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Abstract

We present a theory which is able to explain enhanced magnetic
quantum-oscillation amplitudes in the superconducting state of a lay-
ered metal with incoherent electronic transport across the layers. The
incoherence acts through the deformation of the layer-stacking factor
which becomes complex and decreases the total scattering rate in the
mixed state. This novel mechanism can compensate the usual decrease
of the Dingle factor below the upper critical magnetic field caused by
the intralayer scattering.

PACS: 71.18.+y, 72.15.Gd, 74.70.Kn

In recent years it has been questioned whether the electronic properties of
layered quasi-two-dimensional (2D) metals can be described within the usual
fundamental concept of an anisotropic three-dimensional Fermi liquid [1].
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Well-studied examples, besides the cuprate superconductors and quasi-one-
dimensional organic metals, are organic conductors of the type (BEDT-
TTF)2X, where BEDT-TTF stands for bisethylenedithio-tetrathiafulvalene
and X for a monovalent anion. This class of materials displays a number of
unique properties such as an unconventional electronic interlayer transport,
clear deviations of their magnetic quantum oscillations [2] from the standard
three-dimensional (3D) Lifshitz—Kosevich theory [3], and puzzling features in
the superconducting mixed state. After the first observation of the de Haas—
van Alphen (dHvA) oscillations in the mixed state of a layered supercon-
ductor [4] it was firmly established that these oscillations are damped below
the upper critical field Bc2. This damping was explained by several mech-
anisms reviewed in [5]. A recent observation that both the dHvA and the
Shubnikov—de Haas (SdH) amplitudes are enhanced in the mixed state of the
layered organic superconductor β00-(BEDT-TTF)2SF5CH2CF2SO3 (β00 salt
in the following) [6] was a real surprise since it is in a sharp contrast to all
experiments and theories known so far [5].

Theoretically, it is assumed that the quasiparticle scattering by the “vor-
tex matter” just below the upper critical field, Bc2, is the main mechanism
of the damping in this region yielding the Dingle-like additional damping
factor Rs = exp(−2π/Ωτ s). Here, Ω is the cyclotron frequency and ~/τ s is
the sum of the two terms: ~/τ s1 = ∆2(π/µ~Ω)1/2, due to the intralayer scat-
tering at vortices [7—9], and ~/τ s2 = β∆2/µΩτ0, which takes into account
the scattering by impurities and vortices within the layers [10]. (τ s is the
scattering time, µ is the chemical potential, ∆ is the superconducting order
parameter which just below Bc2 is less than the Landau-level separation
∆ < ~Ω, and β ' 1.)

The additional factor Rs describes the extra damping of the dHvA and
SdH amplitudes only due to the intralayer scattering in 2D conductors.
Within this concept, however, the oscillation-amplitude enhancement in the
β00 salt is not explicable. Anomalous dHvA oscillations have also been ob-
served in YNi2B2C [11, 12]. These oscillations persist down to the surpris-
ingly low field 0.2Bc2 [12]. A Landau-quantization scheme for fields well
below Bc2 in the periodic vortex-lattice state was developed in [13] and for
a model with an exponential decrease of the pairing matrix elements in [10].
The observed recovery of the dHvA amplitudes for B ¿ Bc2 in YNi2B2C was
explained by the enhancement of the special vortex-lattice factor depending
on the Landau bands which become narrower when the vortex-lattice grows
thinner [10].

The anomalous magnetic quantum oscillations in the mixed state of the
β00 salt are much more mysterious and poses the question on the peculiarity
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of this material. The β00 salt is the only one among the known superconduc-
tors which (i) displays enhanced magnetic quantum-oscillation amplitudes
in the mixed state and (ii) has no 3D Fermi surface (FS), i.e., exhibits
an incoherent electronic transport across the layers [14]. The incoherence
means that the electronic properties of this layered quasi-2D metal cannot
be described within the usual fundamental concept of an anisotropic 3D FS.
Nonetheless, magnetic oscillations due to the 2D FS survive [1].

Here, we consider a new mechanism for the quasiparticle scattering that
goes beyond the usual 2D consideration of intralayer scattering by taking
into account the inter layer-hopping contribution to the total scattering rate.
This can explain an oscillation-amplitude enhancement in the superconduct-
ing state for layered conductors with incoherent hopping across the layers.
The clear physical picture behind this mechanism is as follows. The incoher-
ence, or disorder in the direction perpendicular to the layers, hampers the
electron hopping between neighboring layers. This enhances the scattering
at impurities within the layers since electrons on a Landau orbit interact
with the same impurities many times before a hopping to the neighbor-
ing layer occurs. In the superconducting state long-range order establishes
across the layers which allows quasiparticles to escape the intralayer multi-
ple scattering by Josephson tunneling between the layers. This mechanism
reduces the scattering rate by impurities and enhances the Dingle factor in
the superconducting state. For the β00 salt this effect most likely plays the
dominant role. For the coherent case, there is no interlayer scattering and
the electrons (quasiparticles) can move freely across the layers both in the
normal and the superconducting state which render the above mechanism
much less effective. Numerically, the effect is described by the layer-stacking
factor [Eq. (3)] which itself contains a Dingle-like exponent in the case of
incoherent interlayer hopping [15]. Superconductivity restores the coherence
across the layers by renormalizing the hopping integrals [16]. This reduces
the interlayer scattering and enhances the oscillation amplitudes.

In case the momentum across the layers is not preserved, the electron
interlayer hopping can be described in terms of an energy ε that is dis-
tributed with the density of states (DOS) g(ε). The energy spectrum of a
layered conductor in a perpendicular magnetic field is, therefore, given by
En(ε) = ~Ω(n+1/2)+ε [15]. The total DOS then follows from the standard
Green-function definition

N(E) =
1

2π2l2
Im

∞X
n=0

Z
dε

g(ε)

E −En − ε− Σn(E) , (1)

where Σn(E) is the average self energy corresponding to the nth Landau
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level and l = (~e/cB)1/2 is the magnetic length. For large energies and
large n ≈ E/~Ω À 1 (relevant for the magnetic quantum oscillations here)
the self energy is independent of the index n, and the summation in Eq. (1)
by use of the Poisson’s formula yields

N(E)

N(0)
= 1 + 2Re

∞X
p=1

(−1)pRD(p,E)Ip exp
µ
2πipE

~Ω

¶
, (2)

where N(0) is the 2D electron-gas DOS and the function

RD(p,E) = exp (−2πp|ImΣ(E)|/~Ω)

generalizes the Dingle factor to the case of an energy-dependent self energy
Σ(E). The layer-stacking factor in Eq. (2),

Ip =

Z
dεg(ε) exp

µ
2πipε

~Ω

¶
, (3)

is an important factor in the theory of magnetic quantum oscillations in
normal and superconducting layered systems [10, 17]. It describes contribu-
tions to the oscillations coming from the interlayer hopping. If the stacking
is irregular, Ip becomes complex and contains a Dingle-like exponent [15].

The inverse scattering time 1/τ(E) = |ImΣ(E)|/~ in the self-consistent
Born approximation (SCBA) was found to be proportional to the total DOS
[18—20]. Accordingly, the relation N(E)/N(0) = τ0/τ(E) holds, where τ0 is
the intralayer scattering time [21, 22]. Substituting this into Eq. (2) leads
to an equation for τ(E) showing that it oscillates as a function of 1/B.

In case the highly anisotropic electronic system has a 3D FS, the DOS
related to the interlayer hopping is symmetric, g(ε) = g(−ε), and for nearest-
neighbor hopping becomes g(ε) = π−1(4t2 − ε2)−1/2. The corresponding
layer-stacking factor then is given by Ip = J0(4πtp/~Ω). This Bessel function
oscillates as a function of 1/B which is just another way to describe the well-
known bottleneck and belly oscillations of a corrugated 3D FS. Oscillating
corrections to the Ginzburg—Landau expansion coefficients caused by the
factor J0(4πtp/~Ω) were also calculated in [23].

For the incoherent case, on the other hand, the translation invariance
across the layers is lost. The irregular inter layer hopping means that the
DOS deviates from the function g(ε) = π−1(4t2−ε2)−1/2 and loses the sym-
metry g(ε) = g(−ε) which implies that ImIp 6= 0. As will be shown below,
this results in a special contribution to the electron scattering time. Below
Bc2, this may lead to a suppression of the scattering rate acting against the
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known intralayer damping mechanisms of the quantum oscillations in the
mixed state [5]. However, this contribution vanishes if the hopping between
the layers preserves the interlayer momentum leading to a corrugated 3D
FS cylinder. This is an important point in our consideration.

Using Eq. (2) and N(E)/N(0) = τ0/τ(E) we write τ(E)−1 as a sum of
the coherent (symmetric) and incoherent (asymmetric) terms:

τ(E)−1 = τ(E)−1s − τ(E)−1a , (4)

τ0
τ s
= 1 + 2

∞X
p=1

(−1)pRD(p,E)ReIp cos
µ
2πpE

~Ω

¶
, (5)

τ0
τa
= 2

∞X
p=1

(−1)pRD(p,E)ImIp sin
µ
2πpE

~Ω

¶
. (6)

With the help of the summation rule

S(λ, δ) =
∞X

p=−∞
(−1)pe−|p|λ cos pδ = sinhλ

coshλ+ cos δ
(7)

one can rewrite Eqs. (5) and (6) in the integral form

1

τ s(a)
=
1

τ0

Z
dεgs(a)(ε)S[λ, δ(E, ε)]. (8)

Here gs(ε) = gs(−ε) is the symmetric and ga(ε) = −ga(−ε) is the antisym-
metric part of the DOS g(ε), λ(E) = 2π/Ωτ , and δ(E, ε) = 2π(E − ε)/~Ω.
The SCBA, as well as Eqs. (4)-(8), are valid not only for point-like impuri-
ties but also for a smooth random potential provided its correlation radius
is less than the Larmor radius, which holds for large n [20]. One can see
from Eqs. (4)-(8) that, in general, the incoherent contribution, −τ(E)−1a ,
to the total scattering rate, τ(E)−1, is essential. The integral equation for
τ(E)−1 is very complicated and can be solved only perturbatively in the
case λ À 1. In the limit λ → ∞, when S(λ, δ) → 1, we have τ−1s = τ−10
and τ−1a = 0. For finite but large λ the parameter RD(p,E) = e−pλ ¿ 1.
Even if Ωτ ' 1, the quantity e−λ ¿ 1 and Eqs. (5) and (6) are just a series
expansion in powers of the small parameter e−λ. Eq. (7) shows the con-
vergence of this series for any λ > 0 allowing a perturbative solution. The
perturbative terms oscillate as a function of E and can be written as the
series τ−1(E) = τ−10 [1 +X1 +X2 +O(e−3λ0)], with X1 ∝ e−λ0 ,X2 ∝ e−2λ0 ,
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and λ0 = 2π/Ωτ0. The first nonzero correction averaged over an oscillation
period is proportional to X1 +X2 = −2λ0e−2λ0 |I1|2 and yields

1

τ̄
=
1

τ0

·
1− 4π

Ωτ0
(R0D)

2
¡
ReI21 + ImI

2
1

¢¸
. (9)

The Dingle factor R0D = exp (−2π/Ωτ0) is a small parameter in our pertur-
bative solution. The term ImI21 in Eq. (9) appears due to the incoherence.

It was established that in the β00 salt electron hopping across the lay-
ers is most probably incoherent, i.e., the momentum perpendicular to the
layers is not preserved and there is no 3D FS [14]. The reason for this
remarkable feature is unknown so far. It might be that some kind of disor-
der, such as different spatial configurations in the extraordinary large and
complex anion-molecule layer, may induce random hopping integrals, by
analogy with intercalated layered compounds [15]. Furthermore, the β00 salt
is the only material so far studied (not only among the BEDT-TTF salts)

Figure 1: Dingle plot of the fundamental (A1) and the second harmonic
(A2) dHvA amplitudes of the β00 salt extracted from modulation-field data
for different temperatures. The solid lines are fits to the data above 6 T.

776



which displays an enhancement of the magnetic quantum-oscillation ampli-
tude in the superconducting state [6].

This important result is summarized in Fig. 1. In this Dingle plot
for a 2D metal the amplitudes A1 of the fundamental dHvA frequency
(F ≈ 198 T) and A2 of the second harmonic (2F ) are normalized by
B sinh(X)T−1 and plotted on a logarithmic scale as a function of 1/B, with
X = 2π2kBmcT/e~B and mc the effective cyclotron mass (see [6] for more
details). Upon entering the superconducting state the oscillation amplitude
A1 is enhanced compared to the normal-state dependence (solid lines). For
the second harmonic A2 neither an additional damping nor an enhancement
is observed [24].

In the superconducting state long-range order across the layers evolves
through the renormalization of the hopping integrals [16]. This can be un-
derstood as follows. The quasiparticle hopping between the layers is an
independent degree of freedom with respect to the in-plane Landau quan-
tization. In the normal state the Green-function equation related to the
interlayer hopping is given byX

m

[(ε− εi)δim − tim]G
0
ij(ε) = δij , (10)

where the electron energy in the layer εi and the hopping integrals tim =
ti(δi,m+1+δi,m−1) are assumed to depend on the layer indices for the sake of
generality. In the superconducting state the order parameters in the layers,
∆i, become nonzero and the Gor’kov equation for the Green functions Gij

can be written as [16]X
m

[(ε− εi)δim − t̂im]Gij(ε) = δij , (11)

t̂im = tim −∆iG
0
im(−ε)∆m. (12)

The star means the complex conjugate. When comparing Eq. (10) with Eq.
(11) it is seen that in the superconducting state the effective hopping inte-
grals, given by Eq. (12), become nonzero not only for next-nearest-neighbor
hopping. In that case the nonvanishing retarded Green-function components
G0im(−ε) result in nonzero t̂im for electron hopping between arbitrary sites i
and m. In fact, Eq. (12) simply reflects how the superconducting long-range
order establishes across the layers. The complex order parameters in the
layers ∆i = |∆i| exp (iϕ) appear and result in interlayer (intrinsic) Joseph-
son coupling [16]. In the absence of Josephson currents the order parameter
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can be chosen to be real and independent of the layer index ∆i = |∆i|. The
correction to the DOS due to this mechanism is

δg(ε) = −∆2
X
ij

∂g(ε)

∂tij
G0ij(−ε). (13)

The second effect we have to take into account is caused by the vor-
tex matter in the mixed state. Here, the vortices are disordered for fields
slightly below Bc2. They convert the degenerated Landau levels into asym-
metric Landau bands as was shown in Refs. [25, 26]. Thus, in the mixed
state the quasiparticle tunneling between the layers implies the quantum
transition between these Landau-band states which results in the additional
contribution to the simple nearest-neighbor DOS

δg∆(ε) = ∆
2

µ
∂g(ε)

∂∆2

¶
∆=0

. (14)

The total correction to the DOS in the mixed state can be written as
δgtot(ε) = ∆

2G(ε), where G(ε) is directly defined by Eqs. (13) and (14).
Inserting δgtot(ε) into Eq. (8) and averaging over a period in E results in

δ

µ
1

τ

¶
=
∆2

τ0

Z
dεG(ε)S(λ, δ(E,−ε)) = ∆

2

τ0
γ. (15)

Since the DOS is normalized (
R
dεg(ε) = 1), the function G(ε) satisfies the

condition
R
dεG(ε) = 0. This means that it is alternating in sign and γ might

be negative because S(λ, δ(E,−ε)) > 0. The studied system is too complex
to calculate γ in general. In the limit λ → ∞ this coefficient vanishes
since S(λ, δ(E,−ε)) → 1. It is instructive to consider a correction to the
scattering rate in Eq. (9) in the mixed state. The variation of the layer-
stacking factor δI1 is given by Eq. (3) with the DOS replaced by δgtot(ε).
The broadening of the Landau levels, caused by δgtot(ε), is of the order of
the width of this function and much less then ~Ω in order to observe the
oscillations. Therefore, in the first approximation ReδI1 ≈ 0 and ImδI1 =
∆2
R
dεG(ε) sin(2πε~Ω ) ≈ ∆2(2π<ε>~Ω ), where hεi = R

dεG(ε)ε. (For G(ε) =
−G(−ε), ReδI1 is zero exactly.) Thus, the correction to the scattering rate
in the mixed state near Bc2, caused by the interlayer-hopping mechanism,
is given by

δ

µ
1

τ̄

¶
= −∆22ImI1

τ0

µ
4π

Ωτ0

¶
(R0D)

2

µ
2π hεi
~Ω

¶
. (16)
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For hεi ImI1 > 0, this gives a decrease in the scattering rate. Note that the
latter is nonzero only if the system is incoherent in the normal state and
ImI1 6= 0. This strongly supports the relevance of this mechanism for the β00
salt, since only this organic metal displays both incoherence in the normal
state and an enhancement of the SdH and dHvA amplitudes in the mixed
state.

Thus, the overall effect superconductivity has on Rs is determined by the
balance between positive and negative contributions to the scattering rate.
The already mentioned positive contribution from the intralayer scattering
at vortices and defects is

~
τ s
= ∆2

"µ
π

µ~Ω

¶1/2
+

β

µΩτ0

#
. (17)

The new additional interlayer mechanism we discuss here results in a neg-
ative contribution given by δ

¡
1
τ

¢
= ∆2

τ0
γ [Eq.(15)]. Since little is known

about the DOS of the studied system, even in the normal state, we cannot
calculate the coefficient γ quantitatively. However, contrary to Eq. (17), for
this term the small factor 1/µ is absent, so that the overall correction to
the scattering rate might be negative. The experimental facts [6] give us
confidence that this is the case at least for the β00 salt.

We conclude with a qualitative picture of the effect discussed here. The
incoherence means that the hopping time between the layers τ z ≈ ~/|t| À τ0
so that an electron scatters many times within a layer before leaving it [1].
Here the quantity |t| is some averaged hopping integral that in the β00 salt
may be assumed to be the smallest parameter in energy. Indeed, experi-
mentally |t| cannot be resolved in the β00 salt reflecting the fact that the
hopping integral is one of the smallest for all known 2D organic metals so
far [14]. Consequently, even small spatial fluctuations of the hopping prob-
ability within and across the layers render the electron motion across the
layers incoherent. On the other hand, for the evolution of superconductivity
some interlayer (Josephson) coupling is vitally important. Long-range order
establishes below Bc2, thereby renormalizing the hopping integral. Accord-
ing to Eq. (12), the renormalized τ z in the superconducting state may be
estimated as τ z ≈ ~/|t +∆2/t|. For ∆ À |t| the hopping time is reduced
considerably and becomes τ z ≈ ~|t|/∆2. The latter means that the quasi-
particles spend less time within the (impurity-containing) layers decreasing
the scattering rate and, consequently, enhancing the Dingle factor. In the β00

salt this effect is strong because of the smallness of |t|. Thus, our mechanism
relates the two unusual effects observed in the β00 salt: the incoherent in-
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terlayer hopping transport and the enhancement in the quantum-oscillation
amplitudes in the mixed state.
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