Biosensors in general

It is enormously large area of research. Our niche is in the study of a) the role of nonspecific interactions in the self-assembly of sensing layers, and b) encapsulation of sensing molecules in nano porous environment to extend the lifetime of biomolecules.  

  • Ispas, C., Sokolov, I. & Andreescu, S. Enzyme-functionalized mesoporous silica for bioanalytical applications. Anal Bioanal Chem 393, 543-554, (2009).
  • Sokolov, I., Subba-Rao, V. & Luck, L. A. Change in Rigidity in the Activated Form of the Glucose/ Galactose  Receptor from E-coli: A Phenomenon That Will Be Key to the Development of Biosensors. Biophysical Journal 90, 1055-1063, (2006).
  • Ginzburg, M., Galloro, J., Jakle, F., Power-Billard, K. N., Yang, S. M., Sokolov, I., Lam, C. N. C., Neumann, A. W., Manners, I. & Ozin, G. A. Layer-by-layer self-assembly of organic-organometallic polymer electrostatic superlattices using poly(ferrocenylsilanes). Langmuir 16, 9609-9614, (2000).
  • Sokolov, I., Yang, H., Ozin, G. A. & Henderson, G. S. Beyond the hemicylindrical micellar monolayer on graphite: AFM evidence for a lyotropic liquid crystal film. Advanced Materials 9, 917-921, (1997).


fImmunosensors  are  a  broad  class  of  biosensors  based  on  antigen-antibody  specific affinity.  Immunosensors  are  used  in  a  broad  variety  of  applications,  from  detection  of  explosives  to identification  of  different  diseases.  One of  the  most  popular  immunosensors  used  for  medical diagnostics  and  research,  ELISA  (enzyme-linked  immunosorbent  assay)  is  used  in  every hospital.  Being  invented  in  1971,  the  approach  to  ELISA  design  has  being  under  a  lot  of development.  However, these developments  seem to be exclusively in the area of biochemistry. At the same time, little was done to explore photonic  methods of registration of the signal and the control of  molecular  assembly/packaging  of  each  molecular  layer  of  the  sensors  at  the nanoscale  in-situ (directly in  buffer).  This might  be  explained  by the  fact  that  such work belongs to  a different discipline,  soft  condensed  matter  rather  than  biochemistry.  The control of the molecular assembly  is  important  because  the  molecular  layers  is typically  full  of  defects  and  imperfections. This limits layer’s ability to work as a sensing layer.

Our studies show that the study of  immunosensing  molecular  machinery  at  the nanoscale  (done  mostly  by  means  of  atomic  force microscopy  (AFM)  technique and using advanced photonic materials)  can  optimize/improve  sensitivity  of  immunosensors,  substantially scale down their size. It also demonstrates a new approach to the development of a new generation of immunosensors of considerably  higher  complexity  with  a  built-in  "immunologic"  to  create  a  sensor  that  could make  some  "decisions"  at  the  molecular  level. 

  • Volkov, D., Strack, G., Halamek, J., Katz, E. & Sokolov, I. Atomic force microscopy study of immunosensor surface to scale down the size of ELISA-type sensors. Nanotechnology 21, 145503, (2010).
  • Strack, G., Chinnapareddy, S., Volkov, D., Halámek, J., Pita, M., Sokolov, I. & Katz, E. Logic Networks Based on Immunorecognition Processes. Journal of Physical Chemistry B 113, 12154-12159, (2009).
  • Ispas, C., Sokolov, I. & Andreescu, S. Enzyme-functionalized mesoporous silica for bioanalytical applications. Anal Bioanal Chem 393, 543-554, (2009).
  • Pita, M., Cui, L., Gaikwad, R. M., Katz, E. & Sokolov, I. High Sensitivity Molecular Detection with ELISA-Type Immunosensing. Nanotechnology 19, 375502, (2008).


[Research] [Teaching] [Publications] [Sokolov's group] [My Materials Lab] [My SPM Lab]