Example 1. Given that $0 \leq R \leq \infty$ in this circuit, consider these two observations:

When $R=2 \Omega$ then $v_{\mathrm{R}}=4 \mathrm{~V}$ and $i_{\mathrm{R}}=2 \mathrm{~A}$.
When $R=6 \Omega$ then $v_{\mathrm{R}}=6 \mathrm{~V}$ and $i_{\mathrm{R}}=1 \mathrm{~A}$.

Determine $v_{\mathrm{oc}}, i_{\mathrm{sc}}$ and R_{t}.

Solution: We can replace the part of the circuit to the left of the terminals by its Thevenin equivalent circuit:

Using voltage division $v_{\mathrm{R}}=\frac{R}{R+R_{\mathrm{t}}} v_{\mathrm{oc}}$ and using Ohm's law $i_{\mathrm{R}}=\frac{v_{\mathrm{oc}}}{R+R_{\mathrm{t}}}$.
.Let's substitute the given data into the equation $i_{\mathrm{R}}=\frac{v_{\mathrm{oc}}}{R+R_{\mathrm{t}}}$.

When $R=2 \Omega$ we get $2=\frac{v_{\text {oc }}}{2+R_{\mathrm{t}}} \Rightarrow 4+2 R_{\mathrm{t}}=v_{\mathrm{oc}}$. When $R=6 \Omega$ we get $1=\frac{v_{\text {oc }}}{6+R_{\mathrm{t}}} \Rightarrow 6+R_{\mathrm{t}}=v_{\text {oc }}$.
So $6+R_{\mathrm{t}}=4+2 R_{\mathrm{t}} \Rightarrow R_{\mathrm{t}}=2 \Omega$ and $v_{\mathrm{oc}}=4+2 R_{\mathrm{t}}=8 \mathrm{~V}$. Also $i_{\mathrm{sc}}=\frac{v_{\mathrm{oc}}}{R_{\mathrm{t}}}=\frac{8}{2}=4 \mathrm{~A}$.

Example 2. This circuit has two inputs, v_{s} and i_{s}, and one output i_{0}. The output is related to the inputs by the equation

$$
i_{\mathrm{o}}=a i_{\mathrm{s}}+b v_{\mathrm{s}}
$$

Given the following two facts:
The output is $i_{0}=0.45 \mathrm{~A}$ when the inputs are $i_{\mathrm{s}}=0.25 \mathrm{~A}$ and $v_{\mathrm{s}}=15 \mathrm{~V}$.
and

$$
\text { The output is } i_{0}=0.30 \mathrm{~A} \text { when the inputs are } i_{\mathrm{s}}=0.50 \mathrm{~A} \text { and } v_{\mathrm{s}}=0 \mathrm{~V} \text {. }
$$

Determine the following the values of the constants a and b.

Solution:

From the $1^{\text {st }}$ fact:

$$
0.45=a(0.25)+b(15)
$$

From the 2nd fact:

$$
0.30=a(0.50)+b(0) \Rightarrow a=\frac{0.30}{0.50}=0.60
$$

Substituting gives $0.45=(0.60)(0.25)+b(15) \Rightarrow b=\frac{0.45-(0.60)(0.25)}{15}=0.02$

