Exercises

Exercise 1. This circuit that consists of 4 circuit elements, numbered from 1 to 4. These circuit elements are connected together at the nodes, labeled a thru d. Determine the power absorbed by each circuit element.

Exercise 2. This circuit that consists of nine circuit elements, numbered from 1 to 9. These circuit elements are connected together at six nodes, labeled a thru f.

a. Determine the values of the currents i_3, i_4, i_5, i_7 and i_8 and of the voltages v_1, v_2, v_6 and v_9.

b. Determine the power absorbed each element.
Solutions

Solution 1:
We will need to calculate the current and voltage of each circuit element. How should we label the remaining element currents and voltages? Let’s try a couple of different ways and see what happens.

First try:

Apply KCL at nodes a and b to get:

\[i_1 = 2 \implies i_1 = 2 \text{ A} \quad \text{and} \quad 2 = i_3 + 5 \implies i_3 = -3 \text{ A} \]

Apply KVL to the meshes to get:

\[-v_2 + 6 - 2 = 0 \implies v_2 = 4 \text{ V} \quad \text{and} \quad -v_4 - 6 = 0 \implies v_4 = -6 \text{ V} \]

Then

\[p_1 = -(2)(2) = -4 \text{ W}, \quad p_2 = -(2)(4) = -8 \text{ W}, \quad p_3 = -(3)(6) = -18 \text{ W} \quad \text{and} \quad p_4 = -(5)(-6) = 30 \text{ W}. \]

Second try: (The reference directions of the currents \(i_1\) and \(i_3\) and of the voltages \(v_2\) and \(v_4\) are all different from what they were in the first try.)

Apply KCL at nodes a and b to get:

\[0 = i_1 + 2 \implies i_1 = -2 \text{ A} \quad \text{and} \quad 2 + i_3 = 5 \implies i_3 = 3 \text{ A} \]
Apply KVL to the meshes to get:

\[v_2 + 6 - 2 = 0 \quad \Rightarrow \quad v_2 = -4 \text{ V} \quad \text{and} \quad v_4 - 6 = 0 \quad \Rightarrow \quad v_4 = 6 \text{ V} \]

Then

\[p_1 = (2)(-2) = -4 \text{ W}, \quad p_2 = (2)(-4) = -8 \text{ W}, \quad p_3 = -(3)(6) = -18 \text{ W} \quad \text{and} \quad p_4 = (5)(6) = 30 \text{ W}. \]

Observations:

1. The values of the currents \(i_1 \) and \(i_3 \) and of the voltages \(v_2 \) and \(v_4 \) in the second try are all -1 times the corresponding value in the first try. That is to be expected because the reference directions of the currents \(i_1 \) and \(i_3 \) and of the voltages \(v_2 \) and \(v_4 \) have all changed. For example, \(i_1 \) in the first try and \(i_1 \) in the second try refer to different currents.

2. The values of the power absorbed by the circuit element did not depend on the choice of reference direction.

Solution 2. Apply KCL at nodes a, b, c, d and e to get:

\[
\begin{align*}
2 & = 3 + i_4 \quad \Rightarrow \quad i_4 = -1 \text{ A} \\
0 & = 2 + i_5 + i_3 \\
i_1 + 3 & = 5 \quad \Rightarrow \quad i_3 = 2 \text{ A} \\
i_4 + i_7 + 4 & = 0 \quad \Rightarrow \quad -1 + i_7 + 4 = 0 \quad \Rightarrow \quad i_7 = -3 \text{ A} \\
i_5 + i_8 & = i_7 \quad \Rightarrow \quad -4 + i_8 = -3 \quad \Rightarrow \quad i_8 = 1 \text{ A}
\end{align*}
\]

Apply KVL to the meshes to get:

\[
\begin{align*}
v_1 + 2 - v_2 & = 0 \\
v_2 + 3 - 6 - 3 & = 0 \quad \Rightarrow \quad v_2 = 6 \text{ V} \\
-2 + v_6 + 3 - 3 & = 0 \quad \Rightarrow \quad v_6 = 2 \text{ V} \\
6 - 3 + v_9 & = 0 \quad \Rightarrow \quad v_9 = -3 \text{ V}
\end{align*}
\]

<table>
<thead>
<tr>
<th>element</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>current</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>-1</td>
<td>-4</td>
<td>5</td>
<td>-3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>voltage</td>
<td>4</td>
<td>6</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>3</td>
<td>-3</td>
</tr>
<tr>
<td>power absorbed</td>
<td>12</td>
<td>-12</td>
<td>-4</td>
<td>-3</td>
<td>-12</td>
<td>10</td>
<td>18</td>
<td>3</td>
<td>-12</td>
</tr>
</tbody>
</table>