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ABSTRACT

The main contribution of this dissertation is the design of two new algorithms for auto-

matically synthesizing values of numerical parameters of computational models of complex

stochastic systems such that the resultant model meets user-specified behavioral specifications.

These algorithms are designed to operate on probabilistic systems – systems that, in general,

behave differently under identical conditions. The algorithms work using an approach that

combines formal verification and mathematical optimization to explore a model’s parameter

space.

The problem of determining whether a model instantiated with a given set of parameter

values satisfies the desired specification is first defined using formal verification terminology,

and then reformulated in terms of statistical hypothesis testing. Parameter space exploration

involves determining the outcome of the hypothesis testing query for each parameter point

and is guided using simulated annealing. The first algorithm uses the sequential probability

ratio test (SPRT) to solve the hypothesis testing problems, whereas the second algorithm

uses an approach based on Bayesian statistical model checking (BSMC).

The SPRT-based parameter synthesis algorithm was used to validate that a given model of

glucose-insulin metabolism has the capability of representing diabetic behavior by synthesizing

values of three parameters that ensure that the glucose-insulin subsystem spends at least 20

minutes in a diabetic scenario. The BSMC-based algorithm was used to discover the values

of parameters in a physiological model of the acute inflammatory response that guarantee a

set of desired clinical outcomes.

These two applications demonstrate how our algorithms use formal verification, statistical

hypothesis testing and mathematical optimization to automatically synthesize parameters of

complex probabilistic models in order to meet user-specified behavioral properties.
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CHAPTER 1: INTRODUCTION

This dissertation describes novel algorithmic techniques for automated parameter synthesis

in computational models of probabilistic systems. A model is an abstraction of any real

physical system such as a natural phenomenon or a man-made device. Its purpose is to help

in the analysis of key properties of the system for a particular application. Engineers and

researchers usually build mathematical models of systems to be able to use existing scientific

techniques for analyzing the system. The model builder throws away details of the system

that are not relevant for analyzing key properties of the application being considered. For

any application, a model can be considered a reasonable representation of the actual system

if it meets the following criteria:

• It can be used to explain information obtained from existing knowledge or from empirical

observations, and,

• With reasonably high accuracy, it can predict the behavior of the system under a variety

of circumstances (i.e. different inputs or under perturbations in the environment, etc.)

Recent advances in computational resources have led to increasing interest in algorithmic

techniques for automated computational modeling and analysis of systems with complex

behaviors. A well-known problem in computational modeling is that even though the fun-

damental structure of many models of natural, mechanical or electronic systems can be

determined from the literature or via experiments, parts of the model remain unknown and

almost impossible to determine experimentally [104, 97, 8]. In areas such as biochemistry

and control theory, researchers spend considerable time and resources trying to find the

numerical values of such parameters of computational models. For example, in a biological

system represented as a set of ordinary differential equations (ODEs), the parameters might

represent the kinetic rate constants of reactions represented by these ODEs [79] or when

1



designing a control system, it may be required to determine those parameter values of system

components that ensure safety when the system is operated [53].

Researchers often resort to brute-force methods to find appropriate parameters of their models

so that the model has the desired properties. However, as the number of parameters increases,

finding appropriate values becomes inefficient due to the complexity of high-dimensional state

space exploration [15, §1.4]. There is a need for readily available tools that, given a model

with a set of unknown parameters and a behavioral specification, can reliably discover values

of these parameters, if any such valuations exist, or report infeasibility of the model ever

satisfying the given specifications [64]. We address this problem by designing algorithms and

tools for automatic parameter synthesis in models that are

• parametric (i.e. their behaviors are dependent upon a set of unknown, but constant

parameters),

• probabilistic (i.e. in general, their behaviors vary even for a fixed valuation of all

parameters), and

• computational (i.e. they can be executed on a computer and their behaviors observed).

We now formally define the problem of synthesizing numerical parameters in probabilistic

systems.

Definition 1 (Parameter estimation problem). Given a parametric probabilistic modelM(ω)

with unknown parameter ω ∈ Rn, a desired specification φ in a suitable temporal logic,

and a required confidence level θ ∈ [0, 1], find a parameter valuation ω0 ∈ Rn such thatM

parameterized at ω0 satisfies property φ with probability at least θ [denotedM(ω0) � P≥θ(φ)].

To solve this problem, we have designed two new algorithmic techniques that are discussed

in Chapters 3 and 4. First, we provide some technical background to motivate the problem,

and also discuss related work in the area.
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CHAPTER 2: BACKGROUND

In the last few decades, massive increase in our dependence on electronic and computer-

related devices has led to concern about the reliability of these systems. It is desirable that

the systems in use be checked for correctness, especially in safety-critical systems like aviation-

control systems. A distinction is made between validation (ensuring that the right system

is being built) and verification (ensuring that the system is actually built according to the

specifications). Most real-life systems have traditionally been checked using simulation-based

testing [45, 68].

2.1 Formal Methods

For our work on parameter synthesis in probabilistic systems, we make extensive use of

formal methods [23] – a set of techniques, tools and algorithms that help increase the relia-

bility of hardware or software. Gupta provides an excellent survey on hardware verification

techniques [49]. Cohn [26] discuses issues regarding the semantics of hardware verification

using the example of an attempt to verify a microprocessor using the HOL system. Two

important approaches for software verification [71] are model checking [22, 36] and deductive

verification [56, 41, 29]. For deductive verification of a system, the properties of the system

are expressed mathematically and axioms and proof rules from mathematical logic are used

to verify system correctness. Much of the proof has to be done by hand, whereas part of

it usually discharged to an external theorem prover [100]. Although this technique can be

used to prove complex properties of infinite state systems, due to the complexity of the proof

obligation, even the theorem prover may require manual intervention and guidance [50]. For

algorithmically synthesizing parameters in stochastic models, we focus on techniques based

on model checking.
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2.2 Model Checking

Model checking is an important technique for the automated formal verification of finite-state

models. We closely follow Clarke et al [22] when discussing the model checking problem and

related ideas.

For finite state systems, or systems that can be abstracted to a finite state system, model

checking is often the preferred approach for formal verification. One advantage of model

checking is that it is an automatic process of verifying a finite-state model against a behavioral

specification expressed in a temporal logic [91]. Clarke and Kurshan provide early examples

of significant industrial applications of model checking tools [23].

A model checker needs to be provided the model in the form of a finite state transition system,

and the property to be verified needs to be expressed in an appropriate temporal logic. It

then exhaustively explores the entire state space of the model to verify the given property.

If the property is not true, the model checker returns a counter-example i.e. a trace in of

the transition system showing how the property can be violated. The counterexample serves

as proof of the model not meeting the given specification. A counterexample is then usually

used to modify the model being developed according to the given specification, although the

fault may lie in the specification instead [22].

One drawback of model checking is that it suffers from the state-explosion problem, i.e. for

models of large sizes, the state space is becomes too large to explore, and the technique does

not scale. To mitigate this problem researchers have proposed a number of techniques that

reduce the state space the model checking algorithm has to explore during verification. Such

techniques include include partial order reduction abstraction and symmetry reduction [22].

Probabilistic model checking is a technique for automatic verification of stochastic models

against specifications in temporal logic [51, 27]. We make extensive use of the statistical
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methods for probabilistic model checking [112] in developing new techniques for automatic

parameter synthesis.

2.3 Model Synthesis

The problem of synthesizing programs from specification is not new. Manna andWaldinger [85]

described the use of theorem provers in synthesizing programs from specifications where the

main idea is to extract programs from proofs. They also discussed the automatic debugging

problem i.e. building a tool that not only verifies, but also correct code written by program-

mers. They also later provided a more detailed treatment of deductive techniques for program

synthesis by the same authors that emphasizes the use of mathematical induction for dealing

with recursion [84]. The advances in formal verification techniques and the availability of

efficient tools for constraint solving has led to renewed interest in using verification techniques

for synthesis. The main idea is define the synthesis problem using formal specifications and

then reduce it to a constraint solving problem that can be solved using off-the-shelf constraint

solving tool [47]. Techniques for automated synthesis of code fragments and control logic for

cyberphysical systems that use a combination of inductive and deductive inference have also

been developed [65].

2.4 Parameter Synthesis

The problem of finding model parameters from experimental data has numerous applications

in science and engineering and has been widely studied [104, 8]. For models in computational

systems biology, measuring most quantitative parameters is an important challenge because

usually only some parameters are experimentally measured and the rest require fitting [79].

Common methods of building models involve the identification of parameter values using

estimation algorithms that allow fitting model parameters to match experimental data [7].
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Given a fundamental understanding of an unknown model m’s behavior G and data d, the

inverse problem is to find m given d. If the number of parameters to be determined is finite

(say, an n-vector) and the available data points are finite (say, an m-vector), we refer to it as

the discrete inverse problem or a parameter estimation problem represented by the system of

equations G(m) = d. If the model and data are functions, estimating m from d is referred

to as the continuous inverse problem [104].

Donaldson and Gilbert use a combination of model checking and genetic algorithms [89] for

parameter estimation in biochemical pathways [31]. They define a new probabilistic temporal

logic (PLTLc) by incorporating quantitative and numerical aspects of ∃-constraint LTL [38]

to define a metric for describing the distance between a model’s behavior and the desired

behavior that is used during the genetic algorithm driven exploration of the parameter space.

Batt et al [12] have developed a symbolic model checking-based techniques for parameter

search in piecewise-affine differential equation (PADE) models of regulatory networks by

which they use for finding parameters in the IRMA synthetic network [20].

In a significant control theoretic application, Henzinger and Wong-Toi [53] used the model

checker HYTECH [52] to synthesize parameters for a model of a steam boiler expressed as

a hybrid automaton by defining the parameter synthesis problem in terms of reachability

in a linear hybrid automaton (LHA) [4]. They use a linear hybrid automaton to abstract

away nonlinear behaviors of the model in order to make it more amenable to automated

algorithmic analysis while ensuring that the approximation preserves key properties that are

to be verified.

For linear hybrid automata, Frehse et al [42] have developed a technique for parameter

synthesis based on the popular counterexample guided abstraction refinement (CEGAR) [25]

model checking approach. They given an algorithm to determine the values of a set of design

parameters of a LHA for which no bad locations can be reached. The key idea is to augment
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the traditional CEGAR counterexample feasibility check by an operation that determines

constraints on the parameters that make that particular (feasible) counterexample infeasible.

The feasibility check is performed using efficient techniques based on linear programming.

Calzone et al use the abstract machine BIOCHAM for model refinement and parameter

discovery in a cell cycle model where the property is expressed in LTL and the numerical

range of the parameters is provided [18] as input. BIOCHAM contains languages to describe

both the model and the behavioral specification at different levels using different temporal

logics [19].

Moles et al [90] define the parameter estimation problem as a nonlinear programming (NLP)

problem with differential-algebraic constraints and survey the use of global optimization

(GO) methods for parameter estimation in biochemical pathways. For parameter estimation

in computational biology, Lillacci and Khammash have developed a technique that uses a

Kalman filter for determining an initial estimate of the parameter value, uses a statistical

test to check its reliability and then solves an optimization problem to refine the initial

estimate [79]. For certain nonlinear dynamical systems, Donze et al give a parameter synthesis

algorithm [32] but do not provide any formal guarantee of correctness.

Applying formal verification techniques to structural biology, Langmead and Jha [75] use

symbolic model checking to predict the kinetics of protein folding using CTL model checking.

They perform a search for the protein folding kinetics by using the CTL extensions made

available by the probabilistic model checker PRISM [55].

An important family of approaches for global optimization are simulated annealing techniques

[92] . S-systems are representations of complex biological systems modeled as a set of nonlinear

ordinary differential equations. Gonzales et al successfully performed parameter estimation for

a number of biochemical S-system models using simulated annealing by using a perturbation

function that uses the current optimization error to determine the magnitude of parameter

7



perturbation [46].

Boolean networks are often used to model biological systems [66]. Langmead [76] demonstrates

the use of bounded model checking [14] for synthesizing control policies to drive a boolean

network from an initial to a specified final state.

Continuous time Markov chains (CTMCs) are often used to mathematically model bio-

chemical reaction networks [43]. Jha and Langmead use statistical model checking [78] and

abstraction refinement [25] to develop a set of algorithms for synthesizing parameters in a

CTMC model with respect to a given finitely monitorable behavioral specification [64].

In the next two chapters we discuss our novel algorithms for automated parameter estimation

in probabilistic models.
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CHAPTER 3: PARAMETER ESTIMATION USING THE SPRT1

Stochastic models are increasingly used to study the behavior of biochemical systems. While

the structure of such models is often readily available from the literature, unknown quanti-

tative features of the model are incorporated into the model as parameters. In this chapter,

we make two important contributions toward addressing the parameter estimation problem

in probabilistic systems (see Definition 1):

• We describe a new algorithm for automatically synthesizing parameters of stochastic

computational models from experimental observations that uses a combination of simu-

lated annealing and the sequential probability ratio test (SPRT) to reduce the number

of samples required for discovering the correct parameter values. Figure 3.1 pictorially

describes the parameter estimation problem in stochastic models given experimental

facts and time-series data. This algorithm uses the property that during the simulated

annealing-based parameter exploration process for a parametric model, if the sequential

probability ratio test (SPRT) rejects the null hypothesis, the expected number of sam-

ples required is proportional to the probability with which the model satisfies the given

specification.

• We apply this algorithm to a complex model of glucose insulin metabolism used for

studying artificial pancreata. This case study shows that the model is capable of repro-

ducing pancreatic-induced diabetes by a suitable reparameterization of three parameters

related to the pancreas in the model.

1A preliminary version of the research reported in this chapter was presented at the 2nd International
Conference on Computational Advances in Bio and Medical Sciences [57]; an extended version was later
published in the International Journal of Bioinformatics Research and Applications [58].
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Figure 3.1: Problem description: Given behavioral specifications about the computational
model of a system, the parametric stochastic model itself, and a correctness confidence, find
the values of the parameters that enable the model to satisfy the specification.

3.1 Background

The computational modeling of the precise dynamics of biochemical systems involves the

modeling and analysis of complex continuous time Markov chain models. Such detailed

biochemical models are often reduced to readily analyzable and succinct models like stochastic

differential equations (SDEs) and discrete time Markov chains (DTMCs). Recent interest

in the development of computer aided design (CAD) techniques for biomedical devices has

led to the development of heterogeneous models that include a stochastic biochemical model

coupled with an external deterministic controller. The design and formal verification of

such biomedical devices requires the ability to model, analyze and verify complex stochastic

models of cyberphysical systems.

The structure of such stochastic models can often be determined from first principles and

a survey of existing biochemical literature. However, several quantitative features of such

models cannot easily be obtained from the literature or inferred from experimental data. The

discovery of such quantitative parameters of computational models from observed experimen-

tal facts remains the subject of ongoing research in computational systems biology.
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The field of stochastic modeling has emerged to overcome the inherent limitations of deter-

ministic modeling. Such a modeling approach permits randomness in the behavior of the

system, and often uses sampling-based statistical inference to find the probability distribution

of potential outcomes. Research in systems biology has greatly benefited from the existing

literature in stochastic modeling, and has also inspired new scientific expeditions into the

realm of stochastic modeling, analysis and verification.

Indeed, in silico modeling has been particularly useful in developing a systems view of

biology. Models for whole-cell analysis, drug discovery for tuberculosis, control of Type 1

diabetes, sequence analysis, enzyme interaction with drugs, and prediction of blood-secretory

proteins are some of the success stories in computational systems biology. However, several

components of these models are not available from the literature or using experimental data.

In such a scenario, model designers include missing information as parameters of the model.

The number of parameters increases with the size and complexity of the model, and it becomes

increasingly difficult to determine the value of these parameters for large and detailed models

of biological systems.

The discovery of parameters for stochastic models has been carried out using various ap-

proaches [42]. Different estimation techniques have been adopted by researchers for finding

parameters [93] of stochastic biochemical reactions [43]. Estimators used for deterministic

models have also been extended to stochastic models [107]. Considerable research has been

directed toward the use of statistical hypothesis testing for verification of stochastic models

[64, 112], including those arising in systems biology.

In this section, we discuss the various classes of stochastic models that can benefit from our

parameter discovery algorithm. We also describe a specification formalism for representing

facts observed from experimental data that describes the properties that the stochastic model

with the synthesized parameters must satisfy. Finally, we briefly survey the literature on the

sequential probability ratio test (SPRT) and its relationship to statistical estimation.
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Figure 3.2: Stochastic models: The algorithm presented in this chapter is applicable to
both discrete and continuous time stochastic models. CTMCs are particularly important
for studying biochemical systems, while ODEs interacting with random variables naturally
model a number of cyberphysical systems.

3.1.1 Stochastic Models

Our proposed algorithm can be applied to several classes of parametric stochastic models,

including continuous-time Markov chains (CTMCs), stochastic differential equations (SDEs),

jump diffusion processes, and heterogeneous models consisting of stochastic processes inter-

acting with deterministic models like ordinary differential equations (ODEs).

Figure 3.2 illustrates the various types of stochastic models whose parameters can be dis-

covered using our algorithm. Discrete-time Markov chains (DTMCs) are models whose

state-space can be indexed by a countable set. Each transition between states of a DTMC is

associated with a finite probability. Dynamic Bayesian networks (DBNs) are representations

of probabilistic models amenable to analysis using statistical inference and machine learning.

All of these models are discrete event stochastic systems, where the behavior of the system

over a period of time can be completely described by a finite or countable numerical sequence

of values assigned to system variables. Another interesting class of systems is formed by a set

of deterministic differential equations interacting with a set of random variables or stochastic

processes.
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Continuous-time Markov chains and stochastic differential equations represent stochastic

systems that evolve continuously in time. Two kinds of stochastic models that are often used

to model biochemical and cyberphysical systems are of special interest to us and merit deeper

discussion:

Continuous-Time Markov Chains Biochemical systems consisting of a set of biochem-

ical reactions in a homogeneous well-mixed volume can be precisely modeled using

continuous-time Markov chains. CTMC models are often simulated using Gillespie’s

stochastic simulation algorithm [43]. However, the values of the rate constants or ki-

netic parameters that determine the transition probability in CTMC models are very

difficult to obtain from first principles. In many cases, they are also difficult to measure

in an in vivo setting. Our technique can be used to discover kinetic parameters for

CTMC models of biochemical systems from data gathered by empirical observations.

ODEs and random variables A biomedical cyberphysical system is often modeled using a

system of deterministic ordinary differential equations interacting with random variables

to represent the biochemical system and the external controller [82]. However, several

parameters and variables in such models are either unknown in biological literature or

they vary substantially from one individual to another in a population. In both these

cases, such parameters and variables are modeled as random variables or stochastic

processes. The resulting complex cyberphysical model is a continuous time stochastic

system. The technique described in this section can also be used to discover parameters

of models of such complex cyberphysical biomedical systems.

3.1.2 Behavioral Specifications

The behavioral specification of stochastic biochemical and biomedical models requires complex

temporal reasoning. We use probabilistic bounded linear temporal logic (PBLTL) to specify
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the behavior of such systems. Temporal logics can be used to formally describe the use of

tense and various forms of causality in natural languages.

We first define the syntax and semantics of Bounded Linear Temporal Logic (BLTL) [39]. A

Bounded Linear Temporal Logic specification is a set of predicates connected using Boolean

and temporal operators. The syntax of the logic is given by the following grammar:

〈φ〉 ::= x ≤ v | x ≥ v | φ1 ∨ φ2 | φ1 ∧ φ2 | ¬φ1 | φ1Ut φ2

where V is set of discrete-valued variables, x ∈ V, v ∈ R, and t ∈ R≥0 denotes time. We

can define additional temporal operators such as Ft ψ = trueUt ψ, or Ft ψ = ¬Ft ¬ψ. The

formula Ft ψ implies that ψ holds sometime within t time units. The formula Gt ψ implies

that ψ holds at all moments for the next t time units into the future. The fact that a path

℘ satisfies the BLTL property φ is denoted by ℘ � φ. Let ℘ = (y0, τ0), (y1, τ1), . . . be an

execution of the model along states y0, y1, . . . with durations τ0, τ1, . . . ∈ R. We denote the

path starting at state i by ℘i (in particular, ℘0 denotes the original execution ℘). The value

of the state variable x in ℘ at the state i is denoted by V (℘, i, x).

Specifications about biochemical and biomedical systems are often probabilistic in nature.

For example, it may be required that a respirator will not allow the oxygen level in the blood

to fall below 90% of its average value for more than 4 seconds with 99.9999% probability. Such

behaviors are naturally expressed as probabilistic bounded linear temporal logic (PBLTL)

specifications.

If φ is a bounded linear temporal logic (BLTL) specification, Pr≥ρ(φ) is a probabilistic

bounded linear temporal logic specification. The model M is said to satisfy the PBLTL

specification Pr≥ρ(φ) if at least ρ fraction of independently drawn random behaviors observed

from the model satisfy the BLTL specification φ.
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3.1.3 Sequential Probability Ratio Test (SPRT)

Figure 3.3: Overview of the SPRT-based parameter estimation technique: Given a behav-
ioral specification and a parametric stochastic model, our SPRT-based parameter discovery
technique returns a parameter assignment at which the model satisfies the specification.

Given a stochastic modelM and a specification φ, let p be the unknown probability with

which the model satisfies the specification. Let ρ be the probability threshold with which

the model is expected to satisfy a specification φ (i.e.,M � Pr≥ρ(φ)). Thus, our objective is

to determine which of the hypotheses H : p ≥ ρ, K : p < ρ is true. The result of the SPRT

procedure is correct in a probabilistic sense. There can be two kinds of errors in the answer

produced by the SPRT procedure — Type I and Type II [106, §1.3.3]. A Type I error is

the condition of rejecting the null hypothesis H0 when it is actually true. Accepting the null

hypothesis H0 when the alternate hypothesis H1 is true results in a Type II error.

In order to control the Type I and Type II error probabilities, we follow Younes [110] an

introduce an indifference region 2 ∗ ε, and define two thresholds p1 = ρ− ε and p0 = ρ + ε.

We then relax the test to use the following hypotheses: H0 : p ≥ p0, and H1 : p ≤ p1 [112].

Note that 0 < p1 < ρ < p0 < 1.
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The SPRT uses a sequential sampling procedure where the number of observations is de-

termined by the outcome of the observations themselves. The goal of a sequential testing

procedure is to reduce the number of samples required to decide whether to reject the null

hypothesis. The sequential probability ratio test is a sequential sampling test in which

each observations can lead to one of three outcomes: (i) H0 is accepted, (i) H1 is accepted,

(i) additional observations are needed to accept either hypothesis and hence, the procedure

continues. This process of generating additional samples continues until a decision is made

to accept one of the hypotheses. An overview of our parameter synthesis technique that uses

the SPRT is illustrated in Figure 3.3.

The SPRT bounds the probability of making Type I and Type II errors during hypothesis

testing by two constants α and β that are used to parameterize the test, denoted S(A,B).

Note that A and B are calculated using α and β as described in [106, §3.3].

3.2 The Algorithm

We present a new parameter discovery algorithm for stochastic models that brings together

the sequential probability ratio test (SPRT) and the simulated annealing procedure. The

algorithm uses fewer samples than a traditional approach based on statistical estimation and

simulated annealing [46]. The correctness proof of our algorithm is based on the fact that

the number of samples used by this algorithm is related to the fitness value at a parameter

point during the simulated annealing based exploration of the parameter space. We later

formally prove the correctness proof of our algorithm (§3.4).

Figure 3.1 is a pictorial representation of the parameter discovery problem (also see Defini-

tion 1). There are three inputs to our algorithm:

• Parametric Stochastic Model: The algorithm discovers the parameter values for para-
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metric stochastic models. In this setting, a parameter is a model variable whose value

does not evolve during the execution of the model. As discussed earlier, our approach

can be applied to a number of stochastic models, including those useful for biochemical

and biomedical applications. Note that the algorithm requires that the possible space

of all possible parameter values for the model be defined. A bounded (but not neces-

sarily finite) parameter space is a requirement to ensure that the algorithm eventually

terminates (§3.4.2).

• Behavioral Specification: The user provides a probabilistic specification about the

behavior of the stochastic biological system. The specification may be provided as

probabilistic bounded linear temporal logic (PBLTL) formula, or it may be available as

extreme-scale time series data collected by observing a number of experiments. Various

classes of experimental data and observed facts can be translated into variants of

temporal logic.

• Confidence: The algorithm also accepts a probabilistic confidence as an input. Sim-

ulation based analysis of stochastic models requires establishing a confidence on the

probability of a model satisfying a specification. This parameter (whose value should

be close to 1) determines the confidence with which the algorithm must ascertain all

probability estimates.

This algorithm builds on the classical simulated annealing metaheuristic (see Algorithm 3.1).

Simulated annealing is a stochastic optimization method for finding the global minimum of

a system that possibly has several local minima. It is a probabilistic version of the gradient

descent algorithm where, instead of moving along the gradient, the algorithm decides the

optimization steps stochastically [21]. A global minimum of a system is located by moving

stochastically through the function space, based on the value of an objective function [92].

To escape local minima, simulated annealing uses the well-known metropolis-technique [88].
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Algorithm 3.1 Simulated Annealing
Require: Parameter space Ω, Objective function E : Ω→ R, Temperature Cooling Schedule
T : N→ (0,∞),
Starting Temperature t, Stopping Temperature t0.
ω = Pick a random point in Ω.
E(ω) =∞
while t ≥ t0 do
Select a neighbor ω′ randomly
if E(ω′) ≤ E(ω) then
ω ← ω

′

end if
if E(ω′) > E(ω) then
ω ← ω

′ with probability e−(E(ω′ )− E(ω))/t

end if
t = T (t)

end while
Ensure: Algorithm stops at ω∗ that minimizes E(ω).

In most real optimization problems, an estimation of the objective function is made using

statistical estimation and other approaches. Several heuristic estimation methods have been

used for computing the probability (objective function) of a model satisfying a specification

during simulated annealing. However, these estimation based methods require a large number

of samples and can not be practically used for parameter discovery.

Algorithm 3.1 illustrates the classical simulated annealing algorithm. Given a parameter

space Ω, the algorithm seeks to find the parameter value ω∗ such that E(ω∗) represents a

global minimum. The algorithm always accepts a better value for ω∗ and also accepts a worse

value with probability e−(E(ω′ )− E(ω))/t. The probability of accepting a worse parameter value

gets smaller with time.

The above mentioned algorithm reaches an optimal value when E(ω∗) and E(ω) are estimated

correctly. The estimation procedures are tedious and challenging for stochastic systems

due to the presence of randomness and the consequent necessity of observing millions of

model simulations before the value of the fitness function at a given parameter point can be

adequately estimated.
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However, for our parameter discovery technique such a precise estimation of the probability

values is not useful for most of the parameter space being explored. In reference to statistical

model checking, [112] also notes that exact calculations can be replaced by a asking a weaker

questions and hence making the verification procedure more efficient. We propose the use of

the sequential probability ratio test (SPRT) for deciding if a parameter value is interesting

without explicitly estimating the value of the fitness function at this parameter point. It

also enables us to construct a computationally inexpensive objective function for sequential

annealing. This approach helps in efficiently comparing the various states of the system

towards obtaining a global minimum.

Algorithm 3.2 uses the number of simulations needed by the SPRT procedure as a metric

for guiding the simulated annealing based parameter synthesis algorithm. We show that

such an approach is correct. In particular, we establish a relationship between the number

of samples used by the SPRT-based procedure and the probability with which a parametric

model satisfies a behavioral specification.

Claim 1. Let p be the probability with which the modelM satisfies the specification φ. Given

the null hypothesis H0 : p ≥ p0 and the alternate hypothesis H1 : p ≤ p1, and error thresholds

α and β, if SPRT (A,B) rejects the null hypothesis, the average number of samples observed

by our SPRT-based algorithm increases as p increases. (A,B are calculated from the α, β

described by Wald [106].)

A proof of this claim is shown later (§3.4.1). Note that Algorithm 3.2 does not actually

use the exact value of the probability but merely needs to compare the probability for different

choices of parameter values for which it uses the number of samples required by the SPRT

instead of calculating the actual probabilities. As such, any other (easily) computable metric

that preserves the ordering relationship among parameter values would be sufficient. Thus,

Algorithm 3.2 replaces the computation of the fitness value at a given point with the

computation of the number of samples required by the hypothesis testing procedure.
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3.3 Application: Validating Artificial Pancreata

The synthesis of parameters for biochemical and biomedical models is the primary focus of

our research. We developed a parallel CUDA based implementation of a well-studied glucose-

insulin model [82] that is used to perform in silico validation of artificial pancreata. We

simulated a population of patients whose glucose intake was modeled as a normal distribution.

Our approach does not require us to fix a priori the size of the in-silico patient population.

Instead, the size of the in-silico population depends on the region of the parameter space

that the algorithm is exploring. Such an adaptive use of in silico population size has not

been reported before to the best of our knowledge. Three parameters of the glucose insulin

metabolism model determine the influence of the pancreas on the glucose-insulin dynamics,

viz. (a) pancreatic responsivity to glucose rate of change, (b) delay between glucose signal

and insulin secretion, and, (c) pancreatic response to glucose.

We synthesized parameters that ensure that the glucose-insulin subsystem model spends at

least 20 minutes in a diabetic scenario, where the glucose concentration in the blood is above

140 or below 80.

The results of our synthesis algorithm are presented in Figure 3.4 (parameter: pancreatic

responsivity to glucose rate of change), Figure 3.5 (parameter: delay between the glucose

signal and insulin secretion) and Figure 3.6 (parameter: pancreatic responsivity to glucose).

Thus, we show that the model is capable of reproducing pancreatic-induced diabetes by a

suitable parameterization of three parameters related to the pancreas in the model.

3.4 Algorithm Analysis

We present a proof of partial correctness of this algorithm (§3.2) and discuss its termination.
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3.4.1 Proof of Partial Correctness

In this section, we study the relationship between the number of samples required by the

SPRT algorithm and the probability of a model satisfying a given specification. Let p be

the probability with which the modelM satisfies the specification φ and ρ is the minimum

desired probability with which the model is required to satisfy the specification.

The SPRT algorithm determines which of the following two hypotheses should be rejected:

Null Hypothesis H0 : p ≥ p0

Alternate Hypothesis H1 : p ≤ p1

Note that 0 ≤ p1 < p0 < 1, p0 = ρ + ε, and p1 = ρ − ε, where 2ε is the indifference region

[112]. Given independent and identically distributed (i.i.d.) samples xi (ordered by index)
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value was discovered by our algorithm.
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Figure 3.6: Synthesis results for the parameter ‘pancreatic responsivity to glucose’: The
figure shows values of the third parameter of the glucose-insulin model whose value was
discovered by our algorithm.

from the modelM, the SPRT procedure defines the following auxiliary quantities:

zi = log
(

1− p1

1− p0

)
+ xi log

(
p1(1− p0)
p0(1− p1)

)
(3.1)

Zn =
n∑
i=1

zi (3.2)
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The SPRT (A,B) test accepts the null hypothesis H0 if Zn ≤ log(B), rejects the null hy-

pothesis H0 if Zn ≥ log(A) (where A = 1−β
α

and B = β
1−α), and continues making i.i.d.

observations otherwise [112]. After n Bernoulli trials x1, x2 . . . xn with the successes defined

as m = Σn
i=1xi, the SPRT calculates the following quantity:

fn =

(
n
m

)
pm1 (1− p1)n−m(

n
m

)
pm0 (1− p0)n−m

=
(
p1

p0

)m (1− p1

1− p0

)n−m

=
(
p1

p0

)m (1− p1

1− p0

)n (1− p1

1− p0

)−m

∴ fn =
(
p1(1− p0)
p0(1− p1)

)m (1− p1

1− p0

)n
(3.3)

log(fn) = log
((

p1(1− p0)
p0(1− p1)

)m (1− p1

1− p0

)n)

= log
((

p1(1− p0)
p0(1− p1)

)m)
+ log

((
1− p1

1− p0

)n)

= m log
(
p1(1− p0)
p0(1− p1)

)
+ n log

(
1− p1

1− p0

)

=
m∑
i=1

[
log

(
p1(1− p0)
p0(1− p1)

)]
+

n∑
i=1

[
log

(
1− p1

1− p0

)]

=
n∑
i=1

[
I[xi = 1] log

(
p1(1− p0)
p0(1− p1)

)]
+

n∑
i=1

[
log

(
1− p1

1− p0

)]

=
n∑
i=1

[
xi log

(
p1(1− p0)
p0(1− p1)

)]
+

n∑
i=1

[
log

(
1− p1

1− p0

)]

=
n∑
i=1

[
xi log

(
p1(1− p0)
p0(1− p1)

)
+ log

(
1− p1

1− p0

)]

=
n∑
i=1

zi

∴ log(fn) = Zn (3.4)
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I[xi = 1] is the indicator random variable that indicates whether the random variable xi has

the value 1.

Next, we state the theorem relating the average number of samples with the probability of a

model satisfying a specification.

Theorem 1. Let p be the probability with which the model M satisfies the specification

φ. Given the null hypothesis H0 : p ≥ p0 and the alternate hypothesis H1 : p ≤ p1, and

error thresholds α and β, if SPRT (A,B) rejects the null hypothesis, the average number of

samples observed by our SPRT-based algorithm increases as p increases. Note that A,B are

calculated from the α, β as suggested by Wald [106].

Proof.

E[Zn | p]

= E[
n∑
i=1

zi | p]

=
n∑
i=1

E[zi | p]

=
n∑
i=1

E[log
(

1− p1

1− p0

)
+ xi log

(
p1(1− p0)
p0(1− p1)

)
| p]

=
n∑
i=1

E[log
(

1− p1

1− p0

)
|p] +

n∑
i=1

E[xi log
(
p1(1− p0)
p0(1− p1)

)
| p]

=
n∑
i=1

log
(

1− p1

1− p0

)
+

n∑
i=1

log
(
p1(1− p0)
p0(1− p1)

)
E[xi | p]

= n log
(

1− p1

1− p0

)
+ np

[
log

(
p1(1− p0)
p0(1− p1)

)]

∴ E[Zn | p] = nX + nY p (3.5)
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Note that X = log
(

1−p1
1−p0

)
and Y = log

(
p1(1−p0)
p0(1−p1)

)
are constants. Further,

dE[Zn | p]
dp

=
d
(
n log

(
1−p1
1−p0

)
+ log

(
p1(1−p0)
p0(1−p1)

)
np
)

dp

= n log
(
p1(1− p0)
p0(1− p1)

)

∴
dE[Zn | p]

dp < 0 (3.6)

This shows that E[Zn | p] is monotonically decreasing in p. Further, we reject H0 only if

Zn ≥ log(A). Thus, the SPRT procedure with higher values of p takes a larger number of

samples (n) for Zn to cross the threshold A, and, hence, to reject the null hypothesis H0.

3.4.2 Proof Sketch of Algorithm Termination

The heart of our proposed algorithm (Algorithm 3.2) is the idea of avoiding the computa-

tionally expensive, repeated and unnecessary calculation of the precise fitness function value,

i.e. the exact probability with which the stochastic modelM satisfies the given behavioral

specification φ. In Figure 3.7, we show two parameter points Vs and Vt in the parameter space

and the corresponding probabilities ps and pt. Recall that the null hypothesis is H0 : p ≥ p0.

From Figure 3.7, it is clear that during the exploration process, we should move from Vt

to Vs. Our algorithm thus ensures that we can replace the actual calculation of the exact

probabilities with the expected number of samples required by the SPRT to reject the null

hypothesis.

Figure 3.8 is a pictorial depiction showing that if the null hypothesis is rejected, the number

of samples required by the SPRT increases with the probability with which the model satisfies

the specification.
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While exploring the parameter space, our algorithm uses the number of samples required by
the SPRT (instead of calculating the actual probability at each point of the parameterized
model satisfying the specification) in order to determine which parameter is better.

The algorithm will terminate when any of the following conditions holds: a) the current

temperature t falls below a threshold temperature t0, b) the step involving the selection of a

neighbor terminates, and c) the SPRT based statistical model checking algorithm itself ter-

minates. Condition a) is true because of our monotonically decreasing temperature schedule.
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Condition b) is true if the number of parameters is finite. Condition c) is known to be true

almost surely for well-framed hypothesis testing queries.

3.5 Discussion

We described a new SPRT-based parameter discovery technique (Algorithm 3.2) for complex

stochastic models of biochemical and biomedical systems. While the traditional approach to

simulated annealing based parameter synthesis for stochastic models requires the the precise

fitness value calculation by an estimation of the exact probability of a given stochastic model

satisfying a given behavioral specification,we showed that such an estimate is computationally

expensive to obtain. We argued that the computation of such an estimate is not needed and

presented theoretical results (§3.4.1) to show that the expected number of samples required

during the simulated annealing based parameter exploration procedure that uses the SPRT

for verifying whether a model satisfies a given probabilistic behavioral specification is a good

surrogate for the actual estimate of the probability itself.

Note, however, that a weakness of the result we established [58] is that it only gives us

information about the relationship between the expected number of samples required by

the SPRT (to reject the null hypothesis) and the probability with which modelM satisfies

specification φ.

We plan to investigate the theoretical developments in sequential analysis [74] to check

whether we can establish a stronger result that shows the relationship between the actual

number of samples needed by the SPRT and the probability thatM � φ.

The next chapter describes our Bayesian model checking-based technique for automated

parameter estimation.
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Algorithm 3.2 Parameter Estimation Using the SPRT
Require:
Parameterized probabilistic modelM(.) on parameter space Ω,
PBLTL specification Pr≥θ(φ),
Starting temperature ts, Stopping temperature tf .
Cooling Schedule T : N→ (0,∞), (T is strictly decreasing);
Bounds on Type I/II errors: α, β.
{Note: Indifference region: [θ − ε1, θ + ε2]}
{Note: H0 : p ≥ p0, where p0 = θ + ε (ideal null hypotheis: M(ω) � Pr≥θ(φ))}
{Note: H1 : p ≤ p1, where p1 = θ − ε (ideal alternate hypothesis: M(ω) 2 Pr≥θ(φ))}

Ensure:
ans = ω such that ω ∈ Ω andM(ω) � Pr≥θ(φ) or ans = “No parameter found”

A = (1− β)/(α)
B = (β)/(1− α)
ω ← an element in Ω selected randomly
if SPRT(A,B) atM(ω) leads to H1 being rejected then
ans← ω
return

else
N(ω)← number of samples needed to reject H0

end if
t = ts
lcount = 0
while t ≥ tf do
Select a neighbor ψ of ω randomly
if SPRT (A,B) atM(ψ) leads to a rejection of H1 then
ans← ω
return

end if
N(ψ)← number of samples required to reject H0
if N(ψ) ≥ N(ω) then
ω ← ψ;N(ω)← N(ψ)

else
if rand(0, 1) > exp(−(N(ψ)−N(ω))/t) then
ω ← ψ;N(ω)← N(ψ)

end if
end if
t = T (lcount)

end while
print ans← “No parameter found”
return ans
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CHAPTER 4: PARAMETER ESTIMATION USING BAYESIAN

MODEL CHECKING1

Probabilistic models have gained widespread acceptance in the systems biology community

as a useful way to represent complex biological systems. Such models are developed using

existing knowledge of the structure and dynamics of the system, experimental observations,

and inferences drawn from statistical analysis of empirical data. A key bottleneck in building

such models is that some system variables cannot be measured experimentally. These variables

are incorporated into the model as numerical parameters. Determining values of these

parameters that justify existing experiments and provide reliable predictions when model

simulations are performed is a key research problem.

Domain experts usually estimate the values of these parameters by fitting the model to

experimental data. Model fitting is usually expressed as an optimization problem that

requires minimizing a cost-function which measures some notion of distance between the

model and the data. This optimization problem is often solved by combining local and

global search methods that tend to perform well for the specific application domain. When

some prior information about parameters is available, methods such as Bayesian inference are

commonly used for parameter learning. Choosing the appropriate parameter search technique

requires detailed domain knowledge and insight into the underlying system.

Using an agent-based model of the dynamics of acute inflammation, we demonstrate a novel

parameter estimation algorithm by discovering the amount and schedule of doses of bacterial

lipopolysaccharide that guarantee a set of observed clinical outcomes with high probability.

We synthesized values of twenty-eight unknown parameters such that the parameterized model

1A preliminary version of the research reported in this chapter was presented at the 4th International
Conference on Computational Advances in Bio and Medical Sciences [60]; an extended version was later
published in BMC Bioinformatics [59].
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instantiated with these parameter values satisfies four specifications describing the dynamic

behavior of the model.

We have developed a new algorithmic technique for discovering parameters in complex stochas-

tic models of biological systems given behavioral specifications written in a formal mathe-

matical logic. Our algorithm uses Bayesian model checking, sequential hypothesis testing,

and stochastic optimization to automatically synthesize parameters of probabilistic biological

models.

4.1 Introduction

Over the last few years, computational modeling has emerged as a popular tool for studying

and analyzing biological systems. With rapid growth in the availability of high-performance

computing (HPC) infrastructure, there is increasing interest in the construction and analysis

of in silico models of complex biological systems [80, Chapter 5]. An essential requirement

for analyzing a complex high-dimensional system is to build a sufficiently rich computational

model that exhibits key properties of the real system being represented [7]. For users to have

confidence in the predictions made by analyzing model simulations, it is desirable that the

model be amenable to automated verification against large data-sets and expert specifications

[10, 98].

This process of analysis and verification becomes complicated if the system is not deterministic,

i.e. if repeated executions of the model, under the same inputs, may produce different results.

Deterministic models, while often having a clean analytic representation, cannot capture the

unpredictability of natural phenomena or multi-outcome man-made artifacts. This limitation

is addressed by stochastic models that allow a succinct representation of variability in system

behavior [108]. Such models incorporate the uncertainty inherent in the system being modeled,

thus facilitating more accurate analyses and predictions [99].
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Models in systems biology are usually nondeterministic, nonlinear, parameterized, and de-

scribe both functional behavior and quantitative properties [48]. We will focus on a class of

stochastic models that are known in the literature as probabilistic models [9, Chapter 10]. The

essential property of these models that is of interest to us is that it is possible to accurately

assign a probability to every possible behavior that the model can exhibit [72, §3.1].

As a case study for demonstrating our parameter estimation technique, we have considered

a class of probabilistic models known as agent-based models (ABMs). An ABM consists of a

number of autonomous, independently-acting entities known as agents. An agent interacts

with other agents in its immediate vicinity, according to fixed rules that are possibly proba-

bilistic, enabling the system to demonstrate behavioral variability in the face of environmental

uncertainty [6, 16]. Verification and validation of such agent-based models is vital for users

to have confidence in the predictions generated by them [109].

An important challenge faced by designers of a biological model is to find values of unknown

parameters in the model that enable it to reproduce the behavior of the relevant biological

system [37, §2.2, §3.1]. Wooley and Lin describe [80, §5.3.3] the importance of parameter

estimation in the computational modeling of biological systems:

Identifying the appropriate ranges of parameters (e.g., rate constants that

govern the pace of chemical reactions) remains one of the difficulties that every

modeler faces sooner or later. As modelers know well, even qualitative analysis

of simple models depends on knowing which “leading-order terms” are to be kept

on which time scales. When the relative rates are entirely unknown—true of

many biochemical steps in living cells – it is hard to know where to start and how

to assemble a relevant model, a point that underscores the importance of close

dialogue between the laboratory biologist and the mathematical or computational

modeler.
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When the state-space of the parameters is small, an exhaustive search for the correct pa-

rameter values is feasible. For high-dimensional models, brute-force methods are unlikely to

terminate in sub-exponential time and hence are prohibitively expensive [11]. Again, Wooley

and Lin [80, §5.2]:

In models with many parameters, the state space to be explored may grow

combinatorially fast so that no amount of data and brute force computation can

yield much of value (although it may be the case that some algorithm or problem-

related insight can reduce the volume of state space that must be explored to a

reasonable size).

We address this problem by designing an algorithmic technique for parameter estimation

in stochastic biological models that ensures that the synthesized model conforms to desired

behavior as expressed in a formal temporal logic [35]. This chapter describes the following

contributions:

• A new algorithm for automatically discovering parameters of probabilistic computational

models of biological systems. Our algorithm uses simulated annealing [1] and Bayesian

statistical model checking [61] to efficiently explore the system’s parameter space while

continually verifying that the model instantiated with the current parameters satisfies

the given expert specifications.

• An application that demonstrates the effectiveness of our approach by applying this

algorithm to automatically synthesize twenty eight parameters in an agent-based, phys-

iological model of the acute inflammatory response to endotoxin administration [28].
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4.2 Related Work

This section surveys major recent research results on parameter estimation in systems biology.

We first summarize techniques that rely primarily on reformulating estimation as a non-linear

optimization problem. Later, we discuss approaches based on formal verification.

4.2.1 Parameter Estimation Using Global and Local Search

Sun et al [103] survey metaheuristic techniques used in parameter estimation in systems

biology, focusing on simulated annealing, evolutionary algorithms and hybrid strategies that

combine multiple heuristics.

Gonzalez et al [46] use simulated annealing [21] to find parameters in S-system models of

biochemical networks. At a given parameter point during the annealing process, they find a

neighboring point by adding a noise term to each component of the parameter vector that is

dependent on the current optimization error.

Lillacci and Khammash have designed a method that uses Kalman filtering, statistical testing

and numerical optimization for parameter estimation and model selection [79]. Inspired

by these two approaches [46, 79], we have used simulated annealing for optimization and

statistical hypothesis testing-based verification in our parameter estimation algorithm for

probabilistic models.

Algorithms based on maximum-likelihood estimation (MLE) and the singular value decompo-

sition (SVD) have been proposed by Reinker et al [93], to estimate the reaction rate constants

(the parameters) from discrete time series data for molecule counts in stochastic biochemical

reactions.

Rodriquez-Fernandez et al use a hybrid approach for parameter estimation in deterministic,

33



non-linear models of biochemical pathways [97]. They consider deterministic, non-linear

models of biochemical pathways and state the parameter estimation problem as one of

optimizing a scalar cost function. Their approach combining local and global optimization

methods helps overcome the problem of convergence to local minima common in traditional

local optimization methods (like gradient-descent) and the problem of slow convergence

seen in global optimization techniques. It is interesting to note that they use user-specified

switching criteria for their hybrid approach, i.e. when to switch from global to local search

and when to stop the local search.

Genetic algorithm based-techniques have also been used for parameter estimation in a plucked

string synthesis model [95]. Moles et al have studied the global optimization based approaches

to the parameter estimation problem in nonlinear dynamic systems using a 36 parameter

dynamic pathway model as a benchmark [90]. They report that only approaches based

on evolutionary strategies, viz. the stochastic ranking evolutionary strategy (SRES) and

unconstrained evolutionary strategy (uES), were able to successfully find parameters in the

pathway.

The parameter estimation problem for biological pathway models has also been addressed

by Koh et al [69]. An interesting element of their approach is to decompose the model into

components whose parameters can be estimated independently. They model pathways using

hybrid Petri nets (see [87]) and use evolutionary strategies for parameter estimation, but their

approach can be used for any modeling framework and choice of the optimization technique.

Matthew et al have used global sensitivity analysis (GSA) to study the effect of parameter

perturbations in a large, non-linear, ODE-based model of acute inflammation in mice [105],

and found that Interleukin 6 (IL-6) and nitric oxide (NO) had a significant, non-linear impact

on inflammatory damage [86].

In another approach that uses sensitivity analysis, Donze et al have developed an algorithm
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for parameter synthesis in nonlinear systems of ODEs (ordinary differential equations) [32],

and applied their technique to find parameters in two models of acute inflammation [94, 70].

Next, we discuss parameter estimation approaches based on formal verification techniques.

4.2.2 Parameter Estimation Using Formal Verification

Many recent procedures for parameter estimation make use of a formal verification technique

known as model checking.

A model checking approach to finding parameters in biological models has been used by

Calzone et al [18]. They use the Biochemical Abstract Machine (BIOCHAM) modeling

framework to describe the system and temporal logic model checking [24] to find parameters

values in a user-specified range.

Dreossi and Dang have recently designed an algorithm that reduces the problem of parameter

synthesis in polynomial (discrete-time) dynamical systems to solving a set of linear programs

[33]. They use their technique to find parameters of two well-studied epidemic models.

Batt et al have used symbolic model checking to find parameters in a piecewise affine differ-

ential equation (PADE) model of the gene regulation IRMA network [12]. IRMA stands for

in vivo “benchmarking” of reverse-engineering and modeling approaches [20]. Donaldson and

Gilbert have designed a technique for parameter estimation that combines model checking

with a genetic algorithm [31], and used it for estimating kinetic rate constants in a model of

the mitogen-activated protein kinases (MAPK) signaling pathway.

Usually, model checking based methods of parameter estimation require that the relevant

specification be expressed in a formal temporal logic, whose satisfaction against a given

execution path (known as a trace) of the model can be determined. Rizk et al define a

continuous degree of satisfaction of a temporal logic formula for any given trace of the model
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[96] and use it as a fitness function to drive an optimization-style search for kinetic parameters

in models of the cell cycle and the MAPK signal transduction.

In recent work, Mancini et al have used statistical model checking to synthesize parameters

in an ODE-based biological model [83]. They have implemented a distributed, multi-core

version of their algorithmic technique, and used it to estimate patient-specific parameters of

a a human menstrual cycle model.

4.3 Background

Before describing our algorithm for synthesizing parameters in probabilistic models, we give

some background on stochastic modeling in systems biology, specification of time-varying

properties using temporal logic and statistical verification of probabilistic systems against

behavioral specifications. We also provide definitions for formal concepts that will be used

to describe our algorithm.

Remark 1. One of our main objectives in this section is to develop a formal definition of

computational probabilistic models: i.e. those stochastic models for which a probability can

be assigned to any observed model behavior when the model is executed. The reader familiar

with this concept can quickly skim through the next two subsections.

4.3.1 Stochastic Biological Models

Many biological systems have traditionally been described using deterministic, mathematical

models, often in terms of ordinary differential equations [37, §2.1]. However, in recent years,

the need for incorporating the uncertainty inherent in biological systems has led to the

development of stochastic models: these are harder to analyze but more accurately reflect

the behavior of the underlying system [108]. Common stochastic models in biology include
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Markov jump processes [108], stochastic differential equations [30], discrete-time Markov

chains [3, Chapter 3] and continuous-time Markov chains [73].

Also, researchers are increasingly developing computational models that naturally capture

the bottom-up nature of biological phenomena and hence are more amenable to in-silico

implementation [40]. Such models are constructed by observing large sets of time-series data,

combined with their expert insight into the system being modeled [67]. Some of these models

are based on experimental data of varying veracity and error propagation into the designed

model is an ever-present challenge.

We will focus on discrete-time Markov chains, a class of stochastic models that are widely

used in the sciences, engineering, economics and other areas. We closely follow Baier and

Katoen [9] in formally defining them.

Definition 2 (Discrete-time Markov chain). A discrete time Markov chain (DTMC) is given

byM = (S, P, init, AP, L) where:

• S is a countable, nonempty, set of states,

• init : S → [0, 1] is the initial distribution such that Σs∈S init(s) = 1,

• P : S × S → [0, 1] is the transition probability function,

• AP is a set of boolean valued atomic propositions,

• L : S → 2AP is a labeling function for states. �

We next define (a) a parameterized family of DTMCs, given a set of parameters and (b) exe-

cution paths over them.

Definition 3 (Parameterized DTMC). A parameterized discrete time Markov chain (ParDTMC)

is given byM = (S,Θm, P, init, AP, L) where
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• S is a countable, nonempty, set of states,

• Θm = Rm,m ≥ 1 is the parameter space,

• init : S → [0, 1] is the initial distribution such that Σs∈S init(s) = 1,

• P : S × S ×Θm → [0, 1] is the transition probability function over an m-dimensional

parameter space,

• AP is a set of boolean valued atomic propositions, and

• L : S → 2AP is a labeling function for states. �

Definition 4 (ParDTMC execution paths). An execution path of a ParDTMC

M = (S,Θm, P, init, AP, L) is given by σ = s0, s1, . . .. The suffix of a path σ that starts at

state si (i.e. si, si+1, . . .) is denoted σi.

We have applied our automated parameter estimation technique to an agent-based model of

the acute inflammatory response that we discuss later (§4.5). We now briefly discuss major

characteristics of ABMs.

4.3.2 Agent-Based Modeling in Systems Biology

Agent-based models (ABMs) form an interesting, well-studied subset of complex probabilistic

models. In recent years, agent-based modeling has emerged as a popular method for the

representation, analysis and simulation of biological models [6].

ABMs allow the specification of high-level model properties as well as fine-grained component

behavior. An ABM is composed of autonomous elements whose individual properties can be

specified. At a macro-level, model-wide agent-interaction rules can be defined and enforced.

Each agent has a physical location and its state evolves with time based on messages exchanged

with other agents, allowing rich spatio-temporal properties to emerge [6].
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ABMs can incorporate parallelism, object-oriented behavior and stochasticity, making them

conducive to the development of computational models in systems biology. Another advantage

of using ABMs is that they are bottom-up models that mirror the natural behavior of biological

systems [77]. Agents interact with one another based on fixed rules and also have a spatial

location [6].

Most agent-based models do not have compact analytic descriptions, and simulations across

the input space must be performed to in order to infer general model properties [81]. Also,

agent-based models tend to have a large number of parameters, some of them highly-sensitive

in the sense that a small change can radically alter model behavior [17]. To the best of our

knowledge, the parameter estimation problem in ABMs has only been addressed for very

simple models [2] and most approaches use standard optimization techniques [18, 44].

As a case study for our parameter estimation technique, we have used an agent-based model

of the acute inflammatory response due to endotoxin administration [5] written using the

SPARK tool [102]. SPARK is an ABM framework designed for multi-scale modeling of

biomedical models that is implemented in Java and allows users to develop models using its

own programming language (SPARK-PL) [101, 34].

One we have a basic model design available, we need to find the exact model instantiation in

terms of concrete parameter values that meets desired behavior (usually experimental data).

Therefore, we need a way to check if the models all requirements. We now discuss how to

formally specify and automatically verify probabilistic computational models.

An ABM A consists of a fixed number of agents A1, . . . An, where the state of agent Ai is

determined by the values of variables V i
1 . . . V

i
m. Assuming that for any agent Ai, i ∈ {1 . . . n},

variable V i
j , j ∈ {1 . . .m} can take values in the set V arj, A can be represented as a DTMC.

Definition 5 (DTMC corresponding to an ABM). Consider ABM A(n,m) with n agents

A1, . . . An andm variables V1 . . . Vm that take values over countably finite sets V ar1, . . . , V arm
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respectively. The DTMCMA = (S, P, init, AP, L) corresponding to A(n,m) is:

• S = (V ar1 × . . .× V arm)n,

• init : S → [0, 1], the initial distribution is imposed by A,

• P : S × S → [0, 1] is determined by the transition rules over variables of A,

• AP consists of (boolean-valued) atomic propositions over agent variables

V 1
1 . . . V

1
m, . . . , V

n
1 . . . V n

m and

• L : S → 2AP is the usual function marking each state with propositions that hold

there. �

We generalize agent-variable ABMs, by adding the notion of parameters to obtain a family

of ABMs. More formally, we talk of a parametric ABM A(n,m, k) over n agents, m variables

and k parameters whose dynamic behavior (i.e. its transition function P ) now also depends on

the parameter values. For a given parametric ABM, we can defined an equivalent ParDTMC.

Definition 6 (ParDTMC corresponding to a parametric ABM). Consider ABM A(n,m, k)

with n agents A1, . . . An and m variables V1 . . . Vm that take values over countably finite

sets V ar1 . . . V arm and k parameters θ1 . . . θk. The ParDTMCMA = (S,Θk, P, init, AP, L)

corresponding to A(n,m, k) is:

• S = (V ar1 × . . .× V arm)n,

• init : S → [0, 1] the initial distribution is imposed by A,

• P : S × S ×Θk → [0, 1], where Θk = θ1× . . .× θk is determined by the transition rules

over variables and parameters of A,

• AP consists of boolean propositions over variable values of all agents V 1
1 . . . V

1
m, . . . , V

n
1 . . . V n

m,
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• L : S → 2AP is the usual function marking each state with propositions that hold

there. �

Remark 2. In order to use statistical model checking to solve the probabilistic model checking

problem, we need to associate probabilities with executions paths of the model. For DTMCs,

this has been shown by Kwiatkowska et al [72] and Baier and Katoen [9, Chapter 10].

Although we do not prove this, this is also true for ParDTMCs. From now on, we assume that

our models can be represented as ParDTMCs and thus have a unique underlying probability

measure.

4.3.3 Specifying and Checking Biological Properties

Our algorithm discovers parameters of stochastic biological from experimental data and

expert behavioral specifications. While exploring the parameter space, we continually verify

whether we have a parameter assignment at which the model meets the given specifications.

Typically, properties of biological systems that need to be formally specified are qualitative,

quantitative and time-varying. Since the models are usually stochastic, specifications too

should allow reasonable deviations from desired behavior. To capture such rich behavioral

properties, we use a probabilistic temporal logic (see Definition 9) to specify expected model

behavior.

In order to develop automated techniques for analyzing biological models, we also need the

properties to be specified in a way that can be monitored as we perform ABM simulations.

Monitoring is the process of determining if an execution trace of the model satisfies given

specifications [39] Therefore, we write specifications using a logic belonging to a class of

languages for which monitors can be derived algorithmically [63].

We translate natural language expert insights representing desired model behavior into a

41



logic whose sentences are adapted finitely monitorable (AFM) formulas. The truth value of an

AFM formula with respect to a trace of a model execution can be determined by observing

a finite prefix of the trace [78, §2],[63, §2.2]. Next, we formally define our specification

language:

Definition 7 (BLTL grammar). Given a ParDTMCM = (S,Θk, P, init, AP, L), the grammar

of bounded linear temporal logic (BLTL) formulas φ in Backus-Naur Form is as follows:

〈φ〉 ::= a | φ ∧ φ | φ ∨ φ | ¬φ | φUdφ

where a ∈ AP , d ∈ N, and ∧,∨ and ¬ are the usual proposition logic operators. We call Ud

the bounded until operator. �

The semantics of a BLTL formula φ is defined over an execution path of a ParDTMC M

(see Definition 4).

Definition 8 (BLTL semantics). Given a path σ of a ParDTMCM = (S, P, init, AP, L), the

satisfaction of a BLTL formula φ on a path suffix σi = (s1, s2, . . .) is denoted σi |= φ, and is

determined by the following rules:

• σi |= a, where a ∈ AP iff a ∈ L(si),

• σi |= φ1 ∧ φ2 iff σi |= φ1 and σi |= φ2,

• σi |= φ1 ∨ φ2 iff σi |= φ1 or σi |= φ2,

• σi |= ¬φ iff σi 2 φ,

• σi |= φ1Udφ2 iff ∃l ∈ N such that l <= d, σi+l |= φ2 and ∀0 ≤ j < l, σi+j |= φ1. �

We now state, without proof, the fact that it is possible to check if any path of a ParDTMC

satisfies a given BLTL formula, by observing a finite prefix of the path. For a proof of a

similar lemma for continuous-time Markov chains, see Legay et al [113].
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Lemma 1 (Monitorability of BLTL formulas over DTMCs). It is always possible to algo-

rithmically decide if any simulation path σ = (s1, s2, . . .) of a ParDTMC M satisfies given

BLTL formula φ by observing a finite prefix of σ.

Note 1 (Additional bounded operators). We can define bounded versions of the usual linear

temporal logic operators G (always) and F (eventually) as follows: Fdψ = true Udψ,

Gdψ = ¬Fd¬ψ. Fdψ means that ψ holds at some state within the next d state-transitions,

and Gdψ means that ψ continually holds for the next d state-transitions.

The expressive power of our agent-based models emanates from their ability to capture

uncertainty. For such stochastic models, a single execution trace that violates a given

property cannot serve as a counterexample. We need a more flexible specification language

whose formulas allow reasonable deviations from expected model behavior. For this, we

define a probabilistic version of BLTL.

Definition 9 (Probabilistic Bounded Linear Temporal Logic). A specification of the form

P≥θ(φ) is a probabilistic bounded linear temporal logic (PBLTL) formula if φ is a bounded

linear temporal logic formula and θ is a probability threshold such that θ ∈ R, 0 ≤ θ ≤ 1. If a

θ fraction of the traces of a model satisfy φ, we deem the model to satisfy the (probabilistic)

AFM specification P≥θ(φ). �

4.3.4 Automated Verification Using Model Checking

Model checking is an automated technique for verifying finite and infinite state transition

systems that is widely used for formal assurance of safety-critical systems [9]. Techniques

based on model checking have been used for verification in a number of areas such as hybrid

dynamical systems, computer software, and systems biology.

In order to use model checking to verify a time-varying system, the model is described using

a Kripke structure and the property to be checked is written in a formal temporal logic. We
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will use PBLTL (Definition 9) to define the probabilistic model checking problem.

Definition 10 (Probabilistic model checking (PMC)). Given a probabilistic modelM and a

PBLTL specification P≥θ(φ), determine ifM satisfies φ with probability at least θ. �

There are two approaches for solving the PMC problem:

• Symbolic and numerical techniques that estimate the exact value of the probability

with whichM satisfies φ (by exhaustively exploring all possible model behaviors) and

then compare it to the specification threshold probability θ.

• Statistical techniques [54, 112] that use a set of sample simulations to determine if

M |= P≥θ(φ).

Statistical approaches for probabilistic model checking are more scalable since they avoid the

expensive calculation associated with accurately estimating exact probabilities. However, a

limitation of statistical model checking algorithms is that the reported result is not guaranteed

to be correct, i.e., there may be false positives or false negatives [111].

Since computational models in systems biology often have large parameter spaces, we use

statistical model checking as part of our parameter estimation algorithm. Next, we describe

a reformulation of the probabilistic model checking problem in terms of statistical hypothesis

testing – an approach first used by Younes [111].

4.3.5 Hypothesis Testing Based Statistical Model Checking

We are interested in determining an answer to the probabilistic model checking problem, i.e.

“DoesM |= P≥θ(φ)?” (see Definition 10).

Assuming that the model’s actual probability of satisfying the specification is u ∈ [0, 1], i.e.

M |= P=u(φ), we test the (null) hypothesis H : u ≥ θ against the (alternative) hypothesis
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K : u < θ. If K is rejected we conclude thatM |= P≥θ(φ). If H is rejected we conclude that

M 2 P≥θ(φ).

Note 2 (Errors in hypothesis testing). For a hypothesis test procedure, the critical region is

the part of the sample space where the null hypothesis is rejected. If the test rejects H when

its true, it is considered a Type I error. On the other hand, if the test accepts H when its

false, it is a Type II error. Once the critical region for a test procedure has been decided,

it uniquely determines the probabilities of Type I and Type II errors. For a given critical

region, we denote by α (resp. β) the probability of a Type I (resp. Type II) error.

Naturally, for any statistical hypothesis testing procedure we want a critical region that

minimizes the probabilities α and β of Type I and Type II errors (see Note 2). However, this

implies either using a large value for either α or β, or drawing a large number of samples to

ensure test accuracy.

Younes [112] suggests that the solution is to use the more relaxed test of H0 : u ≥ ur against

H1 : u ≤ ul, where 0 ≤ ul < θ < ur ≤ 1). If H0 (H1) is accepted, we consider H (resp. K)

to be true.

Remark 3 (Indifference regions). [ul, ur] is known as the indifference region. If u ∈ [ul, ur] (i.e.

when both H0 and H1 are false), we do not care about the result of the test; thus the test

procedure is allowed to accept either hypothesis. In practice, we often choose the indifference

region [ul, ur] to be of width 2 ∗ ε (where 0 < ε� 1), i.e. [u− ε, u+ ε]. �

Our parameter estimation technique uses the Bayesian statistical model checking (BSMC)

algorithm developed by Jha at al [61], to algorithmically check if a probabilistic model satisfies

given behavioral specifications.

Next, we briefly describe the main idea behind BSMC and refer to the reader to the literature

for details [63, 78, 61].
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4.3.6 Bayesian Statistical Model Checking

Recall that we are interested in testing whether a probabilistic model meets a PBLTL spec-

ification with a minimum threshold probability, i.e. “DoesM |= P≥θ(φ)”? (Note that the

BLTL specification φ does not contain a probability operator.)

Assuming thatM |= P=u(φ), we have posed this problem as hypothesis testing query: test

H : u ≥ θ against K : u < θ, and then relaxed it to use indifference regions: H0 : u ≥ ur

against H1 : u ≤ ul (where 0 ≤ ul < θ < ur ≤ 1).

Algorithm 4.3 Bayesian Statistical Model Checking
Require:

Probabilistic modelM,
PBLTL specification P≥θ(φ),
Threshold L > 1,
Prior density function g(.) of the unknown parameter u whereM |= P=u(φ),
Indifference region bounds: (ε1, ε2), where ε1 > 0, ε2 > 0.
{Note: Indifference region is [θ − ε1, θ + ε2]}
{Note: H0 : u ≥ θ + ε2; H1 : u ≤ θ − ε1}

Ensure:
ans = false if H0 rejected,
ans = true if H0 is accepted,
n = Total number of traces sampled fromM.

1: n← 0 {Number of traces drawn fromM.}
2: z ← 0 {Number of traces satisfying φ.}
3: repeat
4: Draw sample σ fromM
5: n← n+ 1
6: if σ |= φ then
7: z ← z + 1
8: end if
9: B ←

∫ 1
θ+ε2

uz(1−u)n−zg(u)du∫ θ−ε1
0 uz(1−u)n−zg(u)du

{From Eqn. 4.2.}

10: until (B > L) ∨ (B < 1
L

)
11: if B > L then
12: ans← true
13: else
14: ans← false
15: end if
16: return (ans; n)
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If H1 is rejected, we consider that H : u ≥ θ holds, and hence conclude thatM |= P≥θ(φ).

If H0 is rejected, we conclude that H1 :M |= P<θ(φ), i.e. M 2 P≥θ(φ).

Recall that we do not know the value of the actual probability u with which the model

satisfies the specification i.e. M |= P=u(φ). For Bayesian testing, we model this unknown

probability as a random variable U and assume the availability of a prior density function

g(.) that incorporates our existing knowledge of U .

The Bayesian statistical model checking procedure (see Algorithm 4.3) sequentially draws

traces from M in an i.i.d. fashion until it rejects either H0 or H1. For each sample trace

σi, (i ∈ {0, 1, . . .}) ofM, it uses a monitoring algorithm to determine if the path satisfies the

BLTL specification φ.

The outcome of each such test of path satisfiability can be represented by a Bernoulli random

variable Xi i.e. ∀i ∈ {1, . . . n}, if σi |= φ,Xi = 1, otherwise (i.e. when σi 2 φ) Xi = 0. At

each iteration, the algorithm calculates a quantity known as the Bayes Factor (BF ) that,

given the observation of a sample (x1, x2, . . . xn), xi ∈ {0, 1}, reflects confidence in H0 holding

versus H1:

BayesFactor : P (x1, . . . , xn|H0)
P (x1, . . . , xn|H1) (4.1)

We need to calculate the probability P (d|Hi) of observing sample d = (x1, x2, . . . xn) given

hypothesis Hi, i ∈ 0, 1. Therefore, we will need to consider all cases where H0 (resp. H1)

holds. Assuming the indifference region [ul, ur] to be [θ − ε1, θ + ε2], whether H0 : u ≥ ur or

H1 : u ≤ ul holds depends on the actual probability u ofM satisfying φ. For both cases, we

integrate over all possible values of u according to our prior g:

P (d|H0) =
∫ 1

θ+ε2
f(x1|u) . . . f(xn|u)g(u)du
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P (d|H1) =
∫ θ−ε1

0
f(x1|u) . . . f(xn|u)g(u)du

Here, f(xi|u) = uxi(1 − u)1−xi is the conditional density of Bernoulli random variable Xi

given the actual probability u. Now, the probability of observing a sample d given hypothesis

Hi(i = 0, 1), depends on its joint density h and the prior g(.):

BayesFactor =
∫ 1
θ+ε2 u

z(1− u)n−zg(u)du∫ θ−ε1
0 uz(1− u)n−zg(u)du

(4.2)

In summary, calculating the Bayes factor requires knowing the number of total traces n

drawn fromM, the number z of traces that satisfied specification φ, the indifference region

[ul, ur] and the prior density g(.) of the unknown probability u. For more details about the

Bayesian model checking algorithm, we refer the reader to the work of Jha [63, Chapter 4] .

4.4 Algorithm for Discovering Parameters

We formally state the problem of estimating parameters in computational models of proba-

bilistic systems:

Definition 11 (Parameter estimation problem). Given a parameterized probabilistic model

M(ω), with parameter set Ω ⊆ Rn, a desired specification φ in a bounded (finitely moni-

torable) temporal logic, and a probabilistic threshold θ ∈ [0, 1], find a parameter value ω ∈ Ω

such thatM(ω) satisfies property φ with probability at least θ, i.e. M(ω) |= P≥θ(φ). �

Our algorithmic procedure for synthesizing parameters is shown in Algorithm 4.4. We use

simulated annealing [92] for exploring the parameter space of the stochastic model. Simulated

annealing is a stochastic optimization technique that avoids local minima in two ways (lines

17–27): (a) by sometimes accepting points with lower fitness and (b) via the temperature
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schedule that causes fewer bad choices to be accepted as we move closer to one of the global

optima.

When considering any candidate parameter ω ∈ Ω, we invoke the Bayesian model checking

routine (lines 2 and 12) to check if the parameterized model matches expected behavior (i.e.

ifM(ω) |= P≥θ(φ)).

Note that since the BSMC algorithm expects as input a prior density g for the unknown

probability u whereM |= P=u(φ), our synthesis algorithm needs a parameterized prior h(.)

that represents the prior for each model instantiationM(ω).

To guide the annealing process, we use the number of samples returned by the Bayesian model

checking procedure, moving to the parameter point that needed more samples to reject the

null hypothesis during Bayesian statistical model checking (lines 14 and 15 in Algorithm 4.4).

For verifying a modelM against a PBLTL formula P≥θ(φ), given thatM actually satisfies

φ with probability u (i.e. M |= P=u(φ)), the Bayesian statistical model checking algorithm

takes increasingly larger number of samples to reject the null hypothesis as the specification

threshold probability (θ) approaches the actual probability (u) with whichM satisfies φ, as

shown in Figure 4.1. The figure shows how, for a fixed threshold θ, the Bayesian hypothesis

testing algorithm takes more samples for verification when we consider parameter points ω

at which the model’s probability p(ω) of satisfying φ is close to θ.

In earlier work, we had demonstrated the use of statistical hypothesis testing for parameter

search in stochastic models by using a metric based on the Sequential Probability Ratio Test

(SPRT) hypothesis testing technique [106] as a fitness function to drive the global optimization

procedure used for searching the state space [57, 58]. Figure 4.1 shows results from two sets

of experiments that demonstrate how Bayesian hypothesis testing uses significantly fewer

samples than a verification procedure based on the SPRT when the model is far away from

the desired behavior.
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SPRT-based hypothesis testing
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(a) Hypothesis test using the SPRT with Type I
error bound α = 0.001, Type II error bound
β = 0.001 and indifference region 2 ∗ 0.0001.

Bayesian hypothesis testing
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(b) Bayesian hypothesis test with Bayes factor T =
1000, and using Beta prior with parameters α = 1,
β = 1.

Figure 4.1: Comparison of the efficiency of SPRT-based (a) and Bayesian (b) hypothesis
testing. In both cases, the number of samples required for hypothesis testing increases as the
specification threshold probability approaches the actual probability with which the model
satisfies the specification. Bayesian hypothesis testing required fewer samples than the SPRT
when the model is obviously flawed with respect to the desired behavior. The number of
samples for the Bayesian hypothesis testing vary from 1 to 1000 while those for the SPRT
become as large as 100000.

Unlike the SPRT-based technique for parameter discovery (Chapter 3), Algorithm 4.4 does

not need the Type I, Type II error bounds (α, β resp.) because it uses Bayesian statistical model

checking for verification, thereby reducing the number of samples required for discovering a

model’s parameters.

4.5 Application: Verifying Properties of a Physiological Model of Acute Inflammation

We demonstrate our algorithm for discovering parameters of probabilistic systems on a phys-

iological model that describes the acute inflammatory response (AIR) to the administration

of the Gram-negative Bacterial endotoxin lipopolysaccharide (LPS) [28].
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(a) Simulations validating specifica-
tion (spec1).

(b) Simulations validating specifica-
tion (spec2).

(c) Simulations validating specifica-
tion (spec3).

(d) Simulations validating specifica-
tion (spec4).

Figure 4.2: Simulation results showing SPARK output that demonstrate that the model
instantiated with the synthesized parameters meets the desired specifications. Parallel simu-
lations show SPARK output for 10 threads. Figures (a), (b), (c) and (d) show traces for the
activated phagocyte count over time on invocation of the ABM simulator. Satisfaction of
the four specifications was determined by a monitoring script that checks traces for each of
the desired behaviors. One can visually verify that the ABM parameterized with the values
in Table 4.1 satisfies all the four expert-provided specifications.

With the aim of discovering the schedule and doses of LPS that make the model exhibit desired

properties, we synthesized twenty eight model parameters for a set of four specifications given

to us by experts with extensive experience with the model. Simulations were performed using

the SPARK (Simple Platform for Agent-based Representation of Knowledge) agent-based

modeling and simulation framework [101, 102]. We describe both the (natural language)

expert specifications and their translations into PBLTL (see Definition 9):
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(spec1) There exists a low dose of the lipopolysaccharide (LPS) that stimulates an episode of

inflammation which eventually resolves – the system returns to baseline.

Formal specification: DL → Fδ1(I ∧ Fδ2(N)).

(spec2) There exists a high dose of LPS that stimulates an episode of inflammation which

does not resolve, i.e. the system reaches levels of inflammation from which there is no

recovery.

Formal specification: DH → Fδ3(Gδ4IH).

(spec3) Desensitization: For a certain time interval, when one administration of LPS is followed

by a second administration of the same dose, the inflammatory response resulting from

the second administration is lesser than that from the first.

Formal specification: D → Fδ5(IL ∧ Fδ6(D → Fδ7IH)).

(spec4) Priming: For a certain time interval, when one administration of LPS is followed by a

second administration of the same dose, the inflammatory response resulting from the

second administration is greater than that from the first.

Formal specification: D → Fδ8(IH ∧ Fδ9(D → Fδ10IL)).

DL (DH) represents a low (high) dose of LPS, D is a dose of unknown magnitude, but likely

to be neither too low nor very high, I indicates that an inflammatory event occurred, N is

the event of entering a non-inflammatory state, and IL (IH) stands for lower (higher) level

of inflammation. Also, ∀i ∈ {1 . . . 10}, δi ∈ N represents the (discrete) simulation time steps

between the relevant events. For initial values of each of the parameters, we used a randomly

chosen value within bounds provided as part of the specification.

We successfully synthesized 28 parameters (shown in Table 4.1) for the acute inflammatory

response model against four behavioral specifications. Our algorithm took less than 24

hours to synthesize this parameter set on a 1400 MHz, 64-core machine running the Linux
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operating system. Figure 4.2 shows the satisfaction of all four specifications by depicting

model simulations when parameterized at the synthesized parameter set from Table 4.1.

The first 14 parameters are fundamental to the model and denote various attributes that

cannot be measured experimentally. The remaining 14 parameters describe the endotoxin

administration schedule. Of these, the first 3 parameters indicate the case where inflamma-

tory event occurs but is later resolved; the next 3 parameters show the scenario where an

inflammatory event occurs that is never resolved. The last 4 parameters denote the priming

scenario (spec3), and the second-last set of 4 parameters denotes the desensitization scenario

(spec4). Both priming and desensitization are phenomena in which repeated administration

of endotoxin leads to either an augmented (priming) or reduced (desensitization) level of

inflammation as compared to a single administration of endotoxin [28].

We conclude that a low dose for a high duration causes priming behavior whereas an even lower

dose administered for a short period of time results in desensitization. Thus, our algorithm syn-

thesizes a model that demonstrates all four behavioral properties, i.e. (spec1), (spec2), (spec3)

and (spec4).

Table 4.1: Parameters of the acute inflammatory response model synthesized by our algorithm.

(param. 1) LPS-evap 0.932575 (param. 15) exp1-dose-time 149.574
(param. 2) mac-act-LPS 0.661416 (param. 16) exp1-dose-duration 4.80575
(param. 3) mac-act-pro 0.326682 (param. 17) exp1-dose-amount 3352.54
(param. 4) mac-regen 12.655 (param. 18) exp2-dose-time 467.262
(param. 5) mac-age 60.5967 (param. 19) exp2-dose-duration 458.451
(param. 6) mac-act-dam 0.3916 (param. 20) exp2-dose-amount 896067
(param. 7) max-pro-dam 18.5986 (param. 21) exp3-1st-dose-time 33.3838
(param. 8) pro-dam-thresh 0.51023 (param. 22) exp3-2nd-dose-time 407.352
(param. 9) damage-evap 0.276594 (param. 23) exp3-doses-duration 41.6759
(param. 10) anti-heal-thresh 7.92487 (param. 24) exp3-doses-amount 2628.97
(param. 11) mac-anti 0.442621 (param. 25) exp4-1st-dose-time 8.24293
(param. 12) anti-evap 0.623503 (param. 26) exp4-2nd-dose-time 411.959
(param. 13) pro-evap 0.142298 (param. 27) exp4-doses-duration 4.40842
(param. 14) mac-prop 8.39519 (param. 28) exp4-doses-amount 4494.65
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Algorithm 4.4 Parameter Estimation Using Bayesian Statistical Model Checking
Require:

Parameterized probabilistic modelM(.) on parameter space Ω,
PBLTL specification P≥θ(φ),
Starting temperature ts,
Stopping temperature tf ,
Cooling schedule T : N 7→ [0,∞) (where T is strictly decreasing),
Parameterized prior density h(.) on parameter space Ω,
Threshold L,
Indifference region bounds (ε1, ε2) where ε1 > 0, ε2 > 0.

Ensure:
ans = ω such that ω ∈ Ω andM(ω) |= P≥θ(φ) or
ans = “No parameter found.”

1: ω ← an element in Ω selected randomly
2: (f, n)← BSMC(M(ω), P≥θ(φ), L, h(ω), (ε1, ε2))
3: if f = true then
4: ans← ω
5: return
6: end if
7: t = ts
8: lcount = 0
9: while t ≥ tf do
10: lcount← lcount+ 1
11: Select a neighbor ω′ of ω randomly.
12: (f ′, n′)← BSMC(M(ω′), P≥θ(φ), L, h(ω), (ε1, ε2)]
13: if f ′ = true then
14: ans← ω′

15: return
16: end if
17: if n′ > n then
18: ω ← ω′

19: f ← f ′

20: n← n′

21: else
22: if rand(0, 1) < exp(−(n′ − n)/t) then
23: ω ← ω′

24: f ← f ′

25: n← n′

26: end if
27: end if
28: t← T (lcount)
29: end while
30: ans← “No parameter found”
31: return ans
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CHAPTER 5: CONCLUSION1

Probabilistic computational models have been to used to analyze complex phenomena in areas

that include the study of complex economic phenomena, global ecology, forced migration, the

spread of infectious diseases and threats to international security. In recent years, there have

been attempts to automate the discovery of model parameters using modern high-performance

computing techniques. The ongoing exponential increase in computational power provides an

opportunity for building software that can automatically find parameter values of complex

stochastic models, given specifications describing the relevant properties the completed model

should ideally have.

This dissertation discussed new algorithmic techniques for parameter synthesis that use

the Sequential Probability Ratio Test (SPRT), Bayesian statistical model checking and

simulated annealing to find a model instantiation that meets expert-provided behavioral

specifications. We applied our SPRT-based parameter estimation technique to discover

three parameters in a complex glucose-insulin model that helped validate key properties of

artificial pancreata. We applied our Bayesian model checking-based algorithm to discover

twenty-eight parameters in a model of the acute inflammatory response in humans to satisfy

four behavioral specification describing a variety of responses due to varying schedules and

doses of administering endotoxin.

We have thus demonstrated how, given user-provided behavioral properties, our new algo-

rithms based on formal verification, statistical hypothesis testing and mathematical optimiza-

tion automatically synthesize numerical parameters in computational models of probabilistic

systems. Next, we briefly discuss possibilities for future work in the area.

1This chapter is based on concluding remarks from our earlier papers on algorithmic techniques for
parameter estimation [57, 58, 60, 59].
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5.1 Future Work

We plan to pursue several directions for future work. First, the current sampling strategy

of drawing a fresh set of samples for every parameter perturbation is wasteful and may be

avoided by employing change of measures arguments and reusing earlier samples [62].

We also plan to automate the process of learning specifications from time-series data, which

will allow researchers to build better models using specifications generated automatically

from experimental data that they can then curate. Another interesting area of research is the

use of unbounded temporal specifications. This would permit the specification of interesting

properties including cyclic behavior and periodic oscillations [35].

After comparing different parameter estimation techniques for stochastic models in systems

biology, we are convinced of the need to develop open benchmarks of computational models

and experimental datasets (like time-series data) that would help evaluate existing and

proposed solutions to the parameter estimation problem.

We are also keenly interested in studying the problem of parameter sensitivity, i.e. ensuring

that parameter values discovered should be robust enough so that a slight change in them

does not cause drastically different model behavior. This problem is especially important in

biology because experimental data are often not only sparse but also contains measurement

errors [67].

Finally, users of search algorithms are always concerned about the issue of scalability, i.e.

whether or not the technique would work efficiently when the problem size is large, resulting

in a high-dimensional parameter space. To address this issue, we plan to investigate various

model reduction techniques [13].
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