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An essential step in the proof of the quantum recurrence theorem is shown to follow from the Poincaré

recurrence theorem of classical mechanics.

The quantum recurrence theorem’ is easy to
state and prove. The only nontrivial step in the
proof involves a theorem from the theory of al-
most-periodic functions. The purpose of this Note
is to observe that this step can be replaced by a
reference to the Poinca;'é recurrence theorem of
classical mechanics.

Quantum vecurvence theovem. Let ¥(t) be a wave
function evolving in time under the Hamiltonian
H which has only discrete eigenvalues E,, n
=1,2,... . Then for each €, there is a T>1 such
that

1 9(T) ~$(0) li< €. (1)

Pyoof. ¥(t) can be expressed as
$@)= D" 7, exp(-iE thu, (2)
n
withu,,n=1,... eigenstates of H having phases

chosen so that the coefficients 7, are real and pos-
itive. The numbers 7, satisfy

Z r2=1. (3)
n=l
Consider
llw(t)—zp(o)lF:Z; 722(1 — coskE, t). @)
n=
By Eq. (3) there is an N such that
< €
23 A(1-cosE ) <4 3 i<s (5)

n=N+1l naNe+l

It therefore remains to show that there isa 7>1
such that

X I iE, T ‘2 L 2( ) 2¢

E v,e”tent —y =2§ 7o(l - cosE. T)<—

et n n st n n 3 .
(6)

That such a T exists follows from the theory of
almost-periodic functions, and by reference to
that theory, Bocchieri and Loinger' complete
their proof of the theorem.

It is interesting that the existence of sucha T
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also follows from the classical Poincaré recur-
rence theorem. The idea is simple, although a
few €’s are needed for technical reasons.
Consider a collection of N independent harmonic
oscillators with frequencies E,, n=1,...,N. A
point in the 2N-dimensional phase space is
y=(c,, @y, Cas Pas+ « « 5 Cx» Puy), (C(a @;) being the am-
plitude and phase of the jth oscillator, c;=0.
Time evolution is given by ¢, =const, ¢,(t)
=@~ Et. )
Let the set I'(7, a) be in the following neighbor-
hood of 7:

. N
Ly, a)={v"=(cl,0i,...)]| Z; [ciet*s' —cet*i| <a
‘ne

M

and let p=(r,,0,7,,0,...,7y,0).

Consider the set I'(p, $¢). By the Poincaré re-
currence theorem there is a point ¥=(c,, ¢,,...)
in I'(p, 3€) which returns to I'(p, $€) at some time
T, T>1. (Regarding T>1, note that the proof in
Ref. 2 uses discrete time steps.) For this point,

N ; €

Elcne w,,_,,,."|<§ )
=

N

E: 'cnewn-EnT_,r"’l <§— 9)
et

It follows that

- ’ N
Z |7,e B0 7, | SE (|7, et EnT - ¢, ot on=in Tl
n=1

n=1

2¢€
+ [c"e”’"“E"T— 'r"[)<—3-.

(10)

Since the sum on the left-hand side of Eq. (10) is
less than one (for €<$) the individual terms must
also be less than one. Hence

. {E,T 2 i ~{EnT 2¢
Z |7 e tEnt — |2 < ) | e B -y, | <5, (11)
n=l n=.

which completes the proof.
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We mention that p itself could not be used (in
place of ¥) since the Poincarétheorem only asserts
recurrence for almost all points. In this sense the
quantum analog seems more comprehensive. The
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proving of the inequality (6) also suggests the use
of the Poincaré recurrence theorem—itself quite
easily proved—in establishing other results con-
cerning almost-periodic functions.
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