of these passwords are obviously weak by any standard,
we observed a significant percentage of “strong” passwords being
used in some attacks. Collecting and using attack dictionaries in
password checking can help users avoid selecting passwords
vulnerable to compromise, regardless of their perceived strength.

Avoiding easily guessed usernames. Our results show that the
usernames in malicious login attempts that target the accounts of
real users consist almost exclusively of first names. The use of
account names based on combinations of surnames with initials,
or similar schemes that produce less easily guessable account
names can do much to complicate the job of brute-force attackers.

Disabling logins via SSH for the root account. It has long been
considered good security practice to disable logins via SSH for
the root account. One of the first challenges faced by attackers
engaged in brute-force SSH attacks is that of obtaining or
guessing valid user account names. The root account is an
obvious target, since it is known to exist on all Unix/Linux
systems. By disabling SSH logins to root, system administrators
complicate the job of the attacker. Even when root logins via SSH
are disabled, login attempts fail silently. So the attacker has no
way of knowing whether these attempts have any chance of
succeeding. If a non-privileged account is compromised, the
attacker gains a foothold on the system and may be able to gain
full privileges through a local root exploit.

Our results show that the root account was targeted in more than
25 percent of all malicious login attempts. Therefore, by disabling
access to this account, system administrators can render useless a
significant percentage of malicious traffic. Successfully targeting

other user accounts requires some research, a bit of luck on the
attacker’s part, a high volume of login attempts, or a combination
of all three.

Running the SSH server on a non-standard high port. SSH
servers traditionally listen on TCP port 22, but there is nothing to
prevent system administrators from configuring SSH servers to
listen on any other unused port among the 65,535 ports provided
by the TCP protocol. All the SSH servers we are aware of can be
readily configured to listen on alternative ports. We believe this
situation creates a great opportunity to hide the SSH service from
attackers, much like the proverbial needle in a haystack.
Commonly-used port scanning tools such as Nmap [13] scan just
over 1,600 ports by default, leaving the vast majority unexplored.
Moreover, a recent study of the relationship between port scans
and attacks [21] concluded that more than 50 percent of the
observed attacks were not preceded by a port scan. Some will
argue that this method is an example of “security by obscurity.”
However, we believe that running an otherwise well-secured SSH
server on a nonstandard high port can help reduce its vulnerability
to brute-force attacks without exposing the server to additional
risk. We also note that all three honeypots used in this study ran a
second SSH server on a high port, which was used for
maintenance and control purposes. No malicious login attempts
directed at the servers running on these ports were observed
during the same period that over 100,000 attacks were observed
on the default SSH port. Asking legitimate users to remember the
non-standard port can be a small inconvenience.

Using TCP Wrappers or iptables to block IP addresses after

repeated failed login attempts. A number of intrusion prevention
tools, such as DenyHosts [14], BlockHosts [15], and fail2ban
[16], have been introduced over the past several years to help
defend against brute-force password-guessing attacks. These tools
work by parsing system log files for failed login attempts on a
periodic basis, and then taking action to lock out attacking IP
addresses using iptables, TCP Wrappers, or null routing rules.
The DenyHosts tool is focused on protecting the SSH service,
while BlockHosts can be used to protect both SSH and FTP
servers. The fail2ban tool is more flexible in that it can be
configured to protect SSH, FTP, and Web servers.

In addition to parsing log files for attacking IP addresses on the
local machine, DenyHosts also provides a synchronization
function through which blocked IP addresses on individual
servers running the software worldwide can be synchronized with
a central server. Using this system, participating servers can be
configured to periodically synchronize their /etc/hosts.deny files
with the central server. In this way, attacks by many blocked hosts
can be prevented before the attacker has the chance to initiate
even one login attempt.

We found that over 93 percent of the 271 malicious IP addresses
collected in our study were listed in the /etc/hosts.deny file a local
server synchronized with the DenyHosts central database. Servers
using this service would therefore have been protected from the
vast majority of the attacks observed in our study. On the other
hand, we observed a small number of attacks that appear to be
specifically designed to thwart these systems, based as they are on
the attacker’s IP address. These efforts do not yet seem highly
effective; however, we anticipate they will improve over the
coming months.

It should also be noted that there may be some administrative
overhead associated with managing systems like DenyHosts.
Initial installation and configuration are quite straightforward, in
our experience. On the other hand, depending on the number of
users involved, the effort required to restore service for legitimate
users who inadvertently lock themselves out of systems after
repeated login failures could be significant.

Using iptables to restrict access to the SSH port by source IP

address. System administrators can restrict network access to the
SSH port (and those of other services) to specific source IP
addresses or networks by adding source address restrictions to
iptables firewall rules. A well-written set of iptables rules,
designed to limit access to an SSH server to a set of authorized IP
addresses, can be quite effective is preventing brute-force attacks.
For server installations where the source IP addresses are known
in advance, this method should work well. In many installations,
however, restricting access to a set of known IP addresses may not
be feasible and would prevent authorized users from logging in
from unexpected locations. It should also be noted that writing
iptables rules can be a complex undertaking, and poorly crafted
rule sets may inadvertently leave servers vulnerable to attack.

Using port-knocking or single packet authorization to restrict

access to the SSH server port. Iptables firewall rules can also be
adjusted on the fly, using tools such as knockd [11] or fwknop

[12], to allow SSH server access to specific IP addresses. Access
is granted based on predetermined sequences of ICMP packets or
a specially-crafted UDP packet, respectively. Access attempts
from IP addresses that do not provide the required authorization
packets are filtered. In situations where the source IP addresses of
authorized users is not known in advance, port knocking or SPA
can provide added flexibility. These methods require client
software with the correct configuration to be installed on all
systems used to connect to the SSH server. This additional
overhead and the inconvenience it poses for users may limit the
feasibility of this method in some organizations.

Requiring public-key authentication in place of passwords.
SSH servers such as OpenSSH [10] support a variety of
authentication methods. One commonly-used method that
virtually eliminates the threat of brute-force password guessing
attacks is public-key authentication. To use this method, users
must generate a public/private key pair and place the public key in
the appropriate file on the destination server. The private key, in
turn, must be stored on each client system from which the user
wishes to log in to the server. To provide protection against brute-
force password attacks, the server’s system administrator must
also disable all password-based SSH authentication.

While public-key authentication is not always feasible because of
the overhead involved in generating and distributing keys, SSH
servers configured in this way are virtually immune to brute-force
attacks, provided all password-based authentication is disabled.

Summary of recommendations. Overall, we find that a number
of the recommended techniques for defending against brute-force
attacks can be quite effective, especially when used in
combination. For installations in which password-based
authentication is a necessity, we believe that enforcing strong
passwords is the most effective method for defending against
brute-force SSH attacks. Such a strategy should include not only
systems that rate the strength of passwords based on length and
character choice, but also by using a system such as cracklib with

dictionaries of passwords actually captured in honeypots. We also
recommend avoiding usernames based on simple first names.
Where possible, our data indicated that running the SSH server on
non-standard ports is also quite effective. Combining password
checking with other techniques designed to lower the profile of
the server or to reduce the volume of malicious login attempts
should help to greatly reduce the likelihood of system
compromise by means of brute-force SSH attacks.

5. RELATED WORK
Several studies of SSH attack traffic have been undertaken in
recent years [1,23,26]. In most cases, the study of SSH attack
traffic is part of a larger study, which includes attacker activities
following system compromise. In our research, we were narrowly
focused on the malicious login traffic itself, with the goal of
developing a deeper understanding of the tools and techniques
employed in brute-force SSH attacks which, by many accounts,
continue to represent a significant threat to networked Linux
systems [25]. We were not interested in observing successful
compromises. In fact, we patched the OpenSSH server to prevent
successful logins via the standard SSH port, and we instituted a
number of safeguards to protect the honeypots from compromise.

Microsoft offers a Web-based tool [8] that allows users to test the
strength of candidate passwords without sending their passwords
over the Internet. We used the Microsoft tool to test the strength
of a number of passwords collected in our research activities.

There are a number of projects focused on password checking, as
well. Both cracklib [18] and OpenWall’s pam_passwdqc [17]
provide helper tools that transparently perform password checking
as users change their passwords on Unix-based systems. Based on
our early findings regarding the widespread use of attack
dictionaries of common usernames and passwords, we reached out
to the maintainers of the cracklib project to offer the passwords
collected in our research for inclusion in cracklib-words. We
continue to provide updates to this list on a monthly basis.

6. FUTURE WORK
Deploying and managing low-interaction honeypots such as those
fielded in our study is a fairly straightforward process. The work
of aggregating and analyzing the data collected is more labor
intensive. We are currently working to develop a set of software
tools to support automatic consolidation and analysis of honeypot
data at a central server, which would readily support a variety of
analysis activities to support collection and aggregation of
username/password data, as well as highlighting the specific kinds
of attack activities designed to lower the volume of brute-force
SSH attacks. We envision developing a toolkit that system
administrators could easily download, install, and configure to
collect data on malicious activity at their own sites.

We can also envision a centralized database of usernames/
passwords commonly used in malicious login attempts, similar to
the central DenyHosts database of malicious IP addresses.

7. CONCLUSIONS
The armies of compromised computer robots, known as botnets,
have received a lot of attention over the past few years. To date,
most of that attention has been focused on the compromised
Windows machines thought to populate the ranks of botnet
armies. Until the results of eBay’s recent study of internal security
threats were publicized last fall, little attention was paid to the

role compromised Linux systems might play in supporting
botnets.

Compared with systems running the Windows operating system,
Linux systems face a unique threat of compromise from brute-
force attacks against SSH servers that may be running without the
knowledge of system owners/operators. Many Linux distributions
install the SSH service by default, some without the benefit of an
effective firewall. Thus, otherwise conscientious system
administrators who keep their systems fully patched may fall prey
to a system compromise caused by a carelessly chosen password.

As our study results show, not all vulnerable passwords can be
considered weak, based on commonly-held beliefs of password
strength. Attackers are using and sharing attack dictionaries of
username/password pairs that incorporate a significant percentage
of apparently strong passwords. Using a password checking tool,
especially one that restricts systematic approaches to password
selection, can provide an extra measure of protection against
malicious login traffic, especially when combined with other
protective measures designed to reduce the visibility of Internet-
facing servers.

8. ACKNOWLEDGEMENTS
Thanks to Nathan Neulinger, maintainer of the Cracklib project,
for his excellent efforts and the valuable feedback he provided on
our paper.

9. REFERENCES
[1] E. Alata, V. Nicomette, M. Kaaniche, M. Dacier, M. Herrb.

"Lessons learned from the deployment of a high-interaction
honeypot", in Proc. Dependable Computing Conference
(EDCC06), Coimbra, Portugal, October 18-20, 2006, pp. 39
- 46.

[2] Barracuda Networks. December 12, 2007. Barracuda
Networks Releases Annual Spam Report. Available at:
http://www.barracudanetworks.com/ns/news_and_events/ind
ex.php?nid=232.

[3] Canavan, J. 2005. White Paper: Symantec Security
Response; The Evolution of Malicious IRC Bots. Available
at: http://www.symantec.com/avcenter/reference/the.
evolution.of.malicious.irc.bots.pdf.

[4] Christey, S & Martin, R. May 22, 2007. Common Weakness
Enumeration. Vulnerability Type Distributions in CVE.
Available at: http://cwe.mitre.org/ documents/ vuln-
trends/index.html.

[5] Gaudin, S. September 6, 2007. InformationWeek. Storm
Worm Botnet More Powerful Than Top Supercomputers.
Available at: http://www.informationweek.com/news/
showArticle.jhtml?articleID=201804528.

[6] Hochmuth, P. November 11, 2004. LinuxWorld. Linux is
'most breached' OS on the Net, security research firm says.
Available at: http://www.linuxworld.com.au/index.php/id;
188808220;fp;2;fpid;1.

[7] The Honeynet Project and Research Alliance. Know Your
Enemy, Tracking Botnets. http://honeynet.org/papers/bots,
March 2005.

[8] http://www.microsoft.com/protect/yourself/password/checker
.mspx.

[9] http://www.microsoft.com/protect/yourself/password/create.
mspx

[10] http://openssh.org.

[11] http://www.zeroflux.org/knock/

[12] http://www.cipherdyne.org/fwknop/

[13] http://nmap.org

[14] http://denyhosts.sourceforge.net

[15] http://www.aczoom.com/cms/blockhosts

[16] http://www.fail2ban.org

[17] http://www.openwall.com/passwdqc/

[18] http://sourceforge.net/projects/cracklib

[19] Lemon, S. September 20, 2006. ComputerWorld Security.
Bruce Schneier: We are losing the security war. Available at:
http://www.computerworld.com/action/article.do?command=
viewArticleBasic&articleId=9003477.

[20] McMillan, R. October 5, 2007. ComputerWorld. eBay:
Phishers getting better organised, using Linux. Available at:
http://computerworld.co.nz/news.nsf/scrt/CD0B9D97EE6FE
411CC25736A000E4723.

[21] S. Panjwani, S. Tan, K. Jarrin, and M. Cukier, “An
Experimental Evaluation to Determine if Port Scans are
Precursors to an Attack,” in Proceedings of the International
Conference on Dependable Systems and Networks (DSN-
2005), Yokohama, Japan, June 28-July 1, 2005, pp. 602-611.

[22] Moheeb Abu Rajab , Jay Zarfoss , Fabian Monrose , Andreas
Terzis, “A multifaceted approach to understanding the botnet
phenomenon,” in Proceedings of the 6th ACM SIGCOMM
on Internet measurement, October 25-27, 2006, Rio de
Janeriro, Brazil.

[23] Ramsbrock, D. Berthier, R. & Cukier, M. 2007. “Profiling
Attacker Behavior Following SSH Compromises,” in
Proceedings of the 37th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, pp.119-
124.

[24] Sachs, M. June 20, 2007. MPack Analysis. Available at:
http://isc.sans.org/diary.html?storyid=3015.

[25] SANS Institute. 2007. SANS Top-20 2007 Security Risks
(2007 Annual Update). Available at: http://www.sans.org/
top20/ 2007/.

[26] Seifert, C. September 11, 2006. SecurityFocus. Analyzing
Malicious SSH Login Attempts. Available at:
http://www.securityfocus.com/infocus/1876.

[27] Symantec December 17, 2007. Symantec Looks Back at the
Internet Security Trends and Threats of 2007. Available at:
http://www.symantec.com/about/news/resources/press_kits/d
etail.jsp?pkid=endofyear.

[28] US Census Bureau. Frequently Occurring Surnames From
Census 2000. Available at: http://www.census.gov/
genealogy/ www/freqnames2k.html.

[29] US-CERT. December 3, 2007. Quarterly Trends and
Analysis Report, Volume 2, Issue 4. Available at:
http://www.us-cert.gov/press_room/trendsanalysisQ407.pdf

