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Abstract
The relaxation dynamics of a quenched normal domain in a type-

II superconductor is considered analytically and numerically. Different
instabilities accompanying recovery of superconductivity are predicted.
The relaxation of the normal spot starts with appearance of a micro-
scopic instability leading to emergence of the vortex clusters. Effects
of the heat dissipation and transport on the motion and stability of
the interface between the magnetic flux and flux-free domains are con-
sidered. It is shown that the magnetic induction and the temperature
profiles have a form of the shock wave moving with a constant velocity.
In the vicinity of the front, superconductivity is suppressed by strong
screening currents. The front velocity is determined completely by the
Joule heat caused by electric current in the normal domain at the flux
front. Stability of the shock wave solution is investigated both analyt-
ically and numerically. For sufficiently small heat diffusion constant, a
finger-shaped thermal instability is found.
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Introduction

The dynamics of magnetic flux penetration into type II superconductor and
its instabilities has been studied by variety of techniques over the years
(see [1] and references therein). Magneto-optical experiments [2] demon-
strate that in a wide range of situations there exists a well defined interface
(front) between the magnetic flux penetrating a sample and the flux free
Meissner state. Magneto-optical technique has been further perfected and
revealed a wide class of instabilities, including magnetic macro-turbulence,
[3], dendritic instability [4]. The instability of the magnetic flux and flux
avalanches are observed both in anisotropic HTSC [3] and in an isotropic
material like Nb [4].

Recently, a new type of flux instability has been observed experimentally.
In this experiments superconductivity was locally destroyed in a completely
nonadiabatic fashion by a femtosecond laser pulse [5]. The pulse clearly
forces the system out of thermal equilibrium. Superconductivity is destroyed
inside a narrow stripe of the YBCO film subjected to magnetic field per-
pendicular to the film. The field does not exceed the first critical field Hc1,
so that initially fluxons cannot penetrate the rest of the sample. Therefore
the magnetic flux initially fills the normal domain. Recovery of supercon-
ductivity occurs in two stages. After the short pulse has past, the stripe
is cooled, and the flux nucleates into a dense system of Abrikosov vortices.
The microscopic characteristic time of that stage is of order of the Ginzburg-
Landau relaxation time (appearing in the time dependent GL equations)
tGL ∼ 10−10 sec . On the larger (mesoscopic) time scale the rapidly created
vortices are pushed into the superconducting part of the sample. The flux-
ons move very fast with velocities of order of 105cm/sec in YBCO [5]. The
flux flow currents J in this case are much higher than the critical current
Jc typical for the thermodynamic Bean critical state, but smaller (although
not much smaller) than the depairing current Jd: Jd > J >> Jc. Just after
the vortex nucleation stage, the magnetic flux forms a rapidly moving front.
This highly nonequilibrium relaxation dynamics is very different from the
essentially adiabatic dynamics of the critical state. The front line shape
is not always stable: sometimes it dynamically develops the dendritic-like
structures [6]. It is interesting that the dendrites appear at well separated
points indicating that certain threshold has been crossed.

In the present paper, we first review a recent progress in understanding
the rapid relaxation of unstable normal state and subsequent creation of
dynamic vortex domain. A major theoretical tool is direct simulation of the
time dependent GL equations appropriate for the microscopic time scale of
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these processes. Then we use the numerical and analytical analysis of the
flux hydrodynamics to study the motion and stability of the flux domain on
the mesoscopic time scale. For certain voltage-current characteristics of the
superconductor in its resistive state, the magnetic induction penetrating a
flux free superconductor forms a sharp front. The Joule heat released at
the flux front can provide constant velocity of the front propagation inside
the type II superconductors. The straight front line shows instability with
respect to local temperature fluctuations. In fact, an excessive local temper-
ature at the front leads to excessive Joule heat released there and, in turn,
increases the local front velocity in the fluctuation area. The hydrodynam-
ical tangential instability of the flux front destroys the flat front.

1 Fast phase transition and creation of the vortex
domain

We start with the simplified set of the time-dependent Ginzburg-Landau
(TDGL) equations coupled with the temperature diffusion equation. The
TDGL equations, being exact in gapless superconductors, are known to
provide a qualitatively correct description in other cases. We consider
the temperature diffusion equation in the local temperature approximation.
This model describes superconductors, where the energy relaxation time is
about 10−13 sec and the electron subsystem returns rapidly to the equilib-
rium, while the ion subsystem relaxes relatively slowly to the temperature
of the environment (in other words, the characteristic ion relaxation time
th ≥ τGL ∼ 10−11 sec). The temperature of the ion subsystem in this ap-
proximation can be treated as a local one, T = T (r,t).

Choosing the scalar potential in the form µ = −∂χ/∂t , we can rewrite
the TDGL equations in a dimensionless form:

Γ
∂ψ

∂t
= (1−Θ(r,t))ψ − |ψ|2 ψ − (i∇+A)2 ψ (1)

∂A

∂t
= −∇×∇×A− i

2κ2
(ψ∗∇ψ − ψ∇ψ∗)− 1

κ2
|ψ|2A (2)

∂Θ

∂t
= κ∇2Θ+ ν(

∂A

∂t
)2 − γ(Θ−Θ0) (3)

ψ(r, t) = |ψ(r, t)| exp(iχ(ρ, t)). (4)

It should be noted that in the general case these equations are three-dimensio-
nal, but for thin samples when L ≈ δ (here L and δ are the thickness of the
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sample and the penetration depth of the magnetic field, respectively) they
reduce to the two-dimensional modified TDGL equations.

The dimensionless variables are related to the dimensional ones as fol-
lows:

r = r
0
/ξ, t = t

0
/τGL , τGL = 4πσξ

2/c2, ν = κ2H2
cm/2πTcCv, (5)

A = A
0
/
³√
2δHcm

´
, H = H

0
/
³√
2Hcm

´
, µ =

8πeσξ2

~c2
µ
0
. (6)

In addition, Θ(r,t) = T (r,t)/Tc is the reduced temperature, Θ0 = T0/Tc,
where T0 < Tc is the equilibrium temperature of the superconductor, ψ
= Ψ/ψ0 is the dimensionless order parameter (here ψ0 is the equilibrium
magnitude of the order parameter), κ = τGLD(T )/ξ

2 is the reduced diffu-
sion coefficient, γ is the dimensionless relaxation coefficient, κ = δ/ξ is the
Ginzburg-Landau parameter,D is the heat conductivity, Γ = γGLc

2m/π~2σ,
m is the electron mass, Cv is the heat capacity, σ is the conductivity in the
normal state, γGL ∼ ~α/Tc is the characteristic relaxation time of the or-
der parameter, and Hcm is the thermodynamic critical magnetic field. The
boundary condition for the order parameter is (i∇+A)n ψ = 0. The set of
equations was solved in thick film geometry where superconductivity was
initially destroyed in a narrow strip (Fig. 1) under magnetic field smaller
than Hc1.

Figure 1: Geometry of the problem. The shaded area contains the flux that
penetrated the sample during short initial period when the superconductiv-
ity was destroyed at the center (x = 0). Arrows indicate the direction of the
flux front motion. Direction of the magnetic field B is perpendicular to the
xy plane.

724



Figure 2: Formation of the vortex domain on the microscopic time scale (in
units of the GL time τGL): a) 0, b) 103, c) 2 · 103, d) 4 · 103, e) 6 · 103.
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The system was simulated for H 0 = 0.5Hc1 , γ = 10−5, and κ = 10. The
results presented in Fig. 2 show the process of the magnetic flux penetration
of the laser heated normal strip (Fig. 2a,b) with subsequent formation and
development of the quantized fluxons and their organization into the vortex
cluster (Figs. 2c-2e). The vortex cluster, however, is unstable since vortices
attempt to escape the sample. The boundary of the vortex cluster is typically
straight.

2 Dynamics on the mesoscopic time scale

2.1 Hydrodynamics of the vortex matter

The two dimensional vortex matter in the hydrodynamics approximation
is described by the magnetic induction B(r, t) and the temperature profile
T (r, t), where r =(x, y) is a two dimensional vector. The basic equations are
the Maxwell equation

4π

c2
∂B

∂t
=

∂

∂x

·
R
∂B

∂x

¸
+

∂

∂y

·
R
∂B

∂y

¸
(7)

where resistivity R(B,T ) will be phenomenologically defined in the next
subsection, and the heat transport equation:

C
∂T

∂t
= D∇2T + J ·E(B,T )− γC(T − T0). (8)

Here γH = 1/tr is the heat relaxation constant with tr being the heat re-
laxation time. The first term on the right hand side is the heat conduction,
the second is the Joule heat and the third describes the heat exchange be-
tween the slab and the cooling liquid. The Joule heat term consists of two
different contributions. In the mixed state it is dominated by the motion of
the magnetic flux, while in the normal metal when the superconductivity is
suppressed by the currents, one has usual Ohmic resistance losses.

2.2 Resistivity at high currents

As a rule, the nonlinear resistivity R (J,B, T ) ≡ E (J,B, T ) /J in the mixed
state of a type II superconductor is a complicated function of magnetic field,
current, and temperature, see Fig. 3. In this work we will be interested
mainly in resistivity at currents much larger than the critical current Jc,
when the pinned vortices are released. The vortex resistivity grows quickly
above Jc, either exponentially or as a power R ∝ Jµ with large µ. In this
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relatively low current regime the dependence on magnetic induction B is
very weak. However, when the current approaches the depairing current
Jd, the power µ becomes smaller and resistivity strongly depends on B.
Recently detailed measurements of the I − V characteristics of Nb films
at high current density of order 106 A/cm2 were performed [7]. Near the
depairing current it has a form

R(B,T ) = Rn(T )

µ
J

J∗(T,B)

¶µ

. (9)

Here Rn(T ) is the normal state resistivity. The depairing current J∗ de-
pendence on magnetic field and temperature [7] can be fitted well by the
following form:

J∗(T,B) = Jd∆

µ
Bc2(T )

B

¶ν/µ

. (10)

The upper critical field depends on temperature as Bc2(T ) = Bc2(0)∆,
where we assumed that dimensionless temperature θ = T/Tc is not far
from 1, namely ∆ ≡ 1 − θ is small. When the current exceeds J∗(B,T ),
the electric field is continuous, the resistivity approaching its normal value
R(B,T ) = Rn (T ). Thus the nonlinear flux diffusion equation Eq. (7) con-
tains a derivative of R which is a discontinuous function.

Figure 3: Schematic plot of the nonlinear resistivity of the type-II supercon-
ductor in the mixed state as a function of the current. The resistivity is zero
below the critical current Jc , exponentially small in the flux creep regime
just above Jc and evolves into a power function in the flux flow regime. At
the depairing current it merges with ohmic normal state resistivity.
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We fitted the I−V curves of Nb and obtained µ = 1.5 with temperature
independent Rn. For Nb at fields of the order of Bc1, we obtain the best
fit ν = 1.3. The values of other material parameters are: Bc2(0) = 4.43 T,
Rn = 9.9 µΩ·cm and Tc = 8.6 K. These were measured directly. The best fit
is obtained for the constant Jd = 9.2 · 106 A/cm2. (see Fig. 4 for a sample
of data taken at T = 7.8 K, θ = 0.9). Of course, the exponents depend on
material and weakly depend on field for larger magnetic fields. The power
law, however, generally holds.

Figure 4: Fitting the resistivity dependence on the current density of [7]
with our model resistivity Eqs. (9)-(10) with ν = 1.3, µ = 1.5. Magnetic
field is 20 mT (circles), 30 mT (stars) and 40 mT (squares).

2.3 Basic equations in terms of dimensionless quantities

Dimensionless coordinate, time, and magnetic induction are defined using
the natural units of length x∗ = cRn(T = Tc) ≡ cRn, magnetic field B∗ =√
4πCTc and time x→ x/x∗; t→ t/t∗; b = B/B∗.

t∗ = 4πRn

µ
4πRnJd
B∗

¶µµBc2 (0)

B∗

¶ν

;B∗ ≈ Hc1
λ2kF vF

cξ
(11)

The set of nonlinear coupled equations in the superconducting state (J <
J∗(B,T )) reads:
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∂b

∂t
=

∂

∂x

µ
ρ
∂b

∂x

¶
+

∂

∂y

µ
ρ
∂b

∂y

¶
(12)

∂θ

∂t
= κ∇2θ + ρj2 − Γ(θ − θ0), (13)

where the dimensionless resistivity and the electric current density are:

ρ =
Rn(θ)

Rn

µ
b

∆

¶ν µ j

∆

¶µ

; j =

sµ
∂b

∂x

¶2
+

µ
∂b

∂y

¶2
. (14)

The flux diffusion equation does not contain parameters, while the heat
transfer equation has two of them: the dimensionless temperature diffusion
constant and the relaxation coefficient

κ =
Dt∗

Cx∗2
, Γ = γt∗. (15)

In the region in which superconductivity is suppressed by the super-
conducting current J exceeding the depairing current value Jd(B,T ), the
normal state resistivity becomes R = Rn(T ). The dimensionless normal
state resistance is defined by ρ

n
(θ) = Rn(θ)c

2t∗/4πx∗2 . In this case the
basic equations are

∂b

∂t
=

∂

∂x

µ
ρn

∂b

∂x

¶
+

∂

∂y

µ
ρn

∂b

∂y

¶
(16)

∂θ

∂t
= κ∇2θ + ρnj

2 − Γ(θ − θ0). (17)

In the following section we solve these equations both analytically and nu-
merically.

3 Structure and evolution of the flux front

3.1 Asymptotics of the straight flux front in the supercon-
ducting phase

When the boundary conditions are independent of y , the front is straight
and the problem becomes one-dimensional. We start with a case when the
resistivity depends only on magnetic induction, hence now we consider µ =
0. In addition, we initially solve a simplified set dropping the relaxation term
Γ = 0 and diffusion κ = 0. This assumption will be supported aposteriori
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by calculating the term’s effects and comparing with the numerical solution.
Looking for the solution of Eqs.(12) and (13) in the form

b = bs(X), ∆ = ∆s(X), (18)

where X = x− V t is the distance from the interface and V is the interface
velocity, one obtains

−V dbs
dX

=
d

dX

·µ
bs
∆s

¶ν dbs
dX

¸
. (19)

V
d∆s

dX
= PJ . (20)

Here the Joule power density is PJ = ρ j2. Let us first investigate asymptot-
ics of bs(X) in the vicinity of the front X → 0. In the cold superconductor
magnetic field vanishes. Therefore formally (ignoring formation of the very
narrow normal stripe near the front which will be discussed in the next
subsection) we look at the magnetic field bs(X) as the power with some
coefficient dependent on velocity only for X < 0:

bs(X) = A(V ) |X|α . (21)

The temperature is sought off the form:

∆s(X) = ∆s0 −∆s1(V ) |X|β . (22)

Substituting the Ansatz Eqs.(21) and (22) into Eqs.(19) and (20), one ob-
tains on the superconducting side of the front (X < 0):

V Aα |X|α−1 = Aν+1∆−νs0 α[(ν + 1)α− 1] |X|(ν+1)α−2 ; (23)

A2+να |X|2α−2+αν = ∆s1β∆
ν
s0V |X|β−1 , (24)

which is satisfied for

α = 1/ν; β = 2/ν; (25)

A(V ) = ∆s0(νV )
1/ν ; ∆s1(V ) =

1

2
∆2s0(νV )

2/ν . (26)

The electric current j = ∂bs/∂X formally diverges as |X|1/ν−1 at the
front for ν > 1. Of course, the divergence is intercepted by the phase
transition into the normal state creating the ”hot” region of presumably
small widthwn determined by the condition that depairing current is reached

j(X = −wn) = jd = ∆s0V (νV wn)
1/ν−1. (27)
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There is also dissipation in the superconducting part of a larger width ws.The
expression for the Joule heat term caused by the magnetic flux motion every-
where, not necessarily close to the front interface, diverges at the front as
(see Eq.(21)) PJ ∝ |X|2/ν−1 for ν > 2 only. Its integral, however, always
converges. To determine V, wn, and other characteristics of the front motion
we need the solution in the normal domain. This and its matching with the
asymptotics in the superconductor is considered next.

3.2 Solution in the normal domain for the temperature in-
dependent resistivity

In the normal domain we assume first for simplicity that ρn (T ) = const
in addition to the previously used simplification κ = Γ = 0. The nonlinear
wave Ansatz

b = bn(X), ∆ = ∆n(X) (28)

will be initially used to find the current density jn =
dbn
dX . Substitution of

Eq.(28) into the normal state equations (16) and (17) leads to the following
set in terms of the front variable X = x− V t :

−V jn = ρn
djn
dX

(29)

V
d∆n

dX
= ρnj

2
n. (30)

The first equation has a solution

jn (X) = jn0 exp

·
−XV

ρn

¸
≈ jn0

µ
1− XV

ρn

¶
. (31)

The approximate form is generally valid since |X|V
ρn

< wnV
ρn

¿ 1 as will be
justified aposteriori. Then the heat transfer equation and the boundary
condition ∆n(X = 0) = ∆0 give

∆n (X) = ∆0 − ρnj
2
n0

2V 2

½
exp

·
−2XV

ρn

¸
− 1
¾
≈ ∆0 + j2n0

V
X. (32)

In this region most of the heat is released

Ξn ≡
0Z

−wn
ρn(θ)

µ
∂bn
∂X

¶2
dX ≈ ρnj

2
nwn. (33)

We will use this result below.

731



3.3 Matching solutions on the superconductor - normal in-
terface and the flux front velocity

The current, temperature, and the temperature gradient are all continu-
ous on the superconductor - normal interface X = −wn. Consequently, the
current on the normal side approaches the same depairing current on the
superconducting side

jn (X = −wn) = jd = ∆s0V (νV wn)
1/ν−1. (34)

The temperature matching conditions are

∆ (−wn) = ∆0 − j2dwn

V
= ∆s0; (35)

∆0 (−wn) =
j2d
V
=
∆2s0
νwn

(νV wn)
2/ν . (36)

The only solution of the set of three algebraic equations Eq.(27), Eq.(35),
and Eq.(36) is very simple:

V =
jd
2∆0

h
1 +

p
1 + 4∆0/ν

i
≈ jd
∆0

µ
1 +

∆0
ν

¶
(37)

where wn ≈ ∆0/νjd,∆s0 ≈ ∆0−∆20/ν. The front velocity can be represented
via the Joule heat released in the normal domain Eq.(33)

Ξn = ρnj
2
nwn =

ρnjd∆0
ν

(38)

as:

V =
νΞn
ρn∆

2
0

. (39)

We will use this simple relation in numerical simulation described in the
next subsection. As we discuss later, the numerical results demonstrate
that the width of the normal domain wn (hatched area in Fig. 5) is much
smaller than the width of the superconducting domain ws in which the
current is significant. When κ and Γ are nonzero only numerical analysis is
possible. The results (see below) show that for reasonable values of κ and
Γ the corresponding terms in the heat transfer equation are qualitatively
insignificant. Of course in this case we cannot assume the simple form of
Eq. (18).
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Figure 5: Magnetic induction profile at the front. Three different regions,
the mixed, the normal domain, and the Meissner state are presented. Here
wn is the width of the normal domain in which the superconductivity is
suppressed by excessive current, shown by the hatched area at the front
onset.

3.4 Numerical solution

The set of the scaled one-dimensional equations Eq.(12) and Eq.(13) for
resistivity in the form of Eq.(14) in the superconducting domain was solved
numerically using the Euler method. The normal domain was not directly
simulated and matched. Instead we used the phenomenological relations
described in the previous subsection to set the boundary condition at the
front. Parameters describing the numerical ”experiment” were chosen to be:
µ = 0, ν = 5, Γ = 0, and κ in the range from 0.01 to 0.1. Size of the system
is Lx/x

∗ = 200. The boundary conditions are: the total flux Φ/
¡
B∗x∗2

¢
in

the range 0.5 to 2.5, temperature of the cold superconductor θ0 = 0.7, θ(x =
−200) = θ(x = 200) = θ0.The normal phase was not simulated since it can
be integrated analytically. The transition to the normal state at depairing
current was taken into account by holding constant the normal domain Joule
heat dissipation Ξn for values in the range 5 · 10−2 to 2.

The results of the numerical solution are presented in Figs. 6-7. The
evolution of the magnetic induction is presented in Fig. 6 for the following
values of the flux and heat diffusion constant: a) Φ = 0.5, κ = 0.1, b)
Φ = 0.5, κ = 0.01, c) Φ = 2.4, κ = 0.05. The value of Ξn was kept fixed at
Ξn = 0.5 . Different curves represent successive times with intervals of ∆t =
2.5 t∗ between them. Velocity of the sharp front is constant and is plotted
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Figure 6: The evolution of the magnetic induction for the flux conserving
boundary condition. The value of the Joule heat released in the normal
domain.Ξn was kept fixed at Ξn = 0.5. The curves correspond (from left to
right) to six different times with intervals of ∆t between them. a) For the
flux Φ = 0.5 and the heat diffusion constant κ = 0.1, ∆t = 2.5 t∗, b) the
same for Φ = 0.5, κ = 0.01, ∆t = 2.5 t∗, c) Φ = 2.4, κ = 0.05, ∆t = 5 t∗.

734



as function of Ξn in Fig. 6 for Φ = 2.4 and κ = 0.05. The temperature
front moves together with the flux front velocity. The time instants are
the same as for the magnetic induction. It demonstrates that the front
interface velocity V is linearly dependent on Ξn. The dependence on Φ is
negligible. The results closely follow Eq.(39) obtained analytically for κ = 0
and confirm the general physical picture proposed in the previous section
that the velocity of the shock wave is universal in a sense that it depends
only on the heat released in the normal domain. The simulation reveals that
the evolution is qualitatively the same for values of other parameters.

The dynamics of the temperature distribution θ(x, t) is presented in
Fig. 7 and has a form of the thermal shock wave. Two sets of parameters
were simulated: a) Φ = 0.5, κ = 0.1, b) Φ = 0.5, κ = 0.01. The maximum of
temperature θ in this wave is reached at the interface between the supercon-
ducting and normal domains in the vicinity of the magnetic flux front. As
we discussed in the previous section, the current is maximal in the normal
domain which is narrow. In all the cases studied we found that the Joule
heat released in the mixed state domain (see Fig. 5) does not exceed 1% of
that in the normal domain.

4 Instability of the straight front

4.1 Linear stability analysis

Essential dependence of the front velocity on the Joule heat released near
the interface might lead to instability of the straight front. Perturbations
like a slight spatial distribution of the sample parameters (resistance, for
example) can trigger the front instability. Keeping the normal resistivity in
the form ρn = ρ0 + ρ1θ(x, t) we look for a solution of the corrugated front
in the normal domain as:

b = bn(x− V t) + η(x, y, t); (40)

θ = θn(x− V t) + ζ(x, y, t).

The leading order solution βn and θn for the set of basic equations Eqs.
(12),(13) for ρ1 = 0 were obtained in section 3, while corrections to the first
order in ρ1 will not be required in the stability analysis. The first order
terms in perturbations η and ζ are:

∂η

∂t
= ρn (θn)∇2η + ρ1

∂θn
∂x

∂η

∂x
+ ρ1

∂2bn
∂x2

ζ + ρ1
∂bn
∂x

∂ζ

∂x
; (41)
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Figure 7: The evolution of the temperature profile for the flux conserving
boundary condition. The value of the Joule heat released in the normal
domain, Ξn, was kept fixed at Ξn = 0.5. The curves correspond to six
different times with intervals of ∆t = 2.5 t∗ between them. a) For the flux
Φ = 0.5 and heat diffusion constant κ = 0.1, b) the same for Φ = 0.5,
κ = 0.01.

736



∂ζ

∂t
= 2ρn (θn)

∂bn
∂x

∂η

∂x
+ ρ1

µ
∂bn
∂x

¶2
ζ. (42)

Due to translation invariance of these eigenvalue equations in time and in
the direction along the front y, one represents η, ζ in a form

η = η (x) exp(Ωt+ kyy); ζ = ζ (X) exp(Ωt+ kyy). (43)

Then the eigenvalue equations become one-dimensional

bL · η
ζ

¸
= Ω

·
η
ζ

¸
, (44)

where

bL = ρn (θn)
³

∂2

∂X2 + ρ1
∂θn
∂X

∂
∂X − k2y

´
ρ1

³
∂bn
∂X

∂
∂X +

∂2bn
∂X2

´
2ρn (θn)

∂bn
∂X

∂
∂X ρ1

¡
∂bn
∂X

¢2 . (45)

Let us first consider a simpler case of conventional superconductors for which
ρ1 = 0. Substituting Eqs.(31)-(32) into Eqs.(41)-(42) one obtains (replacing
∂
∂X → ikX ): bL0 = −ρ0

¡
k2X + k2y

¢
0

−2iρ0jdkX 0
. (46)

The matrix bL0 has one stable Ω1 = −ρ0 ¡k2X + k2y
¢
and one marginal Ω2 = 0

eigenvalues. This eigenvalue is highly degenerate: any temperature devia-

tion ζ for η = 0 belongs to this subspace: bL0 · 0ζ
¸
= 0. Strictly speaking,

the marginal eigenvalue Ω2 calls for investigation beyond the linear stability
analysis. However, we believe it is stable and, in any case, addition of the
ρ1 term to resistivity removes the marginality and the degeneracy. To find
the corrected eigenvalue Ω2, one has to diagonalize on the corresponding
subspace the operator: bLζζ = ρ1

µ
∂bn
∂X

¶2
. (47)

The derivative is nearly constant in the normal domain, see Eq.(31),

bLζζ = ρ1j
2
n0 exp

·
−2XV

ρn

¸
≈ ρ1j

2
d . (48)

Consequently
Ω2 = ρ1j

2
d , (49)
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which demonstrates the instability for any wave vector.
The physical reason for the instability is a positive feedback between

temperature fluctuation at the front increasing, in its turn, both the Joule
power at the front and its velocity. In fact, it is the well known hydrodynamic
tangential instability of the flux front which is responsible for the front
decomposition. Indeed, in this case warmer segments of the front move
faster and might destroy the flat front line.

4.2 Stability in the general case. Numerical simulation

It should be noted that till now we have considered the κ = Γ = 0 case only.
In this case the normal domain in the front shows instability in respect to
small temperature fluctuations with arbitrary wave vectors. The dispersion
appears for the non-zero heat diffusion coefficient. In fact, however, these
small fluctuations cannot destroy the straight line front. It becomes unstable
due to large amplitude fluctuations. Let us consider the evolution of the
instability. First of all, the instability can develop when the characteristic
time t0 ' 1/

¡
ρ1j

2
d

¢
is smaller than the characteristics time of the heat

absorption in the sample tr ≈ Γ−1. In addition, the heat diffusion along
the y - axis can also affect the unstable fluctuations. In the later case the
requirement is: ut0 >

√
κt0. These two requirements allow us to determine

the critical velocity of the fluctuation when the instability is developed:

u > uc = min
©
Γwn, jd

√
κρ1

ª
. (50)

In metals and alloys the normal state resistivity practically does not depend
on temperature in the relevant temperature range. This means that ρ1 = 0
and consequently no instability is expected. The threshold in the fluctu-
ation velocity uc (which is proportional to the Joule heat released in the
front) means that only a large temperature fluctuation can provide essential
Joule heat to destroy the front. Physically large amplitude fluctuations of
the temperature at the front are non-uniform because they are caused by
the spatial distribution of the impurities in the sample locally increasing
resistivity and hence the Joule heat and velocity of the fluctuations in the
front. Numerical analysis carried out in the present manuscript supports
this scenario. In order to study the development of instability for arbitrary
κ, the set of the Eqs. (12)-(13) have been solved numerically. The Joule
heat power Ξn released in the normal domain at the front has the following
model form:

Ξn(θ)

Ξn0
≡ ρn(θ)

ρ0
= 1 + α [θ(x, y, t)− θ0] , (51)
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where initial temperature is perturbed along the y - axis (temperature fluc-
tuation) θ(y, t = 0) = 0.88 for 4 < y < 5, while θ(y, t = 0) = θ0 = 0.7 for y
outside this interval. We chose α = 14.5, κ = 0.05, and 2.5. Physically, this
kind of fluctuation represents a local variation of the normal state resistivity
(proportional to Ξn) when front of the shock wave passes an inhomogeneity.

The evolution of a small fluctuation in two opposite cases is presented in
Fig. 8. For small κ, Fig. 8a, an unstable pattern of the magnetic induction
develops. It should be noted that the flux front line lost its stability prac-
tically immediately after the temperature fluctuation affected the system.
For finite κ we observe that most of the κ = 0 unstable modes are diffused
away and do not develop into instability of the system. For large κ, Fig.
8b, a similar perturbation relaxes into a straight line front and disappears
in accord with the stability analysis.

5 Discussion

To summarize, we considered the formation, stability, and evolution of un-
stable normal domain forced onto a type-II superconductor subjected to a
weak magnetic field. On the microscopic time scale normal domain disinte-
grates into a network of the Abrikosov vortices. The resulting vortex cluster
forms a moving elastic medium eventually escaping the sample. At this early
stage the flux front is not particularly sharp. However, on the mesoscopic
time scale, when dissipation controls the dynamics, a sharp flux front is
formed. Strong screening currents significantly exceeding the critical cur-
rent Jc flow in the mixed state. For such strong currents the vortex matter
resistivity R has a form R ∝ BνJµ. We predict that when ν > 1 both the
moving flux and the temperature profile form a sharp singular shock waves.
Strong screening currents in the vortex matter approaching the depairing
current Jd cause destruction of superconductivity. An area of material ad-
jacent to the interface between the Meissner state and the mixed state of

the size (returning to dimensional units) Wn =
cB∗ (1− T0/Tc)

4πνJd
becomes

normal. Here B∗ =
√
4πCTc, C is the heat capacity, and T0 is temperature

of the cool superconductor. The stable superconductor - normal interface
is formed due to combined effect of the nonlinear magnetic flux dynamics
and thermal effects. The condition ν > 1 is independent of µ and has the
following physical meaning. It is well known that above the critical current
resistivity is proportional to the number of vortices (the flux flow Bardeen-
Stephen formula), R ∝ B ( ν = 1). The condition for formation of the
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Figure 8: Evolution of the magnetic flux front pattern for different heat
diffusion constants. The perturbation is triggered by the temperature inho-
mogeneity specified in Eq.(51). a) Small heat diffusion constant κ = 0.05.
Development of the avalanche instability. Five snapshots (intervals of
∆t = 0.05 t∗) of a finger-shaped instability in magnetic induction are shown
from left to right. b) Large heat diffusion constant κ = 2.5. Evolution of
magnetic flux pattern. Five snapshots (intervals of ∆t = 0.125 t∗) show that
the initially developed small fluctuation dissipates away.
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normal domain is therefore that the dependence on magnetic induction at
currents close to the depairing currents is stronger than linear. For Nb, this
happens at least for small fields.

The interface moves with constant velocity, which is completely deter-
mined by the Joule heat released in the normal domain at the front and
hence on the normal resistivity of the sample. The flux front velocity has

the form for µ = 0 (in dimensional units) V =
cRnJd

(1− T0/Tc)B∗

µ
B∗

Bc2 (0)

¶ν

.

Taking, for example, material parameters of the optimally doped YBCO,
Jd = 108A/cm2, Rn = 2 · 10−6 Ω·cm, C = 1 J/cm3K [8], one obtains for
the flux front velocity V ≈ 105cm/ sec, which is in a good agreement with
experimental data [6]. Note, however, that the value strongly depends on
the exponents µ and ν. The width of the normal stripe is 0.5 µm.

The type of the voltage-current characteristic is therefore the decisive
factor determining the flux front stability in type II superconductors. The in-
stability is developed when the voltage-current characteristics of the uniform
superconductor in its resistive state provides sufficient screening currents at
the moving flux front interface. The physical reason for the instability is
very similar to a well known hydrodynamic instability, when different lay-
ers of the liquid move with different and parallel velocities. In fact, it is the
positive feedback between excessive local temperature at the front and Joule
heat released there that leads to instability. The hydrodynamic tangential
instability of the flux front destroys the flat front. The instability develops
for the fluctuation velocities exceeding the critical value

U > Uc = min

(
cB∗ (1− T0/Tc)

4πνJdtr
,
Jd
C

r
D

dRn

dT
|Tc
)
,

where D is the heat diffusion constant and tr is the heat absorption time.
Taking D = 30 J/(cm sec K) and tr = 10−11 sec, one estimates the two
velocities as 5 · 106cm/ sec and 2.6 · 105cm/sec .

The avalanche-type instability appears when moving flux front enters the
area in which locally the normal resistivity is large. The experimental obser-
vation of the fast flux dynamics in YBCO has been carried out by Leiderer
et al. [6]. The velocity of the front indeed has the universal character at the
advanced stage of the instability and does not depend on initial magnetic
gradients. Order of magnitude of the dendrite velocity on the later stages of
disintegration of the front are expected to be of order of Uc. This instability

is not expected to arise in materials like Nb since
dRn

dT
|Tc is negligibly small

and Uc vanishes.
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