1. The voltage measured by the voltmeter is
\[v_m = 20 \text{ V} \]
The value of the resistance \(R \) is ________ \(\Omega \).
The current source is supplies ________ W of power.

2. Given that
\[i_a = 2 \text{ A} \]
Determine the values of \(R_1 \) and \(v_o \):
\[R_1 = \underline{} \Omega \]
and
\[i_o = \underline{} \text{ A} \]

3. The input to this circuit is the voltage of the voltage source, \(v_a \). The output of this circuit is the voltage measured by the voltmeter, \(v_b \). This circuit produces an output that is proportional to the input, that is
\[v_b = k v_a \]
where \(k \) is the constant of proportionality.

a.) When \(R = 240 \ \Omega \) and \(v_a = 18 \text{ V} \), the output is \(v_b = \underline{} \text{ V} \).

b.) When \(R = 240 \ \Omega \) and \(v_a = 18 \text{ V} \), the power supplied by the voltage source is \(\underline{} \text{ W} \).

c.) When \(R = \underline{} \ \Omega \) and \(v_a = 18 \text{ V} \), the output is \(v_b = 2 \text{ V} \).

d.) When \(R = \underline{} \ \Omega \), the output is \(v_b = 0.2 v_a \). (That is, the constant of proportionality is \(k = 0.2 \).)
4. Given that
\[i_1 = 0.625 \text{ A}, \quad v_2 = -25 \text{ V}, \quad i_3 = -1.25 \text{ A} \quad \text{and} \quad v_4 = -18.75 \text{ V} \]

Determine the values of \(R_1, R_2, R_3 \) and \(R_4 \):

\[R_1 = _ _ _ _ _ _ _ _ _ \Omega, \quad R_2 = _ _ _ _ _ _ _ _ _ \Omega, \quad R_3 = _ _ _ _ _ _ _ _ _ \Omega \quad \text{and} \quad R_4 = _ _ _ _ _ _ _ _ _ \Omega. \]

5. The 12 V source supplies 720 mW and the 18 V source supplies 4.32 W. Determine the values of the resistances \(R_1 \) and \(R_2 \).

\[R_1 = _ _ _ _ _ _ _ _ _ \Omega \quad \text{and} \quad R_2 = _ _ _ _ _ _ _ _ _ \]