Validity of Threshold-Crossing Analysis of Symbolic Dynamics from Chaotic Time Series

Erik M. Bollt,1 Theodore Stanford,2 Ying-Cheng Lai,3 Karol Życzkowski4,5

1Department of Mathematics, 572 Holloway Road, U.S. Naval Academy, Annapolis, Maryland 21402-5002
2Department of Mathematical Sciences, New Mexico State University, Las Cruces, New Mexico 88003-8001
3Departments of Mathematics, Electrical Engineering, and Physics, Center for Systems Science and Engineering Research, Arizona State University, Tempe, Arizona 85287
4Instytut Fizyki im. Smoluchowskiego, Uniwersytet Jagielloński, ul. Reymonta 4, 30-059 Kraków, Poland
5Centrum Fizyki Teoretycznej PAN, al. Lotników 32/46, 02-668 Warszawa, Poland

(Received 4 May 2000; revised manuscript received 7 August 2000)

PACS numbers: 05.45.Vx, 05.45.Tp, 89.70.+c

Symbolic dynamics is a fundamental tool available to describe complicated time evolution of a chaotic dynamical system, the Smale horseshoe [1] being the most famous prototype. Symbolic dynamics also provides a natural link between chaotic dynamics and information theory [2], on which the recent idea of utilizing chaotic systems to encode digital information, or communicating with chaos, is based [3]. A good symbolic dynamical representation requires that a one-to-one correspondence be established to the phase-space dynamics; the partition that defines distinct symbols has to be generating [4]. Specification of the generating partition for chaotic systems in general is, however, a challenging problem [5–8] which is still open for most dynamical systems.

On the experimental side, there appears an increasing interest in chaotic symbolic dynamics as well [9,10]. A common practice is to apply the threshold-crossing method, i.e., to define a rather arbitrary partition, so that distinct symbols can be defined from measured time series [9]. There are two reasons for the popularity of the threshold-crossing method: (i) it is extremely difficult to locate the generating partition from chaotic data and (ii) threshold crossing is a physically intuitive and natural idea. Consider, for instance, a time series of temperature $T(t)$ recorded from a turbulent flow. By replacing the real-valued data with symbolic data relative to some threshold T_c, say a 0 if $T(t) < T_c$ and a 1 if $T(t) > T_c$, the problem of data analysis can be simplified. A well chosen partition is clearly important: for instance, T_c cannot be outside the range of $T(t)$ because, otherwise, the symbolic sequence will be trivial and carry no information about the underlying dynamics. It is thus of paramount interest to understand how misplaced partitions affect the goodness of the symbolic dynamics such as the amount of information that can be extracted from the data.

In this Letter, we investigate the consequence of misplaced partitions in chaotic systems. Specifically, we address how the topological entropy, perhaps one of the most important dynamical invariants that one intends to compute from symbolic dynamics, behaves as a parameter, d, which characterizes the amount of misplaced partition, is changed. We find that the topological entropy as a function of d to be devil’s staircase-like, but surprisingly nonmonotone. We establish our results by performing numerical computations for one- and two-dimensional maps and by rigorous analyses for the tent map which is a good topological model for one-dimensional one-hump maps. The main implication of our results is that the threshold-crossing technique typically yields misleading conclusions about the dynamics generating the data, and therefore one should be extremely cautious when attempting to understand the underlying system from a misrepresented symbolic dynamics. Similar topological entropy figures have appeared previously [11], but our combinatorial and topological explanations of the phenomenon and application are new.

We begin by studying the tent map: $f : [0, 1] → [0, 1]$, $x → 1 - 2|x - 1/2|$ for which the generating partition for symbolic dynamics is the critical point $x_c = 1/2$. The dynamics of f is semiconjugate to the Bernoulli full 2-shift, meaning that there are no forbidden binary symbolic sequences, by the surjection $h : [0, 1] → \Sigma_2^{[0,1]}$. This gives a unique symbolic itinerary $\sigma = \sigma_0 \cdot \sigma_1 \cdot \sigma_2 \ldots$ for each $x \in [0, 1]$, where $\sigma_i(x) = 0(1)$ if $f^i(x) < x_c(> x_c)$ for $i ≥ 0$, and $\Sigma_2^{[0,1]}$ is the semi-infinite full shift on two symbols: 0 and 1 [12,13]. The topological entropy of $\Sigma_2^{[0,1]}$ is ln2. Now misplace the partition at $p = x_c + d$, where $d \in [-1/2, 1/2]$ is the misplacement parameter. In this case, the symbolic sequence corresponding to a point $x \in [0, 1]$ becomes $\phi = \phi_0 \cdot \phi_1 \phi_2 \ldots$, where $\phi_i(x) = a(b)$ if $f^i(x) < p(p > p)$, as shown in Fig. 1. The shift so obtained, $\Sigma_2^{(a,b)}$, will no longer be a full shift because, as we argue later, not every binary symbolic sequence is possible. Thus, $\Sigma_2^{(a,b)}$ will be a subshift on two symbols a and b when $d \neq 0 (p \neq x_c)$. The topological entropy of
the subshift $\Sigma_2^{[a,b]}$, denoted by $h_T(d)$, will typically be less than $h_T(0) = \ln 2$. Numerically, $h_T(d)$ can be computed using the formula [13]

$$h_T(d) = \lim_{n \to \infty} \frac{\ln N_n}{n},$$

(1)

where $N_n \leq 2^n$ is the number of (a, b) binary sequences (words) of length n. In our computation, we choose 1024 values of d uniformly in the interval $[-1/2, 1/2]$ and for each value of d, we count N_n in the range $4 \leq n \leq 18$ from a trajectory of 2^{20} points generated by the tent map. The slopes of the plots of $\ln N_n$ versus n gives approximate values of h_T. Figure 2(a) shows $h_T(d)$ versus d for the tent map, where we observe a complicated, devil’s staircase-like, but clearly nonmonotone behavior. For $d = 0$, we have $h_T(0) = \ln 2$, as expected. For $d = -1/2$ (1/2), from Fig. 1, we see that the grammar forbids the letter a (b) and, hence, $\Sigma_2^{[a,b]}(-1/2) [\Sigma_2^{[a,b]}(1/2)]$ has only one sequence: $\phi = bbb \ldots (\phi = aaa \ldots)$. Hence, $h_T(\pm 1/2) = 0$.

Can a similar behavior in the topological entropy occur in more complicated and nonhyperbolic systems? Consider, for instance, the Hénon map: $(x, y) \rightarrow (1.4 - x^2 + 0.3y, x)$. Because of nonhyperbolicity, the generating partition has been conjectured to be a complicated zigzag curve connecting all primary tangency points between the stable and the unstable manifolds [5,14]. Precisely locating the partition curve is highly nontrivial, so the idea of threshold crossing becomes more tempting. Suppose we simply set the partition at $y = c$ and define, for each measurement y_i from the time series $\{y_i\}_{i=0}^{N}$, the following $2n$-bit word: $\omega_{2n} = \sigma_{-n} \ldots \sigma_{-1} \cdot \sigma_{0} \cdots \sigma_{n-1}$, where $n \leq i \leq N - n$ and the symbols are chosen according to the rule $\sigma_j = a(b)$ if $y_i + j < c(>c)$. By numerically counting the number of distinct $2n$-bit words, we obtain Fig. 3, plot of $h_T(c)$ versus the misplaced partition parameter c. Features similar to those in Fig. 2(a) are observed. Computations using experimental time series such as the Belousov-Zhabotinskii reaction data [15] reveal a similar behavior depicted in Fig. 4.

Our experimental and numerical results are justified by the following rigorous analysis [16]. The basic mathematical tool we employ is the graphic presentation of the symbolic dynamics. Consider, for instance, the familiar Bernoulli shift map in the symbolic space, which is the full shift $\Sigma_2^{(0,1)}$. It can be presented, naturally, by a directed graph describing all possible transitions between the 2^n words of 0’s and 1’s, as shown in Fig. 5 for $n = 4$. The sixteen 4-bit words are arranged from left to right by the Gray-code order: $0000 < 0001 < 0010 < 0110 < \cdots < 1011 < 1001 < 1000$, so that corresponding intervals in the phase space are monotonically ordered, according to the kneading theory [17]. It is important to realize that the graph in Fig. 5 with the particular labeling characterizes the full shift, i.e., when the partition is generating. When the partition is misplaced, the labeling of the graph changes. The associated topological entropy can
then be computed from the transition matrix of the relabeled graph \([16,18] \). This is the main idea of our analysis. Also of particular importance in our analysis are the situations where the partition is misplaced at dyadic positions: \(d = q/2^n = q/r \), where \(d \in [0,1] \) and \(q,r,n \) are integers. Several such cases are shown in Fig. 5.

More specifically, let \(\mathcal{G} = (G,L) \) denote a labeled graph, where each edge carries a label index \(L \). Consider a misplacement which occurs at a dyadic \(d \); then the partition of the tent map can be described in the symbolic space by relabeling the set of edges of an appropriate graph \((G,L) \) presentation of the full shift. Placing the partition at any such \(d \) is equivalent to relabeling the set of edges in the graphic presentation, to be either \(a \) or \(b \), according to the Gray-code order. In particular, if \(d \leq v_i \), where \(v_i (i = 1,\ldots,2^n) \) is the \(i \)th \(n \)-bit word labeling a vertex, then all edges pointed \(\text{into} \) that vertex are relabeled as an \(a \), and otherwise a \(b \). Such a relabeling can be considered to be a factor code \(\phi_d \) that projects, surjectively, the full shift \(\Sigma_2 \) into the subshift \(\Sigma_2^{a,b} (d) \). Each relabeled graph then defines a new subshift with grammar (because there are now forbidden words) by considering all walks through the graph and all resulting infinite sequences of \(a \)'s and \(b \)'s.

To understand better why a misplaced partition changes the labeling of the graph, we consider the following simple examples. If \(n = 4 \) and \(d = -1/8 \), it can be shown \[16\] that the relabeled word \(abbba \) is allowed which is generated by the path: \(0111 \rightarrow 1110 \rightarrow 1100 \rightarrow 1001 \rightarrow 0010 \).

This is, in fact, the only such labeled path through the graph, as shown in Fig. 5. If the partition is further misplaced to \(d = -3/16 \), then that path becomes relabeled: \(bbbbb \), since we have, by relabeling the vertex \(0111 \) to a \(b \), the following: \(0111 \rightarrow 1110 \rightarrow 1100 \rightarrow 1001 \rightarrow 0010 \).

For \(d = -1/8 \), it is straightforward to show \[16\], by considering the short list of all possible 5-bit paths out of all 16 vertices, that this is the only path that gives \(abbba \) and, hence, when \(d = -3/16 \), \(abbba \) can label no other paths, and as such the word becomes forbidden. A key point to notice is that the word \(abbba \) will not be forbidden when the partition is even further misplaced to \(d = -1/4 \): \(0011 \rightarrow 0110 \rightarrow 1100 \rightarrow 1000 \rightarrow 0000 \), which was formerly named \(aabbb \). These examples thus give some intuitive illustration that \(h_T(d) \) as a function of \(d \) can be nonmonotone, because words that disappear can reappear, by different paths, as \(|d| \) is increased.

We can now explain our procedure to rigorously compute the entropy function \(h_T(d) \). First, the following two definitions are essential: (i) A sophic shift \(X \) is defined to be \[18\] a shift space generated by all possible walks through a labeled graph \(\mathcal{G} = (G,L) \), where each edge carries a label index \(L \), and a particular element of \(X \) is defined by the labels of the set of edges followed during a particular infinite walk. (ii) A sophic shift is right resolving if each vertex has all of its exiting edges labeled uniquely \[18\].

Figure 5 is, for example, a right resolving presentation of a sophic shift that is conjugate to the full 2-shift. We then recall two important theorems from Ref. \[18\]: (i) If \(X \) is a sophic shift and \(\mathcal{G} = (G,L) \) is a right resolving presentation of \(X \), then \(h_T(X) = \ln p(A(G)) \), where \(p(A(G)) \) is the spectral radius of the transition matrix \(A \) corresponding to \(G \). (ii) Every sophic shift has a right resolving presentation. We are then able to prove that a right resolving presentation of these mislabeled sophic shifts \(\Sigma_2^{a,b} (d) \) can be so constructed for any dyadic misplacement, \(d = q/2^n \).

Then \(\Sigma_2^{a,b} (d) \) can be presented by relabeling the \(N = 2^n \) nodes in the graphic presentation of the full shift \(\Sigma_2^{0,1} \), as we have discussed in the preceding paragraphs.

Our proof is equivalent to the subset construction in Ref. \[18\], which proceeds as follows. Define the graph that generates \(X_\mathcal{G} = \Sigma_2^{a,b} (d) \) to be \(\mathcal{G} = (G,L) \). Now index each of the \(N \) vertices of \(G \): \((i = 1,\ldots,2^n) \) and define a new set of vertices: \(H = \{ H_j \}_{j=1}^{2^n} \), where each \(H_j \) defines specific and unique on/off states for each vertex. For convenience, we label each \(H_j \) by \(N \) \(X \)'s and \(O \)'s, each...
giving an on/off state for each G_i. In this notation, if only
G_i is “turned on,” then $H_j = O O \cdots OXO \cdots O$ has an X
(on) only in the ith position. Considering all on/off states
of $\{G_i\}_{i=1}^{N}$ requires 2^N vertices H_j. The next step is to de-
fine edges E to go with the vertices H. Each H_j labels
on/off positions of N, G_i vertices of G. Consider all of
those vertices G_k which can follow each of these G_i such
that each G_k has the label a, to be turned on, and all other
G_k to be “turned off.” If none of these G_i transition to an
a label G_k, then no edge will be defined. Thus, for each
nonempty transition, a vertex H_i is defined to follow H_j
with an a. Similarly, we can define b edges from H_j. Fol-
dowing these rules, we construct a graph $\mathcal{H} = (H, E)$ that
 generates a sophic shift X_{2H}. We advance the following
two propositions [16]:

Proposition 1: X_{2H} is conjugate to $\Sigma_{2}^{(a,b)}(d)$ and, hence,
$h_T(X_{2H}) = h_T(\Sigma_{2}^{(a,b)}(d))$.

Proposition 2: $\mathcal{H} = (H, E)$ is a right resolving presenta-
tion of $\Sigma_{2}^{(a,b)}(d)$.

Our algorithm to compute $h_T(d)$ consists of (i) for each $d = q/2^n$, find the corresponding transition graph G;
(ii) generate a right resolving presentation \mathcal{H}, and its tran-
sition matrix $A(\mathcal{H})$, and (iii) compute topological entropy
by the largest eigenvalue of $A(\mathcal{H})$. These exact results
are shown in Fig. 2(b).

In summary, we have presented numerical and rigorous
results concerning the behavior of the topological entropy
when the partition for symbolic dynamics is misplaced,
which has been a common practice utilized to extract the
symbolic dynamics from experimentally measured chaotic
data. Our principal result is that the entropy can be a
nonmonotone and devil’s staircase-like function of the
misplacement parameter. As such, the consequence of a
misplaced partition can be severe, including significantly
reduced topological entropies and a high degree of non-
uniqueness which we will rigorously elaborate elsewhere
[16]. We wish to convey the message in this Letter that
interpreting any results obtained from threshold-crossing-
type analysis should be exercised with extreme caution.

E.M.B. was supported by NSF Grants No. DMS-9704639 and No. DMS-0071314. T.B.S. was supported
by the U.S. Naval Academy Research Council. Y.C.L.
was supported by AFOSR Grant No. F49620-98-1-0400
and by NSF Grant No. PHY-9722156. K.Z. thanks the
USNA for hospitality. The authors are thankful to Eric
Kostelich who provided the BZ data [15].

of Communication (University of Illinois Press, Urbana,
1964).

78, 1247 (1997); E. Boltt and M. Dolnik, Phys. Rev. E 55,
6404 (1997); E. Boltt, Y.-C. Lai, and C. Grebogi, Phys.

Ergodic Theory on Lebesgue Spaces (Clarendon Press,

5217 (1989).

(1995); Nonlinearity 9, 1623 (1996).

Rechesteer, and R. B. White, Phys. Rev. Lett. 78, 54
(1997); C. S. Daw et al., Phys. Rev. E 57, 2811 (1998); R. Eng-
bert, C. Scheffczyk, R. Krampe, J. Kurths, and R. Klieg,
in Nonlinear Time Series Analysis of Physiological Data

21, Nos. 6/7, 1982; J.P. Crutchfield and N.H. Packard,
Physica (Amsterdam) 7D, 201–223 (1983); C.M. Glenn
and S. Hayes, “Targeting Regions of Chaotic Attractors
Using Small Perturbation Control of Symbolic Dynamics,”

[12] R. L. Devaney, An Introduction to Chaotic Dynamical Sys-
tems (Addison-Wesley, Reading, MA, 1989).

49, 245 (1982).

[16] The details of proofs, together with examples illustrating
the construction of the sophic shift for symbolic dynamics
with misplaced partition, will be published in a future paper
with explanation of nonmonotonicity of the topological en-
tropy function by masking functions, issues of nonuniquen-
ness of symbolic sequences, and many other details [E.M.
Boltt, T. Stanford, Y.-C. Lai, and K. Zyczkowski, United
mathsci.usna.edu/faculty/boltt/ (to be published)].

(1 and II) (Princeton University, Princeton, 1977).

[18] D. Lind and B. Marcus, An Introduction to Symbolic Dy-
namics and Coding (Cambridge University Press, New
York, 1995).