Responsive Polymer Membranes and Templates

We develop a range of various approaches to fabrication of polymer membranes and templates from polymers, copolymers, block-copolymers and composite materials. Thin films of block-copolymers undergo phase segregation, resulting in various regular structures of lamellar, cylindrical, spherical, or even more complicated shapes. Dimensions of the structures can be determined by the molecular dimensions of the block-copolymers and are of the order of between 5 and 100 nm. This size range is of special interest as for the fabrication of polymer membranes and templates. Using different approaches, including lithographical ones, those structures may be transformed into regular arrays of submicron channels, pores, or domains of electroconductive, light-emitting, magnetic materials, and so forth. Coordination of the particular block with low molecular weight molecules on the first step allows fabrication of organized structures such as a comb-like block copolymer. This morphology is then frozen by cooling the systems below the glass transition temperature. The low molecular weight component is then removed by dissolving in a selective solvent leaving voids and channels. The materials with a regular array of nano-pores fabricated in this way can then be used as membranes or templates. The templates are filled with metals or electroconductive polymers that yield thin films of practical interest for nano-devices and sensors.

We developed a novel method for the fabrication of flexible stimulus-responsive polymer gel membranes (PG-membranes). These membranes are thin porous films made of a cross-linked polyelectrolyte. In our approach, the porous films are formed by the phase separation of polyelectrolyte and a volatile additive. This approach provides the broad possibility of regulating pore sizes and membrane responsiveness.

Video 1. Stimuli responsive membrane swelling-deswelling. Based on a series of real AFM images.

The PG-membranes can be prepared on any flat substrate with a low surface roughness (e.g., Si-wafer). Afterwards, the membrane can be transferred (and attached chemically, if necessary) onto various porous or non-porous supports with flat, profiled, and even curved surfaces (e.g., membrane filter, fabrics, chemical sensor, or human skin) for the fabrication of devices with pH-controllable permeability.

Video 2. Application of responsive membrane for filtration processes.

Major Directions:

Polymer Membranes and Templates Polymer Membrane
Figure 1. Stimuli responsive polymer membranes and templates.

Group co-operates with:
Publications on Topic (review titles are marked blue):
  1. Koestner, R.; Roiter, Y.; Kozhinova, I.; Minko, S. AFM Imaging of Adsorbed Nafion Polymer on Mica and Graphite at Molecular Level. Langmuir 2011, ACS Just Accepted Manuscript (Published on Web: July 7, 2011). Details
  2. Koestner, R.; Roiter, Y.; Kozhinova, I.; Minko, S. The Effect of Local Charge Distribution on Graphite Surface on Nafion Polymer Adsorption as Visualized at Molecular Level. Journal of Physical Chemistry C 2011, ACS Just Accepted Manuscript (Published on Web: July 1, 2011). Details
  3. Tokarev, I.; Minko, S. Stimuli-Responsive Porous Hydrogels at Interfaces for Molecular Filtration, Separation, Controlled Release, and Gating in Capsules and Membranes. Advanced Materials 2010, 22(31), 3446-3462. Details
  4. Tokarev, I.; Tokareva, I.; Gopishetty, V.; Katz, E.; Minko, S. Specific Biochemical-to-Optical Signal Transduction by Responsive Thin Hydrogel Films Loaded with Noble Metal Nanoparticles. Advanced Materials 2010, 22(12), 1412-1416. Details
  5. Stuart, M. A. C.; Huck, W. T. S.; Genzer, J.; Müller, M.; Ober, C.; Stamm, M.; Sukhorukov, G. B.; Szleifer, I.; Tsukruk, V. V.; Urban, M.; Winnik, F.; Zauscher, S.; Luzinov, I.; Minko, S. Emerging applications of stimuli-responsive polymer materials. Nature Materials 2010, 9(2), 101-113. Details
  6. Tokarev, I.; Motornov, M.; Minko, S. Molecular-engineered stimuli-responsive thin polymer film: a platform for the development of integrated multifunctional intelligent materials. Journal of Materials Chemistry 2009, 19(38), 6932-6948. Details
  7. Tokarev, I.; Gopishetty, V.; Zhou, J.; Pita, M.; Motornov, M.; Katz, E.; Minko, S. Stimuli-Responsive Hydrogel Membranes Coupled with Biocatalytic Processes. ACS Applied Materials & Interfaces 2009, 3(1), 532-536. Details
  8. Tokarev, I.; Minko, S. Stimuli-responsive hydrogel thin films. Soft Matter 2009, 5(3), 511-524. Details
  9. Tokarev, I.; Minko, S. Multiresponsive, Hierarchically Structured Membranes: New, Challenging, Biomimetic Materials for Biosensors, Controlled Release, Biochemical Gates, and Nanoreactors. Advanced Materials 2009, 21(2), 241-247. Details
  10. Gopishetty, V.; Tokarev, I.; Minko, S. Multifunctional responsive biopolyelectrolyte hydrogel membranes. Polymer Preprints 2009, 50(2), 101.
  11. Tokarev, I.; Gopishetty, V.; Minko, S. Stimuli-responsive thin hydrogel films. PMSE Preprints 2009, 101, 915.
  12. Gopishetty, V.; Roiter, Y.; Tokarev, I.; Minko, S. Multiresponsive Biopolyelectrolyte Membrane. Advanced Materials 2008, 20(23), 4588-4593. Details
  13. Tokarev, I.; Tokareva, I.; Minko, S. Gold-Nanoparticle-Enhanced Plasmonic Effects in a Responsive Polymer Gel. Advanced Materials 2008, 20(14), 2730-2734. Details
  14. Gopishetty, V.; Tokarev, I.; Minko, S. 'Smart' membranes from stimuli-sensitive biopolymer hydrogel. PMSE Preprints 2008, 99, 719-720.
  15. Tokarev, I.; Orlov, M.; Katz, E.; Minko, S. Chemical and electrochemical gating using a responsive thin film gel membrane. PMSE Preprints 2008, 99, 715-716.
  16. Katz, E.; Kin, T. T.; Jean, Z.; Gopishetty, V.; Ornatska, M.; Pita, M.; Minko, S. Switchabe polymer-modified interfaces and membranes for bioelectronic applications. PMSE Preprints 2008, 99, 711.
  17. Tokarev, I.; Tokareva, I.; Minko, S. Surface plasmon resonance effects in stimuli-sensitive polyelectrolyte/gold nanoparticle hybrid membranes. PMSE Preprints 2008, 99, 160-161.
  18. Gopishetty, V.; Tokarev, I.; Minko, S. Multifunctional nanostructured hybrid membranes from biopolymer hydrogel. Polymer Preprints 2008, 49(2), 885-886.
  19. Tokarev, I.; Orlov, M.; Katz, E.; Minko, S. An Electrochemical Gate Based on a Stimuli-Responsive Membrane Associated with an Electrode Surface. Journal of Physical Chemistry B 2007, 111(42), 12141-12145. Details
  20. Seifarth, O.; Krenek, R.; Tokarev, I.; Burkov, Y.; Sidorenko, A.; Minko, S.; Stamm, M.; Schmeißer, D. Metallic nickel nanorod arrays embedded into ordered block copolymer templates. Thin Solid Films 2007, 515(16), 6552-6556. Details
  21. Orlov, M.; Tokarev, I.; Scholl, A.; Doran, A.; Minko, S. pH-Responsive Thin Film Membranes from Poly(2-vinylpyridine): Water Vapor-Induced Formation of a Microporous Structure. Macromolecules 2007, 40(6), 2086-2091. Details
  22. Orlov, M.; Tokarev, I.; Minko, S. Responsive polyelectrolyte membranes. Polymer Preprints 2007, 48(1), 248-249.
  23. Tokarev, I.; Orlov, M.; Minko, S. Microporous thin film membranes from pH-responsive polymer. Polymer Preprints 2007, 48(1), 723-724.
  24. Tokarev, I.; Orlov, M.; Minko, S. Responsive Polyelectrolyte Gel Membranes. Advanced Materials 2006, 18(18), 2458-2460. Details
  25. Tokarev, I.; Krenek, R.; Burkov, Y.; Schmeisser, D.; Sidorenko, A.; Minko, S.; Stamm, M. Microphase Separation in Thin Films of Poly(styrene-block-4-vinylpyridine) Copolymer-2-(4'-Hydroxybenzeneazo)benzoic Acid Assembly. Macromolecules 2005, 38(2), 507-516. Details
  26. Minko, S. Responsive nanostructured polymer materials for lithography. PMSE Preprints2005, 92, 143.
  27. Tokarev, I.; Sidorenko, A.; Minko, S. Fabrication of ordered arrays of copper nanorods using thin block copolymer templates. Polymer Preprints 2005, 46(2), 740-741.
  28. Tokarev, I.; Sidorenko, A.; Minko, S.; Stamm, M. Switching nanotemplates. PMSE Preprints 2004, 90, 292-293. pdf version
  29. Tokarev, I.; Sydorenko, A.; Minko, S.; Stamm, M. Novel supramolecular approach to periodic nanostructures in thin polymer films. PMSE Preprints 2003, 89, 115-116. pdf version
  30. Sidorenko, A.; Tokarev, I.; Minko, S.; Stamm, M. Ordered Reactive Nanomembranes/Nanotemplates from Thin Films of Block Copolymer Supramolecular Assembly. Journal of the American Chemical Society 2003, 125(40), 12211-12216. Details
  31. Tokarev, I.; Minko, S.; Stamm, M. "Hairy tube" polymer templates from diblock copolymer thin films. Materials Research Society Symposium Proceedings 2002, 728, 11-16.