
HAIT Journal of Science and Engineering, Volume 1, Issue 4, pp. 626-646
Copyright C° 2004 Holon Academic Institute of Technology

Thermalized Liouville formalism
applied to the onset and development

of Rabi oscillations ∗

Pierre G. Averbuch

Grenoble High Magnetic Field Laboratory, MPI and CNRS,
BP 166, 38042 Grenoble, Cedex 9, France

e-mail: averbuch@grenoble.cnrs.fr
Received 10 December 2004, accepted 16 January 2005

Abstract

To describe the oscillations of the excitation energy between a small
system, such as a nucleus, and a thermal bath having an excitation en-
ergy roughly tuned to the small system, a formalism is proposed where
the motion of the density matrix is described in a Liouville space, with
a metric adapted to the temperature of the bath. The obtained equa-
tion of motion is characterized by a memory kernel. A second order
approximation of the kernel gives the onset of the oscillations, but is
not absolutely coherent. An approximate calculation of the kernel,
where the phase evolution is “motional-narrowed”, is proposed, giving
an answer satisfying physical conditions. Its low temperature limit is
evaluated.

PACS: 03.65.Yz, 23.20.Nx, 33.40.+f, 42.50.Md

1 Introduction

This work has been motivated to explain some nuclear physics results, either
of the bound internal conversion type (BIC), or of its reciprocal known
as nuclear excitation by electronic transition (NEET) [1]. Both are seen
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when a nuclear excited state and an electronic excited state, generally of
the same atom, have excitation energies near one another. In the first of
these effects, BIC, a nucleus, in an isomeric excited state, transits to its
ground state but the emitted photon is not sent to the outside world —
and when things are favorable, in the detector— , but is absorbed by the
electronic cloud of the atom, and, of course, re-emitted further. This requires
a high enough electronic excitation; this occurs when the atom has been
stripped in order for the energy difference of electronic levels have the right
order of magnitude. A typical case of this phenomenon is 125Te for which a
systematic study has been performed [2,3]. On the other hand, the NEET
effect has probably been observed in 189Os [4], and certainly in 197Au, using
synchrotron radiation to excite the electrons [5]. It is suspected that this
process describes the excitation of 235U to its isomeric state, when in a hot
plasma, and that it is unavoidable in astrophysical systems [6].

A naive theory of those phenomena would use the Fermi Golden Rule,
at least three times, to describe —in the case of the BIC effect— , firstly
the nuclear transition, then the absorption of the emitted quantum by the
electronic cloud, then the emission by these electrons of the photon to be
detected in the experiments. But this is certainly wrong, because nothing
has been detected in the intermediary processes, so the quantum coherencies
are not destroyed and one must work with an amplitude as long as the
excitation does not arrive at a detector. A related problem also is considered,
the emission of a nucleus trapped in a small enough box [7].

In fact these phenomena are the beginning of a well known one, consid-
ered generally in the other limit, the quantum Rabi oscillations between two
states, a phenomenon often found in coherent spectroscopy and in quantum
electronics; the Jaynes-Cummings model is mostly used to describe it [8].
It has been used to describe many tests of quantum mechanical principles
[9,10], including Schrödinger’s cat experiments [11].

The method to be described here uses the Liouville space formalism,
used very often in the theory of coherent spectroscopy, from nuclear mag-
netic resonance to nuclear angular correlations, as well as in the theory of
irrreversible phenomena [12]. The first improvement, if it is one, is the in-
troduction of thermal effects through an adapted metric in that space. This
has been used to describe the onset of Rabi oscillations [13], the part of
the phenomenon relevant to nuclear physics. It has been tempting to try
to go further and to test the formalism in the very oscillating limit. This is
not very simple [14], if one wishes to be rigorous, and only a rapid sketch
of the method has been published [15]. But it is also possible to go more
simply from the onset to the fully developed oscillations limit. The method
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is approximative, which is not a problem, but the approximations are not
controlled, even if they look reasonable.

In the second part, the thermalized Liouville formalism is introduced,
and in the third part the evolution equation of the density matrix in a small
system is established; a simplified version of it is also given which allows us to
keep only the diagonal elements, that is the populations, if at the initial time
there is neither entanglement nor coherencies between partially occupied
states. The fourth part describes an approximation to the second order
in the coefficient coupling the small system and the thermalised reservoir.
It shows that the origin of Rabi oscillations is not given by a condition
on the strength of the coupling, like in the toy system analysis of Cohen-
Tannoudji et al. [16], but grows gradually from the start, being more like a
second order transition than a first order one; but, although giving hints for
a better theory, the second order approximation gives unphysical results,
and this fact has motivated further studies. Finally, in the fifth part, an
approximate solution, valid and giving physically reasonable results is given,
with calculations done only in the very low temperature limit, in order to
retain simplicity.

2 A small system and a thermalized reservoir

Let us present the total Hamiltonian in the form

h = h0N + hR + h0RN (1)

where h0N is the Hamiltonian of the small system, in the original problem
of a nucleus, all of whose matrix elements are assumed to be known, hR
the Hamiltonian of the reservoir, and h0RN is their coupling. We shall use a
thermal mean field, that is

hN = h0N + TrR
©
D0
Rh

0
RN

ª
= h0N + hh0RN i. (2)

D0
R being the thermal density operator of the environment, consisting nor-

mally of the electronic cloud and of the photon vacuum. With the associated
modification

hRN = h0RN − hh0RNi (3)

one gets
hhRN i = TrR

©
D0
RhRN

ª
= 0. (4)
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We shall denote the states of the reservoir by µ, ν, while a, b, α, β will be
used for the states of the small system, so that

D0
R =

X
µ

|µipµhµ| (5)

with

pµ =
1

ZR
exp

µ
−Eµ

kT

¶
. (6)

The density matrix of the whole system will be denoted asD(t), verifying
the motion equation

i
d

dt
D(t) =

1

~
[h,D(t)] = LD(t) (7)

that is
D(t) = e−iLtD(0) (8)

in the Liouville formalism. The principles of this formalism where opera-
tors are taken as vectors of a new space, are included in an appendix for
completeness.

We shall also denote by σ the density matrix of the small system, and
take an initial condition without any entanglement, that is

D(0) = σ(0)⊗D0
R. (9)

So far our approach has been standard but we now shall use, in the
Liouville space, a kind of metric adapted to the thermal state of the reservoir,
and chiefly the associated projectors. One could define

(µa, νb|g|µ0a0, ν0b0) = pµδµµ0δνν0δaa0δbb0 (10)

giving the interior product of two vectors of this space, that is between two
operators of the Hilbert space, as

(A | B) = Tr
©
A+D0

RB
ª
. (11)

With a non-Euclidian metric, one has two kinds of projectors, as it is
possible to project either on vectors or on forms. Let us define

Πab =
X
µµ0
|µa, µb)(µ0a, µ0b|pµ0 (12)
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and, contravariantly

eΠab =X
µµ0

pµ
¯̄
µa, µb)(µ0a, µ0b

¯̄
. (13)

It is now straightforward to check that those are true projectors, as

ΠabΠcd = Πabδacδbd (14)

and eΠabeΠcd = eΠabδacδbd (15)

are easily verified. Furthermore, denoting by LN , LR and LRN the Liouvil-
lian superoperators associated with hN , hR and hRN , one has the following
relations

(LR + LN)eΠab = ωabeΠab (16)eΠab(LR + LN) = ωabeΠab (17)

and
ΠabLRN | νa, νb) = 0 (18)

as a simple consequence of formulae (A2) and (A4).
Then, one defines

ΠD =
X
ab

Πab (19)

and, of course, eΠD =X
ab

eΠab (20)

If Π or eΠ projector is diagonal in the small system Hamiltonian, one has,
for instance,

(νa, νa | LeΠaa = 0 (21)

by a direct application of formulae (18) and (21) and as a direct consequenceX
ν

(νa, νa | L(1− eΠaa) =X
ν

(νa, νa | LRN (22)

which will be needed further.
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3 The equations of motion

Applying the above notations and the Liouville formalism, to a non-entangled
system, thermalized reservoir hypothesis (9), one can write at any positive
time the matrix operator of the small system as

σab(t) = θ(t)
X
µν

X
αβ

¡
νa, νb

¯̄
e−iLtpµ

¯̄
µα, µβ

¢
σαβ(0) (23)

where θ(t) is the Heaviside function, and take its derivative

d

dt
σab(t) = δ(t)σab(t)−iθ(t)

X
µν

X
αβ

¡
νa, νb

¯̄
Le−iLtpµ

¯̄
µα, µβ

¢
σαβ(0). (24)

To go further we use the formula

e−iLt = e−iL(1−ΠD)t − i

Z t

0
ds e−iL(1−ΠD)sLeΠDe−iL(t−s) (25)

which is easily verified by the derivation over t of both terms and the fact
that for t = 0 , both terms are equal to 1.

Then one gets

d
dtσab(t) = δ(t)σab(t)− iθ(t)

X
µν

X
αβ

³
νa, νb

¯̄̄
LeΠabe−iLtpµ ¯̄̄µα, µβ´σαβ(0)

−iθ(t)
X
µν

X
αβ

³
νa, νb

¯̄̄
L(1− eΠab)e−iL(1−ΠD)tpµ

¯̄̄
µα, µβ

´
σαβ(0)

−iθ(t)
X
µν

X
αβ

(νa, νb

¯̄̄̄
L(1− eΠab)Z t

0
dse−iL(1−ΠD)s(−iL)eΠDe−iL(t−s)pµ ¯̄̄̄

µα, µβ)σαβ(0)
(26)

Straightforward but a litte cumbersome arguments show that the second
term of the right-hand side is equal to −iωabσab while the third one vanishes.
As to the integral of the fourth term, the expansion of eΠD results in the shape
(23) of σ(t), and gives, without any approximation,

d

dt
σab(t) = δ(t)σab(t)− iωabσab − iθ(t)

X
αβ

Z t

0
dsKαβ

ab (s)σαβ (t− s) (27)

where

Kαβ
ab (t) = −iθ(t)

X
µν

³
νa, νb

¯̄̄
LRNe

−iL(1−ΠD)tLRNpµ

¯̄̄
µα, µβ

´
. (28)
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These equations will be transformed by a Laplace or one-sided Fourier
transform in a solvable algebraic system, with initial values of σ(0) as its
right hand side. If this density matrix has no off-diagonal elements, the
σab (z) can be eliminated, but there is still a faster way to do that. We
remark that formula (26) was derived without any hypothesis about eΠD, so
we replace it by eΠDd which is this sum of projectors reduced to the diagonal
ones eΠDd =

X
a

eΠaa. (29)

If we write the above evolution equation for the diagonal terms σaa
using eΠDd, the second term of the right hand side will be suppressed, as
ωaa is obviously 0. The fourth term involves a restriction of K to diagonal
elements. But the third term is not automatically vanishing, if the off-
diagonal initial terms are not 0; this is the way an initial coherence influences
the story of the matrix elements, showing that if it exists, the full equations
(27) and (28) will be needed. To distinguish the new kernel from the old
one, we shall denote it by only two indices Kα

a (t).
The new equation is thus now

d

dt
σaa(t) = δ(t)σaa(t)− iθ(t)

X
b

Z t

0
dsKb

a (s)σbb (t− s) (30)

where

Kb
a(t) = −iθ(t)

X
µν

³
νa, νa

¯̄̄
LRNe

−iL(1−ΠDd)tLRNpµ

¯̄̄
µb, µb

´
. (31)

And now, as has been already said above, we shall transform the evolu-
tion equations into algebraic ones, by the transforms

eσab (z) = Z ∞

0
dt eiztσab(t) =

Z ∞

−∞
dt eiztσab (t) (32)

eKa
b (z) =

Z ∞

0
dt eiztKa

b (t) =

Z ∞

−∞
dt eiztKa

b (t). (33)

The transformed evolution equation to be used further is thus the re-
stricted one

zeσaa (z)−X
b

Kb
a (z) eσbb (z) = iσaa(0) (34)
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with Kb
a defined by

eKb
a (z) =

X
µν

νa, νa

¯̄̄̄
¯̄LRN

1

z − L
³
1− eΠDd

´LRNpµ

¯̄̄̄
¯̄µb, µb

 (35)

which is the Fourier transform of

Kb
a(t) = −iθ(t)

X
µν

³
νa, νa

¯̄̄
LRNe

−iL(1−ΠDd)tLRNpµ

¯̄̄
µb, µb

´
. (36)

4 The second order approximation

The simplest attempt to get an approximate solution of the motion equations
is to compute the kernel K to the second order in hRN or, equivalently, in
LRN . It will not allow us to go far in the description of Rabi oscillations, as
one can presume that any transfer of the excitation from the small system
to the reservoir or back will imply a new hRN or LRN factor. Nevertheless,
one see that it is useful, showing the onset of those oscilations, and giving
hints for further motion. We shall start with the full expression of K (t) ,
where the LRN term has been omitted in the exponent expanded in series.
Thus

Kαβ
ab2(t) = −iθ(t)

X
µν

Ã
νa, νb

¯̄̄̄
¯LRN

∞X
n=0

(−i)n
n!

(LR + LN)
n

³
1− eΠD´ tnLRNpµ

¯̄̄
µα, µβ

´
(37)

where one has taken into account the facts that the projectors eΠab commute
with (LR + LN ), and that

³
1− eΠD´ being a projector, is equal to its nth

power. By using then the expansion (A.2) of the Liouville superoperators,
one thus gets

Kαβ
ab2(t) = −iθ(t)

X
µν

³
νa, νb

¯̄̄
LRNe

−i(LR+LN )tLRNpµ

¯̄̄
µα, µβ

´
(38)

and

eKαβ
ab2 (z) =

X
µν

µ
νa, νb

¯̄̄̄
LRN

1

z − (LR + LN)
LRNpµ

¯̄̄̄
µα, µβ

¶
. (39)
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Similar formulae can be given for Kb
a, in its time or frequency z shape,

and, due to vanishing of the Π projectors, at this order of approximation
Kbb
aa2 and Kb

a2 are identical. We can then use formula (A2) to transform
(38) into

Kαβ
ab2(t) = −

i

~2
θ (t) e−iωabt

X
µν

hνa |[hRN (t) , [hRN , |µα ipµhµβ|]]| νbi . (40)

Using this expansion, it is straightforward to check that

Ka
a2(t) = −

X
b6=a

Ka
b2(t) (41)

a relation which must be valid in any consistent approximation for K as well
as for K2. To go further, we consider the most general coupling between the
small system and the reservoir, writing

hRN =

Z
dηN (η)R (η) (42)

where N (η) are operators in the small system Hilbert space and R (η) are
those in the environment Hilbert space. Introducing this expansion in (38),
one gets

Ka
b2(t)
b 6= a

=
i

~2
θ(t)

Z Z
dηdη0 ha |N (η)| bi b ¯̄N ¡η0¢¯̄ a®

X
µν

pµ

· hν |R (η, t)|µi hµ |R (η0)| νi e−iωbat
+ hν |R (η)|µi hµ |R (η0, t)| νi e−iωabt

¸
(43)

where hν |R (η, t)|µi denotes hv |R (η)|µi e−iωµνt. We shall now introduce
the quantum correlation function of the reservoir

Φ
¡
η, η0, t

¢
=
1

~
Tr
©
D0
RR (η, t)R

¡
η0
¢ª

(44)

and thus get

Ka
b2(t)
b 6= a

=
i

~
θ(t)

Z Z
dηdη0 ha |N (η)| bi b ¯̄N ¡η0¢¯̄ a®

£
Φ
¡
η, η0, t

¢
e−iωbat +Φ

¡
η, η0,−t¢ e−iωabt¤ . (45)
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We shall use mainly the fluctuation spectrum, that is the Fourier trans-
form of the correlation function,

eΦ ¡η, η0, ω¢ =

Z
dteiωtΦ

¡
η, η0, t

¢
= 2π

X
µν

pν hν |R (η)|µi

µ
¯̄
R
¡
η0
¢¯̄
ν
®
δ (~ω −Eµ +Eν) .(46)

This fluctuation spectrum is related to the imaginary part of the suscep-
tibility of the reservoir

χ00
¡
η, η0, t

¢
=
1

2~
Tr
©
D0
R

£
R (η, t) , R

¡
η0
¢¤ª

(47)

by the usual relation

eΦ ¡η, η0, ω¢ = 1

1− e−
~ω
kT

χ00
¡
η, η0, ω

¢
(48)

which is the adapted shape of the fluctuation dissipation theorem [17];
equally, one has the relation

eΦ ¡η, η0,−ω¢ = e−
~ω
kT eΦ ¡η, η0, ω¢ (49)

given by Ayant [18], and by Kubo and Tomita [19], which insures thermo-
dynamical equilibrium.

Using the correlation spectrum of the reservoir the expression (45) foreKb
a2, one gets, for distinct a and b,

eKb
a2 (z) =

1

2π~

Z Z
dηdη0 ha |N (η)| bi b ¯̄N ¡η0¢¯̄ a®Z
dωeΦ ¡η, η0, ω¢ z + i

(ω − ωab)
2 − (z + iε)2

(50)

and, from that expression, using (49), one can see that, if b 6= a,

eKb
a2(0) = e−(~ωab/kT ) eKa

b2(0). (51)

We restrict our investigation to a two-levels system in the high temper-
ature regime, when the energy difference between the excitation energies
Ee − Eg = ~ωN is much larger than kT . If we start from σee(0) = 1 all the
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other matrix elements of σ vanishing, the evolution equations, reduced to
those of the diagonal elements of the density matrix, are

zeσee (z)− eKe
e (z) eσee (z)− eKg

e (z) eσgg (z) = i (52)

zeσgg (z)− eKe
g (z) eσee (z)− eKg

g (z) eσgg (z) = 0. (53)

In those equations, only two K coefficients are independent, as seen from
(41) within the second order approximation, but anyway physically obvious.
Eliminating σgg, yields

eσee (z) = ieKe
e (z) + eKg

g (z)

" eKe
e (z)

z − eKe
e (z) + eKg

g (z)
+
eKg
g (z)

z

#
. (54)

The pertinent range of z used to describe the Rabi oscillations is many
orders of magnitude less than ωeg, the energy difference of the two states,
divided by ~. So one can, using (41) and (51), neglect Kg

g , which gives the
approximate formula eσee (z) = i

z − eKe
e (z)

(55)

to be used from now onwards.
The fluctuation spectrum eΦ of the reservoir may have a slow variation

but in the presence of the Rabi oscillations, there should be states of the
reservoir with an energy difference of the order of ~ωN and creating a reso-
nance at a frequency which will be called ωe, introducing a factorÃ

1 +

µ
ω − ωe

ζ

¶2!−1
(56)

and an element of integration ζ−1dω. We will take this resonance into ac-
count more precisely by neglecting the remaining part of the spectrum and
writing

1

~

Z Z
dηdη0 ha |N (η)| bi b ¯̄N ¡η0¢¯̄ a® eΦ ¡η, η0, ω¢ = Γ ζ

(ω − ωe)
2 + ζ2

(57)

and compute the value of eKe
e2 (z) using (50) and (57). So

eKe
e2 (z) = − eKe

g2 (z) = −
Γ

π

Z ∞

−∞
dω

ζ

(ω − ωe)
2 + ζ2

z + i

(ω − ωab)
2 − (z + iε)2

(58)
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which is evaluated by closing the contour in the upper half plane. One thus
gets eKe

e2 (z) = Γ
z + iζ

(z + iζ)2 + (ωe − ωN )
2 (59)

or, with the notation
ω2e,N = (ωe − ωN )

2 + ζ2 (60)

eKe
e2 (z) = Γ

z + iζ

z2 + 2iζz − ω2e,N
. (61)

One has now for the population of the excited state the Fourier transform
of eσee (z) = i

z2 + 2iζz − ω2e,N

z3 + 2iζz2 −
³
Γ+ ω2e,N

´
z − iΓζ

. (62)

The denominator of this expression is a third order polynomial and hence
has three poles and three frequencies which appear in the time variation of
the population of the excited state. To find them, we shall solve the cubic
equation in X, defined by

z = iX. (63)

It is
X3 + 2ζX2 +

¡
Γ+ ω2eN

¢
X + ζΓ = 0 (64)

whose coefficients are all positive, so there is one real root and two complex
conjugate ones. If one notes that ζ is a small parameter, smaller than ωeN
by definition, which is smaller than

√
Γ in the range of values where the

Rabi oscillations are efficient, the roots are easily evaluated. At ζ = 0 the
roots are

X1 = 0 X2 = i
q
Γ+ ω2eN X3 = −i

q
Γ+ ω2eN (65)

and at first order in ζ

X1 = − Γ

Γ+ ω2eN
ζ (66)

X2 = −
1
2Γ+ ω2eN
Γ+ ω2eN

ζ + i
q
Γ+ ω2eN (67)

X3 = −
1
2Γ+ ω2eN
Γ+ ω2eN

ζ − i
q
Γ+ ω2eN . (68)
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Then we can, after some algebra, come back to the time expansion of
σee, that is

σee(t) =
ω2eN

Γ+ ω2eN
e
− Γ

Γ+ω2
eN

ζt
+

Γ

Γ+ ω2eN
e
−
1
2Γ+ω

2
eN

Γ+ω2
eN

ζt
cos

µq
Γ+ ω2eN t− ϕ

¶
(69)

where ϕ is an irrelevant phase coefficient.
The above expression for the population of the excited state shows that

the tendency to have Rabi oscillations is starting at the lower level, that it
behaves continuously with the coupling not as a first order transition in the
toy model of Cohen-Tannoudji. But it is clear that the above expression has
a major defect. If ω2eN ≥ Γ, the coupling between the states of the small
system and of the reservoir is smaller than the detuning or than the linewidth
of the resonance, or than both of them. But in the opposite case of a strong
coupling, if ω2eN ≤ Γ, the cosine oscillations will cause the population of the
excited state e to oscillate with a negative inferior limit, the decay times of
the exponential not having had the time to have an effect.

5 Beyond the second order approximation

The above approach has a non-surprising difficulty: as it has been already
said, many LRN must be accounted for in the calculation if one wants to de-
scribe many oscilations. Describing the origin of the problem in another way,
we note that the denominator the expression (39) of fK2 (z) is z−(LR + LN),
and if the detuning is vanishing, and the width of the Lorenztian function is
very small, there is a divergency in the second order approximation. Thus
we have to get rid of this non-physical divergency.

In spite of this difficulty, two methods can be applied to solve the prob-
lem. The first one has been proposed by J.J. Niez [15]. Its principle is
to take out of the set of states of the reservoir those two which transition
between each other creates the resonance described above by a Lorentzian
shape. Even if the electronic system includes a harmonic oscillator with
many pairs of states whose energy difference is comparable with ~ωN , the
matrix elements between those pairs are proportional to

√
n+ 1, so that

they give different Rabi frequencies and only one pair is significant, if n is
small enough; this has been used to prove the quantification of the electro-
magnetic field [10].

The calculation made by J.J. Niez is not as simple as it seems: taking two
states out of the reservoir to introduce them in the nucleus Hamiltonian, will
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leave one with a reservoir capable mainly of damping and all the interesting
dynamics will now be in the small system; then, as usual the new reservoir-
system coupling will be treated at the second order, and even a Markovian
approximation could be valuable. Furthermore, only the supervectors of the
Liouville space coupling the upper electronic state with the lower nuclear
one, or reciprocally, are to be considered; this is equivalent to the rotating
frame approximation.

Nevertheless, there are some technical difficulties in this program, and we
propose now an approximate solution, simple enough at least in the very low
temperature regime. It could be extended to a higher temperatures but we
shall not do it here, as this would make the calculations more complicated,
but it will be clear that such an extension is not too difficult to perform.

If one wants to compute fKe
e (z)without being restricted to the second

order in hRN or LRN , one must evaluate exp
³
−iL

³
1− eΠDd

´
t
´
to introduce

it in (36) . This could be evaluated by a method analogous to a path -integral
calculation, by writing

exp
³
−iL

³
1− eΠDd

´
t
´
=

µ
1− iL

³
1− eΠDd

´ t

n

¶n

(70)

with n becoming infinite. At every time point, four parameters of the small
system are to be known, the amplitudes of the four components of σ. To
each of them a distribution between the states µ of the reservoir, and the
corresponding amplitudes will describe the instantaneous wave function, and
the values of the matrix elements of the whole density matrix D. The total
amplitude attached to any of the four components (a |σ| b) is the sum of
the components attached to (µa |D| νb) for all µ and ν, with phase factors
integral along the path of the “local” values of LR +LN , the “local” values
of LRN giving the rate of transfer between the components.

In fact, the implied Liouville superoperator is not L but

L0 = L
³
1− eΠDd

´
(71)

whose matrix elements are given by³
να, ν0α0

¯̄̄
L
³
1− eΠDd

´¯̄̄
µβ, µ0β0

´
= (ωαα0 + ωνν0) δµνδµ0ν0δαβδα0β0

+
1

~
£hνα |hRN |µβi δµ0ν0δα0β0 − µ0β0 |hRN | ν0α0® δµνδαβ¤
− 1
~
¡
pν0δβα0 − pνδβ0α

¢ 
να |hRN | ν0α0

®
δµµ0δββ0
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For instance, one has

(νe, ν 0e |L0|µe, µ0e) = ωµµ0δµνδµ0ν0 +
1
~
£hνe |hRN |µei δµ0ν0

− hµ0e |hRN | ν0ei δµν ] + 1
~ (pν − pν0) hνe |hRN | ν0ei δµµ0

(72)

¡
νe, ν0e

¯̄
L0
¯̄
µe, µ0g

¢
= −1

~

µ0g |hRN | ν0e

®
δµν (73)

or ¡
νe, ν0g

¯̄
L0
¯̄
µe, µ0e

¢
= −1

~

µ0e |hRN | ν0g

®
δµν +

1

~
pν

νe |hRN | ν0g

®
δµµ0

(74)
These are typical expressions. We are interested in their mean values

when summing over the reservoir indices. For (72), ωµµ0 will oscillate around
zero, the pertinent energies of the reservoir when associated with the nuclear
excited state being distributed at random.The matrix elements of hRN are
diagonal in the nuclear Hilbert space; if they are also diagonal in the reservoir
Hilbert space, they will vanish according to (4) but even when they are non
diagonal, their mean values probably vanish and we shall neglect them; so
the mean value of (72) will be taken as zero.

In the case of (73), we have a matrix element coupling the transition
of the small system to the transition of the reservoir, or, generally, states
coupled by the Lorentz distribution of (57), and we shall denote the mean
value of those as γ, whose square will be Γ of (57). Here the mean value of
(73) will thus be −γ.

The case of (74) is more tricky. The states of the reservoir coupled to the
small system excited state will normally be occupied, especially in the low
temperature limit, while those coupled to the nuclear ground state will be
empty. Here ν is associated with e, so pν is close to one and the second term
will thus compensate for the first one. This is due to the presence of the
projector eΠDd in the expression of L0; this will happen each time the right
nuclear indices of the supermatrix element will be ee, and also for the case
where the left indices will be ge, instead of eg. For gg, it is zero anywhere,
only one transition being implied by each supermatrix element.

If we imagine the path integral alluded to above as the propagation of
values of the four matrix elements of σ, the oscillations of their mean values
due to the reservoir indices will be taken as giving, on average, vanishing
result and thus neglected. This is a kind of “motional narrowing approxi-
mation” of the propagation and we shall make it, considering only the mean
value of L0, to calculate Ke

e . If we had forgotten the thermalized projector
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eΠDd, we would have used the full matrix of the mean value of L, that is

L =


0 −γ γ 0
−γ δω 0 γ
γ 0 −δω −γ
0 γ −γ 0

 (75)

where the labels of rows and columns are in the order ee, eg, ge and gg. By
taking the thermalized projector into account, the matrix is reduced to

L0 '
 δω 0 γ

0 −δω −γ
γ −γ 0

 (76)

where ~δω is the difference between the nuclear and the electronic excitation
energies and δω is the detuning pulsation

δω = ωN − ωe (77)

while the ee element is vanishing. Nevertheless, in the second order ap-
proximation, the width of the Lorentzian distribution of reservoir energy
differences coupled to the small system transition, is seen to be taken into
account by the replacement of z by z+iζ in the expression of eK. In any case,
this results from integrating the (z − L0)−1 factor in the (35) expansion, as
in (59). We shall adopt a strategy to compute not K (t), but eK (z), by a
direct application of (35) reduced to the only nuclear Liouville space. As
L0 has been shown to be thus a third order matrix, it is not a problem to
invert it and to compute (z − L0)−1 in its eigenbasis, and to make a simple
transformation of the axis to get the final result.

The three eigenvalues are

λ1 = 0 λ2 =
p
2γ2 + δω2 λ3 = −

p
2γ2 + δω2 (78)

and the corresponding eigenvectors are easily evaluated in the eg, ge and gg
basis. It is a simple and short algebraic calculation to obtain that

fKe
e
(z) = 2Γ

z + iζ

z2 + 2iζz − ¡2Γ+ ω2eN
¢ (79)

which is a formula with the same structure as (61), but without the possi-
bility of the invariant term in the denominator to vanish at the resonance if
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its width goes to zero. Introducing this expression in (55), and proceeding
as above, one gets

σee(t) =
2Γ+ ω2eN
4Γ+ ω2eN

e
− 2Γ

4Γ+ω2
eN

ζt
+

2Γ

4Γ+ ω2eN
e
−3Γ+ω2eN
4Γ+ω2

eN

ζt
cos

µq
4Γ+ ω2eN t− ϕζ

¶
(80)

where ζ has been shown to be proportional to the phase shift.
In this expression one can see that, when δω = 0 at the resonance,

and the width ζ vanishes, the occupation number of the nuclear excited
state oscillates between one and zero, which is reasonable, as compared to
its negative value in the second order approximation. On the other hand,
if we had forgotten the thermalized projector eΠDd, we could have made
the calculation equally easy since a fourth order matrix being as simple to
diagonalize as a third order one. We would then have obtained a similar
formula, but the coefficient of the cosine would have been

Γ

3Γ+ ω2eN
(81)

and a full development of the Rabi oscillations would have been missed.

6 Conclusions

The above calculations have shown that the thermalized Liouville formalism
allows us to describe the phenomenon of the Rabi oscillations for all values of
the detuning and coupling. The introduction of the effect of the reservoir by
considering only the fluctuation function through the fluctuation dissipation
theorem, is felt by the small system like a spring, and which is enough to
induce oscillations to avoid the construction of a mechanical model of the
electronic states on speaking terms with the nucleus, to keep the language
of the initial problem. Nevertheless, the approximations, while reasonable,
are not controlled, and further work is probably needed in that direction.
Nevertheless, in the frequently used model of Caldeira and Leggett [20] , a
general thermal bath is represented by a set of harmonic oscillators, which
means that all the information about it is given by its spectrum, which is
the Φ (ω) used above.

A point to be noted is that at t = 0 the formulae for the time variation
of population of the nuclear excited state start with a finite derivative, and
not analytically. This is due to the use of a full Lorenztian shape of the
spectrum of the reservoir. Such a shape is unphysical, it should have been

642



truncated for high frequencies, in order to have finite moments [21, 22]: only
then, could an analytical beginning of σ(t) have been obtained.

Another defect of the method is that the reservoir is assumed to have
been thermalized before the starting point of the analysis, and any further
evolution due to the extracouplings of the reservoir seen by the small system
with the outside world is not taken into account. This defect is a generic
one in the theory of susceptibilities, but in the analysis of a phenomenon
as sensitive as Rabi oscillations, it may be more important. Besides, in
a method with uncontrolled approximations, it is difficult to say something
pertinent on this problem. As shown, for instance, by Tolkunov and Privman
[23], the short time problems may be related not only to the finite moments
condition, but also to the behaviour of the “internal” bath dynamics and
rethermalization.

Furthermore, the above calculations are restricted, in fact, to the res-
onant part of the reservoir response function. The effects of the remain-
ing parts of the reservoir have already been studied mainly for a purely
bosonic environment and a two-level system in the second order or Born
approximation. It has been shown that some decoherence is created by the
environment, but the calculations have been done in the case where a free
oscillation would exist in the small system even if it were isolated [24], or in
the special case of an adiabatic coupling [25]. In a realistic calculation, all
the effects suggested in those publications should be taken into account as
well as those studied above; but a generalization of their methods, using a
second order approximation for the non-resonant part of the spectrum and
the motional-narrowing one for the resonant part, would not be a simple
task.

The most of this work has been done in collaboration with Dr. J.J. Niez
or at least in close relation with him. I am indebted to him for having
submitted the problem from his analysis of experimental data, and for many
stimulating discussions. Professor Privman, who was kind enough to send
us one related article of his before publication, is thanked. Professor Vagner
who gave me the occasion to finish and publish this work is also thanked for
his efficiency. J. Pearce is thanked for careful philological help.

Appendix

The “Liouville formalism” is based on the remark that the commutator
[A,B] of two operators is a linear function of each of them. So one of the
operators, say B, can be considered as a vector having as coordinates all
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its matrix elements and the commutator will be given by the action of an
adapted operator. The vector space of the operators is the direct product of
the Hilbert space by its dual, and operators in this space are often spoken
of as “superoperators”. We shall use the notations

m |Op|m0® = ¡mm0 | Op¢ (A1)

where one sees the matrix elements to become the components of a vector.
In the Liouville space, we shall use round brackets instead of the angular
ones in the Hilbert space; otherwise, we keep a Dirac notation. Formula
(A1) implies that the unit ket-bra |m >< m0|operator of the Hilbert space,
corresponds to the unit vector | mm0) in the Liouville space.

The important correspondance is that the commutator [h,Op] corre-
sponds to the Liouvillle ket bh | Op) where bh is the superoperator associated
with the Hilbert operator h. One can see easily that the bh matrix elements
are related to the h ones by³

mn
¯̄̄bh¯̄̄m0n0

´
=

m |h|m0® δnn0 − n0 |h|n® δmm0 (A2)

Consequently, if the basis used is a diagonal one for h, the associated one is
diagonal for bh, and

hm |h|mi = Em (A3)

corresponds to³
mn

¯̄̄bh¯̄̄m0n0
´
= (Em −En) δmm0δnn0 = ~ωmnδmm0δnn0 (A4)

The eigenvalues of the Liouville operator, or superoperator, are the frequen-
cies of the transitions observed in a spectroscopic study of the system; this
explains the use of this formalism in spectroscopic theory. To simplify, we
denote the Liouville commutators divided by ~, associated with the hamil-
tonian hi,

Li =
bhi
~

(A5)

With this formalism the evolution equation for an operator

i~
d

dt
Op(t) = [h,Op(t)] (A6)

is replaced by

i
d

dt
| Op(t)) = L | Op(t)) (A7)
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and its solution
Op(t) = e−iĥt/~Op(0)eiht/~ (A8)

by
| Op(t)) = e−iLt | Op(0)) (A9)

Considering that all the methods used in quantum mechnics are mathe-
matical technics used to solve problems in vectorial spaces, they can, without
conceptual difficulties, be adapted to problems in the Liouville space.
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