AE 429 - Aircraft Performance and
Flight Mechanics

Rate of Climb
Time to Climb

Rate of Climb R/C

e Now let’s analyze a steady climb
- Forces include a gravity component now
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Rate of Climb R/C

e For low climb angles (up to about 20°)
- We canassume cosf~1 to calculate G,
- So we work on the drag equation, multiplying by V_
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Excess Power
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- In climb, the rate of climb is the vertical component of
velocity
R/C=V_sin@ Ve ‘
R/C = Veosin
o Maximum R/C ’
- Maximize excess power _
- Minimize weight R/C — (T D)V"“
e Maximum angle of climb
- Maximize excess thrust
- Minimize weight ) T-D T-D
o2 (T=D)_(1-D)
w
. (T-D)V,
Rate of Climb R/C =—"—
c, - L :Wcost9
\ 9.5 4.5
2
D=q.5C,=q.5(Cp,+KC})= qu[CD’O + K(WCOSSQJ J _
9.
KW?cos* 6
=q4.5Cho+————
q..S
T-D)V, T D
R/IC=V, sinezngm —_———
w w W

-1
1 2K
R/C=V_sin@=V_ 1——pij(Kj Cho —2Kcos26
\ w2 S ’

pV2S \
Preliminary design cos@ =1 OKfor 6 <50°




Maximum Climb Angle
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Max Angle to Climb

e If thrust available is constant with V
- Maximum climb angle occurs at minimum drag
- This speed also gives best acceleration in level flight

Thrust is approximately constant for
T, a pure turbojet -- not a very good
approximation for other powerplants
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Rate of Climb R/C

e Typically, climbs are not flown at constant V_,

T=D+Wsin9+lde :D+W51n9+ldv°°ﬁ
g dt g dh dt

e Recognizing
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Rate of Climb R/C

e For our idealized jet airplane, best rate of climb
does not occur at minimum power required

- Maximum rate of climb occurs at the velocity where
excess power is greatest

- The velocity for maximum rate of climb is determined for
any aircraft by
e Plotting the power required versus true airspeed
e Overplotting the power available versus true airspeed

e Choosing the velocity where the distance between the two
curves is greatest




Rate of Climb R/C

e The chart below illustrates this procedure
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Rate of Climb R/C: Effect of the
Altitude

e This chart shows the
effect of altitude
- At higher true
airspeeds, Py
decreases
with altitude

- However, P, falls off
faster than Py

- The best climb speed

usually decreases
slightly with altitude

22,000 ft

Horsepower X 107

Rate of Climb R/C

e For a propeller aircraft

- Maximum rate of climb occurs at the V_ where maximum excess
power occurs
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e Maximum R/C does not occur at V.,

e However, if Pg is assumed constant with V, R/C,,, does occur at V, ;...
e DV,_ is approximately the power required in the climb




Rate of Climb R/C

e For propeller aircraft

- Maximum angle of climb occurs at the V__ for which maximum
excess thrust occurs
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e Maximum climb angle (which is used to clear obstacles on takeoff)

occurs at a velocity < V.,

Rate of Climb R/C

e For a given

altitude

- For any type
of airplane,
excess power
determines R/C

- Induced drag
changes Py

Maximum Py

Maximum
excess
power

Power

Maximum R/C

R/C

e R/C changes with
velocity

e Plots like the one on left
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Rate of Climb R/C

e Climb performance hodograph
- Vertical velocity versus horizontal velocity
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- Notice the difference in velocity for 6,,,, and the velocity for (R/C) .«

Rate of Climb R/C: High performance
climb

— Lift forces Eq. L=Wcos6 &

- Drag forces Eq. T-D-Wsine=0 ’ /\

- Solving the two

equations for @
e solve each for gS
e setgS=qgS
e solve the resulting
quadratic for 6
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I
sin® =
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Gliding flight

Forces in a power-off glide

D=Wsin® L=Wcos6

- D|V|d|ng drag by ||ft \\ Horizontal

tavn9=Li 10 i = L/l (L/D)), =1/ 4C, K //
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- Once again, an important Fo
performance parameter

is set by L/D Yo [2eosow
e the smallest 6 gives L:%pmVjSCL =W cos @ "\ pCL S

maximum gliding range Equilibrium
e this maximum range occurs when L/D is maximum  glide
for V_ constant velocity

e airplanes with good aerodynamic efficiency (high
L/D) can glide 20-50 times as far as their altitude

e Does not depend on wing loading or altitude.
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or

Vo = 2W cos@
7Y pwSCL
Substituting Eq. (5.130) into Eq. (5.128), we have

2cos W

Vv = Vo sin@ = (sinf
(4 oo SiD (sin 8), 2CL S

Dividing Egq. (5.124) by Eq. (5.123), we obtain
D c
sin® = —L—cos9 = C—IL)COSO

Inserting Eq. (5.132) into Eq. (5.131), we have
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By making the assumption that cos 8 = 1, Eq. (5.133) is written as

_— 2w
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[5.134]

Equation (5.134) explicitly shows that (Vi) occurs at (Ci/ 2 /Cp)max- It Also shows
that the sink rate decreases with decreasing altitude and increases as the square root

of the wing loading.

Power

R/C

Ceilings

Absolute Ceiling: 0 fpm
Service Ceiling: 100 fpm
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Ceilings

e The ceiling is the altitude at which R/C has
reached some minimum value

- Absolute ceiling
e Is defined as the altitude at which the R/C =0
e |s dictated when P, is just tangent to the P, curve
- Service ceiling
e is defined as that altitude where R/C,,,, = 100 ft/min
e is the practical upper limit for steady, level flight
- Procedure
e calculate values of R/C,,,, for different altitudes
e plot R/C,,,, versus altitude

e extrapolate this latter curve to 100 fpm and 0 fpm to get
the service and absolute ceilings

Time to Climb

e Time to climb
- Needs to be short
- Calculating R/C

RIC=V_ sin@:—h
dr ¢,
dt = ﬂ
R/C
- Integrating Time to climb = 3.5 min

fra=fe=s24 AN\

- Calculating time- fo-climb
graphically
e plot (R/C)" versus h

e Approximate the area under
the curve

e Subtract time to climb to the
starting altitude

(RIC) =a+bh
dh
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