# AE 429 - Aircraft Performance and Flight Mechanics 

Rate of Climb
Time to Climb

## Rate of Climb R/C

- Now let's analyze a steady climb
- Forces include a gravity component now

$$
m \frac{d V_{\infty}}{d t}=T \cos \varepsilon-D-W \sin \theta \quad \Longrightarrow \quad \begin{aligned}
& T=D+W \sin \theta \\
& L=W \cos \theta
\end{aligned}
$$

$$
m \frac{V_{\infty}^{2}}{r_{1}}=L \cos \phi+T \sin \varepsilon \cos \phi-W \cos \theta
$$

The rate of climb (R/C) is the vertical component of velocity

## Rate of Climb R/C

- For low climb angles (up to about $20^{\circ}$ )
- We can assume $\cos \theta \approx 1$ to calculate $C_{L}$
- So we work on the drag equation, multiplying by $\mathrm{V}_{\infty}$

$$
\begin{gathered}
T V_{\infty}=D V_{\infty}+W V_{\infty} \sin \theta \quad \text { Excess Power } \\
\frac{T V_{\infty}-D V_{\infty}}{W}=\frac{(T-D) V_{\infty}}{W}=V_{\infty} \sin \theta
\end{gathered}
$$

- In climb, the rate of climb is the vertical component of velocity

$$
R / C=V_{\infty} \sin \theta
$$

- Maximum R/C
- Maximize excess power
- Minimize weight
- Maximum angle of climb

- Maximize excess thrust
- Minimize weight

$$
\theta=\sin ^{-1} \frac{(T-D)}{W} \approx \frac{(T-D)}{W}
$$

Rate of Climb R/C $\equiv \frac{(T-D) V_{\infty}}{W}$

$$
\begin{gathered}
C_{L}=\frac{L}{q_{\infty} S}=\frac{W \cos \theta}{q_{\infty} S} \\
D=q_{\infty} S C_{D}=q_{\infty} S\left(C_{D, 0}+K C_{L}^{2}\right)=q_{\infty} S\left(C_{D, 0}+K\left(\frac{W \cos \theta}{q_{\infty} S}\right)^{2}\right)= \\
=q_{\infty} S C_{D, 0}+\frac{K W^{2} \cos ^{2} \theta}{q_{\infty} S} \\
R / C=V_{\infty} \sin \theta=\frac{(T-D) V_{\infty}}{W}=V_{\infty}\left(\frac{T}{W}-\frac{D}{W}\right) \\
R / C=V_{\infty} \sin \theta=V_{\infty}\left[\frac{T}{W}-\frac{1}{2} \rho_{\infty} V_{\infty}^{2}\left(\frac{W}{S}\right)^{-1} C_{D, 0}-\frac{2 K}{\rho_{\infty} V_{\infty}^{2}} \frac{W}{S} \cos ^{2} \theta\right]
\end{gathered}
$$

Preliminary design $\cos \theta \approx 1$ OK for $\theta \leq 50^{\circ}$

## Maximum Climb Angle

$$
\begin{aligned}
& \theta \max \\
& \sin \theta=\frac{T}{W}-\frac{D}{W}=\frac{T}{W}-\frac{D}{\cos \theta \approx 1} \downarrow \begin{array}{l}
\downarrow \\
\left.\sin \theta_{\max }=\frac{T}{W}-\frac{1}{W}-\frac{1}{L / D}\right)_{\left.\right|_{\max }}=\frac{T}{W}-\sqrt{4 C_{D, 0} K} \\
L=W \cos \theta=\frac{1}{2} \rho_{\infty} V_{\infty}^{2} S C_{L} \\
L=W \cos \theta_{\max }=\frac{1}{2} \rho_{\infty} V_{\theta \max }^{2} S \sqrt{\frac{C_{D, 0}}{K}}
\end{array} C_{L}=\sqrt{\frac{C_{D, 0}}{K}} \quad \text { from L/D max }
\end{aligned}
$$

Speed at max $\theta$ for jet propelled airplane
$V_{\theta \text { max }}^{2}=\frac{2}{\rho_{\infty}} \sqrt{\frac{K}{C_{D, 0}}} \frac{W}{S} \cos \theta_{\text {max }}$
Rate of climb at $\max \theta$

$$
(R / C)_{\theta_{\max }}=V_{\theta_{\max }} \sin \theta_{\max }
$$

## Max Angle to Climb

- If thrust available is constant with V
- Maximum climb angle occurs at minimum drag
- This speed also gives best acceleration in level flight
$\theta=\frac{\left(T_{A}-D\right)}{W}$



## Rate of Climb R/C

- Typically, climbs are not flown at constant $V_{\infty}$

$$
T=D+W \sin \theta+\frac{W}{g} \frac{d V_{\infty}}{d t}=D+W \sin \theta+\frac{W}{g} \frac{d V_{\infty}}{d h} \frac{d h}{d t}
$$

- Recognizing

$$
\frac{d h}{d t}=R / C=V_{\infty} \sin \theta
$$

- and rearranging

$$
\begin{gathered}
\frac{T-D}{W}=\sin \theta+\frac{1}{g} \frac{d V_{\infty}}{d h} V_{\infty} \sin \theta \Rightarrow \sin \theta=\frac{\frac{T-D}{W}}{1+\frac{V_{\infty}}{g} \frac{d V_{\infty}}{d h}}=\frac{T-D}{W} \frac{1}{k} \\
k=1+\frac{V_{\infty}}{g} \frac{d V_{\infty}}{d h}
\end{gathered}
$$

## Rate of Climb R/C

- For our idealized jet airplane, best rate of climb does not occur at minimum power required
- Maximum rate of climb occurs at the velocity where excess power is greatest
- The velocity for maximum rate of climb is determined for any aircraft by
- Plotting the power required versus true airspeed
- Overplotting the power available versus true airspeed
- Choosing the velocity where the distance between the two curves is greatest


## Rate of Climb R/C

- The chart below illustrates this procedure



## Rate of Climb R/C

Max Rate of Climb

$$
\begin{aligned}
& R / C=V_{\infty}\left[\frac{T}{W}-\frac{1}{2} \rho_{\infty} V_{\infty}^{2}\left(\frac{W}{S}\right)^{-1} C_{D, 0}-\frac{2 K}{\rho_{\infty} V_{\infty}^{2}} \frac{W}{S}\right] \\
& \frac{d(R / C)}{d V_{\infty}}=\left[\frac{T}{W}-\frac{3}{2} \rho_{\infty} V_{\infty}^{2}\left(\frac{W}{S}\right)^{-1} C_{D, 0}+\frac{2 K}{\rho_{\infty} V_{\infty}^{2}} \frac{W}{S}\right]=0 \\
& V_{(R / C)_{\max }}=\left\{\frac{(T / W)(W / S)}{3 \rho_{\infty} C_{D, 0}}\left[1+\sqrt{\left.1+\frac{3}{(L / D)_{\max }^{2}(T / W)^{2}}\right]}\right\}^{1 / 2}\right. \\
& (R / C)_{\max }=\left[\frac{(W / S) Z}{3 \rho_{\infty} C_{D, 0}}\right]^{1 / 2}\left(\frac{T}{W}\right)^{3 / 2}\left[1-\frac{Z}{6}-\frac{3}{2(T / W)^{2}(L / D)_{\max }^{2} Z}\right] \\
& Z \equiv 1+\sqrt{1+\frac{3}{(L / D)_{\max }^{2}(T / W)^{2}}}
\end{aligned}
$$

## Rate of Climb R/C: Effect of the Altitude

- This chart shows the effect of altitude
- At higher true airspeeds, $\mathrm{P}_{\mathrm{R}}$ decreases
with altitude
- However, $\mathrm{P}_{\mathrm{A}}$ falls off faster than $\mathrm{P}_{\mathrm{R}}$
- The best climb speed usually decreases slightly with altitude



## Rate of Climb R/C

- For a propeller aircraft
- Maximum rate of climb occurs at the $\mathrm{V}_{\infty}$ where maximum excess power occurs

- Maximum R/C does not occur at $V_{\text {minpR }}$
- However, if $P_{R}$ is assumed constant with $V, R / C_{m a x}$ does occur at $V_{\text {minPR }}$
- $D V_{\infty}$ is approximately the power required in the climb


## Rate of Climb R/C

- For propeller aircraft
- Maximum angle of climb occurs at the $\mathrm{V}_{\infty}$ for which maximum excess thrust occurs

- Maximum climb angle (which is used to clear obstacles on takeoff) occurs at a velocity $<V_{\text {mintr }}$


## Rate of Climb R/C

- For a given altitude
- For any type of airplane, excess power determines R/C
- Induced drag changes $P_{R}$


- R/C changes with velocity
- Plots like the one on left allow determination of best R/C speed


## Rate of Climb R/C

- Climb performance hodograph
- Vertical velocity versus horizontal velocity

- Notice the difference in velocity for $\theta_{\max }$ and the velocity for $(R / C)_{\max }$


## Rate of Climb R/C: High performance climb

- Lift forces Eq. $L=W \cos \theta$
- Drag forces Eq. $\quad T-D-W \sin \theta=0$
- Solving the two equations for $\theta$
- solve each for $q S$
- set $q S=q S$
- solve the resulting quadratic for $\theta$
$\sin \theta=\frac{C_{L}^{2} T}{W\left(C_{L}^{2}+C_{D}^{2}\right)}$

$-\sqrt{\left(\frac{C_{L}^{2} T}{W\left(C_{L}^{2}+C_{D}^{2}\right)}\right)^{2}-\frac{C_{L}^{2} T^{2}-C_{D}^{2} W^{2}}{W\left(C_{L}^{2}+C_{D}^{2}\right)}}$


## Gliding flight

- Forces in a power-off glide

$$
D=W \sin \theta \quad L=W \cos \theta
$$

- Dividing drag by lift

$$
\tan \theta=\frac{1}{L / D} \quad \tan \theta_{\min }=\frac{1}{L /\left.D\right|_{\max }}
$$

- Once again, an important performance parameter



## is set by L/D

- the smallest $\theta$ gives maximum gliding range

$$
L=\frac{1}{2} \rho_{\infty} V_{\infty}^{2} S C_{L}=W \cos \theta \quad V_{\infty}=\sqrt{\frac{2 \cos \theta}{\rho_{\infty} C_{L}} \frac{W}{S}}
$$

- this maximum range occurs when L/D is maximum for $\mathrm{V}_{\infty}$ constant
glide velocity
- airplanes with good aerodynamic efficiency (high L/D) can glide 20-50 times as far as their altitude
- Does not depend on wing loading or altitude.

$$
\begin{aligned}
& D=W \sin \theta \\
& V_{V}=V_{\infty} \sin \theta \\
& D V_{\infty}=W \sin \theta V_{\infty}=W V_{V} \\
& V_{\infty}=\sqrt{\frac{2 \cos \theta}{\rho_{\infty} C_{L}} \frac{W}{S}} \quad \begin{array}{l}
\begin{array}{l}
\text { Equilibrium } \\
\text { glide } \\
\text { velocity }
\end{array}
\end{array} \\
& V_{H}=V_{\infty} \cos \theta \\
& V_{V}=\frac{D V_{\infty}}{W}=\frac{P_{R}}{W} \\
& \left.(L / D)\right|_{\max }=1 / \sqrt{4 C_{D, 0} K} \\
& \cos \theta \approx 1 \\
& \left(\frac{L}{D}\right)_{\max }=\left(\frac{C_{L}}{C_{D}}\right)_{\max }=\sqrt{\frac{1}{4 C_{D, 0} K}} \\
& L=W=\frac{1}{2} \rho_{\infty} V_{\infty}^{2} S C_{L} \\
& V_{(L / D)_{\max }}=\left(\frac{2}{\rho_{\infty}} \sqrt{\frac{K}{C_{D, 0}}} \frac{W}{S}\right)^{1 / 2}
\end{aligned}
$$

or

$$
V_{\infty}=\sqrt{\frac{2 W \cos \theta}{\rho_{\infty} S C_{L}}}
$$

Substituting Eq. (5.130) into Eq. (5.128), we have

$$
V_{V}=V_{\infty} \sin \theta=(\sin \theta) \sqrt{\frac{2 \cos \theta}{\rho_{\infty} C_{L}} \frac{W}{S}}
$$

[5.131]
Dividing Eq. (5.124) by Eq. (5.123), we obtain

$$
\begin{equation*}
\sin \theta=\frac{D}{L} \cos \theta=\frac{C_{D}}{C_{L}} \cos \theta \tag{5.132}
\end{equation*}
$$

Inserting Eq. (5.132) into Eq. (5.131), we have

$$
V_{V}=\sqrt{\frac{2 \cos ^{3} \theta}{\rho_{\infty}\left(C_{L}^{3} / C_{D}^{2}\right)} \frac{W}{S}}
$$

By making the assumption that $\cos \theta=1$, Eq. (5.133) is written as

$$
V_{V}=\sqrt{\frac{2}{\rho_{\infty}\left(C_{L}^{3} / C_{D}^{2}\right)} \frac{W}{S}}
$$

Equation (5.134) explicitly shows that $\left(V_{V}\right)_{\min }$ occurs at $\left(C_{L}^{3 / 2} / C_{D}\right)_{\max }$. It also shows that the sink rate decreases with decreasing altitude and increases as the square root of the wing loading.

## Ceilings

## - How high can the airplane climb?




## Ceilings

- The ceiling is the altitude at which R/C has reached some minimum value
- Absolute ceiling
- Is defined as the altitude at which the $R / C=0$
- Is dictated when $P_{A}$ is just tangent to the $P_{R}$ curve
- Service ceiling
- is defined as that altitude where $R / C_{\text {max }}=100 \mathrm{ft} / \mathrm{min}$
- is the practical upper limit for steady, level flight
- Procedure
- calculate values of $R / C_{\max }$ for different altitudes
- plot $R / C_{m a x}$ versus altitude
- extrapolate this latter curve to 100 fpm and 0 fpm to get the service and absolute ceilings


## Time to Climb

- Time to climb
- Needs to be short
- Calculating R/C

$$
\begin{aligned}
& \text { ating R/C } \\
& \qquad R / C=V_{\infty} \sin \theta=\frac{d h}{d t}
\end{aligned}
$$

$$
d t=\frac{d h}{R / C}
$$

- Integrating
$\int_{t_{1}}^{t_{2}} d t=\int_{h_{1}}^{h_{2}} \frac{d h}{R / C} \approx \sum_{i=1}^{n}\left(\frac{\Delta h}{R / C}\right)_{i}$

- Calculating time-to-climb graphically
- plot $(R / C)^{-1}$ versus $h$
- Approximate the area under the curve
- Subtract time to climb to the starting altitude
$(R / C)_{\text {max }}=a+b h$
$t_{\text {min }}=\int_{0}^{t_{\text {miin }}} d t=\int_{0}^{h_{2}} \frac{d h}{a+b h}=\frac{1}{b}\left[\ln \left(a+b h_{2}\right)-\ln (a)\right]$

