Example 1:
Consider the circuit shown in Figure 1. Determine the power supplied by element D and the power received by element F.

![Circuit Diagram](image)

Figure 1. The circuit considered in Example 1

Solution: Figure 1 provides a value for the current in element D but not for the voltage, v, across element D. The voltage and current of element D given in Figure 1 do not adhere to the passive convention so the product of this voltage and current is the power supplied by element D.

Similarly, Figure 1 provides a value for the voltage across element F but not for the current, i, in element F. The voltage and current of element F given in Figure 1 do adhere to the passive convention so the product of this voltage and current is the power received by element F.

We need to determine the voltage, v, across element D and the current, i, in element F. We will use Kirchhoff’s laws to determine values of v and i. First, we identify and label the nodes of the circuit as shown in Figure 2.

![Circuit Diagram](image)

Figure 2. Labeling the nodes of the circuit from Figure 1.

Apply Kirchhoff’s voltage law (KVL) to the loop consisting of elements C, E, D and B to get
\[3 + 6 + v + (-3) = 0 \quad \Rightarrow \quad v = -6 \text{ V} \]

The value of the current in element \(D \) in Figure 2 is 6 A. The voltage and current of element \(D \) given in Figure 2 do not adhere to the passive convention so

\[p_D = v \times (6) = (-6) \times (6) = -36 \text{ W} \]

is the power supplied by element \(D \). (Equivalently, we could say that element \(D \) receives 36 W.)

Next, apply Kirchhoff’s current law (KCL) at node \(c \) to get

\[-6 + i = 1 \quad \Rightarrow \quad i = 7 \text{ A} \]

The value of the voltage across element \(F \) in Figure 2 is -6 V. The voltage and current of element \(F \) given in Figure 2 adhere to the passive convention so

\[p_F = (-6) \times i = (-6) \times (7) = -42 \text{ W} \]

is the power received by element \(F \). (Equivalently, we could say that element \(F \) supplies 42 W.)

Example 2:
Consider the circuit shown in Figure 3. Determine the power supplied by element \(B \) and the power supplied by element \(C \).

![Figure 3](image-url)

Figure 3. The circuit considered in Example 2

Solution: Figure 3 provides a value for the current in element \(B \) but not for the voltage, \(v \), across element \(B \). The voltage and current of element \(B \) given in Figure 1 do not adhere to the passive convention.
convention so the product of this voltage and current is the power supplied by element B. Similarly, Figure 3 provides a value for the voltage across element C but not for the current, i, in element C. The voltage and current of element C given in Figure 1 do not adhere to the passive convention so the product of this voltage and current is the power supplied by element C.

We need to determine the voltage, v, across element B and the current, i, in element C. We will use Kirchhoff’s laws to determine values of v and i. First, we identify and label the nodes of the circuit as shown in Figure 4.

![Figure 4. Labeling the nodes of the circuit from Figure 3.](image)

Apply Kirchhoff’s voltage law (KVL) to the loop consisting of elements B, C and A to get

$$-v - (-3) - 6 = 0 \quad \Rightarrow \quad v = -3 \text{ V}$$

The value of the current in element B in Figure 4 is 3 A. The voltage and current of element B given in Figure 4 do not adhere to the passive convention so

$$p_B = v (3) = (-3) (3) = -9 \text{ W}$$

is the power supplied by element B. (Equivalently, we could say that element B receives 9 W.)

Next, apply Kirchhoff’s current law (KCL) at node b to get

$$2 + i = 3 \quad \Rightarrow \quad i = 1 \text{ A}$$

The value of the voltage across element C in Figure 4 is -3 V. The voltage and current of element C given in Figure 4 do not adhere to the passive convention so

$$p_C = (-3) i = (-3) (1) = -3 \text{ W}$$

is the power supplied by element C. (Equivalently, we could say that element C receives 3 W.)
Example 3:
Consider the circuit shown in Figure 5. Determine the values of the currents in and voltages across the various circuit elements.

![Figure 5](image)

Figure 5. The circuit considered in Example 3

Solution: First, we identify and label the nodes of the circuit as shown in Figure 6.

![Figure 6](image)

Figure 6. Labeling the nodes of the circuit from Figure 5.

Apply Kirchhoff’s current law (KCL) at node b to get

$$ i_5 + (-3) = 0 \quad \Rightarrow \quad i_5 = 3 \text{ A} $$

Apply KCL at node a to get

$$ -2 = -3 + 5 + i_4 \quad \Rightarrow \quad i_4 = -4 \text{ A} $$

Apply KCL at node d to get
Apply Kirchhoff’s voltage law (KVL) to the loop consisting of elements A, B and E to get
\[v_2 - (-5) - 6 = 0 \Rightarrow v_2 = 1 \text{ V} \]

Apply KVL to the loop consisting of elements B and C to get
\[v_3 - v_2 = 0 \Rightarrow v_3 = v_2 = 1 \text{ V} \]

Finally, apply KVL to the loop consisting of elements C, D and F to get
\[-v_4 + 4 - v_3 = 0 \Rightarrow v_4 = 4 - v_3 = 4 - 1 = 3 \text{ V} \]

Example 4:
Consider the circuit shown in Figure 7. Determine the power supplied by element B and the power received by element F.

![Figure 7](image)

Figure 7. The circuit considered in Example 4

Solution: Figure 7 provides a value for the voltage across element B but not for the current, i, in element B. The voltage and current of element B given in Figure 7 adhere to the passive convention so the product of this voltage and current is the power received by element B. Similarly, Figure 7 provides a value for the current in element F but not for the voltage, v, across element F. The voltage and current of element F given in Figure 7 do not adhere to the passive convention so the product of this voltage and current is the power supplied by element F.
We need to determine the current, \(i \), in element \(B \) and the voltage, \(v \), across element \(F \). We will use Kirchhoff’s laws to determine values of \(i \) and \(v \). First, we identify and label the nodes of the circuit as shown in Figure 8.

Figure 8. Labeling the nodes of the circuit from Figure 7.

Apply Kirchhoff’s current law (KCL) at node \(a \) to get

\[
i = -3 + (-4) + 10 \quad \Rightarrow \quad i = 3 \text{ A}
\]

The value of the voltage across element \(B \) in Figure 8 is 6 V. The voltage and current of element \(B \) given in Figure 8 adhere to the passive convention so

\[
p_B = (6) i = (6)(3) = 18 \text{ W}
\]

is the power received by element \(B \). Therefore element \(B \) supplies -18 W.

Next, apply Kirchhoff’s voltage law (KVL) to the loop consisting of elements \(D, F, E \) and \(C \) to get

\[
4 + v + (-5) - (6) = 0 \quad \Rightarrow \quad v = 7 \text{ V}
\]

The value of the current in element \(F \) in Figure 8 is 10 A. The voltage and current of element \(F \) given in Figure 8 do not adhere to the passive convention so

\[
p_D = v (10) = (7)(10) = 70 \text{ W}
\]

is the power supplied by element \(F \). Therefore element \(F \) receives -70 W.
Example 5:
Consider the circuit shown in Figure 9. Determine the values of the currents in and voltages across the various circuit elements.

![Figure 9](image)

Figure 9. The circuit considered in Example 5

Solution: First, we identify and label the nodes of the circuit as shown in Figure 10.

![Figure 10](image)

Figure 10. Labeling the nodes of the circuit from Figure 9.

Apply Kirchhoff’s current law (KCL) at node a to get

$$i_2 + (-3) = 0 \quad \Rightarrow \quad i_2 = 3 \text{ A}$$

Apply KCL at node d to get
Apply Kirchhoff’s voltage law (KVL) to the loop consisting of elements A, B and C to get

$$i_3 + (-3) = 0 \Rightarrow i_3 = 3 \text{ A}$$

Apply KCL at node c to get

$$i_6 = 2 \text{ A}$$

Apply KCL at node f to get

$$i_5 + i_6 = 0 \Rightarrow i_5 = -i_6 = -2 \text{ A}$$

Apply KVL to the loop consisting of elements D, E and F to get

$$-(-2) - (v_6) + 4 = 0 \Rightarrow v_6 = 6 \text{ V}$$

Finally, apply KCL at node b to get

$$i_2 = i_7 + 2 \Rightarrow i_7 = i_2 - 2 = 3 - 2 = 1 \text{ A}$$

Example 6:
Consider the circuit shown in Figure 11. Determine the values of the currents in and voltages across the various circuit elements.

Figure 11. The circuit considered in Example 6
Solution: First, we identify and label the nodes of the circuit as shown in Figure 12.

![Figure 12. Labeling the nodes of the circuit from Figure 11.](image)

Apply Kirchhoff’s current law (KCL) at node b to get

$$i_2 + 2 = 0 \Rightarrow i_2 = -2 \text{ A}$$

Apply KCL at node a to get

$$i_1 = i_2 = -2 \text{ A}$$

Apply Kirchhoff’s voltage law (KVL) to the loop consisting of elements A, B and C to get

$$-2 + 8 - v_1 = 0 \Rightarrow v_1 = 6 \text{ V}$$

Apply KCL at node c to get

$$i_6 = 2 + 2 = 4 \text{ A}$$

Apply KVL to the loop consisting of elements E and F to get

$$-12 - v_5 = 0 \Rightarrow v_5 = -12 \text{ V}$$

Finally, apply KVL to the loop consisting of elements D and E to get

$$v_5 - v_4 = 0 \Rightarrow v_4 = v_5 = -12 \text{ V}$$
Example 7:
Verify that power is conserved in the circuit shown in Figure 11.

Solution: The values of the currents in and voltages across the various circuit elements were determined in Example 6. Let’s summarize what we know in the following table.

<table>
<thead>
<tr>
<th>Element</th>
<th>Current, A</th>
<th>Voltage, V</th>
<th>Adhere to passive convention?</th>
<th>Power received, W</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-2</td>
<td>6</td>
<td>Yes</td>
<td>-12</td>
</tr>
<tr>
<td>B</td>
<td>-2</td>
<td>-2</td>
<td>No</td>
<td>-4</td>
</tr>
<tr>
<td>C</td>
<td>2</td>
<td>8</td>
<td>Yes</td>
<td>16</td>
</tr>
<tr>
<td>D</td>
<td>2</td>
<td>-12</td>
<td>No</td>
<td>24</td>
</tr>
<tr>
<td>E</td>
<td>2</td>
<td>-12</td>
<td>No</td>
<td>24</td>
</tr>
<tr>
<td>F</td>
<td>4</td>
<td>12</td>
<td>No</td>
<td>-48</td>
</tr>
</tbody>
</table>

The sum of the power received by all of the elements in the circuit is zero so power is conserved.