
Example 1. Given that $0 \le R \le \infty$ in this circuit, consider these two observations:

When $R = 2 \Omega$ then $v_R = 4 V$ and $i_R = 2 A$.

When $R = 6 \Omega$ then $v_R = 6 V$ and $i_R = 1 A$.

Determine $v_{\rm oc}$, $i_{\rm sc}$ and $R_{\rm t}$.

Solution: We can replace the part of the circuit to the left of the terminals by its Thevenin equivalent circuit:

 $R_{t} \xrightarrow{i_{R}} V_{oc} \xrightarrow{v_{R}} R$ $V_{oc} \xrightarrow{$

When $R = 2 \Omega$ we get $2 = \frac{v_{oc}}{2 + R_t} \implies 4 + 2R_t = v_{oc}$. When $R = 6 \Omega$ we get $1 = \frac{v_{oc}}{6 + R_t} \implies 6 + R_t = v_{oc}$. So $6 + R_t = 4 + 2R_t \implies R_t = 2 \Omega$ and $v_{oc} = 4 + 2R_t = 8 V$. Also $i_{sc} = \frac{v_{oc}}{R_t} = \frac{8}{2} = 4 A$.

Example 2. This circuit has two inputs, v_s and i_s , and one output i_o . The output is related to the inputs by the equation

$$i_{\rm o} = a i_{\rm s} + b v_{\rm s}$$

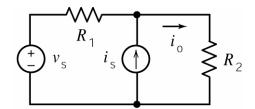
Given the following two facts:

The output is $i_0 = 0.45$ A when the inputs are $i_s = 0.25$ A and $v_s = 15$ V.

and

The output is $i_0 = 0.30$ A when the inputs are $i_s = 0.50$ A and $v_s = 0$ V.

Determine the following the values of the constants *a* and *b*.


Solution:

From the 1st fact:

$$0.45 = a(0.25) + b(15)$$

From the 2nd fact:
$$0.30 = a(0.50) + b(0) \implies a = \frac{0.30}{0.50} = 0.60$$

Substituting gives
$$0.45 = (0.60)(0.25) + b(15) \implies b = \frac{0.45 - (0.60)(0.25)}{15} = 0.02$$

