CLARKSON UNIVERSITY

Non-linear Aeroelasticity and Control of 2-D Lifting Surfaces

A Thesis by Christina M. Rubillo

Department of Mechanical and Aeronautical Engineering

Submitted in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering

Accepted by the Graduate School

____________________________________ ______________________________
Date Dean
The undersigned have examined the thesis entitled Non-linear Aeroelasticity and Control of 2-D Lifting Surfaces presented by Christina M. Rubillo, a candidate for the degree of Master of Science, and hereby certify that it is worthy of acceptance.

__
Date Advisor

Examining Committee:

__
Erik Bollt

__
Brian Helenbrook

__
Piergiovanni Marzocca
Abstract

Linear and non linear aeroelastic modeling and control of 2-D lifting surfaces is the topic of this paper. Both two degree-of-freedom subsonic incompressible and 3 degree-of-freedom supersonic aeroelastic models with unsteady aerodynamics are explored. The effect of structural and aerodynamic nonlinearities on the aeroelastic response of the system is also outlined. Various solution methods, including the substitution of variables, perturbation method, harmonic balance, slowly varying amplitude and phase, and numerical integration methods are applied to a non-linear system. The harmonic balance method and numerical integration will be used to find the flutter speed and the aeroelastic response of the system. These calculated flutter boundaries are used to determine the stability of the system, as well as how structural parameters will change this boundary. Comparisons were made to previously presented works and the results were in good agreement.

Two aeroelastic control methodologies are presented in this paper: Dynamic Limiter Control (DLC) and Active Feedback Control (AFC). These studies will provide a better understanding of the non-linear dynamics of the open/closed-loop aeroelasticity of flexible wings with either steady or unsteady aerodynamic loads. The limiter control has been applied to control the plunging or pitching characteristic of the wing independently and to both of them simultaneously. On a prototypical wing section the control can effectively suppress Limit Cycle Oscillations (LCO) and chaos well beyond the nominal flutter speed. This could lead to a practical implementation of the control mechanism on actual and future generation aircraft wings via implementation of a combination of propulsive/jet type forces, micro surface effectors, and fluidic devices. Analysis of this
control produced favorable results in the suppression of LCO amplitude and increased flutter boundaries for plunging and pitching motion. The dynamic limiting control has asymptotically zero power and is simply implemented making it a feasible solution to the problem of the chaotic dynamics of the oscillating airfoil.

A linear and non-linear combined active proportional and velocity full state feedback control strategy is implemented. The control’s effectiveness in reducing the oscillation amplitude in the subcritical flight speed range, in suppressing flutter, and in preventing the catastrophic failure in the post-flutter range is demonstrated. Simulations were carried out using a time marching integration with the non-linear Mathematica® solver.

Acknowledgements

I wish to thank my advisors Dr. Piergiovanni Marzocca and Dr. Erik Bollt for their extensive help in the development of the control methodologies and their constant help in understanding the concepts of non-linear dynamics and coding, and for being members of my thesis defense committee. The funding for this research was provided through the National Science Foundation’s GK-12 Fellowships (DGE-0338216). I would like to thank Dr. Susan Powers and the staff of the Clarkson University K-12 Partnership Program for giving me the opportunity and support to complete this research. I would also like to extend a special thanks to my parents for supporting me through all of my education.
Table of Contents

<table>
<thead>
<tr>
<th>Title</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signatures</td>
<td>ii</td>
</tr>
<tr>
<td>Abstract</td>
<td>iii</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>iv</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>v</td>
</tr>
<tr>
<td>List of Figures</td>
<td>vii</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xiii</td>
</tr>
<tr>
<td>Nomenclature</td>
<td>xiv</td>
</tr>
</tbody>
</table>

Chapter 1: Introduction

1

Chapter 2: Aeroelastic Modeling

1. **2-DOF Airfoil Model in Incompressible Flight Speed Regimes** 7
 1.1 Structural Model 8
 1.2 Aerodynamics
 1.2a Steady Model 9
 1.2b Unsteady Model 9
 1.3 Nonlinearities 12
2. **3-DOF Supersonic Model** 17
 2.1 Structural Model 17
 2.2 Aerodynamics 18
 2.3 Nonlinearities 21
3. **Control Methodologies**
 3.1 Dynamic Limiter Control 23
 3.2 Active Feedback Control 26

Chapter 3: Solution Methods

1. **Duffing Oscillator** 28
 1.1 Exact Solution by Separation of Variables 29
 1.2 Center Manifold Reduction, Normal Forms, and Perturbation Method 30
 1.3 Harmonic Balance Method 31
 1.4 Slowly Varying Amplitude and Phase Method 32
2. **Flutter Calculations** 32
3.2.1 2-DOF Subsonic Model 33
3.2.2 3-DOF Supersonic Model 35

Chapter 4: Aeroelastic Controls
4.1 Dynamic Limiter Control (DLC) 37
 4.1.1 Application of DLC to 2-DOF Subsonic Model 37
 4.1.1a Applied to a Steady Model 37
 4.1.1b Applied to an Unsteady Model 47
 4.1.2 Application of DLC to 3-DOF Supersonic Model 50
 4.1.2a DLC Applied to Pitch 51
 4.1.2b DLC Applied to Flap 54
4.2 Active Full State Feedback Control (AFC) 56
 4.2.1 Application of AFC to 2-DOF Subsonic Model 56
 4.2.1a Applied to a Steady Model 56
 4.2.1b Applied to an Unsteady Model 61
 4.2.2 Application of DLC to 3-DOF Supersonic Model 64
 4.2.2a Applied to a Linearized System 64
 4.2.2b Applied to a Non-Linear System 67
4.3 Active Full State Feedback vs. Dynamic Limiter Control 72
4.4 Robust Control 75

Chapter 5: Conclusions 80

Future Work 82

References 83

Appendix: Non-Dimensionalization of Governing Equations 89