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PROBABILITIES OF FIRST-ORDER SENTENCES
ABOUT UNARY FUNCTIONS
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JAMES F. LYNCH!

ABSTRACT. Let f be any fixed positive integer and ¢ a sentence in the first-order
predicate calculus of f unary functions. For positive integers n, an n-structure is a
model with universe {0,1,...,n — 1} and f unary functions, and p(n, ¢) is the ratio
of the number of n-structures satisfying o to n"/, the number of n-structures. We
show that lim,_,  pu(n, o) exists for all such o, and its value is given by an
expression consisting of integer constants and the operators +, —, -, /, and e*.

1. Introduction. Let f be a fixed positive integer and P a property that pertains to
structures <A, F,... ,Ff>, where 4 is a set and F,... ,Ff are functions from A4 to 4.
If A is a finite set of cardinality n, we say that the probability of P on 4 is

|{<F1,...,Ff>: P is true for <A, Fl,...,Ff>}|/n”f.

That is, we regard Fi, ..., F;as random functions on 4, where the n choices for F,(x)
are equally likely forx e Aand1 < g < f.

If P is isomorphism invariant, then this probability depends only on the cardinal-
ity of A, and we express it as u(n, P). A number of papers have studied u(n, P) for
particular instances of P. N. Metropolis and S. Ulam [18] defined the notion of a
random function and posed the problem of determining the expected number of
components (for f = 1), conjecturing that it was O(log n). M. Kruskal [14] subse-
quently proved that it was log,n + C + o(1), where C = 0.5772... is Euler’s
constant. L. Katz [13] found an expression for the probability that a random
function is connected (i.e. has only one component), and showed that it was
asymptotic to (7/2n)'/2. B. Harris [12] computed the probability distributions of
related quantities, such as component size and cycle size. Similar results have been
found for some restricted classes of unary functions, for example random “hollow
mappings”, i.e. functions without fixed points, in [13] and random permutations in
L. Shepp and S. Lloyd [21].

Some of the properties that these authors investigated are second-order. That is,
they are expressible by a formal sentence which has variables that are interpreted as
sets, as opposed to first-order sentences whose variables are all interpreted as
individual elements. In fact, as H. Gaifman [9] and others have shown, the property
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of connectedness for many kinds of finite binary relations, including unary func-
tions, is not first-order expressible. Nevertheless, first-order sentences can express a
wide variety of properties, for example, the properties of having a component or a
cycle of fixed size. In this paper we study the asymptotic behavior of u(n, o), where
o is any sentence in the first-order predicate calculus of unary functions.

The first example of a limit law for probabilities of first-order sentences is the
following, due to Y. Glebskii et al. [10]. Let o be any first-order formula pertaining
to structures ( 4, Ry,...,R,), where 4 is a set and each R, is a d -ary relation on A.
Letd = ¥/_, d; and x,,...,x, be the free variables of 0. Then for n > k, v(n, 0) is

I{{R,,...,R,): ois true for {4, Ry,...,R,)}| /2",
where 4 is any fixed set of cardinality n and x,,...,x, are interpreted as any fixed
distinct elements in A. Here we regard each R, as a random relation on A4, where the
probability that (yy,...,y,) € R;is 1/2 for yy,...,y, € A. Then

1.1 THEOREM (GLEBSKII ET AL.). (a) For every first-order relational formula o,
lim v(n, 0) exists and is a dyadic rational, i.e. of the form u/2° for nonnegative
integers u and v.

(b) If o is a sentence, then lim v(n,o)is 0 or1.

n— o0

It is not difficult to show that every dyadic rational in [0, 1] is lim
some o as in (a).

Part (b) of Theorem 1.1 was discovered independently by R. Fagin [6], who asked
whether lim,,_,  p(n, o) always exists if o is a sentence in the first-order predicate
calculus of one unary function. He gave an example showing that the limit need not
be rational: let o be Vx(F(x) # x), i.e. F has no fixed poiats. Then lim,_, ,u(n, o)
= ¢~ !. The main result of this paper is the following. Let Q, be the smallest set of
real numbers containing 1 and satisfying the following. If g € Q, and j € w, then
q’e”9/j' € Qoand 1 — (Z,;q°/sNe” 7 € Qy; if g0, 41 € Qo then goq; € Q. Note
that Q, < (0,1]. Let Q consist of all reals in [0, 1] which are sums of products of
numbers of the form (g/a)’e%/%/j! or 1 — (ngj(q/a)s/s!)e“’/“, where ¢ € Q,,
1 < a € w,j € w. We take the null sum to be 0 and the null product to be 1. Then

v(n, o) for

n— oo

1.2 THEOREM. Let o be a sentence in the first-order predicate calculus of f unary
functions. Then lim,,_,  p(n, o) exists and is in Q.

This extends a result announced in [16].
It is an open problem whether every element of Q is lim,_, , u(n, o) for some o.
Similar theorems apply to some closely related classes of finite structures.

1.3 THEOREM. Let o be a sentence with binary relation symbols F,. .. ,Ffand

w(n,0)= |{<F1, . ,Ff>: F\,...,F;are partial unary functions on n and o is true for
(n, Fy,...,E)}|/(n + D",

py(n, o) = |{<F1,...,Ff>: F,...,F; are unary functions on n with no fixed points
and o is true for (n, Fy,...,F;)}|/(n — D",

pi(n,0) = |{<Fl,...,Ff>: F,,...,F; are permutations on n and o is true for
(n, Fy,...,E)}|/(n))".

Then fori =1,2,3,lim,_ p,(n, o) exists and is in Q.
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ADDED IN PROOF. A proof for the result on p; can be derived from our proof of
Theorem 1.2 by making minor changes to the counting arguments in §7. In fact,
Theorem 1.2 and the result on u, are immediate consequences of the result on p,.
Also, Theorems 1.2 and 1.3 extend to the language with names for individual
integers.

Recently, K. Compton (unpublished) proved

1.4 THEOREM. Let o be a sentence in the monadic second-order predicate calculus of
one unary function. Then lim,_, Y7 n(m, 0)/n exists.

Theorem 1.4 does not characterize the possible values of the limit, and it is not
known whether it can be extended to more than one unary function, nor is it known
whether Theorem 1.2 can be extended to monadic second-order sentences.

While there are some similarities in the proofs of Theorems 1.2 and 1.4, in
particular the use of the Ehrenfeucht game to characterize classes of indistinguisha-
ble structures, these theorems are representative of two different approaches to the
study of asymptotic probabilities. The proof of Theorem 1.2 has the same general
structure as the proofs of the limit laws in [15]. For k£ € w two technical conditions,
k-richness and k-simplicity, are defined on the class of structures with f unary
functions. k-richness corresponds roughly to k-extendibility of [15], and they are
both somewhat involved. However, they are essentially modifications of an earlier
notion used by Gaifman [8] to prove a 0-1 law for countable relational structures, by
Reyes [20] to prove its topological analogue, and by Fagin [6] to prove the finite
version (Theorem 1.1(b)).

An equivalence relation called k-agreeability is also defined. It corresponds to a
simpler (unnamed) equivalence relation in [15], and is used in the same way: we
show (Theorem 4.2) that there is a winning strategy for player II in the Ehrenfeucht
game of length k on two k-simple and k-rich structures that are k-agreeable. Since
there are only finitely many k-agreeability classes, the limit law follows when we
show that almost all structures are k-simple (Theorem 4.3) and k-rich (Theorem 4.4),
and that the probability of belonging to a given k-agreeability class approaches a
limit for large structures (Theorem 4.5). However, the counting arguments used to
calculate the probabilities in [15] are straightforward. Here, certain inductively
defined formulas are used to characterize the k-agreeability classes. Then an exten-
sion of the principle of inclusion-exclusion is used to remove the quantifiers while
inductively computing the probabilities of these formulas. This results in infinite
series that converge to expressions involving the e* operator. Infinite series also play
a central role in Theorem 1.4 and related results of [2], but in a different way: they
are generating series where the coefficient of x” is determined by the number of
structures of cardinality n. Also, the methods of [2] may be regarded as more general
but less constructive than our methods, which give some idea of the values of the
limits.

2. Model-theoretic definitions. For a more complete description of the notation
and basic concepts of model theory, see Chang and Keisler [1]. Let 4 and B be sets.
4B is the set of all functions from A4 to B. A partial function from 4 to B is a subset
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of some member of #B. w is the set of natural numbers, and we identify each n € w
with the set {0,1,...,n — 1}. Thus if f, n € w, then /("n) is the set of all sequences
<F1,. .. ,Ff>, where each F, is a function from n to n.

Throughout the rest of this paper, f € w will be fixed. We shall consider models 9
of the form <A,F1,. Y VNN ,ck>, where A is a set (the universe of %), each F,is
a partial function from 4 to A, kK € w and each ¢ is an individual constant.
Henceforth, structure will mean a model with f partial unary functions and finitely
many constants. If all of the partial functions are actually functions, we will say that
the structure is functional. We shall also consider substructures of 9. If B C 4 and
{(¢jeeere;} = {C1eenncy) N B, then® = (B, F, N?B,...,F,0?B,c;,...,c,) is the
substructure of A with universe B. We shall usually put F, for F, N2B in B because
the context will be clear.

The formal language we will use to express properties about structures is the
first-order predicate calculus of f binary relations and arbitrarily many constants.
Since the binary relations are always interpreted as partial functions, we will use
functional instead of relational notation. That is, x,, x;,... are variables, ¢;, c,,...
are constant symbols and the atomic formulas are u = v and F,(u) = v, where
1<g<fandu,v € {xg x1,...} U{cy, ¢yy...}. Informally, we shall use x, y, z as
variables, understanding that they are abbreviations for certain x,, x;, x,. It will
sometimes be convenient to write F,(u) = v, where —f < g < —1. This will mean
F_,(v) = u. More complex formulas are constructed by applying the logical connec-
tives —, V, A, = , « (not, or, and, implies, if and only if) and the quantifiers 3x,,
Vx; (there exists x,, for all x,) to the atomic formulas. The depth of a formula is
defined inductively: atomic formulas have depth 0, if « and B have depths a and b
respectively, then —a has depth a; a V B8, a A B, a = 8 and a © B have depth
max(a, b); and Ix(a) and Vx(a) have depth a + 1. A sentence is a formula with
no free variables. We put a(x,...,x,,) for a a first-order formula with free
variables x,,...,x,,. For % = <A, F,....F, cl,...,ck> and xg,...,x, €4, A E

a(xg,...,xX,,) means a is true in % with each symbol x, (i < m), F, (1 < g < f), and
¢, (1 <Jj < k) interpreted as the corresponding object in . If the interpretation of
Xgs---»X,, 18 clear we often write ¥ & a. a(x,...,x,,) is consistent if there is a
functional ¥ and x,...,x,, in A such that A E a(x,...,x,,). a(x,...,x,) and
B(xg,...,x,,) are equivalent if for all functional A and x,...,x, in A, AE
a(xg,---5%,) < B(xg,-..,X,). In certain instances, the correspondence from sym-

bol to object is ambiguous unless a distinction between them is made. Thus, if ¢; is a
constant symbol and x € 4, ¢;[x] is the constant c; interpreted as x in 9. We shall
also use pairs of models A° and A', where for p = 0,1 we put A7
= (A7, Ff,...,FP,cl,... cf). In this case F, (1 < g < f) and ¢; (1 <j < k) are
interpreted as F/ and c/ respectively.

Let a and B be sentences.

p(n,a) =l{<F1,...,I‘}> e/ ("n): <n,F1,...,Ff> = a}|/n"f
and

n(n,alB)=p(n,a)/u(n,B).
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Of course, p(n, @) is also a conditional probability in a similar way: for any sentence
v with f binary relation symbols let

£(n,v) =|{(Ri,- R €7("2): (n, Ry, R v}/@”y.

Then if 8 is the conjunction of the axioms of f unary functions, u(n, y) = §(n, v|9).

For p=10,1 let AP = (AP, F{’,...,Ff’) be a structure, and let k € w. The
Ehrenfeucht game T, (%° A') is the following game of perfect information. It
consists of k steps. For 1 < i < k, step i consists of player I selecting an interpre-
tation for c; in either of the structures, say %7, followed by player II selecting an
interpretation for c, in the other structure %' ~7:. We shall also refer to step 0 as the
initial condition of the game before step 1. Player II wins if

0 0 0 0 .0 0
<{c1,...,ck},F1 ,...,Ff R cl,...,ck>

is isomorphic to

<{cl, NS B 2 O L c}(>

The game and the following theorem can be extended to pairs of models of any
finite type.

2.1 THEOREM (EHRENFEUCHT [4]). Player 11 has a winning strategy for T,(A°, A")
if and only if A° and A" are indistinguishable by any sentence of depth k.

3. Combinatorial definitions. Let I = ( A, F,....F e, ,ck> be a structure and
x, y € A. A path from x to y is a finite sequence (X0> 805 X1 815 -+ sXm—15 8m—1> X0,
where x = x(, y = x,,, x,=x; only if i=j or i, j € {0,m}, g;€ {£1,...,£f}
and ¥ = F, (x,) = x,,, fori < m. Also, if m = 2and x = y,theng, + —g;.

The length of the path is m. If m > 1 and x = y, then the path is a cycle of size m
and {xg,...,X,,} is said to be a cycle set. 8(x, y) is the minimum path length from x
to y. Putting x = y for 8(x, y) < w, it is clear that = is an equivalence relation on
A. Its equivalence classes are called components of U, and if %A has only one
component it is said to be connected. It is also evident that & is a metric on the
components of 2. We extend 8 to subsets B,C of A: 8(x, B) =8(B, x)=
min{8(x, y): y € B} and 8(B, C) = min{8(x, y): x € B,y € C}. We say that A is
a ¢yclic if it has no cycles.

The center of a component of % is the minimal connected set containing the cycle
sets and constants in the component, and the center of 2 is the union of the centers
of its components. It is easy to see that the center is unique. If Z is the center of ¥,
the radius of % is max{8(Z, x): x € A}. Therefore if A has finite radius then every
component has a nonempty center.

ForBC Aandr € w,

N(B,r)={x€A:8(B,x)<r}
and
N (B,r)=(N(B,r),Fy,....E;, C;..0n6;),
where {¢;,...,c;} = {¢: 8(B,¢)) <r}.
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Let B be a structure with radius r. B is said to be realizable if there is some
functional structure ¥ with center Z such that ®B is isomorphic to A" (Z, r).
Equivalently, for every x in B whose distance from the center of 9B is less than r and
everyg = 1,...,f, F,(x)isin B.

4. Outline of proof of main theorem. The proof of Theorem 1.2 consists of three
parts.

I. For each j € w, an equivalence relation called j-morphism is defined on the
class of structures with finite radius. In each j-morphism class, all members have
isomorphic centers and equal radii. Thus, if P is an isomorphism invariant property
and r € w we shall say that a j-morphism class has center with property P and
radius r if each of its members do. Similarly, a j-morphism class is realizable if any
(equivalently, all) of its members are.

It will be seen that there are only finitely many j-morphism classes with fixed (up
to isomorphism) center and radius.

II.Letl < k€Ewand A = <A, F,... ,Ff> U is said to be k-simple if there are no
cycle sets X, X; C 4 such that X, # X, | X,|, | X;| < 2 - 3*7! + 1 and 8(X,, X,) <
2-3%"1 % is said to be k-rich if for every i = 1,...,k, every realizable acyclic
(k — i)-morphism class C with center {c,} and radius 3*~* and every x,,...,x,_, €
A, there is some x € A such that 8(x, {x,,...,x,_;}) > 3*7, 8(x, X) > 3K~ for all
cycle sets X of size < 237"+ 1, and <N(x,3""), F,....F, c,.[x]> € C.

Leti, j € w, and D,,...,D,_; be an enumeration of all j-morphism classes with a
single cycle of size <2 -3/ + 1, constants among c,,...,c; and radius < 3/. For
p=0,11et A? = (AP, FP,...,FP,cf,...,c?). We put 82, N?, 47 for &, N, #'in
AP Forp=0,1anda < dlet
(4.1) §? = {X: Xisacyclesetin A? and #'?(X,3/) € D, }.

Then % is said to be j-agreeable to A if and only if for all a < d,
1S =|8Y or |S2,|Si > .
Clearly this is an equivalence relation with only finitely many (in fact (j + 2)¢)
equivalence classes among structures with constants c,,...,c
We will prove

b

I

4.2 THEOREM. Let k € w and A°, A be structures with no constants. If A° and A*
are k-simple and k-rich and %° is k-agreeable to A*, then T,(A°, A") is a win for
player 11.

III. Lastly, we prove the following for all k € w.
4.3 THEOREM. lim,,_,  u(n, % is k-simple) = 1.
4.4 THEOREM. lim,,_, , u(n, U is k-rich) = 1.

4.5 THEOREM. For every k-agreeability class K on structures with no constants, there
isq € Qsuch thatlim, , p(n, % € K)=gq.

Given these results the proof of Theorem 1.2 is straightforward. For fixed k € w,
let R = {A: A is k-simple and k-rich} and let K,...,K,_; be the k-agreeability
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classes on structures with no constants. Given a sentence o of depth &, for any i < h
it follows by Theorems 4.2 and 2.1 that either Y F o foral Y € RN K, or A E — 0
forall¥ e RNK, LetE={i<h:AkEoforA € RN K,} Then
p(n,o)=p(n,o AAER)+ Y p(n, A€ RNK,).
i€E

Therefore

lim p(n,0)= Y lim p(n, A € K,) by Theorems4.3 and 4.4,

n— oo ieE n— oo

€ Q by Theorem 4.5.

5. Definition of j-morphism. The following notation will be used repeatedly in this
and subsequent sections. Given U = <A, Fi,....E,c,,... ,cj'> with center Z and
X €A,

(5.1) A, ={y€d:8(Z,y)=8(Z,x)+8(x,y)}
and
A= (A B = {6 )} — (5, 00}, calx1).

Since 4, N Z = {x} N Z, A is acyclic. Since y € A, if and only if the unique path
from Z to y includes x, % , is connected.

We first define j-morphism for pairs of acyclic connected structures with a single
constant, say ¢;. We use induction on r, the maximum of their radii. At each step of
the induction it will be clear that among such structures with radius < r, isomor-
phism implies j-morphism, there are only finitely many j-morphism classes and in
each class all structures have equal radii and either all of them are realizable or none
of them are. To begin the induction, we define all pairs of such structures with r = 0
to be j-morphic.

Now assume r > 0 and that j-morphism has been defined for acyclic structures
with center {¢,} and radius < r. Let Cy,...,C,_,, where ¢ € w, be an enumeration
of the j-morphism classes among such structures.’

For p=0,11let A’ = <A”, Fr,. ..,Ff”, c{’} be acyclic with radius < r. For each
x € NP(cf,1) = {c]} let gZ be the unique g € {+1,..., £} such that F/(¢{) = x.
Note that the radius of % £ is less than r.

Forp=0,1,g€ {+1,...,+f}anda < clet

(5.2) S = {xe N?(cf,1) —{cf}: g =gand AL € C,}.
Then we define %° to be j-morphic to %! if and only if for all such g and a,
[eal =182 or[Sgl |85

Clearly there are not more than (2(j + 2))¢ j-morphism classes among acyclic
structures with center { ¢, } and radius < r.

To extend j-morphism to all structures with finite radius, for p = 0,1 let A”
= <A1’, F{’,...,Ff’, c}i,...,c}”> with center Z”. If there is an isomorphism 6 from
<Z°,F1°,...,Ff°,cj‘:,...,cf> onto <Zl,F11,...,Ffl,c}l,...,c}'> such that for each
x € Z° % is j-morphic to A}, then we say that A° is j-morphic to A" via 6. It is

> j.
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clear that for all » € w, there are not more than ¢'Z’ j-morphism classes among
structures with center isomorphic to Z° and radius < r, where c is the number of
Jj-morphism classes among acyclic structures with center { ¢, } and radius < r. Also,
isomorphism implies j-morphism, and in each class all structures have equal radii
and either all of them are realizable or none of them are.

6. Proof of Theorem 4.2.
6.1 LEMMA. Let %° and A* be j-morphic with centers Z° and Z' respectively. Then
for every k < jand s € w, /' °(Z°, s5) is k-morphic to /'/(Z, s5).

PROOF. We first prove the lemma for the case when A7 = < AP FF,... ,Ff” ,cf > is
acyclic (p = 0,1). Thus Z? = {¢{}. We use induction on s. For s = 0, the result is
immediate because #"°(Z°,0) and A#"1(Z?, 0) are isomorphic.

Now assume that s > 0 and the result holds for 0,...,s — 1. Let » be the radius of
AP (p=0,1),let A2 and AL be as in (5.1) for x € A?, and let

BP = A2 N N?(Z?,s)
and
B? = <B§’, FP —{(x,x)},....Ff —{(x,x)}, cl[x]>

for x € N?(Z?, s). Note that the radius of B7 is less than or equal to s, and is equal
tosifand onlyif x = ¢f ands < r.

Let C,,...,C._, (respectively D,,...,D,_,) be an enumeration of all acyclic
j-morphism (respectively k-morphism) classes with center {c;} and radius <r
(respectively s). Let ¥, be asin (5.2) forp = 0,1,g € {£1,...,+f} anda < ¢, and
let

T} = {x e N?(cf,1) —{cf}: g2 =gand BL € D, }
for b < d. Fixing g and b, it is clear that
15 c U Sk,
a<c
By the induction assumption, for a < c,
Sy, cTh forp=0,1 or S;,NTj=@ forp=0,1.
Letting E = {a: S}, € T}, },
|Th|= X |SE| forp=0,1.
a€E

Since A% and A! are j-morphic, for a < c,

0
S5

_ o1
- |Sga

0
or |Sga s

1
Sga

> J.
Therefore

o] — |1 0
ngb|_|Tgb| or |Tgb|’

Tyl > k.
and it follows that #"°(Z°, s) is k-morphic to A#"'(Z?, s).
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To extend the proof to all structures, let A° and %' be j-morphic via . Then for
each x € Z°, % is j-morphic to A},,,. By what was shown above, B}, is k-morphic
to B}, Therefore #"(Z°, 5) is k-morphic to NYZY, s)viag. O

6.2 LEMMA. Let %° and A" be j-morphic via 6 with centers Z° and Z* respectively.
Then for every s € w and X° C Z° such that #°%(X°, 5) has finite radius, #"°(X°, 5)
is j-morphic to /" (8( X°), s) via 6.

PrROOF. Let X! = 8(X°) and let Y? be the center of #"?(X?, s) for p = 0,1. Then
Y? Cc Z? and Y! = 6(Y°). For x, y € N?(X?, 5) let {?(x, y) be the minimum path
length in A"?(X?, 5) from x to y. For x € A” let AZ and %7 be as in (5.1), and for
x € N?(XP?, s) let
BP = {y € NP(X?,5):$7(Y?, y) = §7(Y”, x) + {P(x, »)},
B2 = <Bf, FP —{(x,x)},....Ff — {(x,x)}, cl[x]>,
p?(x) = max{{’(x, y):y € BI N Z%}.

If we prove the following, we will be done.

Cram. For all x € N°(X?, s) N Z°, B is j-morphic to B,

We prove the Claim by induction on p°(x).

Fix x € N°(X°, s) N Z° We will sometimes put x° for x and x* for 8(x). If
p°(x) = 0, then since 8 is an isomorphism from Z° onto Z*, p'(6(x)) = 0. Therefore,
forp =0,1,

B = A%, N N?(xF,s — 87( X7, x7)).
Since %9 is j-morphic to },,, it follows by Lemma 6.1 that B} is j-morphic to
%})(x)'

Now assume that p°(x) > 0 and the Claim holds for all y € N°(X?, 5) N Z° such
that p°(y) < p°(x). If 8°(X°, x) = s, then BZ, C Z? for p = 0,1, implying B is
isomorphic to Bj,,. Thus let us assume §°( X°, x) < s. Let r be the maximum of the
radii of %A%, and B2 (p = 0,1), and let C,,...,C,_; be an enumeration of all acyclic
j-morphism classes with center { ¢, } and radius < r.Forp =0,1,g € {£1,...,+f}
anda < ¢, let

S2 = {y e N?(x?,1) N A% —{x"}: g7 = gand AL € C,},
T, = {y € N (x?,1) N Bl —{x"}: gy = gand B} Gl
UhL =15 2%, Ve =ThLNZ".
Since 8”( X?, x?) < s, it is easily seen that N?(x?,1) N B, — Z? = N?(x%,1) N
A%, — {x?}. Therefore, fixing g and b < c,
usc U Sk

a<c 8
and by Lemma 6.1, fora < c,
S, c UL forp=0,1 or S;NUj=0 forp=0,1.
Since % { is j-morphic to Ap,,,, for a < ¢,
58] =[s) or Js2l.Isil>

K

1
Sea
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Therefore
Ul =1Us| or |Ug]. U] > .
For every y € N%(x,1) N B N Z° — {x}, p°(y) < 0°(x) — 1. Therefore by the

induction assumption, SB;’ is j-morphic to EB},( »)- Since 6 is an isomorphism from Z 0

to Z', g) = gj,,- Therefore 6(V,3) = V), and

|Tg%| = |Tglb| or |Ts(27 ’
implying B ? is j-morphic to Bj,,. O

TL> J,

6.3 LEMMA. Forp = 0,1let A? = (AP, Ff,...,FF, c],...,cl.|), where1 < i € w.
If j > 0 and A° is j-morphic to N, then for every c® € A°, there is ¢! € A' such that
<A°, F,...,F’, c{’,...,c,o> is (j — 1)-morphic to <A1, Fl,....Fl e, ,c,1>.

PrOOF. Let %7 have center Z? (p = 0,1) and say %° is j-morphic to A* via §. We
use induction on s = §°(Z° ¢?). If s = 0, let ¢! = §(c°). The lemma then follows
immediately from Lemma 6.1.

Now assume that s > 0 and the lemma holds for s — 1. For p = 0,1 and x € 4”
let A2 and %A? be as in (5.1). There exist unique x° € Z° y° e 4% — Z° and
he {+1,...,4+f} such that ¢ € 4% C A% and FP(x°) = y° Let x' = 0(x°).
Since A% is j-morphic to AL, there is y' € AL such that Fj(x') = y' and A% is
j-morphic to L. Since 8%(»°, ¢?) = s — 1, by the induction assumption there is
¢; € A such that <A20, FC,... F?, aly°], c?> and <A§,1, Fl,...,F}, alrt], c,1>
are (j — 1)-morphic. (If i = 1, just use ¢,[ y*] for ¢;[ y*].)

For p = 0,1 let B? = <A", FP,...,Ff, c{’,...,c,”>. To prove that B is (j — 1)-
morphic to B!, first note that the center X7 of <A)’,’p, FY,... . Ff, e[ y7], c,") is the
set of points in the unique path from y? to ¢f, Z? N X? = @, and the center Y” of
B?is Z? U XP. Since X is isomorphic to X! and Ff(x?) = y? forp = 0,1, 6 can be
extended to an isomorphism from Y° onto Y.

For x € A7 let

By = {y€Ar87(Y?, y) = 87(Y", x) + 87(x, y)},

B? = <Bf, FP —{(x,x)},....Ff —{(x, x)}, cl[x]>.
We complete the proof by showing that for x € Y, 89is (j — 1)-morphic to Bj,,,.
There are three cases: x € Z° — {x°}, x € X%, and x = x°. If x € 2% — {x°},
then B = A2 and Bj,,= Up,,. Now A and Ajp,, are (j — 1)-morphic by
Lemma 6.1, and therefore so are B9 and Bj,,. If x € X°, then B and Bj,,, are
(J — 1)-morphic because

(A%, F,.. . F2 ¢)[°], %) and (AL, FL....F}ci[y'], )

are (j — 1)-morphic and BY € A%, By, C A}

If x = x9, let r be the radius of A2, (p = 0,1), and let C,,...,C,_, (respectively
Dy,...,D,_ ;) be an enumeration of all acyclic j-morphism (respectively (j — 1)-
morphism) classes with center {¢,} and radius < r. Forp = 0,1,g € {£1,..., £f}
and a < clet

Sy, = {)’ENP(XP,I)“A)’ZP—{x”}:g§’=gand%§’€ C,,},
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and for b < d let
Th={yeN"(x",1) "Bl —{x?}: gl = gand B2 € D, }.

Note that N*(x”,1) N Bf, = N?(x?,1) N A%, — { y”},and fory € N?(x”,1) N Bf,
B = AJ so the radius of B 5 is less than r.

Therefore, fixing g and b,

The USshL—{»"),

and by Lemma 6.1, fora < c,
Sy —{y?"}yc T} forp=0,1 or (S, —-{y’})NThL=2 forp=0,1.
Let k < ¢ such that y” € S for p = 0,1, and let E = {a: Sf, — {y”} C Th) It
g#hork & E,

|T;Z,|= Y |sz) forp=0,1,

a€E

andifg=hand k € E,
ITal= X ISg]-1.

a€E

Since A % and A, are j-morphic, for a < c,

0
S5

_ o1 0
_|Sga| or |Sga

1
Sga

> .

b

Therefore

o _ 1 0
T =|Tgs| or |3,

Th>j -1,

and it follows that B is (j — 1)-morphic to Bj,,. O

We now proceed with the proof of Theorem 4.2. Let k€ w and %7
= <A1’, F{’,...,Ff"> forp=0,1.If i < kand ¢f,...,c/ € A” are constants chosen
in the Ehrenfeucht game, we put 91p<c{’,...,c{’> for <A”, F{’,...,Ff”, c{’,...,ci">,
and for x € A” and r€w, we put #P(x,r){cf,...,cF) for #P(x,r) in
AP < ¢f,...,cP). Player IDs strategy will be to choose so that at each step i < k, the
following conditions hold:

Forl <h < i,./V'O(c,(,’,3"")<c{’,...,c?> and

6.4
64) ./Vl(c},,3"_‘)<c},...,c}> are (k — i)-morphic.

(6.5) %[°<c{’,...,c?> and %1<c},...,c}> are (k — i)-agreeable.

If (6.4) holds for i = k, then player II has won. The proof that player II can
choose so that (6.4) and (6.5) hold at each step i is by induction on i. For i = 0, (6.4)
is vacuously true, and (6.5) holds by assumption.

Now let us assume that i > 0 and (6.4) and (6.5) hold for i — 1. By symmetry, say
player I chooses ¢? € A°. There are three cases.

CaseL 8%, {c?,...,¢2 1)) > 3k "and §°(c?, X) > 3%/ for all cycle sets X < A°
of size <2 - 3%+ 1. Then A#"°(c?,3*)(cd,...,c?) is acyclic with center {0}
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and radius 3%~%. Since A is k-rich, there is ¢! € 4! such that 8'(c}, {c},...,c}_1}) >
3k=i 8(cl, X)> 3*% for all cycle sets X C 4" of size <2-3*'+1, and

NO(c?, 3k ’)<c1,.. ¢?) is (k — i)-morphic to A#"(c}, 3%~ ’)<c1, ,eh).

To show (6.4) holds, let & < i. By the induction hypothesis for (6 4) and Lemma
6.1 and Lemma 6 2, NP, 3k ’)<c1 . ..,c?_1> is (k — i)-morphic to

MYk, 35l el ). Since 87(cf, c?) > 3+~ for p = 0,1,

Vs (c,{’,3k-")<c{,...,c,.1’>=mp(c;,3k-i)<c{,...,c,P_1>,

therefore A4 %(cy, 3"“)<c{’,...,c?> is (k — i)-morphic to A#"(ch, 3*)(cl, ... ,c}).

To show (6.5) holds, let D be a (k — i)-morphism class with a single cycle of size
< 2 - 3K + 1, constants among cy,. . .,c; and radius < 37/, and for p = 0,1

T? = { X: Xisacyclesetin A7 and #"°(X,3*7)(c},...,c/) € D}.
For all cycle sets X in UA? of size <2-35"+ 1, #P(X,3* ) cP,...,cP) =
NP(X, 3571 (cP,...,cP_,) because 87(X, c?) > 3*~. Therefore T? = @ if ¢, is a
constant in D. If ¢, is not a constant in D, let C,...,C._, be an enumeration of all
(k — i + 1)-morphism classes with a single cycle of size < 2 - 3¥~7 + 1, constants
among c,,...,c;_, and radius < 3*”*! andforp = 0,1 and a < c,
S? = { X: Xisacyclesetin A7 and A7 (X, 34" 1) (¢f,...,cl,) € C,}.
Then
TP C U S?
and by Lemmas 6.1 and 6.2, for a < c,
SPcT? forp=0,1, or SPNTP=@ forp=0,1.
Letting E = {a: S C T?},

|T?|= Y |S?| forp=0,1.

a€FE

By the induction assumption for (6.5), for a < c,
o] =|s3| or SO, [Si]>k—i+1.
Therefore
T =|T" or |T%,|TY>k—i,

which implies (6.5).

CASE 11 8°(c?, X°) < 3k~ for some cycle set X° C 4° of size <2 -3%~"+ 1. By
the induction assumption for (6.5), there is X* C 4! such that

JVO(X°,3k“+1)<c{’,...,c?_1>
is (k — i + 1)-morphic to A"(X?, 3k'i+1)<c},...,c}_1>. By Lemma 6.3, there is
¢! € NY(x?, 3ki*1) such that
./VO(XO,3"'i+1)<c?,...,c?>

is (k — i)-morphic tOJVl(Xl,3k"+1)<c},. yeb).
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To show (6.4) holds, take h < i. First, suppose 8°(X° ¢)> 2- 3" Then
81( X, c}) > 2 - 3k~1 Therefore by the triangle inequality for 87 (p =0,1),
87(cp,c?) > 3%~ As in Case 1, it then follows thatt"%(cd,3%7)(c?,...,c?) is
(k — i)-morphic touVl(c},,3"‘i)<c},. ..,c}). :

Now suppose 8§°( X9, ¢?) < 2 - 3/, Then 8!( X, ¢}) < 2 - 3*~7 and, by the trian-
gle inequality, N?(cf,3k~") c N?(Xx?,3%~*1) for p = 0,1. Therefore by Lemma
6.2, #°%(c2, 35 ) {c?,...,c0) is (k — i)-morphic to A (ch, 37 cL,.. ., cb).

To prove (6.5), let D and T? (p = 0,1) be as in Case I. If ¢, is a constant in D,
then since A ? is k-simple, by Lemma 6.2

TP =@ forp=0,1 or TP = {X?} forp=0,1.

If ¢, is not a constant in D, let Cy,...,C,_; and S? (p = 0,1, a < ¢) be as in Case L.
Then

T’ c U S?-{x"},

a<c
and by Lemmas 6.1 and 6.2, fora < ¢,
S? —{XP}ycT? forp=0,1 or (SZ—{X’})NnT?=@ forp=0,1.
Let h < c such that X? € §f for p=0,1, and E = {a: S — {XP}C T?}. If
h¢&E,
|T?|= 3 |S?| forp=0,1

a€E

andif h € E,
IT7= X I8]- 1.
a€eE
In either case,
T =T or |T9,|TY> ki,

and (6.5) holds.

Case IIL 8°(c?, {c?,...,c2 1)) < 3*7% but 8%c?, X)> 3% for all cycle sets
X C A° of size <2-3¥""+ 1. Let 1 < h < i such that §°(c?, c)) < 3*7'. By the
induction assumption for (6.4), #"%(c?, 3"““)((‘{’,. .. ,c?_1> is (k — i + 1)-morphic
to AN (ch, 3*7*1)(cl,...,cl ;). By Lemma 6.3, there is ¢} € N'(c}, 3*~"*") such
that A#7%(c}, 3"““)((‘?,. ..,c?) is (k — i)-morphic to./Vl(c},,3"'i+1)<c{,. ..,c}).

The proof of (6.4) is similar to the proof of (6.4) in Case II, and the proof of (6.5)
is the same as the proof of (6.5) in Case I.

This completes the proof of Theorem 4.2.

7. Proof of Theorems 4.3, 4.4, 4.5.

7.1 PROOF OF THEOREM 4.3. We estimate u(n, % is not k-simple) from above. Let
K be the class of all connected structures of cardinality < 2 - 3* + 1 with at least
two distinct cycles. Clearly there are only finitely many, say m, isomorphism classes
in K. For n € w let g(n) = max{p(n, A has a substructure isomorphic to B):
B e K)}. Then p(n, ¥ is not k-simple) < mg(n), and we need only show
lim,_,  q(n)=0.
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For any B = <B, Gl,...,Gf> €K, let b =|B| and ¢ = ¥, _,_/|G,|. By a graph-
theoretic argument (see Harary [11, p. 39]), » + 1 < c. Therefore

K

p(n, A has a substructure isomorphicto B) < n(n—1)---(n—b+1)/n“<n~!

and it follows thatlim,_, q(n)=0. O

The main tool for proving Theorems 4.4 and 4.5 is Lemma 7.10 below. It in turn
depends on the next sequence of definitions and lemmas.

The first two lemmas are generalizations of the principle of inclusion-exclusion
and Bonferroni’s inequalities (see Feller [7, pp. 106-111]). Their proofs were
suggested by the referee. Let G, H, I be finite sets. For each (h,i) € H X I let
P(h,i) € G. In the usual terminology G is said to be a collection of objects and each
P(h, i)is a property of some of the objectsin G. For § € H X I and i € I let

S(i)=SNnHx{i}, E>(S)= () P(h,i),
(h,i)es
E=(S)=E>(S) - U P(h,i).

(h,iyeHXI-S

That is, E> (S) is the set of objects that have all the properties in S, and E~(S) is
the set of objects that have all the properties in S and none of the properties in
HXxXI-S.

For s €/(|H| + 1) let L(s) = Lg|E> (S)|, where the sum is taken over all S such
that |S(i)| = s(i), i € I, and for J C I let M(J, s) = UgE~(S), where the union is
taken over all S such that |[S(i)| = s(i) for i € J and |S(i)| = s(i) forie I — J.
Thus M(J, s) is the set of objects with exactly s(i) properties in H X {i} fori € J
and at least s(i) properties in H X {i} fori € I — J. Lastly, for s, t €(|H| + 1) we
puts < tif s(i) < t(i)fori e I.

7.2 LEMMA. Let s €/(|H| + 1) and J C I such that s(i) > O fori € I — J. Then

ML) = X TI=D7(0)

rel(|H|+1) €/
t=s

i)—s(i -1
x [T (=) @7O(1070) x L(2).

iel—-J
Proor. For all SC€ H X1, E>(S)=U;,sE™(T). Since the sets E~(T) are

disjoint,

[E>(S)| = X |E(T)I,

28

and so by Mobius inversion

E=(5)| = ¥ (-)""PlE> (7).

TS
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Now

IM(J,5)| = §|E=(S)I = %ﬂ TZS(—I)'T"'S'IP(T)I,

where the sums are taken over all S such that |S(i)| = s(i) fori € J and |S(i)| > s(i)
for i € I — J. Reversing the order of summation gives

\M(J,5)| = ;|E>(T)| (=",

ScT

where T ranges over all sets such that |T(i)| > s(i), i € I, and S is restricted as
above.
Thus it remains to evaluate

Z(_I)ITI—ISI= n Z (_l)IT(l)I—IUI)( n Z (_l)IT(l)I—IUI

ScT I€J ycT@) i€l-J ycT(@)
|Ul=s(7) [Ul=s(i)

_ 1\ () =s()( 1) IR UORNOTROR
- n( 1) (s(x)) n (=1) ) (s(i)—l)’

ieJ ier—-J
where |T(i)| = t(i), i € I. This proves the lemma. 0O

7.3 LEMMA. Let s and J be as in Lemma 7.2. For t €'(|H| + 1) we put Xt for
Y. t(i). Then for every v = Ls

- 0 )~
)P x TT (97D <L) > 0.
tE’(|H|+1) ieJ iel-J
£

PROOF. Note that for r €/(|H| + 1) such that #(i) > 0 fori € I — J,

u(i) i) —
L= X H,(t((i)) . 1;11(;23)—11) X|M(J, u)l.
T 1€ el—
ue f‘|gl!+l)

To prove this, we regard the equations in the statement of Lemma 7.2, where s varies
and J is fixed, as a system of (|H|+ 1)V|H|"~/! linear equations with the same
number of unknowns L(¢), where ¢ varies. Thus by showing that the above formula
is a solution to the system of equations, it follows that it is the unique solution.

Substituting the above formula for L(z) in the equation of Lemma 7.2 and
reversing the order of summation gives

M(7,5) = Y [MUJ,u)| X n(‘”“””‘”(iﬁii)(f}ﬁ?)

uel(|H|+1) rel(H|+1) €7
uzs s<t<u

(i) —s()( D —1\ ru@)—1
X 1—1 (_1) (s(z)—l)(t(i)—l)'

iel-J
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The second sum on the right equals

H[ v (—1)W““>(;i)>("s>)]

€T | s(iysws<u(i)

<11 = (—1)”‘““(33..;_11)(“*31:1)]

PEI-T| s(iysw<u(i)

u(i) w=s(0)( u(iy—s(i
=11 (s(i)) r (-pm )( fv)—s<§)))]
ieJ s(i)y<sws<u(i)
<L B crote)
iel-J s(Hy<sw<u(i)
_ {1 ifu=s,
0 ifu>s.
Thus we get the identity | M(J, s)| = |M(J, s)|, proving that the formula for L(?) is
a solution.
To complete the proof of the lemma, by substitution of the formula for L(¢) and
reversing the order of summation

Si— . t(i)y—1

Y CDFIIED) % TT (o) x2()
tel(|H|+1) et iel=J

$is

= ¥ M@ T (=DFTT() )

ue!(|H|+1) rel(|H|+1) ies v
Eu>s s<t<u
uzv Yt>v
()= 1y u(i)—1
< TT (o) iyn )-
iellj s(y—1\1(iy-1

The second sum on the right equals

T¢I (57)) (=) ),

ieJ iel—-J vsw<Xu

and this last sum equals 1 if u = s and equals (5* %) > 0ifu > 5. O

7.4 LEMMA. Let u €“*°[0,00) and (u,:m € w) be a sequence in [0, )
satisfying the following:

(7.5) Y (=1)"u(n, m) converges foralln € w.
mew

(7.6) Y. (=1)"u,, converges.
mew

(7.7) lim u(n,m)=u, forallme w.
n—oo

(7.8) Y (=1)"""u(n,m)>0 foraln,v < .
m2=v

Then

im Y (-1)"u(n,m)= Y (-1)"u,,

-
=0 yew mew
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PRrROOF. Let ¢ > 0. By (7.6) there is M € w such that

X (-D"u,— X (-1)"u,
m<M mew
By (7.7) there is N € w such that |u(n, m) —u,| <e/3(M + 1) for m < M and
n > N.Then foralln > N,

L (=D"u(n,m) = ¥ (-1)"u,

<g/3 and u, <e/3.

< mgw(—l)'"u(n,m)—mgM(—l)'"u(n,m)
+ mgM(—l)'"u(n,m) - mgM(—l)'"um
+ X (D)"Y (=D)"u,
< u(:,<;) [by (7.8)] :i%dMW(n, m) —u,|+ ¢/3

<e/3+e3(M+1)+eM/3(M+1)+¢e/3=¢. O

The following notation and definitions will be used in Lemmas 7.9 and 7.10
below.

Let j € w be fixed and Cj, C;,... be an enumeration of all acyclic j-morphism
classes with center {c;} such that the radius of C, < the radius of C,; for all d < i.
For each d € w, we define a certain ¢, € Q,, using induction on the radius of C,.
qgo=1 Letr >0, Cy,...,C,_, be all the classes with radius < r, and let C, have
radius r. Assume ¢,,...,q._, have been defined. Now C, is characterized by a
sequence <sdga: ge{£l,...,+f},a< c> of elements in j + 2 in the following
way. For any acyclic structure U = <A, Fi,....F, c1> and g€ {£1,...,+f},
a <cletS,, beasin(5.2). Then A € C,if and only if for all such g and g,

|Sga| = sdga or |S3a|’ Sdga >j'

Since C, is nonempty, if g > 0 then s,,, < 1 for all a < ¢, and there is at most one
a < csuch thats,,, = 1. Let

I,={(g,a)e {£1,...,+f} Xc: g <0ors,, >0},
Viga = qie ?%/s! if g <0Oand Siga =5 <J,
=1—(Z‘1;§/S!)e_"“ ifg<Oands,,=j+1,
s<j
—q, ifg>0for (g a) <1,

and

q94= ]._.[ vdga .

(g.a)€ly

Let p, r € w. A formula a(x,...,x,_) is a diagram of x,,...,x,_; if it is of the
form A, </ ni<pYgnis Where each v, is Fo(x,) = x; or Fy(x,)# x,. For any
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structure % = <A, Fl,...,Ff>,x0,...,xp_1 € Aand x € N({x¢,...,Xx,_1}, 1) let
B (x5 3,1, r)= {y e N({xo,...,xp_l}, r): 8({x0,...,xp_1}, y)
= 8({x0,...,xp_1}, x) +8(x, y)},

B (xg,--s%,_1,7)

= (B (%05 3%y 1. 7) Fy = {(x, %) }oe o B = {(x, %)}, g x])
When x,...,X,_;, r are understood, we write B, and B,. Let C be an acyclic
Jj-morphism class with center ¢, and radius < r. For notational convenience, we will
treat “B, € C” as a first-order formula. Although it is irrelevant to the combina-
torial arguments that follow, it can be shown that it is equivalent to a first-order
formula with free variables x, x,,. . .,X,_;. This follows easily by induction on r (see
§5).

For i<p and n>p, u(n, B, € Cla) is independent of the choices of
Xg,---,X,_1 € n provided they are distinct, because Jj-morphism is isomorphism
invariant. Thus p(n, B, € Cla) will be taken to mean the probability for any
distinct x,,...,x,_, € n. We will use this convention implicitly for other formulas
whose probability is constant for all assignments of their free variables to distinct
elements.

Let B.(xg,.-.,X,_1) be a formula such that for all structures %A and x,,...,Xx,_;in
A, A = B(x,...,X, ) if and only if, for every x € N({x,,- .»X,_1}, 1), thereis a
unique path in N({x,,...,x,_1}, r) from {x,,...,x, ,} to x.

7.9 LEMMA. If a A A,<ic,X), # X; is consistent, where a is a diagram, then
limnaeop‘(n) Br'a) = 1‘

PROOF. We show lim,,_, (1, — B,|a) = 0. If A == B,(xo,...,X,_,), then there is
a sequence { Yy, 8os Vir--s8m_1> Ymy> Where 2<m <2r+1, {xg,...,%, 1} N
{(Yor- - Vm-1} = {0} Vm € {X0s--sXp 1} YU {Vor - sVmor b2 #Fyiforh < i<m,
gi€(+xl,...,xf}and A E F,(y) =y, fori <m,and g, ,# —g,_1

For 2<m<2r+1 and n € w let g(n, m) = p(n, A has such a sequence of
length m|a). Then p(n,—B,|a) < Xycmea,+19(n, m), and we need only show
lim,_  q(n,m)=0for2<m<2r+1

Since @ A A, <;<, X, #* x;is consistent, for n > p + m,

g(n,m)<p(p+m)2f)"(n=p)---(n—p—m+2)/n"
Therefore lim,,_, ,, q(n, m) = 0. a

7.10 LEMMA. For all p, r € w, a(xy,... ,xp_l) a diagram, E C p and b € Ew, where
the radius of C, is <r for each i €E, if a A N;cp B, € Cy A Ah<icpXp # X, IS
consistent, then

tim w(n, A9, Cyla) = [Ta,.
n-—00 i€E 1€EE

PrOOF. We use induction on 7. If » = 0, then b, = 0 for i € E, and for all % and
distinct x,...,x,_, in %, A= A,c; B, € C,. Since g, = 1, the lemma obviously
holds.

p
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Now assume that » > 0 and the lemma holds for » — 1. As before, C,...,C,_; are
the classes with radius < r. For g € {£1,...,£f} and 1 € w let aj(x, yy,-..,),_1)
be Ao, Fy(x) =y, let o;(xg,- .-, X,_1, Yos--->Yi-1) be A, B, € C, fora < ¢, and
for d such that C, has radius r let 7,,,(x, xo,...,x,_;) be

By - W A = A N m#Er Aag(x)Adg
h<p h<i<s
i<s

/\Vys(Fg(x) =»A8,€C~>Vy =y,-) if S0 = 5 <,

i<s
or

Ay, -+ 3y, A XpF Y A /\ Y F Vi A aé“(x) A "ajﬂ ifsdga =j+1
h<p h<i<j
i)
For every i € E, a A B, € C, is consistent by assumption. Therefore for 1 < g
< f, if 5., = 0 for all a < ¢, then Fy(x,) = x, is a conjunct in a for some & < p.
Then for every functional % and distinct x,,. .. W Xp_1 in A,

AEaAp - (%x‘ €C, e A *rb'ga(x,)).
(gva)elb,

Let D= {i€ E:b;<c}andI={(i,g,a): i €E— Dand(g, a)€< I, }. Then by
Lemma 7.9, we will be done if we prove

(@11) timp(m AB €CA A mg(xia)= Tlax TT vy
n—o ieD (i,g,a)el i€D (i,.g,a)el

LetJ = {(i, g, a) € I S, ga <j},and form, n € wlet

u(n,m)="¥  T1 Geyx  IT ()

. Sb, .
(tgey (o)l 5 (ig,a)el—T

(n=p)n-p-1)--(n-p-m+1), II t,ga!]

(i,g,a)el

X

XP'(”, A %x, €, A A a;'“(x,.)'/\ o;'sala)
ieD (i,g,a)el

and

-1
Uy = .].e_.[qu, X Z ]._.[ [sb,ga!(tiga - sb,ga)!] q:z'ga
i

<tzga> (i)g)a) eJ

[1 -1
% Mty =) — 1)y, gine.
(i,g,a)e]—J[j ( iga —J ) xga] q.°

Both sums are taken over all sequences (?,,,: (i, g, a) € I) of elements in w such

that for all (i, g,a) € I, t,,, > sy ,,and t;,, = 1if g > 0,and X, , ;e rtipo = m. In
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the first sum, we rename the free variables y,, ...y, ;10 the conjuncts ags«(x;) A
o/« 50 that every variable y, ...,y,,_; occurs in exactly one conjunct.

Let Xs = ¥; ; aye156,gq- By Lemma 7.2,
(1) w(m AB A A ngia)= £ ()" Fulnm).

ieD (i,g,a)eT m>Xs

(We take G to be the set of functional structures with universe n satisfying
aANep®B, €C,, H=n— {xp,...,x, 1}, and for y € H, (i, g a)e ]
P(y,(i,8,a)={AEG AE F(x)=yAB,€(})We will apply Lemma 7.4
to the sum in (7.12). Clearly (7.5) holds because u(n, m)=0 for m > n. For
—-f<g< —1,if (i, g, a) € J then letting s = s, ,,,

Vpga= 2 (—1)"[s2(z = )1 g,

t>s
and if (i, g, a) € I — J, then
nw=1-Z|T (=" ()ave|

ssjLtzs

tjLs<t t>j | s<y

-1-x[x SRR 2R [2(—1>’”<:)]q;/t!

= E(—l)""l[z (—D’”(i)]q;/t!

t>j s<j
= X (=)"7 e = = D] g
t>]
Similarly,
m—Xs
(713) ].—.[ dp, X ]._.[ Ubga = z (_1) Ups
i€D (iagva)el m>2s

and (7.6) holds. Take any m € w and <tiga: (i,g,a) € I> such that ¢,,, =1 for
g>0and ¥, estipe = m. Lettinga’ = A gayer@ge(x;) and ¢’ = Ai.g.aye1%a™s
forn € w,

u(n, AB, eCAdA o’|a) = ”(n, A B, €C, Adlan a') X p(n, «|a).
i€eD 1€D
Let o”(Xg,..-»X,_15 Yo»--->Ym—1) D the conjunction of all formulas F,(z) # z;,
where 1 < g < f, 29, 21 € {Xgs--»X,_1} U { Voo Vu—1} and Fi(29) = 2, is not a
conjunct of a A a’.
Then a A & A o is a diagram and lim,,_, , p(n, @”’|a A a’) = 1. Also
and Ad’ AN NB,EC, AN N xp#xA AN v =wnA Nx,#y

i€eD h<i<p h<i<m h<p
i<m

is consistent because 7.,

anh ANB,€C, A AN x,#x
i€E h<i<p

=1 for g > 0, and



PROBABILITIES OF FIRST-ORDER SENTENCES 563

is consistent. For all functional %, distinct x,...,X,_1, Yos- -« s Vm-1 mAandi < m,
B 1(Xgs- Xy 15 Yore s Vme1) A& = B, (xg,...5X,_1,7)
= By'(xo,...,xp_l,yo,...,ym_l, r— 1).

Therefore by Lemma 7.9 and the induction assumption,

lim ,L(n, A B, €C, Ao'laA a') =[1q,x TII gl

n— oo ieD ieD (i,g,a)el

It is easily seen that
p(n,dla) =n"".
Therefore lim,,_, ,, u(n, m) = u,, and (7.7) holds.
Lastly, (7.8) holds by Lemma 7.3, and by Lemma 7.4,
lim Y (=) Fu(n,m)= ¥ (D" ",

20 pm>¥s m>XLs

which together with (7.12) and (7.13) completes the proof of (7.11) and the lemma.
O

7.14 PrOOF OF THEOREM 44. Let 1 <i <k and C be a realizable acyclic
(k — i)-morphism class with center {c,} and radius 3. Taking j = k — i and
r=3k"let B, B, and B,, be as defined prior to Lemma 7.9, and let ¢ € Q, be
associated with C. For any % = <A, Fl,...,F}>, if there are y;,...,y;_; € A such
that A = B,,(yg,---,¥i—1), then

N(y;sr)NN(y,,r)=@ ford<h<i
and
8(y,, X)>r forh < iand all cycle sets X of size < 2r + 1.
Therefore for every x,,...,x,_; € A, there is 'some h < i such that
8(yp {X15---5%,_1}) > r, and for every h < i,
%y,,()’bw < Yi-1o r) = <N(Yh’ I‘), Fl" . "Ff? cl[yh]>'

Fort € wlet {*(yy,--.,y,_1) be

IBZr(yO""vyt—l) A A %y,,(yo’-“’))t—l’ I‘) eC.

h<t

By showing that, for every such i and C,
Tim p(n,3y - a8 (o vis)) = 1,

we will be done.
Forp > ilety,(zy,...,z,1) be
Ay, - 3)’1'—1[{)’0»---’)’:—1} € {205 52,1} A gi(yov'“?yi—l)]'
Then p(n,v,) < p(n,3y, -+ 3y,_,{’), and we complete the proof by showing
lim,_,  p(n, 'yp) =u, for some u, € [0,1], and limp_,oo = 1. By the principle of
inclusion-exclusion,

p(ny,)=1-YX X (=D()()n(n.¢).

s<i s<t<p
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Fort € wleta'be A ,cfni<i Fo( i) # y,- Then
lim p(n,¢) = lim p(n, {'|a)
n— oo n— oo

= nlim u(n, A B, (Yo, -y, 1) € Cla’)

® h<t
by Lemma 7.9. Since C is realizable, o' A A, B, € CA Aype,Ys # y, is con-
sistent. Therefore by Lemma 7.10, lim,,_, , u(n, {*) = ¢’ for all t € w, and
lim p(n,y,)=1-% X (D7) =1-X)eQ-9)"
n—oo s<i s<t<p s<i
— 1 asp — oo becauseqg # 0. O
7.15 PrROOF OF THEOREM 4.5. Let C,,...,C,_; be an enumeration of all acyclic
k-morphism classes with center {c;} and radius < 3* and g,,...,q._; be the
associated probabilities as described above. For any k-morphism class D with a
single cycle of size p < 2 - 3F + 1, no constants, and radius < 3%, a characteristic of
D is a formula y of the form
a(xg,-s%,_1) A0(Xgs..sX,_ 1),
where a is a diagram, 6 is A;_, B, € C,, b, < ¢ for i < p, and for all structures %
and distinct x,...,x,_ in %, if A E y(x,...,x,_1) then A ({xq,...,x, 1}, 3k e
D and it has center {x,,...,x,_;}. Let aut(D) be the set of all permutations fonp
such that y(xg), - - -, Xg(,—1) 1S equivalent to y(xo,...,x, 1)
It is easily seen that [aut(D)| does not depend on the choice of characteristic, and
p!/laut(D)| is the number of nonequivalent characteristics of D. Further, for every
n € w and X C n such that | X| = p,

(7.16) p(n, #'(X,3%) € D) = (p!/jaut(D)|)p(n, v).

Let D,,...,D,_, be an enumeration of all k-morphism classes with a single cycle
of size < 2 - 3% + 1, no constants, and radius < 3*. For each a < d, let p, be the
size of D,’s cycle and vy, be any characteristic of D, with a,, 6, and b,; (i < p,) as
above. The k-agreeability class K is characterized by a sequence (s,:a < d) of
elements in k + 2 as follows. For any structure % = <A, F,... ,Ff> and a < d, let
S, be as in (4.1) with j = k. Then % € K if and only if for all such a,

IS,/ =s, or |S,|, s,>k.

In the following formulas, X, X;, - - - will represent subsets of the universe. This
is for convenience; at the cost of more cumbersome notation, we could use
first-order formulas.

Fora<dandt€ wleta;be A, a,(x;. 3% p 1),
Let ®/(X,,...,X, ;) be A,., A (X;,3") € D,and ¥, be

_1) and similarly for a.

X, --- 33X, | A X, * X, A0(Xp,.., X, y)

h<i<s

\/X:=X,.)] ifs, = s <k,

i<s

/\VXS(./V(XS,Z;") eD,~
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or

h<igk

3X0~"3Xk[ A XhaﬁX,-/\q):“(XO,...,Xk)] ifs,=k+1.

Then, for every %, A € K if and only if A = A,_, ¥,. Using methods similar to
those in the proof of Lemma 7.10, we will complete the proof by showing

(7.17) lim u(n, A ‘I'a) =qg€ Q.

n— oo a<d

LetJ = {a<d:s, <k}, fora <dlet

o, = ( I g, ) /laut(D,),

! pﬂ

and form, n € wlet

u(n, m) = Z ITCG) > IT (%)

{1,y asJ fa a€d—J

w(n=1) o [n+ 1= £ pa)/ T (D", ]
><p,(n, /\€I>;a)

X

a<d
and
-1 -1
= Z ]._.[ [sa!(ta - sa)!] U:za X ]._.[ [k!(ta — k- 1)!ta] U:za'
<%> aeJ aed—-J
Both sums are over all sequences (¢,: a < d) in w such that ¢, > s, for all a < d and
L,<q4t, = m. In the first sum, we rename the free variables X,,..., X, _; in each

conjunct @} so that every variable X, ..., X,,_, occurs in exactly one conjunct, and

p(n,A, ., ®i+) means the probability for distinct X,,..., X, ;.
LetYs = X, ,5, By Lemma 7.2,

(7.18) ,L(n, a/<\d~pa) - mgzs(—l)'"‘&u(n, m).

(We take G to be the set of functional structures with universe n, H = { X: X C n},
I=d,andforXe Hya<d,P(X,a)={% € G AEAN(X,3X) € D,}.) Asin the
proof of Lemma 7.10, (7.5) and (7.8) hold. Letting

g=[1vee st x T1 (1 —( Yy vj/s!)e_“a),
s<k

aeJ aed-J

Ysrs(— 1) %y = q and (7.6) holds. By the same reasoning used in (7.16),

o(ne A )= | T1(n/fa2) "]
a<d a<d
o Aot A ) o A

a<d a<d a<d
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Again we rename the free variables in A,_,als and A,_, 0.« so that each free
variable occurs in exactly one conjunct. By Lemma 7.10,

tim u(n, A ol A af)/ T faut(D,)[ = TT ot
n— oo a<d a<d

a<d a<d

It is clear that

p(ne A a) = T [(n = p) ' /nf] " = TLnoref1 + o).
a<d a<d a<d

Therefore lim,_, , u(n, m) = u,,, and (7.7) holds. Applying Lemma 7.4 to (7.18)

gives us (7.17). O

8. Related problems. An obvious question is whether there is an effective proce-
dure for calculating lim,_  u(n,0), given any sentence o. By this we mean
generating an expression in closed form whose value is the limit. We sketch a
method for doing this. Let S be the set of all formulas o of the form
Aicg B (Xp5---»Xx,_1, 1) € C;, where p, r € w, E C p, and for some j € w each C,
is an acyclic j-morphism class with center {c;} and radius < r. As previously
mentioned, B, € C, is an abbreviation for some canonical first-order formula. Also,
it is not difficult to define this set of canonical formulas so that S is recursive. Let
a(xg,...,x, ) be a diagram. The proof of Lemma 7.10 implicitly gives an algo-
rithm for calculating lim,,_, ,pu(n, o|a). First, if a A 6 A A, ., X, # x; Is incon-
sistent, then lim,,_, _p(n, o|a) = 0. By using the definition of j-morphism in §5, it is
easy to see that there is a recursive procedure for determining the consistency of such
a formula. If it is consistent, then by Lemma 7.10, the problem of calculating
lim,_, ,u(n, o|a) reduces to calculating the probabilities g, for i € E, which in turn
can be calculated recursively from the definition prior to Lemma 7.9. Thus

8.1 LEMMA. There is a recursive procedure such that, given a partial diagram
a(XgyeonsX,_1) and o(x,. .. ,xp_l) € 8, it calculates lim,,_, _ pu(n, o|a).

Similarly, there is a recursive set T consisting of all sentences V,_, % € K;, where
p € w and for some k € w each K, is a k-agreeability class. Of course, we mean
9 € K, is an abbreviation for some canonical first-order sentence, similar in form to
A, <4 ¥, in the proof of Theorem 4.5. Clearly, if K, # K, for h < i < p, then

lim u(n, V%IEKi)= Y, lim p(n, ¥ €K,).
n—oo ’<p l<p n— o0
The proof of Theorem 4.5 shows that calculating lim,_, u(n, ¥ € K,) reduces to

the problem of calculating lim, _,  u(n, o|a) for 6 € S and a a partial diagram.
Thus

8.2 COROLLARY. There is a recursive procedure such that, given v € T, it calculates
lim,_,  p(n, 7).

Given an arbitrary sentence ¢ of depth k, by Theorems 4.3 and 44,
lim,_,  p(n,6)=1lim,  pu(n, o A y), where y is a first-order sentence true for
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exactly those structures which are k-simple and k-rich. By Theorem 4.2, o0 A v is
equivalent to 7 A y for some 7 € T. Let Th, be the first-order theory of f unary
functions. Since T is recursive and Th, is recursively enumerable, we have a
procedure for calculating lim,,_, ., pu(n, ). We simply generate sentences in Th , until
one of the formo A vy & 7 A vy, 7 € T, occurs, and then calculate lim,,_,  pu(n, 7) =
lim,_, u(n, 7 A v). Thus

8.3 THEOREM. The problem of calculating lim,, _, _ pn(n, 6) is recursive.

As is well known, Th; is decidable (Ehrenfeucht, unpublished), but Th, is
undecidable for f > 1 (B. Trachtenbrot; see Monk [19, pp. 295-296]). This shows
that the problem of calculating lim,,_, . pu(n, 6) is in a sense easier than determining
the validity of 6. However, this is not always the case. Compton [3] has shown that
there are classes of finite structures with 0-1 limit laws for which the problem of
computing asymptotic probabilities is unsolvable. Note also that we have not
considered the computational efficiency of calculating the limits.

A more general category of problems is finding limit laws for other classes of
finite structures, such as binary functions or structures with relations and functions.
When one attempts to use the methods of this paper, difficulties arise very quickly.
In particular, it is not obvious how to generalize the metric § even to a single binary
function. For a unary function, the intuitive idea of §(x, y) is the smallest number
of backward or forward edges needed to get from x to y, but there does not seem to
be any corresponding notion for binary functions. For other classes of structures,
there are obvious metrics, but they do not seem to satisfy any condition similar to
k-richness. For example, let o be a first-order sentence with the binary relation
symbol < interpreted in the usual way and the r-ary relation symbol R. It is not
known whether

lim {Rcn:(n,<,R)E=0}|/2"
n—oo

always exists when r > 1. (See [15] for a proof by Ehrenfeucht that it always exists
when r = 1, and an example that the limit can be irrational when r = 2.) A related
problem has been posed by J. Mycielski. For n € w let T, = {(x, y,z) €3n: x < y
<zorz<x<yory<zs<x}. (Intuitively, if one thinks of an n-gon whose
vertices are labeled with 0,1,...,n — 1 in clockwise order, then T,,(x, y, z) holds if
and only if the clockwise path from x to z includes y.) It seems likely that

lim [{Rc™m:{n,T,,R)Ea}|/2"
n— oo

is 0 or 1 for all r > 1 and all 6. However, it is not even known if the limit always
exists.

As Ulam [22] has remarked, there is a need for a general theory of combinatorial
metrics. We would add that such a theory could have important applications to
finite model theory. Metrics defined on the universes of finite models have been
central to the proofs of the undefinability results in [5,9,17] and the probabilistic
limit laws of [15] and this paper. A more comprehensive theory of such metrics could
possibly unify and extend these results.
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