Example:
Consider the circuit shown in Figure 1. Find the value of the voltage measured by the voltmeter.

![Figure 1](image1.png)

Figure 1 The circuit considered in this example.

Solution: Figure 2 shows the circuit from Figure 1 after replacing the voltmeter by an equivalent open circuit and labeling the voltage measured by the voltmeter. We will analyze this circuit by writing and solving node equations. The nodes of the circuit are numbered in Figure 2. Let v_1, v_2, v_3 and v_4 denote the node voltages at nodes 1, 2, 3 and 4 respectively.

![Figure 2](image2.png)

Figure 2 The circuit from Figure 1 after replacing the voltmeter by an open circuit and labeling the nodes. (Encircled numbers are node numbers)

The inputs to this circuit are the voltages of the voltage sources. These inputs are related to the node voltages at the nodes of the voltage sources by
\[0 - v_1 = 0.75 \implies v_1 = -0.75 \text{ V} \]
and
\[v_2 - 0 = 0.5 \implies v_2 = 0.5 \text{ V} \]

The output of this circuit is the voltage measured by the voltmeter. The output voltage is related to the node voltages by
\[v_m = v_4 - 0 = v_4 \]

The noninverting input of the op amp is connected to the reference node. The node voltage at the inverting input of an ideal op amp is equal to the node voltage at the noninverting input. The inverting input of the op amp is connected to node 3. Consequently,
\[v_3 = 0 \text{ V} \]

Apply KCL to node 3 to get
\[
\frac{v_1 - v_3}{20000} + \frac{v_2 - v_3}{12000} = 0 + \frac{v_3 - v_4}{120000} \implies 6v_1 + 10v_2 - 16v_3 = v_3 - v_4
\]

Using \(v_m = v_4 \), and \(v_3 = 0 \) shows that the output voltage is related to the input voltages by
\[v_m = -\left(6v_1 + 10v_2\right) \]

Using \(v_1 = -0.75 \text{ V} \), and \(v_2 = 0.5 \text{ V} \) gives the value of the voltage measured by the voltmeter to be
\[v_m = -\left(6\left(-0.75\right) + 10\left(0.5\right)\right) = -0.5 \text{ V} \]