AE 429 - Aircraft Performance and Flight Mechanics

Level Turn, Pull Up and Pull Down

Turning Performance

- What is a turn?
 - a turn is a change in flight path direction
 - turn rate is the time rate of change in heading

\[\Psi = \lim_{\Delta t \to 0} \frac{\Delta \Psi}{\Delta t} \]
Turning Performance

- **More definitions**
 - Turn radius, R, is the distance between the flight path and the instantaneous center of curvature

- **Load factor and turn radius**
 - Load factor n is defined as
 $$ n \equiv \frac{L}{W} $$
 - In a level, un-accelerated turn
 $$ W = L \cos \phi $$
 $$ n \equiv \frac{L}{W} = \frac{1}{\cos \phi} $$
 - N is a function of ϕ (bank angle) only in a steady, level turn
 $$ \cos \phi = \frac{W}{L} = 1/(L/W) = 1/n $$
 $$ \phi = \arccos(1/n) $$

- **Performance parameters**
 - Turn radius R
 - Turn rate $\omega = d\psi / dt$
 - ψ local angular velocity along the curved flight path
 - Larger the magnitude of F_r: tighter and faster will be the turn

Note: L and ϕ are not independent in level turn
Turn Radius

\[m \left(\frac{V_m}{R} \right)^2 = L \sin \phi \]

\[R = m \frac{V_m^2}{L \sin \phi} = \frac{W}{g \sin \phi} = \frac{1}{n} \frac{V_m^2}{g \sin \phi} \]

\[\cos \phi = 1/n \quad \cos^2 \phi + \sin^2 \phi = 1 \]

\[1/n^2 + \sin^2 \phi = 1 \quad \sin^2 \phi = 1 - 1/n^2 \]

\[\Rightarrow \quad \sin \phi = \sqrt{1 - 1/n^2} \]

\[\Rightarrow \quad R = \frac{1}{n} \frac{V_m^2}{g \sqrt{1 - 1/n^2}} = \frac{V_m^2}{g \sqrt{n^2 - 1}} \]

Small R \(\Rightarrow \) high n (large L/W)
\(\Rightarrow \) low Velocity

Turn Rate

\[\omega = \frac{d\psi}{dt} = \frac{V_m}{R} \]

\[R = \frac{V_m^2}{g \sqrt{n^2 - 1}} \quad \Rightarrow \quad \omega = \frac{d\psi}{dt} = \frac{V_m}{R} = \frac{g \sqrt{n^2 - 1}}{V_m} \]

High \(\omega \) \(\Rightarrow \) high n (large L/W)
\(\Rightarrow \) low Velocity

High Performance: smallest R and largest \(\omega \) for largest n; lowers speed V

What is the higher possible n?

R and \(\omega \) are function of n and V \(\Rightarrow \) Do not depend on W/S, T/W, k, C_d, \(\rho \)

L \(\uparrow \) \(\Rightarrow \) \(\phi \) \(\uparrow \) \(\Rightarrow \) D \(\uparrow \) \(\Rightarrow \) T_R \(\uparrow \) but T < T_{max} A implying that for T_{max} A \(\Rightarrow \) \(\phi_{T_{max}} A \)

\[n = \frac{1}{\cos \phi} \quad \Rightarrow \quad n_{max} = \frac{1}{\cos \phi_{max}} = \frac{1}{\cos \phi_{T_{max}} A} \]

Level turn: \(\quad D = T; \quad L = n W = \frac{1}{2} \rho V^2 S C_L \)

\[L/D = n W/T \]

\[n_{max} = \frac{1}{2} \rho V^2 S \left[\frac{T}{W} \right]_{max} \sqrt{\frac{1}{2} \rho V^2 \frac{C_{th}}{W/S} + \frac{K(W/S)}{W/S}} \]

\[1 \leq n \leq n_{max} \quad n_{max} = \frac{1}{2} \rho V^2 \frac{C_{L_{max}}}{W/S} \]
Minimum Turn Radius

- Minimum turn radius
 - Stall speed in straight and level flight \((L = W) \) is
 \[
 V_s = \sqrt{\frac{2W}{\rho \omega SC_{L_{max}}}}
 \]
 - In a level turn, stall speed becomes \((L=rW) \)
 \[
 V_{s_{turn}} = \sqrt{\frac{2nW}{\rho \omega SC_{L_{max}}}} \quad V_{s_{turn}} = V_s \sqrt{n}
 \]
 - Which suggests that
 - Replacing \(V_s \) with \(V_{s_{turn}} \) in the turn radius equation gives the aerodynamic limit on minimum turn radius
 \[
 R_{min} = \frac{V_{s_{turn}}}{g \sqrt{n^2 - 1}} = \frac{V_s^2 n}{g \sqrt{n^2 - 1}} = \frac{V_s^2}{g \sqrt{1 - \frac{1}{n^2}}}
 \]

Level Turn Chart
Pull-Up

- Consider a turn in the vertical plane: wing-level Pull-Up (instantaneous turn)
 - Different from level turn (constant flight properties)
 - The radial forces are:

 at t = 0; \(\theta = 0 \)

 \[F_r = L - W = W(n-1) \]

 \[F_r = m \frac{V_w^2}{R} = \frac{W V_{\infty}^2}{g R} \]

 - Solving for R:

 \[R = \frac{V_{\infty}^2}{g(n-1)} \]

 - And for turn rate:

 \[\omega = \frac{V_{\infty}}{R} = \frac{g(n-1)}{V_{\infty}} \]

Pull-Down

- Now, look at another instantaneous turning maneuver in the vertical plane -- a "split s"
 - Using the same approach as for a Pull-Up

 at t = 0; \(\theta = 0 \)

 \[m \frac{V_{\infty}^2}{R} = L + W \Rightarrow R = m \frac{V_{\infty}^2}{L+W} \]

 \[R = \frac{V_{\infty}^2}{g(n+1)} \]

 \[\omega = \frac{g(n+1)}{V_{\infty}} \]

 - The rate is improved and the radius is enlarged over pull-ups
Limiting cases: n large

- Effect of W/S (wing loading) and $C_{l_{\text{max}}}$
 - When n is large, $n+1 = n-1 = n \Rightarrow R = \frac{V_{\infty}^2}{gn}, \quad \omega = \frac{gn}{V_{\infty}}$
 - Recalling that $V_{\infty}^2 = \frac{2L}{\rho_{\infty}SC_{L}}$
 - Substituting, we obtain radius and rate of turn

 $$R = \frac{2L}{\rho_{\infty}SC_{L}g(L/W)} \quad \Rightarrow \quad R = \frac{2L}{\rho_{\infty}C_{L}g} \frac{W}{S}$$
 $$\omega = \frac{gn}{\sqrt{\frac{2L}{\rho_{\infty}SC_{L}}}} \quad \Rightarrow \quad \omega = g\sqrt{\frac{\rho_{\infty}C_{L}n}{2[W/S]}}$$

- For minimum turn radius and maximum turn rate
 - Maximize both C_{L} and load factor

 $$R_{\text{min}} = \frac{2}{\rho_{\infty}gC_{L_{\text{max}}}} \frac{W}{S} \quad \omega_{\text{max}} = g\sqrt{\frac{\rho_{\infty}C_{L_{\text{max}}}n_{\text{max}}}{2[W/S]}}$$

 - Practical constraints on load factor
 - n_{max} is a function of $C_{L_{\text{max}}}$
 - at low speeds it will be limited by the aerodynamic lifting capability (stall) of the lifting surfaces
 $n_{\text{max}} = \frac{1}{2} \rho_{\infty}V_{\infty}^2 \frac{C_{L_{\text{max}}}}{W/S}$
 - at high speeds, structural loads on the airframe may also limit n_{max}
 - for many airplanes, the other force balance ($T = D$) governs the minimum turn radius and the maximum turn rate -- turn performance is limited by available thrust
• constraints on V
 - V as small as possible for R_{min} and ω_{max}

$$V = \frac{2nW}{\rho SC_L} \Rightarrow C_L = C_{L\text{max}} \Rightarrow V_{\text{Stall}} = \frac{2nW}{\rho SC_{L\text{max}}}$$

- R_{min} does not necessarily correspond to n_{max}

$$1 \leq n \leq n_{\text{max}}$$

$$R = \frac{V^2}{g \sqrt{n^2 - 1}} = \frac{2q_{\infty}}{g \rho \sqrt{n^2 - 1}} \Rightarrow \frac{\partial R}{\partial q_{\infty}} = 0$$

$$R_{\text{min}} = \frac{4k(W/S)}{g \rho_{\infty}(T/W) \sqrt{1 - 4kC_{D\text{L}}(T/W)^2}}$$

$$\omega_{\text{max}} = q_{\infty} \sqrt{\rho_{\infty} l(W/S)(T/W)(2k) - (C_{D\text{L}}/k)^{1/2}}$$

$$n_{R_{\text{min}}} = \sqrt{2 - 4kC_{D\text{L}}(T/W)^2}$$

$$V_{=R_{\text{min}}} = \sqrt{4k(W/S) / (\rho_{\infty}(T/W))}$$

V-n diagram

- the V-n diagram illustrates 2 of these constraints

![V-n diagram](image)
● Aerodynamic and structural limits on turn performance

\[n_{\text{max}} = \frac{1}{2} \rho \infty V^2 \frac{C_{L_{\text{max}}}}{W/S} \]

Aerodynamics
Wing Design

Thrust Available
Drag

Structural
(Materials/
Wing Size)