
Eclipse Refactoring
Michael Petito
Clarkson University
EE564 Spring 2007

Introduction
The architecture and structure of any useful body of code continually evolves to address
new requirements and resolve bugs. Developers often find it necessary to re-organize
such code as a part of this maintenance. A powerful toolset exists within Eclipse to help
developers quickly make these modifications: refactoring. Refactoring is the process of
modifying a software system while preserving its external behavior. A typical
refactoring might be decomposed into many small behavior preserving transformations
that as a whole produce a larger and higher level, yet still behavior preserving, change.
Eclipse provides a general-purpose API for implementing refactorings that can be applied
to any Eclipse workspace elements, from text resources to whole projects. Several
plugins for Eclipse draw upon the API to implement refactorings for specific languages;
here we will focus on refactorings implemented for Java.

Eclipse Refactoring API
The Eclipse refactoring API, part of the Language Toolkit (LTK), is implemented within
the org.eclipse.ltk.core.refactoring and
org.eclipse.ltk.ui.refactoring plug-ins since R3.0. The former provides
classes that abstract the process of refactoring and define high level interfaces used by
participating objects; the later defines a wide array of UI elements common to most
refactorings for a consistent look and feel. While the UI elements are important for
gathering input and presenting the user with feedback and previews, of particular interest
here are the API components that facilitate code manipulation.

Refactoring Model
The API for refactoring provides a process-level abstraction upon which specific
refactorings may be built. Figure 1 shows the elements of this abstraction at a very high
level. Here, arrows between elements represent dependencies. For example, a
Refactoring Implementer requires knowledge of (ie. a reference to) some Selected
Element to understand what the refactoring is being applied to. Similarly, a Refactoring
Dialog and Implementer must exchange information to show such UI elements as
interactive refactoring previews.

Refactoring
Implementer

Selected
Element

Refactoring
Dialog

Workspace
Resources

Refactoring
Processor

Participant

Participant

Change

Change

Change

Change

Participant

Figure 1: Refactoring API Elements

Once a refactoring has been initiated, an implementer of that refactoring is used to
coordinate condition checking, gathering details about the refactoring, and ultimately
producing a series of changes that may be applied to the Eclipse workspace to accomplish
the refactoring. This implementer must extend the abstract class
org.eclipse.ltk.core.refactoring.Refactoring. The life-cycle for this
class is shown in Figure 2.

Initialize
Refactoring

Check Initial
Conditions

Gather More
Details

Check Final
Conditions Create ChangeMore

Details?

y

n

Figure 2: Refactoring Life-Cycle

The refactoring process begins by initializing a refactoring instance. This includes
passing it contextual information, such as which workspace elements are selected, and
sometimes even behavioral information, such as a processor specialized for the given
context. The refactoring must then check that the given context is reasonable for the type
of refactoring. This check is defined in overrided implementations of the
Refactoring instance method checkInitialConditions. It may not be the
case, however, that all information is presently available to begin execution. More
information may be required from the user and can be gathered through various UI
components. This process is continued until all necessary information has been gathered.
At this point, the refactoring becomes responsible for ensuring that its subsequent

execution would produce code that is semantically equivalent. This occurs during
checkFinalConditions, where the refactoring may iterate over various
representations of the elements to be refactored, including AST representations of code.
The entire process of checking initial- and final- conditions is referred to as pre-condition
checking.

Classes derived from Refactoring are finally responsible for producing an instance of
org.eclipse.ltk.core.refactoring.Change that describes the entire effect
of the refactoring. Changes may affect any workspace element(s) necessary to
accomplish the refactoring and may themselves be composed of smaller changes.

A refactoring may use any methods suitable for producing the required workspace
changes. However, it may also utilize an additional process abstraction provided by the
LTK to help produce these changes. A processor / participant model is provided to help
coordinate a refactoring processor and zero or more refactoring participants.
Refactorings that utilize this abstraction must be derived from
org.eclipse.ltk.core.refactoring.participants.ProcessorBase
dRefactoring. The processor / participant model requires that the refactoring load a
RefactoringProcessor and any RefactoringParticipants that are
suitable for the current context. An extension point may be provided here so that
additional processors or participants may be dynamically registered and participate in the
refactoring.

Processor-
Based

Refactoring

Refactoring
Processor

Participant

Participant

Participant

Figure 3: Processor / Participant Refactoring Model

Each participant may implement parts of the initial- or final- condition checking and/or
change generation, while the RefactoringProcessor is itself responsible for
aggregating the contributions of the participants.

Describing Workspace Changes
A refactoring ultimately produces a single the abstract class Change that describes the
workspace changes necessary to accomplish the refactoring. Implementers of
refactorings must re-use or implement their own classes derived from Change to specify
the behavior of a change. Changes must support modifying both saved and unsaved
resources.

CompositeChange

Change

TextEditBasedChange JDTChange

CompilationUnit-
ReorgChange

AbstractJavaElement-
RenameChange

JDT Implementation

Figure 4: Change Type Heirarchy

A hierarchy of abstract changes is presented in Figure 4. Inheritance and composition of
such change types allows developers to define complex changes incrementally,
simplifying the code of any given piece. A single change, typically a composite change,
is produced by the invocation of the Refactoring instance method createChange.

When applying changes to the workspace, execution is typically managed by the class
PerformChangeOperation. Performing a change produces a new instance of
Change that may be used to undo the operation.

Performance
Performance of a refactoring can be an important issue when considering the issuance of
refactorings against large workspaces. A typical refactoring may need to load and
manipulate an AST representation of each body of code that is to be modified. API
documentation suggests that refactorings should only maintain one instance of such large
objects in memory at any given time to reduce memory complexity.

For pervasive code refactorings, it seems that even more memory may be required to
represent the final Change hierarchy. Each Change instance may itself be small, but
refactorings are typically composed of many small changes, perhaps down to the level of
text resource modifications. Further, since it is already necessary to enumerate elements
of the code during pre-condition checking, in practice most or all of this change hierarchy
is generated early in the refactoring life-cycle and persisted. Even if such a large change
hierarchy may fit in memory, once applied, a complementary hierarchy of approximately
equal size must be generated to support the Eclipse undo model and persisted for the
duration of the undo history!

Implementation History
Prior to Eclipse R3.0, the refactoring API did not exist within the LTK and was instead a
JDT specific implementation beginning with R2.0. To provide an API for implementing
refactorings in other languages, a set of interfaces and abstract classes used within the
JDT refactoring packages were somewhat extended and moved to the LTK. While a few
method names changed during this move, the underlying architecture for implementing
refactorings has remained consistent since R2.0. One exception to this is the refactoring
processor / participant model. This process abstraction was introduced so that language

neutral refactorings that utilize language or context specific processors might be
implemented. The classes present in the LTK and corresponding classes that existed in
the R2.0 JDT UI plug-in are shown in Table 1.

LTK Class Selected Methods R2.0 JDK Class Selected Methods
Refactoring IRefactoring
 checkInitialConditions checkPreconditions
 checkFinalConditions
 createChange createChange
 Refactoring
 checkActivation
 checkInput
RefactoringProcessor checkPreconditions
 isApplicable
 checkInitialConditions
 checkFinalConditions
 createChange
 postCreateChange
RefactoringParticipant
 initialize
 checkConditions
 createChange
RefactoringStatus RefactoringStatus
Change Change
 isEnabled isActive
 isValid
 getAffectedObjects getModifiedLanguageElement
 perform perform

Table 1: LTK and Corresponding R2.0 Classes

Other external effects, such as the transition from Java 2 to Java 5 with the inclusion of
generics, has not had an impact on the design. While the developers seem to be aware of
generics (since they include inline comments for most collections describing their type in
generics notation), they have not used generics. The introduction of generics has,
however, led to the implemtation of an Infer-Type-Arguments refactoring. It also seems
that other Java 5 advanced language features such as enumerated types are not presently
used even within head revisions of the refactoring API.

One likely reason for creating the refactoring LTK was so that refactorings for all
languages may be handled as common supertypes by the Eclipse IDE. This, of course,
works well as common methods of invocation (also contained within the LTK) may be
used for any refactorings. This is much more effective and robust than using something
along the lines of reflection to try to invoke refactorings based on some assumedly
common method signatures. Instead, with the approach taken by the LTK, the compiler
will verify that refactorings implement the common Refactoring class interface and
all that is needed at runtime is a successful type cast.

JDT Refactoring Implementation
There are several plug-ins for Eclipse to support Java development. In particular, the
plug-in org.eclipse.jdt.ui contains several Java refactoring implementations
spread over tens of packages. See Appendix B: JDT Refactorings by Type for a complete
list of refactorings by package.

It is presently unclear why org.eclipse.jdt.ui contains the implementation for
JDT refactorings. The Eclipse refactoring API is broken down very clearly within the
LTK into “core” and “ui” packages; the JDT implementation squeezes both components
into the JDT UI plug-in. An approach consistent with the LTK might be to create two
new JDT plug-ins: org.eclipse.jdt.core.refactoring and
org.eclipse.jdt.ui.refactoring.

There are possible reasons why the JDT refactoring implementation may have been kept
within the org.eclipse.jdt.ui plugin. First, it may have been difficult to sort out
all of the plug-ins that the refactoring implementation would rely on as it has a high
degree of efferent coupling. Given that the refactoring implementation also includes UI
components, the JDT core plug-in would lack the necessary UI dependencies. The JDT
UI plug-in, with the addition of the LTK plug-ins, would have a sufficient set of
dependencies to support refactoring. Another reason may be that moving the refactoring
implementation into separate plug-ins could introduce cyclic dependencies both between
the new core and UI refactoring plug-ins, and between those plug-ins and the JDT plug-
ins themselves. Again because of the degree of coupling, it may have been simplest to
avoid these issues altogether and include the refactoring implementation within the JDT
UI plug-in.

That code composing the JDT refactoring implementation is also significantly larger than
its counterpart in the LTK. Since the LTK is language and refactoring neutral, many of
its classes have abstract methods that must be implemented by refactoring
implementations to define specific behaviors. The overwhelming majority of the code in
the JDT is implementing the refactoring methods for checkInitialConditions,
checkFinalConditions and createChange (either directly or through
RefactoringProcessors tailored to specific element types), as well as subtyping the
Change class to define new change behaviors.

Implementation Style
While the JDT refactorings are very effective from the perspective of the user, their code
base is difficult to decipher. The underlying Eclipse refactoring API is very
straightforward and well documented via Javadocs. However, lengthy undocumented
and uncommented routines abound in the JDT specific implementation. Refer to
Appendix A: Code Statistics for some specific code metrics. If it weren’t for
documentation inherited from the LTK classes that the JDT refactorings extend, it may
very well be impossible to understand the code.

 As an example, consider the refactoring class
SelfEncapsulateFieldRefactoring. This
defines a refactoring where all read or write references to a
field may be proxied through a corresponding accessor or
mutator method. Most of the refactoring computation is
performed during checkFinalConditions, a method
defined by the LTK for ensuring that all pre-conditions for
the refactoring (semantic or otherwise) are satisfied prior to
applying the refactoring. Here,
checkFinalConditions is 70 lines long without a
single inline, block, or Javadoc comment. It interleaves
pre-condition checking, change hierarchy generation, and
progress bar manipulation as it references tens of
undocumented and uncommented helper methods. The

only hint a maintenance developer would have to the functionality provided by each of
these methods is their name and argument types. To provide a feel for how difficult this
might be, a list of methods for the SelfEncapsulateFieldRefactoring is
provided in Table 2.

One interesting observation about the refactorings provided for the JDT is that few of
them use the processor / participant refactoring model provided by the LTK. This may
explain why these classes were missing from those that existed in R2.0 as shown in Table
2. Where the processor / participant model is used, a specialized processor is loaded to
perform the refactoring based on the type of Java element being refactored. However,
there is no logic within the refactoring itself to determine which processor must be used.
For example, the JavaMoveRefactoring class and its supertype
MoveRefactoring rely on a MoveProcessor constructor parameter to define the
entire refactoring process for a specific Java element type! The appropriate
MoveProcessor is selected and instantiated by the helper class
RefactoringExecutionStarter, which is referenced by several JDT refactoring
UI packages. Other refactorings are implemented in similar ways, including the various
rename refactorings. In this way, parts of the underlying refactoring logic have been
relocated away from their respective core refactoring classes and pushed nearer to the UI
components.

Exception Handling
As refactorings can and are applied to large systems of code, there is plenty of
opportunity for something to go wrong or an otherwise exceptional state to arise.
However, the LTK does not define any refactoring-specific exceptions or conventions for
handling unexpected conditions. Since each refactoring is responsible for its own pre-
condition checking (which may return a fatal failure status code), the refactoring API
assumes that a successful pre-condition check is sufficient for a successful refactoring
application.

The only checked exceptions thrown by any of the refactoring LTK and the JDT classes
for refactoring is org.eclipse.core.runtime.CoreException. Core

Table 2: Selected SEF Methods
addGetterSetterChanges

checkArgName

checkCompileErrors

checkFinalConditions

checkInHierarchy

checkInitialConditions

checkMethodNames

computeUsedNames

createChange

createEdits

createFieldAccess

createGetterMethod

createModifiers

createSetterMethod

initialize

makeDeclarationPrivate

mappingErrorFound

processCompilerError

exceptions may contain information that describes the nature of the error. However, none
of the exception handlers within the JDT reference this information in their handling
routines in order to account for the exceptional state. Instead, within the JDT
implementation, exception handling tends to be either logging the exception and allowing
the routine to quietly fail or to generate a new exception containing the status information
of the original. Exceptions that arise may leave the refactoring in an inconsistent state
that will generate more exceptions later. For example, many exceptions leave fields set
to null and further processing is unable to proceed correctly. These exceptions will then,
in effect, propagate up the call stack, perhaps to methods within the LTK, or worse, to
methods within the UI modules where appropriate handling will be difficult. Consider
the SelfEncapsulateFieldRefactoring class. It does reference the checked
exception JavaModelException seven times:

• checkArgName catches it, ignores it and the continues,
• createChange catches it, logs it; and continues,
• the constructor, createFieldAccess, createModifiers, and initialize(IField) methods

throw it (unhandled)
• initialize(RefactoringArguments) catches it and returns a generic failed status.

The same class also references CoreException seven times. In all of these cases it
simply ignores the CoreException that may be generated and passes it up the call
stack. This example is representative of the Java refactorings and demonstrates a lack of
appropriate exception handling. There is no effort to examine the cause of an exception
near its generation and subsequently handle it. Perhaps it is the case that there is no
action that can be taken for the exceptions that may be generated. However, in either
case, it would have been useful to at least speculate (through comments or perhaps
informative status codes) why the exception occurred given the current context of the
refactoring and why it cannot be handled.

Another issue might arise even if exceptions were not generated or handled locally.
Refactorings are responsible for pre-condition checking, including verifying correctness
and preserving code semantics, prior to the application of the refactoring. However,
given the life-cycle model for classes derived from Refactoring, it seems that
temporal issues may arise. For example, after pre-condition checking has been
completed, but before the refactoring is applied, changes to affected resources might
cause the refactoring to fail or worse, complete incorrectly. Such scenarios might include
cases where a resource is modified outside of Eclipse, resources become locked by
another application, or access to resources is lost due to transient hardware conditions
(such as network connectivity). Another possibility is that the refactoring relies on code
that simply has bugs! In any of these cases, the corresponding exceptions might
propagate across component and module boundaries where their meaning, and ultimately
any hope of handling them gracefully, will be lost.

Experiences with the Eclipse Refactoring Code Base
Delving into the source code of a large application to which I have not contributed has
been an interesting experience. It was fairly easy to locate the Refactoring API in the
LTK and understand its inner-workings through the included Javadocs. The references
cited here also helped somewhat. While the API is simple enough to understand in
concept, its usage in the JDT was made significantly more complex by lack of
documentation. In other words, components that would be re-used by future
development (the API) were well documented while everything else (the JDT) was not. I
wonder how common this is for open-source projects. Certainly, in either case, someone
would notice rather quickly if an API that should be useful is too poorly documented and
thus can’t be easily used. During maintenance of the JDT code, however, does the lack
of comments and documentation present itself as an issue? My experience in “closed-
source” projects so far has been that any code that is not well documented becomes an
issue in later development cycles.

Conclusion
The Eclipse Refactoring API and the corresponding implementation for the JDT has
proven very powerful for restructuring large systems of code. The API provided by the
LTK certainly can provide a foundation for a wide variety of refactorings in any
language. While both sets of code have been evolving over time, there are several areas
identified here that could use improvement. Some of these issues relate to the runtime
behavior of the refactorings; yet these issues have not surfaced in practice. Perhaps the
most pressing issue is the maintainability of such code that is highly coupled and largely
undocumented.

Sources
Leif Frenzel: The Language Toolkit: An API for Automated Refactorings in Eclipse-
based IDEs, http://www.eclipse.org/articles/Article-LTK/ltk.html

Tobias Widmer: Unleashing the Power of Refactoring,
http://www.eclipse.org/articles/article.php?file=Article-Unleashing-the-Power-of-
Refactoring/index.html

Appendix A: Code Statistics
A collection of statistics computed by Metrics 1.3.6 for Eclipse
(http://metrics.sourceforge.net/) for some relevant libraries.

Metric R3.2
o.e.jdt.internal.ui.refactoring.*
Lines of Code 19,241
Method Lines of Code (Avg) 7.9
Method Lines of Code (Max) 126
Number of Classes 213
o.e.jdt.internal.corext.refactoring.*
Lines of Code 69,668
Method Lines of Code (Avg) 7.4
Method Lines of Code (Max) 175
Number of Classes 491
org.eclipse.ltk.core.refactoring
Lines of Code 8,287
Method Lines of Code (Avg) 7.1
Method Lines of Code (Max) 192
Number of Classes 213

Appendix B: JDT Refactorings by Type

Refactoring ID Package (1) Refactoring Type
o.e.jdt.ui.convert.anonymous code ConvertAnonymousToNestedRefactoring

o.e.jdt.ui.extract.constant code ExtractConstantRefactoring

o.e.jdt.ui.extract.method code ExtractMethodRefactoring

o.e.jdt.ui.extract.temp code ExtractTempRefactoring

o.e.jdt.ui.inline.constant code InlineConstantRefactoring

o.e.jdt.ui.inline.method code InlineMethodRefactoring

o.e.jdt.ui.inline.temp code InlineTempRefactoring

o.e.jdt.ui.introduce.factory code IntroduceFactoryRefactoring

o.e.jdt.ui.introduce.indirection code IntroduceIndirectionRefactoring

o.e.jdt.ui.introduce.parameter code IntroduceParameterRefactoring

o.e.jdt.ui.promote.temp code PromoteTempToFieldRefactoring

o.e.jdt.ui.replace.invocations code ReplaceInvocationsRefactoring

o.e.jdt.ui.infer.typearguments generics InferTypeArgumentsRefactoring

o.e.jdt.ui.rename.field rename RebaneFieldProcessor

o.e.jdt.ui.rename.compilationunit rename RenameCompilationUnitProcessor

o.e.jdt.ui.rename.enum.constant rename RenameEnumConstProcessor

o.e.jdt.ui.rename.java.project rename RenameJavaProjectProcessor

o.e.jdt.ui.rename.local.variable rename RenameLocalVariableProcessor

o.e.jdt.ui.rename.method rename RenameMethodProcessor

o.e.jdt.ui.rename.package rename RenamePackageProcessor

o.e.jdt.ui.rename.resource rename RenameResourceProcessor

o.e.jdt.ui.rename.source.folder rename RenameSourceFolderProcessor

o.e.jdt.ui.rename.type.parameter rename RenameTypeParameterProcessor

o.e.jdt.ui.rename.type rename RenameTypeProcessor

o.e.jdt.ui.copy reorg JavaCopyProcessor

o.e.jdt.ui.delete reorg JavaDeleteProcessor

o.e.jdt.ui.self.encapsulate sef SelfEncapsulateFieldRefactoring

o.e.jdt.ui.change.method.signature structure ChangeSignatureRefactoring

o.e.jdt.ui.change.type structure ChangeTypeRefactoring

o.e.jdt.ui.extract.interface structure ExtractInterfaceRefactoring

o.e.jdt.ui.extract.superclass structure ExtractSuperTypeRefactoring

o.e.jdt.ui.move structure JavaMoveRefactoring

o.e.jdt.ui.move.inner structure MoveInnerToTopRefactoring

o.e.jdt.ui.move.method structure MoveInstanceMethodRefactoring

o.e.jdt.ui.move.static structure MoveStaticMembersProcessor

o.e.jdt.ui.pull.up structure PullUpRefactoring

o.e.jdt.ui.push.down structure PushDownRefactoring

o.e.jdt.ui.use.supertype structure UseSuperTypeRefactoring

 (1) Under org.eclipse.jdt.internal.corext.refactoring

