Let W_n be the “wheel graph of order n,” (see \url{http://mathworld.wolfram.com/WheelGraph.html} for a precise definition).

1. What is the smallest $m \in \mathbb{N}$ such that W_4 can be embedded (that is, geometrically represented, where vertices are unique points and edges are arcs, and edges meet only at endpoints) in \mathbb{R}^m with each edge a straight line segment of unit length? What about W_5, W_6, W_7? In general?

2. Let W_n^2 denote the graph obtained from W_n by adding a single vertex and connecting it to all vertices of W_n except the hub vertex. We also refer to this new vertex as a hub vertex—so W_n^2 has two hub vertices. What is the smallest $m \in \mathbb{N}$ such that W_4^2 can be embedded in \mathbb{R}^m with each edge a straight line segment of unit length? What about W_5^2, W_6^2, W_7^2? In general?

3. In general, for $k \in \mathbb{N}$, $k > 2$, let W_n^k denote the graph obtained from W_n^{k-1} by joining an additional vertex to all vertices of W_n^{k-1} that are non-hub vertices. What is the smallest $m \in \mathbb{N}$ such that W_4^k can be embedded in \mathbb{R}^m with each edge a straight line segment of unit length? What about W_5^k, W_6^k, W_7^k? In general?

Disclaimers: (a) These were worked on by last year’s group. (b) The project(s) this year, which have yet to be determined, may be more topologically focused than these very geometrically flavored problems. (c) Feel free to submit even if you only worked on a portion of these questions.