Velocity Distribution in a Viscous Granular Gas
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We investigate the velocity relaxation of a viscous one-dimensional granular gas in which neither
energy nor momentum is conserved in a collision. Of interest is the distribution of velocities in
the gas as it cools, and the time dependence of the relaxation behavior. A Boltzmann equation of
instantaneous binary collisions leads to a two-peaked distribution, as do numerical simulations of
grains on a line. Of particular note is that in the presence of friction there is no inelastic collapse,
so there is no need to invoke additional assumptions such as the quasi-elastic limit.
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I. INTRODUCTION

Velocity distributions in dilute granular gases are
generically away from equilibrium because the collision
processes in such gases are dissipative. Even in the
dilute limit the velocities of different particles may be
strongly correlated [1], and therefore the usual descrip-
tion in terms of single particle distribution functions
may not be sufficient to determine all the properties of
the granular gas. Nevertheless, the single particle dis-
tribution P(r,v,t) contains important information, and
is particularly interesting because in a granular gas it
typically deviates from the Maxwell-Boltzmann distribu-
tion. Quite aside from possible spatial inhomogeneity
effects such as particle clustering, even the single parti-
cle velocity distribution P(v,t) in general differs from the
Maxwell-Boltzmann form. These deviations have been a
subject of intense interest in recent years [2-9]. They can
be observed in granular gases that achieve a steady state
because external forcing balances the dissipative colli-
sions among particles [10-12], or they can be observed in
unforced gases as they cool down [14-20].

Typically, gases equilibrate or achieve a steady state
via collision processes defined by the conservation of en-
ergy and momentum [21]. In granular media the situation
is more complex because energy is not conserved [22],
and most work on relaxation has focused on the concomi-
tant consequences. A particularly bothersome behavior
of granular gases induced by energy non-conservation
is the so-called “inelastic collapse,” whereby the en-
ergy of the gas goes to zero in a finite time [14]. In
the “quasi-elastic limit” the inelastic collapse is avoided,
and one obtains non-trivial asymptotic velocity distribu-
tions [10, 11, 15, 16, 23] with features similar to the ones
obtained in this paper.

Friction induces not only non-conservation of energy
but also non-conservation of momentum, leading to in-
teresting new relaxation behavior [12, 24-26]. In fact,
we have recently shown [26] that in the absence of con-
servation laws, random linear mixing can lead to veloc-
ity distributions with algebraic or exponential tails, with

nontrivial characteristic exponents. In general, conser-
vation laws play a crucial role in the universality of the
usual velocity distribution properties.

Our focus here is the effect of viscosity, and conse-
quently, of momentum non-conservation, on the veloc-
ity distribution as a one-dimensional dilute granular gas
cools down. The model consists of N grains on a line (or
a circle, since we use periodic boundary conditions). The
grains move freely except during collisions, governed by
the Hertz potential, V(k k+1) = 7[0[3 441 When 6 <0,
and V(dg k+1) = 0 when § > 0. Here 0y k+1 = Yr+1 — Yk
is the relative displacement of granules k and k + 1 from
the positions in which they just touch each other without
compression, and « is a prefactor determined by Young’s
modulus and Poisson’s ratio. The exponent n is 5/2 for
spheres, it is 2 for cylinders, and in general depends on ge-
ometry. In this paper we only consider cylindrical grains,
which leads to considerable simplification while still cap-
turing important general features of the non-Maxwellian
distributions. We stress that the one-sided (only repul-
sion) granular potential even with n = 2 is entirely dif-
ferent from a two-sided harmonic potential.

A collision between real granules always involves some
momentum and energy loss [27] since some fraction of the
incident momentum excites sound waves in the interior of
the granules. These granule excitations relax, heating up
their mass. Here we take this momentum dissipation into
account through a viscosity term during the collisions.
Hence, during a collision of the granules k and k + 1,
their equations of motion are respectively
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where yp = Cpag, 7 = Cpt/vo, v = (7/mug)Cy, Cp =
(mw3/a)'/™, and 7 is the friction coefficient. The arbi-
trary velocity vg sets the energy scale of the system.
Although the problem might appear relatively sim-
ple because it is one-dimensional and quasi-linear, the
one-sidedness of the potential leads to analytic com-
plexities even in the dissipationless case [25, 28, 29],



and even greater complexities in the presence of dissi-
pation [24, 25]. We wish to explore the effects of friction
at low densities, implemented via the assumption that
the collisions are always binary, that is, that only two
granules at a time are members of any collision event,
and that at any moment there is at most one collision.

Our analytic starting point is the Boltzmann equation
for binary collisions in a spatially uniform gas, which de-
scribes the rate of change of the probability distribution
of velocities, P(v,t). If u; and uy are the initial velocities
of a pair of particles just before a collision and ) and u}
their velocities just after, then the Boltzmann equation
is

0
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Since the problem is one-dimensional, one can keep track
of the precise conditions under which a collision between
two particles of given velocities will or will not occur, and
how these events will change the distribution function. In
Eq. (2) we have assumed that the particle on the left is
that with initial velocity u;. A collision takes place if
and only if u; > ug. This restriction is enforced by the
Heaviside theta function 6(y) = 1 for y > 0, 6(y) = 0 for
y <0, and 0(0) =1/2.

At the moment of the start of the collision, which we
call £ = 0, the velocities of a pair of grains are u; and us.
The collision ends at the time 7 = 27/4/8 — 2, when
the grains lose contact. It is important to notice that
for n = 2 the collision time is independent of the initial
condition. This is a feature that makes the cylindrical
granule geometry much simpler than other shapes. The
velocities u) and w} at the moment of separation 7 are
found to be [24]
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where © = e 77/2. In our further analysis we think
of the distance traveled by the granules during a colli-
sion as negligible. For small damping v this distance is
(u1 +ug)m/+/8. This is to be compared to the mean dis-
tance between particles, which can be made arbitrarily
large by lowering the density. We also take the colli-
sion time as instantaneous. This collision time for small
damping is 7 &~ 7/ V2, to be compared with the typical
mean free time of flight of a particle between collisions.
With these approximations, the only role played by the
viscosity is dictated by the collision rule (3). These as-
sumptions might conceivably be problematic for the most
energetic particles that may travel a relatively long dis-
tance during a collision and a relatively short distance
between collisions, but explicit analysis of these extreme

events is difficult and probably not important at suffi-
ciently low densities.

In the long-time asymptotic limit we assume a scaling
solution of the form

P(u,t) = ﬁF (ﬁ) . (4)

This scaling in Eq. (2) together with the velocity depen-
dence of the kernel of the Boltzmann equation obtained
from Eq. (3) leads to ¢(t) ~ t~1. Haff obtained this
behavior (Haft’s Law) in his classic paper on a hydrody-
namic inelastic hard sphere model for a granular fluid [7].

We have not found an analytic solution of the Boltz-
mann equation. We therefore simulate the equation nu-
merically and also implement a further approximation
that leads to an analytic solution that we can compare
with the numerical results.

We directly simulate the Boltzmann equation using the
following algorithm: (1) Start with N grains whose veloc-
ities are independently assigned accordingly to an initial
distribution P(v,0); (2) Choose one pair of grains with
probability proportional to the modulus of their relative
velocity and let them collide, using the collision rule; (3)
Increment time by twice the inverse of the modulus of the
pre-collisional relative velocity. The factor of 2 accounts
for picked pairs that do not collide, since our algorithm
forces a collision at each step; (4) Iterate these three steps
many times and for many samples.

In our simulations we took N = 100 and averaged our
results over 1000 samples. In Fig. 1 we show the resulting
velocity distribution for v = 0.9 at different times. It is
clear that the initial symmetric and single peaked distri-
bution develops two distinct peaks as it starts to collapse
to the ultimate equilibrium distribution, a §-function at
v = 0. In the simulation underlying this figure the initial
distribution was a double peaked Gaussian, chosen be-
cause it converges quickly. We find the same asymptotic
behavior for the initially exponential distribution. The
validity of the scaling solution Eq. (4) is clearly evident
in the scaled rendition of the velocity distribution shown
in Fig. 2 for different times.

A two-peaked velocity distribution has previously been
found in a number of studies (see e.g. [13]), in particular
in the context of one-dimensional momentum-conserving
granular gases that exhibit inelastic collapse. It occurs
when particles whose (momentum-conserving) inelastic
collisions are described by a constant restitution coeffi-
cient r can collide infinitely often in a finite time, which
drives their energy to zero in a finite time [14]. Whether
or not this occurs depends on the number of particles V.
There is a monotonically increasing relation between N
and r for the critical value of N.(r) above which collapse
occurs, with N, — oo as r — 1. To avoid the collapse, it
is customary to introduce extraneous assumptions such
as the “quasi-elastic limit” which invokes the limit r — 1
and N — oo in such a way as to always remain below
the collapse threshold. In this limit, a double-peaked ve-
locity distribution is also observed [13-16]. Another way
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FIG. 1: Velocity distribution obtained using the simulation
algorithm detailed in the text. From left to right and top to
bottom, the panels correspond to time 0, 8000, 16000, 32000,
64000 and 128000 in the adimensional units used in this paper.
The initial distribution is a symmetric exponential. Notice the
change in the scales as time proceeds.
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FIG. 2: Asymptotic behavior of the scaled velocity distribu-
tion. Different symbols stand for different times (1000 x 2™
withn =0,1,---,13). (1000, 2000, 4000, 8000, 16000, 32000,
64000, 128000, 256000, 512000, 1024000, 2048000, 4096000
and 8192000). The constant c in the figure is arbitrary and
was chosen to facilitate comparison with Fig. 3.

to avoid the collapse is to impose elasticity (or sticky-
ness) on collisions between particles with relative veloc-
ity smaller than a given threshold (the collapse is avoided
regardless of the actual value of the threshold, as long as
there is one) [13].

An interesting hydrodynamic analysis based on numer-
ical simulations that also arrives at a two-peaked velocity
distribution (and that also deals with the issue of the in-
elastic collapse) leads to the conclusion that the usual
hydrodynamic variables (density, velocity, and granular
temperature) are not sufficient, and that an additional
variable, the third moment of the fluctuating velocity,
must also be included [16]. Benedetto et al. study the

problem analytically (again in the quasi-elastic limit) and
also arrive at the conlcusion that the velocity distribu-
tion is non-Maxwellian. A very recent study of a two-
dimensional collection of disks in a channel finds that
the shape of the velocity distribution depends on the co-
efficient of restitution and on the Knudsen number (the
ratio of the channel width and the mean free path of
the grains) [30]. They find a bimodal distribution when
the Knudsen number is high but a unimodal distribution
when it is low.

We stress again that in the presence of friction there is
no inelastic collapse so that no extraneous assumptions
are needed, and the double-peaked distribution occurs
regardless of the parameter values as long as there is
friction.

While the Boltzmann equation does not appear
amenable to analytic solution, we can formulate a sim-
pler model that may incorporate its main features. In
this model we have an ensemble of rings of size [ each
containing only two particles. In each ring, the dynam-
ics is perfectly deterministic: the two balls keep colliding
with each other, back and forth, moving toward each
other with ever decreasing velocities. For each one ring,
after n collisions, the velocities, which we call u,, and v,
are obtained by repeated application of the collision rule

3);
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where ug and vy are the initial velocities. Note that each
of these velocities alternates from positive to negative
as the particles move in one direction and then another
in the ring. Since the grains are in a ring, the distance
they have to travel between two collisions is . The travel
time is [/|u—v|, where u and v are their current velocities
between collisions. Hence, the time that has elapsed by
the n'" collision is
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The sign alternation of the velocities in Eq. (5) is not
important in the effort to understand the long time be-
havior of the distribution. We can approximate the ve-
locities by envelope functions A4 (t) and A_(¢) and write
Up = Ay (H)ug + A_(t)vo, v, = A_(t)ug + A4 (t)vg. The
envelope functions can be found by solving Eq. (6) for u™,
substituting this into Eq. (5) ignoring the minus signs in
the (—p)™ factors, and setting ¢, = ¢t. One finds

- (1)
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Hence, if initially the particles had a velocity distribution
P(v,0), then the velocity distribution as a function of
time is

Plot) = // 50— Ay (tyuo — A_(£)vo)
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Therefore, P(u,t) consists of two d-peaks, one at positive
and one at negative velocities. If the initial distribution
is symmetric about zero velocity and is properly normal-
ized, then

) ~ (v (3-1) )
(g (b)) a

The peaks thus move toward the final velocity v = 0
as 1/t. This time dependence is in agreement with the
Boltzmann equation analysis.

The two d-peaks here reflect the fact that the magni-
tude of the velocity difference between the colliding par-
ticles eventually becomes independent of the magnitude
of the initial velocity difference. Clearly, in the Boltz-
mann equation this is not quite the case and the peaks
have a finite width as they converge. However, this width
decreases in time as 1/t, approaching the behavior of the
two-particle ring model asymptotically.

In order to assess the validity of the Boltzmann equa-
tion for the viscous granule problem, and to get a sense of
the possible effects of the spatial distribution of granules
ignored in that formulation, we have carried out numeri-
cal simulations of a full chain of 10 000 viscous particles.
Our collision rules are as indicated in Eq. (3), and, as be-
fore, we assume collisions to be instantaneous, but now
we actually place the granules on a line and keep track of
their positions so that spatial inhomogeneities can occur
if the system is so inclined. The particle density is 1073
with the particles initially distributed uniformly. The
initial velocity distribution is taken to be a symmetric
exponential, and v = 0.9. As time proceeds, the initial
single peak splits into two peaks which move inward and
become narrower. Both the inward motion of the peaks
and the width of the peaks change as 1/¢, as in the Boltz-
mann approximation. We tested the scaling hypothesis
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FIG. 3: Asymptotic behavior of the scaled velocity distribu-
tion. Different symbols stand for different times (1000 x 2"
with n = 7,8,---,13). The constant ¢ in the figure is arbi-
trary.

Eq. (4) on our simulations, and in Fig. 3 we show the re-
sults averaged over 100 simulations. Clearly, the scaling
works quite well.

Comparing the velocity distribution for the Boltzmann
approximation (Fig. 1) and the simulations in a line, we
find that the Boltzmann model converges to the scal-
ing distribution much more rapidly. Initially the simula-
tion results exhibit the same behavior as the Boltzmann
model, but for longer times the behavior of the two distri-
butions for small velocities begin to differ. In the Boltz-
mann case, the probability of finding a slow granule is
much greater than in the simulation.

We conclude from these results that the Boltzmann
problem in which spatial dependences are disregarded
captures many of the essential features of the velocity
relaxation in a viscous granular chain, the most impor-
tant being the appearance of two peaks in the velocity
distribution. The Boltzmann problem and even the sim-
pler two-particle simplification of the problem also cap-
ture the time dependence of convergence of the two peaks
into a single one at zero velocity. The slow (1/t) conver-
gence is due to the fact that the collision rate slows down
as the gas cools. The Boltzmann approximation does not
correctly capture the late time distribution of the slow-
est particles. This is probably due to spatial correlations
that have been ignored in this approximation and that
are currently under investigation [33].

As mentioned earlier, one-dimensional momentum-
conserving granular gases may exhibit “inelastic col-
lapse,” whereby the energy of the gas goes to zero in a
finite time [14-16]. To avoid this, the “quasi-elastic limit”
or other ad hoc assumptions are frequently invoked, and
in this limit, a double-peaked velocity distribution is also
observed. In the presence of friction there is no inelastic
collapse, and we always observe a double-peaked distri-
bution. A comparison between those results and ours
requires an understanding of spatial correlations [33].



Finally, we point out again that even in our most
complete simulations we have approximated the collision
events as instantaneous. While we do not believe this
to be a perceptible source of error, it would be inter-
esting (but extremely time consuming) to carry our full
simulations of the model Eq. (1) with no further approx-
imations.
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