A Scalable Approach to Attack Graph Generation*

Jim Owens
Advisor: Chris Lynch

*by Xinming Ou, Wayne F. Boyer & Miles A. McQueen, published at ACM's CCS '06
Overview

- Motivation & background
- Logical attack graphs (2006)
 - Algorithms
 - Complexity analysis
 - Experimental results
- Conclusions & future work
Motivation

• Growing complexity of network security problem suggests need for automated security tools
 - Incremental security improvements require multi-stage, multi-host attacks to reach given targets
 - Profit motive leads attackers to try harder
 - Many enterprise networks comprise 1,000's or even 10,000's of hosts
 - Large, complex networks are difficult for humans to understand and defend
Motivation

• *Example*: TJX compromise in 2003-2006 exposed data on 94 million+ credit cards
 - Original attacks targeted WEP- or unsecured wireless access points via *war driving*
 - Once inside, attackers used 'sniffers,' SQL injection attacks, other means to extend compromises
 - Later, attackers installed a VPN between a TJX transaction processing server and an attack server to capture data “as it was being processed”
Background

- *Attack graphs* (or *trees*) can be used to model attacks and analyze system security
- The goal or target is the root node, with initial points of attack represented as leaf nodes
- Edges define transitions between attack stages
- Both AND and OR nodes can be used
- Attack graphs can effectively model multi-host, multi-stage attacks
Sample attack tree (Schneier)
Review of early work

• In March 2005, MIT's Lincoln Lab reviewed 18 research papers on attack graphs for USAF
 − Scalability a primary concern; the best systems scaled as $O(N^6)$, limiting application to small networks only
 − Most systems used manual entry of configuration data and hand-drawn attack graphs
 − Network reachability analysis also identified as an important weakness
Review of early work

• In 2002 Sheyner, et al, proposed an automated system using a FSM & model checking
 - Required hand-generated network input
 - Graph nodes consist of Boolean variables, representing the entire network state
 - Graph building/analysis for 4 hosts/4 vulns: 5 secs
 - Graph building/analysis for 5 hosts/8 vulns: 2 hours
 - Raised serious questions on suitability of model-checking approaches
Logic-based attack graphs

• In 2006, Xinming Ou and two researchers from Idaho National Laboratory introduce logic-based attack graphs
 - Machine-generated graphs based on logic programming techniques
 - Vulnerability analysis and graph generation scales at $O(N^2 \log(N))$
Logic-based attack graphs

- Require that an attacker's potential privileges be expressed as a propositional formula, in terms of network/host configuration parameters
 - Nodes represent logical statements, encoding some aspect of host/network configuration
 - Edges specify causality relations between configuration parameters and an attacker's potential privileges
Logic-based attack graphs

- Vulnerabilities identified using MulVAL*, a reasoning engine based on XSB Prolog and Datalog interaction rules
 - Configuration information represented as Datalog tuples
 - Attack techniques and OS semantics represented as Datalog interaction rules

*Multi-host, Multi-stage Vulnerability Analysis Language
Logic-based attack graphs

- Sample Datalog interaction rule:

\[
\text{execCode} (\text{Attacker}, \text{Host}, \text{User}) :\neg \\
\text{networkService} (\text{Host}, \text{Program}, \\
\text{Protocol}, \text{Port}, \text{User}), \\
\text{vulExists} (\text{Host}, \text{VulID}, \text{Program}, \\
\text{remoteExploit}, \text{privEscalation}), \\
\text{netAccess} (\text{Attacker}, \text{Host}, \text{Protocol}, \\
\text{Port})
\]
Logical attack graph generator
Example network

CAN-2002-0392

CVE-2003-0252
Logical attack graph
Tree representation (1)

<3>|--execCode(attacker, fileServer, root)
 <r3>Rule3: remote exploit of a server program
 []-networkServiceInfo(fileServer, mountd, rpc, 100005, root)
 []-vulExists(fileServer, CVE-2003-0252, mountd,
 remoteExploit, privEscalation)
 <4>|--netAccess(attacker, fileServer, rpc, 100005)
 <r4>Rule6: multi-hop access
 []-hacl(webServer, fileServer, rpc, 100005)
 <5>|--execCode(attacker, webServer, apache)
 <r5>Rule3: remote exploit of a server program
 []-networkServiceInfo(webServer, httpd, tcp, 80, apache)
 []-vulExists(webServer, CAN-2002-0392, httpd,
 remoteExploit, privEscalation)
 <6>|--netAccess(attacker, webServer, tcp, 80)
 <r6>Rule7: direct network access
 []-hacl(internet, webServer, tcp, 80)
 []-located(attacker, internet)
Tree representation (2)

<0|--execCode(attacker,workStation,root)
 |<r0>Rule5: Trojan horse installation
 | <1|--accessFile(attacker,workStation,write,/usr/local/share)
 | |<r1>Rule14: NFS semantics
 | | []-nfsMounted(workStation,/usr/local/share,fileServer,/export,read)
 | |<2|--accessFile(attacker,fileServer,write,/export)
 | |<r2a>Rule10: execCode implies file access
 | | []-fileSystemACL(fileServer,root,write,/export)

 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

 <r2b>Rule15: NFS shell
 | []-hacl(webServer,fileServer,rpc,100003)
 | []-nfsExportInfo(fileServer,/export,write,webServer)
 | |--execCode(attacker,webServer,apache) ==> <5>
Algorithms

- MulVAL engine yields yes/no answers on exploitable vulnerabilities using interaction rules
- Attack simulation traces also produced for each fully-satisfied derivation rule
- Simulation traces are written to file, and later processed into attack graphs using the “map” template in the C++ standard library
Algorithms

• Attack simulation trace:

 \[\text{TraceStep} ::= \text{because}(\text{interactionRule}, \text{Fact}, \text{Conjunct}) \]

 \[\text{Fact} ::= \text{predicate}(\text{list of constant}) \]

 \[\text{Conjunct} ::= (\text{list of Fact}) \]

 – Each \text{TraceStep} term becomes a derivation node in the attack graph

 – \text{Fact} field becomes the node's parent

 – \text{Conjunct} field becomes its children.
Complexity analysis

• Complexity of computing attack trace

Theorem 1: Evaluating MulVAL interaction rules against configuration tuples representing N hosts takes $O(N^2)$ derivation steps.

Proof: For fixed Datalog programs, running time is dominated by rules with the max number of body-variable instantiations. The rule with the highest number of such instantiations—netAccess—can have instantiations for every host with every other host on the network: N^2.
Complexity analysis

\text{netAccess}(\text{Attacker}, \ H2, \ \text{Protocol}, \ Port) \ :-
\text{execCode}(\text{Attacker}, \ H1, \ User),
\text{hacl}(H1, \ H2, \ \text{Protocol}, \ Port)

1) Compute all hosts on which attacker can execCode
2) Compute all \(H1 \)s and \(H2 \)s between which network access is possible
3) Finally, compute \text{netAccess} by matching results of the two sub-goals, which have been written to tables (XSB claims very efficient pattern-matching)
Complexity analysis

• Complexity of computing attack trace

Every trace step is produced by one derivation step in Datalog evaluation, so based on Theorem 1 we also have...

Corollary 1: The number of trace-step terms produced in attack simulations is $O(N^2)$.
Complexity analysis

• Complexity of graph building

Theorem 2: The logical attack graph for a network with \(N \) hosts has a size at most \(O(N^2) \).

Proof: There is a 1:1 correspondence between TraceStep terms and derivation nodes. If there are \(D \) trace steps, then there are \(D \) derivation nodes in the graph. If there are at most \(m \) preconditions for a rule, the number of edges in the graph is at most \(mD \), and the maximum number of fact nodes is \(mD+1 \). By Corollary 1, \(D \) is \(O(N^2) \), as is \(mD+1 \).
Complexity analysis

• Complexity of graph building

Theorem 3: The graph building algorithm takes time $O(N^2 \log(N))$ to complete, where N is the number of hosts in the network.

Proof: The algorithm loops through all TraceStep terms, which by Corollary 1 is $O(N^2)$. In each iteration, the algorithm creates a derivation node for the term and makes links from its parent and to its children. Only table look ups are not constant time; these take $\log(n)$ time.
Experimental results

Figure 9: Graph generation CPU usage as a function of network size for several network topologies.
Experimental results

Figure 13: Graph generation CPU time for a fully connected network and number of vulnerabilities per host varying from 1 to 100.
Conclusions

• Logical attack graphs
 - Directly illustrate logical dependencies between attack goals and configuration information
 - Show dramatically improved scaling over earlier approaches
 - Have size polynomial to the network being analyzed
Future work

• Develop algorithm to eliminate useless loops in attack graphs

• Create custom map library to make table lookups more efficient during graph building phase

• Automate the generation of Datalog tuples from vulnerability database (NVD) and network and machine configuration data