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We construct a new kind of path integral for the Dirac equation propagator, intended as
an extension to 3 space dimensions of the Feynman ``checkerboard'' propagator. One form of
this path integral is a ``projector path'' summation, out of which one can reconstruct standard
3D space and chirality. Other forms allow the particle velocity along the path to be adjusted.
� 2000 Academic Press

I. INTRODUCTION

The Dirac equation and its propagator are more fundamental concepts than the
Schro� dinger equation and its propagator. It is natural to attempt to write a path
integral expression for the Dirac propagator similar to the Feynman path integral
expression for the Schro� dinger propagator and which would show clearly how the
non-relativistic limit is attained at the level of paths. The purpose of this work is
to give such a formula for the Dirac path integral, using a space-time formulation
as in Feynman's original papers and book [1, 2].

Many authors, including Feynman, have obtained expressions for the Dirac
propagator as a path integral and we recall briefly the main attempts. The first was
by Feynman [2] for the Dirac equation in 1 space dimension and is known as the
checkerboard path integral. Another attempt, elaborating on Feynman's checker-
board was done in [3] where it was shown that the knowledge of the propagator
of the Weyl equation would generate a path integral for the Dirac equation. It was
also implicit in that paper that the checkerboard path integral was a complex
measure (in the mathematical sense) on the space of paths, which is not the case
for the Feynman path integral formula for the Schro� dinger equation. In fact, this
approach has been used recently to regularize the path integral for the Schro� dinger
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equation [4], providing justification for an idea of Nelson [5]. The path integral
for the Schro� dinger equation appears as a limit of complex measures on smooth
paths in any number of spatial dimensions, although it is not a measure, as is
known [5]. Another approach, using a momentum representation and Poisson
processses in p-space has been introduced in [6]. Completely different approaches
using Grassmann variables have been developed, in particular using differential
forms on SU(2) (see [7]) but these attempts are completely formal, and in a sense
tautological. Moreover they do not generate paths in space-time. A non-Grassman-
niann approach allowing canonical quantization is [8]. Finally, a path integral
using two-component spinors was constructed in [9], following suggestions of
[10]. The strange feature of this last approach is that the paths that are constructed
propagate at a velocity which is 3 times the velocity of light. In the method of [9],
a spinor-chain integral is constructed for the Weyl equation propagator. Using the
Poisson process of [3], it allows one to write a path integral formula for the Dirac
propagator.

The present work is intended as an extension to 3 dimensions of the original
checkerboard path integral. We will construct several formulas for the Dirac
propagator in the spirit of [9], mostly without a Poisson process. The velocity of
the path is the velocity of light. Our formalism is more relativistically covariant
than in [9], because the Dirac matrices are treated on the same footing and four-
component spinors are used. Moreover, this new formulation of the path integral
shows that it is really a projector path integral in the 4-component spinor space.
The standard path in 3D space and the propagation of the wave function are
derived concepts emerging from the projector path integral. In an appendix we
develop a corresponding formalism for ``between flips'' propagator, i.e., the zero-
mass-particle propagation in 3 dimensions corresponding to the speed-of-light
propagation in Feynman's orginal formulation.

II. THE PATH INTEGRAL FOR THE FREE PROPAGATOR

The Hamiltonian formulation of the free Dirac equation can be written

i
��
�t

=H� (�=1), (1)

where

H=: } p+;m (see, e.g., [11]). (2)

Here � is a 4-component spinor, p=&i:, m is the rest mass of the particle, and
:, ; are the Dirac matrices

:=\_

0
0

&_+ , ;=\0
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I
0+ ,
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where the _ are the standard Pauli matrices and I is the 2_2 identity matrix. We
have set �=1 and c=1. The propagator is then the continuous product,

exp (&iHt)=> exp [(&i:p&i;m) 2t].

For small 2t, we can replace the exponential by

exp [(&i:p&i;m) 2t]=I&(i:p+i;m) 2t. (3)

Let us now consider the unit sphere S 3 in the space R4. Its volume is 2?2. If
n=(n0 , n) is a unit vector, one can easily compute

|
S3

n2
k dS=

?2

2
, k=0, 1, 2, 3, |

S3
nk dS=0, | nknldS=0 for k{l.

From this, one can verify the identity

I&i(:p+;m) 2t=
1

2?2 |
S 3

(I&n:&n0;)(I+i(np+n0m) 4 2t) dS

and more generally, we can introduce a number | that will be fixed later and verify

I&i(:p+;m) 2t=
1

2?2 |
S 3 \I&

4
|

(n:+n0;)+ (I+i|(np+n0m) 2t) dS.

For small 2t, we obtain

exp(&iH 2t)=
1

2?2 |
S3 \I&

4
|

(n:+n0 ;)+ exp[i|(np+n0m) 2t] dS. (4)

In these formulas, the spin-chirality rotation has been factored out from the spa-
tial translation and shift of the phase. As a consequence the full propagator can be
written

exp(&iHt)

= lim
N � � |

(S 3) N

dSN

(2?2)N `
N

k=1
\I&

4
|

(n(k):+n (k)
0 ;)+

_exp \i|m : n (k)
0 2t+ exp \i|p :

k

n(k)2t+ . (5)

In these formulas, 2t= t
N and the integration is on the product of N spheres, S3,

the variables being (n (1)
0 , n(1)), ..., (n (k)

0 , n(k)), ..., (n (N)
0 , n(N)). The products >N

k=1 are
time ordered products over a sequence of 4_4 matrices.
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We see that this integral defines a path in 3 space by

xk=| :
k

j=1

n( j)2t (6)

and it also defines a phase shift by

.k=m| :
k

j=1

n( j)
0 . (7)

The operator

exp \i|p : n(k)2t+=exp(xN } :) (8)

is the translation operator by the path value at the final time. The emergence of
sums of n 's as position is purely a consequence of the defintion of momentum as
translation generator and of our ability to factor p: into separate p and : expres-
sions in the propagator.

Remark. The factoring of space and spin by means of Eq. (4) is the essential
technical step in this work. In Feynman's one dimensional checkerboard formula-
tion one has simply exp(icp 2t), which automatically supplies real space transla-
tions (since p=&i���x). But in three space dimensions one has : } p (as in (3)).
This makes the translation in a sense be : 2t; however, that ``sense'' is far from
clear, due to the action of : on spin coordinates. The factoring of (4) allows p
to generate translations in an ordinary 3 space, which as we point out, becomes
identified with physical space.

III. PATH INTEGRAL IN THE PRESENCE OF EXTERNAL FORCES

The hamiltonian of the Dirac equation for a particle in a vector potential A and
a scalar potential V is

H=:( p&eA)+;m+eV, (9)

where e is the electric charge.
It is easy to modify the path integral formulation Eq. (5) for the propaga-

tor to take into account the influences of A and V. This is done with a Feynman
Kac type factor using the method of [7]. In fact, we have in Eq. (5) instead of
exp(|ip �kn(k)2t),

exp \|i( p&eA) \:
k

n(k)+ 2t&ieV 2t+ .

4 GAVEAU AND SCHULMAN



We separate the action of the translation operator and the action of A and V as

exp _&|ie :
N&1

k=1

A(xk) n(k+1) 2t&ie :
N&1

k=1

V(xk) 2t& exp(xN } :), (10)

where the path xk has been defined in Eqs. (6). In Eq. (10) we have put on the right
the translation operator, and on the left the multiplication operators. Moreover, in
this equation A(xk) and V(xk) denote multiplication operators by the functions of
x which are x � A(xk+x) and x � V(xk+x).

If we denote the increment of the paths by

$k x=xk+1&xk (11)

the full propagator is given by

exp(&iHt)= lim
N � � |

(S 3)N

dSN

(2?2)N `
N

k=1
\I&

4
|

(n(k):+n (k)
0 ;)+ ei.N

_exp _&ie :
N&1

k=1

A(xk) $kx&ie :
N&1

k=1

V(xk) 2t& exp(xN } :). (12)

We now consider the matrix element of exp(&iHt) between an initial state
ui $(xi& v ) and a final state uf $(xf& v ), where ui , uf are constant spinors. Specifi-
cally,

(uf $(xf& v ) |e&iHt| ui $(x i& v ))

= lim
N � � |

dSN

(2?2)N �uf } `
N

k=1 \I&
4
|

(n (k) } :+n (k)
0 ;)+ } ui� ei.N

_exp _&ie :
N&1

k=1

A(xk+xf ) $kx$&ie :
N&1

k=1

V(xk+xf ) 2t& $(xN&x i+xf ).

(13)

In both cases we integrate on paths (xk)k=1, ..., N such that the total amount of space
between initial and final times xN is &xf +xi .

IV. PROJECTOR PATH INTEGRALS AND QUANTUM SPACE

In this section, we interpret Eqs. (5) and (12).

(i) First we choose |=4 in Eq. (5) or (12); the increments of the paths in
time 2t are 4n(k) 2t where n(k) are independent random vectors of length �1. The

average of |n(k)|=- 1&n (k) 2

0 is �S3 |n(k)| dS
2? 2= 8

3? . In fact
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dS=sin2%1 d%1 sin %2 d%2 d%3

|n(k)|=sin %1 .

So the average velocity of the path (xk) is 32
3?>1. The operator P(k) defined as

P(k)= 1
2 (I&n(k):&n (k)

0 ;) (14)

is obviously a projector (due to the commutativity properties of :, ;). In fact, it is
a projector on a two-dimensional subspace of the space of 4-components spinors,
namely the space Sk of spinors of type

u=\ &n (k)
0 w

(I+n(k)_) w+ ; (15)

where w is any 2-component spinor (normalized by |w|2=1) and _ are the Pauli
matrices. This result is easily obtained using the remark that formally n(k):+n (k)

0 ;
is a free Hamiltonian as in Eq. (2) with n(k) instead of p, and n (k)

0 instead of m. Its
energy is therefore \1. Then the 4-component spinors u of Eq. (15) are the tradi-
tional eigenstates of this hamiltonian of energy +1 (see [11]).

Thus we see that in Eq. (5) the product >N
k=1 (I&n(k):&n (k)

0 ;)=2N >N
k=1 P(k)

is a product over projectors on two dimensional spaces Sk of 4-component spinors
of the type Eq. (15).

The square norm of u of Eq. (15) is found to be

(u | u)=2((w | w)+(w | n_w) ). (16)

Moreover

(u| : |u)
(u | u)

=&n(k),
(u| ; |u)
(u | u)

=&n (k)
0 . (17)

In other words, the projector P(k) projects on the space of spinors u such that the
expectation of the velocity operator : on these spinors is exactly n(k) which is
precisely the velocity of the path at time k 2t (recall that the path is such that
xN=xi&xf , so by our convention it runs backwards in time, whence the minus
sign in Eq. (17)). In other words, we reconstruct the space translations, using the
4-component spinors u, as it should be. But our path has an average velocity which
is greater than the velocity of light. The quantum expectation of the velocity is less
than the velocity of light. We can compare our result with that of Jacobson [9]. In
this work, Jacobson uses 2-dimensional spinors and he obtains a spinor chain
integral.

In our case, which is more relativistically covariant, although not fully because
we write a time propagator, the spinor chain integral becomes a projector path
integral in the space of 4-component spinors. The expectation of the velocity
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operator : on any state in the image Sk of the kth projector of the projector path
becomes, up to a factor of 4, the local velocity of a path in space (the average
velocity of this path being 32

3?). But what is important is that space is no longer
primary. What is primary is the path of projectors on spinors, out of which space
is reconstructed and spinors are propagated. In other words, the projector path
integral on 4 component spinors, defines at once, the propagator and the medium of
propagation. The defect of this method is that the average velocity of the path xk

is larger than the speed of light, although the quantum expectation of the velocity
is smaller than the speed of light.

(ii) We next consider a different value for the constant | appearing in Eqs. (15)
and (12). We choose | so that

8?|
3

=1.

In this case the velocity of the path xk , that is, n(k), is bounded from above by the
velocity of light. The price to be paid is that the chronological product is no longer
a product over projectors in the 4-component spinor space. This seems to be less
natural. After all, in the previously stated view, space can be reconstructed as
derived from a quantum mechanism, where the projector is primary. The true
velocity is not the path velocity, but the expectation of the : matrices which is
indeed less than the velocity of light.

(iii) The usual Feynman integral is also a projector path integral. The projec-
tors are on the eigenstates of position operators (and so commute with each other).
In our case, there is no position a priori, only spin and momentum (which,
relativistically are no longer related to velocity and space). The path integral is an
integral over projectors which do not commute with one another.

V. CONCLUDING REMARKS

We have written a path integral formula for the propagator of the Dirac equation
(in hamiltonian form), in presence of external fields. This path integral is not a
standard one, over paths in a given 3D space. Rather, 3D space emerges as a by-
product of the path integral, similar in spirit, if not in precise implementation to the
work in [9, 10]. In our picture with |=1 the path integral is really an integral
over projector paths in the space of 4-component spinors. This approach points
towards an extension of the concept of path integral as projector valued paths.

Other values of | allow adjustment of the velocity of the particle. We inten-
tionally leave the choice of | open. As an elementary object in quantum mechanics
the Dirac equation arises in many contexts and one should not eliminate potential
applications by too strongly advocating one or another choice.
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APPENDIX A: AN ALTERNATIVE FORM OF THE PROPAGATOR

In our previous work on the propagator for the Dirac equation there is a con-
catenation of two processes. One is a Poisson-distributed mass-induced flipping
between propagation as a left handed massless particle and a right handed massless
particle. The second process describes between-flip propagation and is the stage at
which Grassmann variables entered.

Using the approach of the present paper we next present a real-space process for
the between-flips propagation. In this way a complete real-space Dirac equation
propagator can be realized in another way. (It also can provide an alternative
construction of space, along the lines of that described above.)

We will not review the entire formalism of [7]. Suffice to say that the between-
flips propagator is a 2_2 matrix of the form exp(it p } _) (or the same thing with
opposite sign in the exponent), where _ are the Pauli spin matrices and p=&i:.
Following the usual Trotter product approach (which allows all we do here to be
generalized to the case where external fields are present), the problem becomes the
factorization into space and spin operators of exp(i dt p } _). (Of course this is the
objective of Eq. (4) above, but for 4_4 matrices.) We make use of the formula

exp(i dt p } _)=
1

4? | dn̂ _1+
3
|

n̂_& exp[i|pn̂ dt], (A.1)

where dn̂ means integration on the 2-sphere and the equality holds to first order
in dt (which is all that is necessary). In proving this equation we made use of
� dn̂ nin j=$i j �3.

Recognizing exp[i|pn̂ dt] as a translation operator in the direction n̂ at velocity
|, the interpretation of Eq. (A.1) is clear. If | is taken to be 3, one has a spin pro-
jection and propagation with velocity 3c, much as in Jacobson's approach. If | is
taken to be 1, then one obtains the generalization to 3 dimensions of the Feynman
checkerboard prescription. Thus the particle travels at the speed of light, with
Poisson-distributed flips. The action of the propagator on the spin coordinates is
multiplication by the operator 1+3n̂_, which, because of the 3, is not a projection.
There is also a choice of how to interpret the flipping. The minus sign (in
exp(&i dt p } _)) for the opposite-handed massless particle propagation can be put
in either factor in Eq. (A.1), so that one can think of the flip as changing the nature
of the spin operation or the direction of propagation.
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