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Abstract

The results of our recent investigations of the nonlinear phenomena
at the charged surface of liquid hydrogen are reported. The reconstruc-
tion of the equipotentially charged flat surface is observed resulting in
creation of a solitary wave (a hump) at voltages above some critical
value. It is demonstrated that excitation of the charged surface by
ac electric field at low frequencies results in the turbulent mode in
a system of capillary waves. In accordance with the theory of weak
wave turbulence the pair correlation function of the surface deviations
can be described by the exponential function ωm. The exponent m
changes in magnitude from m = −3.7 ± 0.3 to −2.8 ± 0.2 when the
pumping at a single resonant frequency changes to a broadband noise
excitation. Measurements are made of the dependence of the boundary
frequency ωb of the upper edge of the inertial range in which the Kol-
mogorov spectrum is formed on the wave amplitude ηp at the pumping
frequency ωp. It is shown that the obtained data can be well described
by a function of the form ωb ∝ η

4/3
p ω

23/9
p .
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1 Introduction

The main goal of this paper is to present the recent results of our studies
[1 - 9] of nonlinear phenomena (static and dynamic) at the charged surface
of liquid hydrogen.

The scheme of the experimental setup is shown in Fig. 1. The laser
beam is reflected from the charged surface of liquid hydrogen. The dc and ac
electric fields are applied between the charged layer and the conical electrode
placed above the liquid. The detailed description of the experimental setup
is given in the Section 4.

Figure 1: Schematic view of the experimental cell: (1) laser, (2) lens, (3)
photodetector, (4) analog-to-digit converter.

In the general case, the dispersion law of surface waves on the flat equipo-
tential charged surface of liquid layer placed between the plates of horizon-
tally arranged capacitor can be written as [10]

ω2k = k tanh(kh)

µ
g +

αk2

ρ
− 2kP

ρ
coth(kd)

¶
, (1)

where ωk is the frequency of wave with the wave vector k, h is the thickness
of the liquid layer, α is the surface tension, ρ is the density of the liquid,
g is the free fall acceleration, d is the distance between the surface and the
upper plate of the capacitor, P = U2/8πd2 is the equilibrium pressure of
the electric field on the surface, and U is the voltage applied to the capac-
itor (note that the electric force acting on the charged surface is directed
upwards, opposite to the gravitation force).
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In the case when the distance from the surface to the control (upper)
electrode is smaller than the wavelength (kd ≤ 1), the dispersion law of the
surface waves of a deep liquid (1) simplifies greatly and can be written as

ω2k = k

µ
G+

αk2

ρ

¶
, (2)

where G = g − 2P/ρ d plays the role of the effective free fall acceleration.
If the voltage applied approaches the critical value Uc1 = (4πρd3)1/2,

the effective gravitation acceleration G tends to zero and the effective cap-
illary length λeff = (α/ρG)

1/2 → ∞. In this case the surface waves can be
considered as purely capillary waves at all k even at the wavelength larger
than the capillary length of a neutral liquid λ = α/ρg1/2. Hence ωk ∝ k3/2

practically at all k.

From equation (2) it follows that in high electric fields U > Uc1 where
the effective free fall acceleration G becomes negative, a flat charged surface
should be unstable against any occasional perturbations with k ≤pρ|G|/α.
We have really observed this instability (reconstruction of the initially flat
charged surface of liquid hydrogen) experimentally [2]: at the voltages U >
Uc1 a stationary solitary wave (a hump) has been formed at the surface in a
cylindrical cell filled with liquid hydrogen. A similar phenomena - formation
of a stationary dimple - was observed by Leiderer et al. at the negatively
charged surface of liquid helium [2]. It should be mentioned that as the
voltage increased above some threshold value Uc2 - the second critical voltage
equal to nearly 1.2Uc1 [3, 4], the reconstructed surface of liquid hydrogen
lost its stability, and a discharge pulse of the top of the hump was observed
(it looked like a geyser). After discharge the surface relaxed to the original
flat state and then the process recurred. For this reason it was impossible
to study capillary waves at the reconstructed surface of liquid hydrogen at
the voltages above 1.2Uc1.

The dispersion curves ω(k) of oscillations of the charged surface are
shown in Fig. 2. The critical voltage in these measurements was equal to
Uc1 = 1200 V, the temperature of the measurements was 15 K. As it is seen
in Fig. 2, the spectrum is close to ω(k) ∼ k3/2, with increasing the voltage
the spectrum is softened and no peculiarities have been observed in the field
higher than the first critical value. As it was pointed out in the papers [2,3]
the observed reconstruction can be discussed in terms of the second order
phase transition theory that corresponds to softening of the spectrum of
surface waves with raising the external electric field in Fig. 2.
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Figure 2: Spectrum of oscillations of the charged surface of liquid hydrogen
in a cylindrical cell.

2 Search for turbulence phenomena at the surface
of liquid hydrogen

A highly excited state of a system with numerous degrees of freedom, which
is characterized by the presence of a directional (in the k space) energy
flux, is referred to as turbulent. In the turbulent mode, a system finds
itself away from its thermodynamic equilibrium and is characterized by a
significant nonlinear interaction of the degrees of freedom, as well as by
the dissipation of energy [11]. The nonlinear interaction brings about an
effective redistribution of energy between the degrees of freedom (modes).
The turbulence may be observed in systems where the excitation frequencies
(energy pumping) and dissipation of energy are widely spaced apart at the
frequency scale.

Investigations of energy propagation in such systems including capillary
waves on the surface of liquid are of great interest from the standpoint of
both fundamental nonlinear physics and practical applications. The theory
of weak turbulence was developed in the late 1960s (see the monograph [12]
and references therein). However, in spite of the large number of exper-
imental investigations of the nonlinear dynamics of surface waves, just a
few reports have been published recently of the experimental observations
of isotropic spectra of capillary waves on the surface of water [13 - 15], the
results of which might be compared with the theoretical predictions.

In this paper we present the results of our recent investigations [5-9] of
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nonlinear capillary waves on the surface of liquid hydrogen. Liquid hydrogen
is a suitable object for experiments in turbulence since it is characterized by
a relatively low value of the density ρ and of the kinematic viscosity coeffi-
cient ν and by a high value of the coefficient V ∝ (α/ρ3)1/4 characterizing
nonlinearity of capillary waves. For hydrogen at the temperature T = 15 K,
it is known that α = 2.7 dyn/cm, ρ = 0.076 g/cm3, ν = 2.6 × 10−3 cm2/s
and V = 9 cm3/4/sg, and the capillary length λ = 0.19 cm, while for water
at T = 293 K α = 77 dyn/cm, ρ = 1.0 g/cm3, ν = 10−2 cm2/s, V = 3
cm3/4/sg, and λ = 0.28 cm. This enables us to examine the turbulent mode
in liquid hydrogen in a cell with the inner diameter of a few centimeters in
a wide frequency range from 10 Hz to 10 kHz. In addition, owing to low
density, an external force required to excite oscillations on the surface of liq-
uid hydrogen is several times less than that in the case of water. This fact
proved to be decisive in using the procedure in which the waves on the sur-
face are excited by electric forces. The previous experiments have revealed
[1] that one can charge the surface of liquid hydrogen with charges injected
into the bulk of the liquid, hold the charges in the vicinity of the surface
for a long period of time, and excite surface waves using ac electric field.
An important advantage of this procedure for the observation of capillary
turbulence is the possibility of directly affecting the surface of a liquid by
an external force, virtually without acting on the bulk of the liquid, as well
as the high degree of isotropism of the exciting force, which enabled one to
study the turbulence under well-controlled experimental conditions.

3 Theoretical background

It is known that capillary waves on the surface of a liquid represent an ex-
ample of nonlinear interacting system. The theory of homogeneous capillary
turbulence was described in the paper [16]. It has been demonstrated that
an ensemble of weakly interacting capillary waves may be described within
a kinetic equation similar to the Boltzmann equation of gas dynamics. The
main problem involved in the investigation of wave turbulence is that of
finding the law of distribution of the energy of a system of waves with re-
spect to frequency, i.e., the stationary spectrum of the turbulent energy Eω.
The energy E per unit area of liquid surface may be written in the form

E =

Z
ωknkdk =

Z
Eωdω, (3)
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where ωk is the frequency of a wave with the vector k. The capillary wave
dispersion law

ω = (α/ρ)1/2k3/2 (4)

is of the decay type (ω00 > 0) and, therefore, the main contribution to the
wave interaction is made by three-wave processes such as the decay of a
wave into two with the conservation of the overall wave vector and overall
frequency, as well as the reverse process of confluence of two waves into one.
A frequency range (inertial range) exists in a system of capillary waves on
the surface of a liquid, in which the energy distribution Eω has the power-like
form

Eω ∼ ωs.

Here s is an exponent that should be estimated from experimental results.
The inertial range is limited from below by the pumping frequency ωp

and at high frequencies by viscous damping. According to the present-
day theory [12], when the surface of a liquid is excited at low frequencies
belonging to a fairly wide band ωp±∆ω (“wide-band pumping”, ∆ω ≈ ωp),
a constant energy flux Q towards high frequencies, i.e., direct cascade, sets
in the K-space. The theory of homogeneous capillary turbulence predicts the
power law dependence on frequency for the wave distribution function nk
and the energy distribution Eω (Kolmogorov spectrum) within the inertial
range, which corresponds to

nk ∝ Q1/2ρ3/4α−1/4k−17/4 (5)

in the k representation.
The steady-state distribution of the surface wave energy in the inertial

range may also be equivalently described by the pair correlation function in
the Fourier representation

Iω = h|ηω|2i
for a deviation of the surface from the planar state η(r, t), From the ex-
perimental standpoint, it is most convenient to investigate the correlation
function Iω rather than the energy distribution Eω, because the deviations
of the surface from the planar state η(r, t) may be measured directly in the
experiment. When the surface oscillations are excited in a wide frequency
range, the correlation function is predicted by the theory in the form [12]

Iω = constω
−17/6. (6)
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The theoretical prediction of the relation (6) is supported by the results
of numerical calculations of the evolution of nonlinear capillary waves per-
formed directly from the first principles using the hydrodynamic equations
[17, 18].

In the case of “narrow-band pumping” (∆ω < ωp), it was demonstrated
in the paper [19] that a system of equidistant peaks at frequencies multiple
of the pumping frequency was formed on the Iω curve. The frequency de-
pendence of the peak height is described by a power-like function with the
exponent of (-21/6),

Iω = constω
−21/6. (7)

Note that relations (6) and (7) were derived for systems of capillary
waves with a continuous spectrum of wave vectors, i.e., for an idealized
infinite surface of liquid. However, under experimental conditions with a
limited size of the experimental cell, the ω(k) spectrum is discrete. This
fact must be taken into account in comparing the real correlation function
with theoretical predictions. The effect of discreteness decreases with in-
creasing frequency ω, because the resonance width defined by the quality
factor increases faster than the distance between the resonances: the spec-
trum becomes quasicontinuous. In the paper [19] the authors used numerical
methods to demonstrate that for discrete systems at a fairly high level of
excitation relation (6) is also valid.

As it was mentioned above, the inertial range is limited at high fre-
quencies by the change of energy transfer mechanism from nonlinear wave
transformation to viscous damping. The high-frequency edge of the inertial
range (boundary frequency) can be defined as a frequency ωb at which the
time τv of viscous damping is comparable by the order of magnitude with
the characteristic time τn of nonlinear interaction (the kinetic time of relax-
ation in a turbulent wave system), τv ∼ C τn, where C is some dimensionless
constant.

The characteristic time τn of nonlinear interaction in a turbulent system
is defined by parameters of the liquid, as well as by the capillary wave
distribution function n(ω), and may be estimated as

1/τn ∼ |Vk|2nkk2/ωk = |Vω|2n(ω) (8)

where Vω = (α/ρ3/2)ω3/2 is the coefficient of nonlinearity of capillary waves.
The value of τn defines the characteristic scale of relaxation times of pertur-
bation over the cascade. It is known [11] that the time of viscous damping
of capillary waves decreases with increasing frequency as

1/τv = 2νω
4/3(α/ρ)2/3. (9)
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Relations (8) and (9) enable us to derive the dependence of the wave
frequency ωb on the wave amplitude ηp at the pumping frequency ωp (narrow
pumping)

ωb ∼ η4/3p ω23/9. (10)

The values of the exponents in this equation correspond to the frequency
dependence of the correlation function [19]

Iω ∝ η2p(ω/ωp)
−21/6. (11)

Our investigations have shown [5] that a power law dependence on fre-
quency is observed for the correlation function in the frequency range from
100 Hz to 10 kHz when the charged surface of liquid hydrogen is excited by
an external periodic electric force at the resonance frequency of the cell. In
this case, the exponent in the correlation function was close to −3.7± 0.3.
And for example, when the surface was excited simultaneously at two reso-
nant frequencies the exponent decreased in magnitude to −2.8± 0.2 [6].

The boundary frequency of the upper edge of the inertial range was
experimentally determined for the first time in [7]. As the wave amplitude
ηp at the pumping frequency ωp increases, the boundary frequency shifts, by
the power law given by Eq. (10), towards high frequencies with the exponent
4/3, as it should be for the case of pumping in a narrow band [9].

4 Experimental procedure

The experiments were performed in an optical cell located in a helium cryo-
stat [8]. The experimental scheme is given in Fig. 1. A plane horizontal
capacitor was placed inside the cell. A radioactive plate was located on
the bottom capacitor plate. Hydrogen was condensed into a sleeve formed
by the bottom capacitor plate and a guard ring 25 mm in diameter and 3
mm high. The layer of liquid was 3 mm thick. The top capacitor plate (a
collector 25 mm in diameter) was located at a distance of 4 mm above the
surface of the liquid. The temperature of the liquid in the experiments was
15-16 K.

The free surface of the liquid was charged with the aid of the radioactive
plate emitting β-electrons into the bulk of the liquid. The electrons emitted
by the radioactive plate ionized the thin layer of liquid in the vicinity of
this plate. The dc voltage U was applied between the capacitor plates. The
sign of the charges forming a quasi-two-dimensional layer below the surface
of the liquid was defined by the voltage polarity. In these experiments, the
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oscillation of a positively charged surface was studied. The metal guard ring
installed around the radioactive plate prevented the charges from escaping
from under the surface to the container walls. The oscillations of the surface
of liquid hydrogen (standing waves) were excited with the aid of the ac
voltage applied to the guard ring in addition to the dc voltage at one of the
resonant frequencies. The oscillations of the surface of liquid hydrogen were
recorded by the variation of the power of a laser beam reflected from the
surface. The beam reflected from the oscillating surface was focused by a
lens onto a photodetector. The voltage across the photodetector, which was
directly proportional to the beam power P (t), was recorded within several
seconds by a computer with the aid of a high-speed 12- or 16-bit analog-
to-digital converter. We analyzed the frequency spectrum Pω of the total
power of reflected laser beam, which was obtained by Fourier transformation
of the P (t) dependence being recorded.

A laser beam 0.5 mm in diameter incident on the surface of the liquid at
a grazing angle of about 0.2 rad was used in the experiments. The axes of
the light spot ellipse on the surface of the liquid were 2.5 and 0.5 mm. The
procedures for excitation of surface oscillation and its recording, as well as
the procedure of processing the experimental data, are described in [8]. As
it was pointed in this paper, given this size of the light spot, the square of
the Fourier amplitude of the measured signal is directly proportional to the
correlation function in the frequency representation, Iω ∼ P 2ω , at frequencies
above 50 Hz.

5 Experimental results

5.1 The effect of the type of pumping on the frequency de-
pendence of the correlation function

As follows from relations (6) and (7), the exponent m in the correlation
function Iω ∼ ωm must vary from m = −21/6 for the narrow-band pumping
to −17/6 for the wide-band pumping. The measurement accuracy proved to
be sufficient to form a reliable opinion of the variation of the exponent m.
Experimental capabilities of the procedure made it possible to obtain and
compare the frequency dependencies of correlations functions for three types
of excitation of charged surface, namely, at a single resonant frequency, at
two resonant frequencies, and by noise in a band covering several resonances.

Fig. 3 gives the frequency dependence of P 2ω in the case of excitation of
a surface at the resonant frequency of 28 Hz. In the frequency range of 0.2
— 2.0 kHz, the dependence may be well described by a power function. The
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exponent obtained by averaging over ten measurements is m = −3.7± 0.3.
For comparison, the solid line in the figure indicates the function ω−21/6,
and the dot-and-dash line indicates the function ω−17/6. When the surface
was excited at two resonant frequencies, the experimentally obtained P 2ω
dependencies could be described by a power function with the exponent
m = −2.8± 0.2, which was close to the predicted value of m = −17/6.

Figure 3: The distribution P 2ω in the case of pumping at the frequency of 28
Hz.

When low-frequency noise was used to excite surface oscillation, the P 2ω
distribution turned out to be close to the predicted dependence given by
Eq. (6), as in the case of excitation at two frequencies. Fig. 4 gives the P 2ω
distribution in the case of surface excitation by noise in the frequency band
of approximately 1 to 30 Hz. The solid curve indicates the distribution of
the square of Fourier harmonics of the noise voltage applied to the guard
ring (expressed in arbitrary units). The dot-and-dash line corresponds to
the function ω−17/6. Fig. 4 gives the result obtained by averaging over three
files of the distribution. The distribution could be described by a power
function of frequency with the exponent m = −2.8± 0.2. One can see that
the experimentally obtained dependencies turn out to be close to ω−17/6.
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Figure 4: The distribution P 2ω in the case of pumping by noise at low fre-
quencies. The solid line describes the distribution of the square of Fourier
harmonics of the ac voltage applied to the guard ring (in arbitrary units).

5.2 Dependence of the boundary frequency on the wave am-
plitude at the pumping frequency

As it was observed, the P 2ω distribution depends on the type of pumping, its
amplitude, and the pumping frequency. Fig. 5 gives the frequency depen-
dence of the square of the Fourier amplitude P 2ω of the P (t) signal, measured
during surface excitation at the high frequency ωp = 135 Hz. The wave am-
plitude ηp at the pumping frequency was 0.016 mm and the wavelength was
λ = 2.3 mm. The arrow indicates the frequency at which an abrupt vari-
ation of the dependence P 2ω occurs at the edge of the inertial range. For
the other amplitudes and pumping frequencies ηp and ωp, similar results are
given in [7, 9]. In Fig. 5, the boundary frequency of the edge of the inertial
range is ωb = 4.0± 0.3 kHz. We have observed that, as the wave amplitude
increases, the boundary frequency of the inertial range shifts towards higher
frequencies. When the pumping wave amplitude is not high, a cascade con-
sisting of only several harmonics of the pumping frequency ωp is realized in
P 2ω the spectrum. When the pumping wave amplitude increases, the inertial
range is expanded, and the P 2ω spectrum comes to be made up of tens and
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even hundreds of harmonics.

Figure 5: The distribution P 2ω with the wave amplitude of 0.016 mm at the
pumping frequency of 135 Hz.

Fig. 6 gives three dependencies of the boundary frequency of the edge of
the inertial range ωb on the wave amplitude ηp at the pumping frequencies
of 83, 135, and 290 Hz. The ordinates of the points (frequencies) shown in
the figure were estimated from the experimentally obtained curves similar to
the curves given in Fig. 5. The pumping wave amplitudes were calculated
by the known values of ac voltage applied to the guard ring. One can see
that the experimentally obtained dependencies ωb(ηp) may be described by
a power function. The solid curves in the figure correspond to the power
law dependencies of the boundary frequency of the inertial range ωb on the
amplitude ηp, with the exponent of 4/3, predicted by theoretical consider-
ations, see Eq. (10). For better agreement between the experimental data
and the theory, we should add the constant term into the fitting function
(it is clear that the boundary frequency ωb cannot be less than the pumping
frequency ωp). The results of fitting are given in Fig. 6. The constant term
turned out to exceed the pumping frequency ωp by a factor of 2-3.

The amplitude dependence of the boundary frequency ωb (as given by
Eq. (10)) implies the existence of scaling with respect to the pumping fre-
quency ωp. As it was shown in our paper [9], the experimental points for
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Figure 6: The boundary frequency ωb as a function of the wave amplitude ηp
at the pumping frequencies of 83 (circles), 135 (squares), and 290 (diamonds)
Hz.

ωb, irrespective of the pumping frequency, fit a single straight line in the
coordinates ωp/ω

23/9
b vs η4/3 in agreement with the theoretical estimations

of Eq. (11). This supports the validity of our assumption of the determining
effect of viscosity when estimating the value of the edge frequency ωb.

6 Conclusion

Investigations of the shape evolution of the equipotentially charged surface
of liquid in the external dc electric field demonstrated possibility of observa-
tions of the reconstruction phenomenon — formation of a stationary solitary
wave at the flat charged surface (a hump in the case of positively charged
surface of liquid hydrogen and a dimple in the case of negatively charged
surface of superluid He II) at some critical value Uc1 of the electric field
voltage under the conditions of a total screening of the electric field in the
bulk of liquid by the surface charge. The critical voltage Uc1 corresponds to
the situation where the applied electric force compensates the gravity force
(the effective free fall acceleration tends to zero).

The measurements made at ac electric fields have permitted us to study
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for the first time propagation and transformation of nonlinear capillary
waves at the surface of liquid hydrogen. It is demonstrated that a weak
turbulence state (Kolmogorov spectrum) is formed in a system of capillary
waves in a wide range of frequencies higher than the driving frequency ωp. It
is observed that the exponent describing the power spectrum of turbulence
is changed with changing the spectrum of the driving force. In the case of
pumping at a single resonant frequency, the correlation function is described
by the power function of frequency with the exponentm = −3.7±0.2, which
is close to the predicted value of m = −21/6. This corresponds to the sta-
tionary spectrum of turbulence Eω ∝ ω−13/6. In the case of wide-band
pumping or excitation of a surface at two resonant frequencies, the observed
exponent is m = −2.8± 0.2, while the theory gives m = −17/6. With this
exponent the energy distribution is proportional to Eω ∝ ω−3/2.

We have also observed the boundary frequency of the inertial range for
developed capillary turbulence. It has been found that the inertial range
expands towards high frequencies with increasing wave amplitude at the
pumping frequency. The wave amplitude dependence of the boundary fre-
quency can be well described by a power function with the exponent of 4/3.
The experimental data agree well with the existing theory of weak wave
turbulence.
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