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We provide a brief survey of perfect state transfer in quantum walks on finite graphs. The ability
to transfer a quantum state from one part of a quantum computer to another is a key ingredient
of scalable architectures. Transfer through structures that do not require locally varying dynamic
control simplifies the design and hence reduces the opportunities for errors to arise. Continuous time
walks quantum walks on highly structured graphs exhibit perfect state transfer for the complete
graph of size 2, the path of length 3, and the cycle of size 4. From these, larger graphs can be
constructed, and the use of edge weights widens this set considerably. Discrete-time quantum walks
have more flexibility through exploiting the coin degrees of freedom, but with the disadvantage that
local control of the coin is required if the degree of the vertices varies. The closely related property
of periodicity (exact return to the starting state) is also mentioned.
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I. INTRODUCTION

Quantum walks on finite graphs provide useful simple models for quantum transport phenomena, and have been
applied to spin chains for communication links in quantum computing [1], and exciton transfer in photosynthetic
molecules [2, 3]. Transport problems are also known as hitting problems in computer science. Start and end points
are specified, and the task is to efficiently travel between them. Hitting between the opposite corners of a hypercube
[4, 5], and between the roots of two randomly joined binary trees [6], provided the first exponential computational
speed up for algorithms based on quantum walks.

We distinguish three cases, provided by the examples just mentioned: perfect state transfer, highly desirable for
quantum communications links; transfer with high fidelity, providing efficient energy or charge transfer for photo-
synthesis; and hitting probabilities that are at least not exponentially small, so that normal amplification techniques
produce an efficient algorithm. One way to achieve approximate state transfer with high fidelity is to add a small
amount of decoherence to the otherwise perfectly quantum dynamics. The recent results in the context of photosyn-
thetic molecules all require this to match experimental data. Decoherence effects in quantum walks were reviewed by
Kendon [7], while algorithmic use of quantum walks, including the hitting time algorithms, were reviewed by Ambainis
[8].

In this paper we focus on the case of perfect state transfer. Recent reviews from the perspective of spin chain
engineering have been provided by Bose [9] and Kay [10]. The problem is to find an arrangement of n interacting
qubits in a network which allows perfect transfer of any quantum state over various distances. The network is
typically described by a graph where the vertices represent the location of the qubits and the edges represent the
pairwise coupling of the qubits. The graph has two special vertices labeled a and b which represent the input (source)
and output (target) qubits, respectively. In most cases of interest, it is required that perfect state transfer be achieved
without dynamic control over the interactions between the qubits. These are the so-called permanently coupled
(unmodulated) spin networks. Our approach treats only quantum walk dynamics in the abstract environment of
undirected graphs. We also discuss the closely related property of periodicity – exactly returning to the starting point
at regular intervals – since perfect state transfer is often obtained from half a cycle of such periodic dynamics.

We begin by providing a summary of the basic graph theory used in this review, followed by a description of
continuous- and discrete-time quantum walks on finite graphs. The extra degrees of freedom in the discrete-time
quantum walk provided by the coin allow more instances of perfect state transfer to be achieved. Consequently,
the problem has been studied in more detail in the continuous-time quantum walk, and we focus on the efforts to
characterize the graphs on which perfect state transfer is possible. The continuous-time quantum walk is also more
widely applicable as a model for physical and biological systems.
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II. BASIC GRAPH THEORY

For any logical statement S, we use the notation [[S]] to mean 1 if S is true and 0 otherwise (see Graham et al. [11]).
Let Zn denote the additive group of integers {0, . . . , n − 1} modulo n. For a matrix A, we denote Ak as the k-th
column of A and Aj as the j-th row of A. As is standard, we use In and Jn to denote the n× n identity and all-one
matrices, respectively; we drop the subscript n whenever the context is clear. We use X,Y, Z to denote the Pauli
matrices.

The graphs G = (V,E) which we will study are finite, mostly simple, undirected, regular, and connected. The
adjacency matrix AG of a graph G is defined as

AG[u, v] = [[(u, v) ∈ E]] =

{
1 if (u, v) ∈ E
0 otherwise

(1)

We call a graph k-regular if each of its vertex has k adjacent neighbors. In most cases, G is also vertex-transitive,
that is, for any a, b ∈ V , there is an automorphism π which maps a to b, that is, π(a) = b. A graph is called integral
if its adjacency matrix has only integer eigenvalues. We use the standard notation Kn for the complete graph on n
vertices, Cn for the cycle on n vertices, and Pn for the path on n vertices. Also, we use Km,n to denote the complete
bipartite graph with partitions of sizes m and n, respectively.

The complement G of a graphG is defined on the same set of vertices but with the edge set E = {(x, y) : (x, y) 6∈ E}.
The Cartesian product G⊕H of graphs G and H is a graph whose adjacency matrix is

AG⊕H = I ⊗AH +AG ⊗ I (2)

(see page 617 of Lovász [12]). The join G +H of graphs G and H is defined to satisfy G+H = G ∪H ; that is, we
connect all vertices of G with all vertices of H (see Schwenk and Wilson [13]). Equivalently, the adjacency matrix of
G+H is given by

AG+H =

(
AG J
J AH

)
, (3)

with the appropriate dimensions on the all-one J matrices.
The n-dimensional hypercube (or n-cube for short) Qn is defined recursively as

Q1 = K2, Qn = K2 ⊕Qn−1 =

(
Qn−1 I
I Qn−1

)
, for n ≥ 2 (4)

with the appropriate dimensions on the identity I matrices. Similarly, the Hamming graph H(q, n) is defined as K⊕n
q ,

which may be viewed as a q-ary n-cube.
A cone on a graph G is the graph K1 + G. Similarly, a (dis-)connected double cone on a graph G is the graph

K2 + G, K2 +G, respectively. When G is a complete graph, the connected double-cone is simply another complete
graph whereas the disconnected double-cone is a complete graph with a missing edge (see [2, 14]).

A graph G is called a circulant if its adjacency matrix AG is a circulant matrix. Recall that a circulant matrix A is
completely specified by its first row, say [a0, a1, . . . , an−1], and is defined as A[j, k] = ak−j (mod n), where j, k ∈ Zn; or

A =




a0 a1 . . . an−1

an−1 a0 . . . an−2

...
... . . .

...
a1 a2 . . . a0


 (5)

Note that a0 = 0, for simple graphs, and aj = an−j , for undirected graphs. The best known families of circulant
graphs include the complete graphs Kn and cycles Cn.

Alternatively, a circulant graph G = (V,E) can be specified by a subset S ⊆ Zn, where (j, k) ∈ E if k−j ∈ S. Thus,
S defines the set of edge distances between adjacent vertices. In this case, we write G = Circ(n, S). We assume that S
is closed under taking inverses: if d ∈ S, then −d ∈ S. For a divisor d of n, let Gn(d) = {k : gcd(n, k) = d, 1 ≤ k < n}.
It was proved by So [16] that a circulant Circ(n, S) is integral if and only if S =

⋃
d∈D Gn(d), for some subset D of

Dn, where Dn = {d : d|n, 1 ≤ d < n} is the set of divisors of n. That is, a circulant is integral if its edge distances
are elements of Gn(d), d ∈ D, for some subset D ⊆ Dn. We denote this family of integral circulants as ICGn(D)
(following the notation used by Bašić et al. [17]).
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FIG. 1: Examples of circulants of order 8. From left to right: (i) the cycle C8. (ii) the 3-dimensional cube Q3. (iii) the complete
graph K8; (see Angeles-Canul et al. [15] for a similar but distinct illustration).

All circulant graphs G on n vertices are diagonalizable by the n × n Fourier matrix Fn whose columns |F k
n 〉 are

defined as 〈j|F k
n 〉 = ωjk

n /
√
n, where ωn = exp(2πi/n). In fact, we have FAF † =

√
n · diag(FA0), for any circulant A,

where A0 = A|0〉 is the first column of A. This shows that the eigenvalues of A are simply given by

λj =

n−1∑

k=0

an−kω
jk
n . (6)

A generalized notion of circulant graphs may be defined using group theory (see Diaconis [18]). Let G be a finite
group of order n and f : G → C be a complex-valued function over G. A G-circulant matrix defined by f is a n× n
matrix whose rows and columns are indexed by elements of G. The G-circulant matrix Circ(G, f) defined by f is given
by Circ(G, f)a,b = f(b · a−1), for a, b ∈ G. Our standard circulant matrices (and graphs) defined above are simply
the class of Zn-circulants. The generalized n-cubes considered by Adamczak et al. [19] and Bernasconi et al. [20]
are simply Zn

2 -circulants. One may also view the Cayley graph of the symmetric group Sn, studied in Gerhardt and
Watrous [21], as a Sn-circulant.

For more background on algebraic graph theory, we refer the reader to the monograph by Biggs [22] and to the
survey article by Schwenk and Wilson [13].

III. QUANTUM WALKS ON FINITE GRAPHS

Just as for classical random walks, quantum walks can be defined for both discrete time steps and continuous time
evolution. The basic properties of quantum walks have been covered in depth elsewhere (see Kempe [23] for a useful
review), here we provide brief definitions to establish notation and properties relevant to this work.

A. Continuous-time quantum walk

A continuous-time quantum walk on a graph G = (V,E) is defined using the Schrödinger equation with the real
symmetric adjacency matrix AG as the Hamiltonian. If |ψ(t)〉 ∈ C|V | is a time-dependent amplitude vector on the
vertices of G, then the evolution of the quantum walk is given by

|ψ(t)〉 = e−itAG |ψ(0)〉, (7)

where |ψ(0)〉 is the initial amplitude vector. We usually assume that |ψ(0)〉 is a unit vector, with 〈x|ψ(0)〉 = [[x = a]],
for some start vertex a ∈ V (G). The amplitude of the quantum walk on vertex a at time t is given by ψa(t) = 〈a|ψ(t)〉,
while the probability of vertex a at time t is pa(t) = |〈a|ψ(t)〉|2.

We say G has perfect state transfer from vertex a to vertex b at time t if

|〈b|e−itAG |a〉| = 1, (8)

where |a〉, |b〉 denote the unit vectors corresponding to the vertices a and b, respectively. The graph G has perfect
state transfer if there exist vertices a and b in G and a time t ∈ R+ so that Equation (8) holds. We say that G has
universal perfect state transfer if (8) occurs between all distinct pairs of vertices a and b of G. We call a graph G
periodic if for any state |ψ〉, there is a time t so that |〈ψ|e−itAG |ψ〉| = 1.
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B. Discrete-time quantum walks

In correspondence with discrete-time classical random walks, a discrete-time quantum walk has a quantum coin
that is “tossed” each time step to determine which direction to move in. The coin is a quantum system of size dmax,
the largest degree of any vertex in the graph. The full quantum system is thus a combination of the position and the
coin, we write the basis states as |x, c〉 where the first label is the vertex and the second the coin. A general state of
a discrete-time quantum walk at time t can thus be written

|ψ(t)〉 =
∑

x,c

αx,c(t)|x, c〉, (9)

where αx,c(t) ∈ C.
The coin is “tossed” by applying a unitary operator, usually designed to ensure that only available paths can be

chosen, i.e., based on the degree d ≤ dmax at each vertex. A common choice is the unitary based on the Grover

diffusion operator, which has elements C
(G)
ij = 2/d− δij . For example, the d = 3 case is

C
(G)
3 =

1

3




−1 2 2
2 −1 2
2 2 −1


 . (10)

Except in the d = 4 case, the Grover coin operator is biased, since the incoming direction (corresponding to the
diagonal entry) is treated differently from the outgoing directions. However, it is symmetric under interchange of any
outgoing coin directions, and is in fact the symmetric unitary operator furthest from the identity [24]. The d = 4
Grover coin operator is unbiased, since all the entries are ± 1

2 ,

C
(G)
4 =

1

2




−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1


 . (11)

The DFT (discrete Fourier transform) coin operator is unbiased for all d, but asymmetric in that you cannot inter-
change the labels on the directions without changing the coin operator: each direction acquires its own phase shift.
For d = 3, it looks like

C
(D)
3 =

1√
3




1 1 1
1 ω3 ω2

3

1 ω2
3 ω3


 , (12)

where ω3 = e2iπ/3 and ω2
3 = e−2iπ/3 are the complex cube roots of unity.

A conditional shift operator is then used to move the quantum walker to adjacent vertices. This requires a (classical)
mapping between coin states and the ends of the edges to be specified [25, 26].

ζ : Z|V | × Zd → Z|V | × Zd : (x, c) 7→ ζ(x, c) = (y, k), (13)

where (x, c) and (y, k) label each end of edge (x, y). The shift then acts as

S|x, c〉 = |y, k〉, (14)

which updates the position of the walker and the coin state according to the mapping ζ in eq. (13). In other words,
the shift operator moves the walker and coin to the vertex u along edge (x, y). We note that, by our stipulation that
c and k label opposite ends of (x, y), it follows that S = S−1, and is thus unitary as required for quantum evolution.

The sequence of a coin toss and a conditional swap is a transition over the unit time step, which we denote by
unitary T = SC. A walk of t steps is thus produced by applying T repeatedly t times, |ψ(t)〉 = T t|ψ(0)〉. We can
now define the same useful quantities as for the continuous-time walk. For a walk starting at vertex a, we generally
have the freedom to specify the coin states,

|ψ(0)〉 =
∑

c

αa,c(0)|a, c〉. (15)
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The probability of vertex a is pa(t) =
∑

c |〈a, c|ψ(t)〉|2, i.e., we combine all the coin states at the chosen vertex. The
equivalent condition for perfect state transfer is

∑

c,c0

|〈b, c|T t|a, c0〉| = 1 (16)

where c are the coin states at vertex b and c0 are the chosen initial coin states on vertex a. In other words, we don’t
care about the coin states, only that the walker started at vertex a and arrives at vertex b.

IV. SIMPLE GRAPHS

We start by describing the known results for perfect state transfer using a continuous-time quantum walk on simple
graphs, those without self-loops or multiple edges between the same pair of vertices. From the small graphs on which
perfect state transfer is achieved, larger graphs which still support perfect state transfer can be constructed.

A. Small graphs

It is elementary to verify that K2, P3 and Q2 = C4 all have perfect state transfer between their antipodal vertices.
These small graphs exhibit interesting limiting cases as well since it can also be shown (using elementary means) that
K3, P4, and K4 do not have perfect state transfer.

FIG. 2: Small perfect state transfer graphs. From left to right: (a) K2; (b) P3; (c) C4.

On K2, the continuous-time quantum walk has a time-dependent amplitude vector given by

|ψ(t)〉 = e−itA|0〉 =

(
cos(t)

−i sin(t)

)
(17)

which implies P (t) =
(
cos2(t) sin2(t)

)T
. This exhibits perfect state transfer at times t = (2Z + 1)π/2.

The adjacency matrix of P3 (a path on three vertices) is given by

A =




0 1 0
1 0 1
0 1 0



 (18)

The eigenvalues of A are λ0 = 0 and λ± = ±
√

2 with eigenvectors |v0〉 = 1
2

(
−1 0 1

)T
, and |v±〉 = 1

2

(
1 ±

√
2 1

)T
.

Thus, a continuous-time quantum walk on P3 has a time-dependent amplitude vector given by

|ψ(t)〉 = e−itA|0〉 =
−1√

2
|v0〉 +

1

2

∑

±
e∓it

√
2|v±〉 =

1

2




(1 + cos(

√
2t))

−i
√

2 sin(
√

2t)

cos(
√

2t) − 1



 (19)

Thus, the instantaneous probability distribution at time t is:

p0(t) = (1 − 2Γ)2, p1(t) = 4Γ(1 − Γ∆2), p2(t) = (2Γ)2, (20)

where Γ = sin2(t/
√

2)/2. Combining the first and third expressions, we get
√
p2(t) = 1 −

√
p0(t), which shows

that t can be chosen so that any probability distribution on the three vertices is reached. This implies that P3 has
(end-to-end) perfect state transfer.

The argument for C4 is similar to K2 by viewing it as a hypercube (treated in detail in section IVC).
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B. Cliques and joins

It is easy to show that Kn, for n ≥ 3, does not have perfect state transfer. But, Bose et al. [14] found an interesting
way to create perfect state transfer in Kn between a pair of vertices a and b: simply remove the edge between a and
b. This result was stated in the XYZ (Laplacian) interaction model. For the XY (adjacency) model, this observation
was generalized using graph joins in Angeles-Canul et al. [15, 27]. Note that Kn, for n ≥ 3, is simply the graph
join of K2 and Kn−2. More specifically, Bose et al. [14] studied the graph join of K2 and Kn−2. A natural question
which arises here is what properties of a regular graph G do we need so that the joins {K2,K2}+G has perfect state
transfer. This was studied in [15] where precise conditions on G were given so that the join graph has perfect state
transfer. For a prime p, we denote Sp(n) to be the largest non-negative integer j so that pj divides n.

Theorem 1 (Angeles-Canul et al. [15]) Let G be a k-regular graph on n vertices.

1. Let ∆ =
√
k2 + 8n. Then, K2 +G has perfect state transfer between the two (non-adjacent) vertices of K2 if ∆

is an integer and k,∆ ≡ 0 (mod 4) with S2(k) 6= S2(∆),

2. Let κ = k − 1 and ∆ =
√
κ2 + 8n. Then, K2 +G has perfect state transfer between the two (adjacent) vertices

of K2 if ∆ is an integer and κ,∆ ≡ 0 (mod 8).

Using k ≡ 0 (mod 4), n = k + 2,∆ = k + 4 satisfy the conditions of Theorem 1, and thus the graph G = K2 + G
has perfect state transfer. In this case, G can be represented by a type of circulant graph called a hyperoctahedral, or
cocktail-party, graph (see Biggs [22] and Figure 3). These graphs are formed by removing n/2 + 1 disjoint edges from
Kn+2. This class of graphs, also known as cross polytope graphs, was studied earlier by Tsomokos et al. [3].

FIG. 3: Double Cones. From left to right: (a) K2 + C8; (b) K2 + C8; (c) Cocktail Party graph; (see Angeles-Canul et al. [15]
for a similar but distinct illustration).

Godsil [28] (Section 10, question (b)) asked if there is a construction for an infinite family of non-periodic graphs
with the perfect state transfer property. We describe a construction of such a family using Theorem 1.

Corollary 2 (Angeles-Canul et al. [15]) For ℓ ≥ 2, K2 +(C2(2ℓ−1) ⊕C2ℓ+1) is a non-periodic graph which has perfect
state transfer.

Proof Let G = C2(2ℓ−1) ⊕C2ℓ+1, for ℓ ≥ 2. Note that G is a k-regular graph with k = 4 and n = 2(4ℓ2 − 1) vertices.

Using the notation of Theorem 1, we have ∆ =
√
k2 + 8n = 8ℓ. The eigenvalues of G are given by the sum of the

eigenvalues of the two cycles:

λ(G) = λ(C2(2ℓ−1)) + λ(C2ℓ+1). (21)

Recall that the eigenvalues of an n-cycle are given by 2 cos(2πk/n), for k = 0, . . . , n − 1. So, each cycle has 2
(its degree) as its largest eigenvalue. Thus, the sums of the cycle eigenvalues contain both integers and irrational
numbers. For n = 5 and n ≥ 7, at least some of these values are irrational. This is because the only rational values of
cos((a/b)π), for a, b ∈ Z, are {0,±1/2,±1} (see Corollary 3.12 in Niven [29]). Note that 2(2ℓ− 1) ≥ 5 and 2ℓ+ 1 ≥ 5
hold for ℓ ≥ 2, and that both expressions cannot equal 6.

The eigenvalues of G = K2 +G will then be all of the eigenvalues of G (except for 4), 0, and λ± = 1
2 (4±8ℓ) = 2±4ℓ

(by the proof of Theorem 1). This means that G has a mixture of integral and irrational eigenvalues. By Lemma 4.1
in Godsil [28], this implies that the graph G is non-periodic. Since ∆ = 8ℓ is an integer and S2(k) 6= S2(∆), Theorem
1 shows that G has perfect state transfer.
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Taking ℓ = 2 in Corollary 2, we get G = K2 +C5 ⊕C6. Again by Lemma 4.1 in Godsil [28], G is non-periodic since
its eigenvalues contain both integers and irrational numbers. By Corollary 2, we know it has perfect state transfer
although it violates the eigenvalue ratio condition (see Saxena et al. [30] and Godsil [28])

λk − λℓ

λr − λs
∈ Q, (22)

for λr 6= λs. This is in contrast to Theorem 2.1 of Godsil [28] and to the mirror-symmetric networks of in Christandl
et al. [31] (see Section III). The double-cone construction in Corollary 2 is mirror-symmetric with respect to the two
vertices of K2.

C. Hypercubes

In contrast to K2, the 4-cycle C4 is not a limiting case. Christandl et al. [32] showed that the n-cube Qn has
perfect state transfer, for any n This includes K2 = Q1, and C4 = Q2, the two-dimensional binary hypercube. This
property of the n-cube also follows from the proof of a uniform mixing theorem due to Moore and Russell [24]. The
Moore-Russell theorem essentially shows that Qn behaves like n highly synchronized but independent copies of K2.
In fact, for regular graphs G and H , the adjacency matrix of G⊕H is a sum of commuting terms I ⊗H and G⊗ I.
Thus,

|ψG⊕H(t)〉 = e−it(G⊕H)|g0, h0〉 (23)

= e−it(I⊗H)e−it(G⊗I)(|g0〉 ⊗ |h0〉) (24)

= (e−itG|g0〉) ⊗ (e−itH |h0〉) (25)

= |ψG(t)〉 ⊗ |ψH(t)〉, (26)

where we have used exp(I ⊗ A) = I ⊗ exp(A). This implies that G ⊕H is uniform mixing at time t⋆ if and only if
both G and H are uniform mixing at time t⋆. We can recursively apply the above observation to n copies of K2 and
obtain the seminal theorem of Moore and Russell. Perfect state transfer between the all-zero and the all-one vertices,
also follows immediately from this.

Theorem 3 (Moore and Russell [24]) For any n ≥ 0, we have |ψQn
(t)〉 = |ψK2(t)〉⊗n. Moreover, |ψQn

(t)〉|0〉⊗n =
cosn(t), which implies that at t⋆ = (2Z + 1)π/4, we have uniform mixing.

Generalizing this observation further, Bernasconi et al. [20] completely characterized the Zn
2 -circulant graphs (see

Diaconis [18]) by proving that they all have antipodal perfect state transfer at times that are multiples of π/2. The
proof utilizes Fourier analysis over the Abelian group Zn

2 .

D. Closure graph operators

It is natural to study operators which can preserve perfect state transfer on graphs. Two most natural ones are the
Cartesian product G⊕H and the join G+H of graphs G and H . The following theorem is a natural generalization
of an observation made by Christandl et al. [32] on K⊕n

2 and P⊕n
3 and of Theorem 3. It is a closure theorem for the

Cartesian product and join operators on graphs.

Theorem 4 (Angeles-Canul et al. [15]) We have the following results:

1. The graphs Gj, where 1 ≤ j ≤ m, have perfect state transfer from aj to bj at time t⋆ if and only if G =
⊕m

j=1Gj

has perfect state transfer from (a1, . . . , am) to (b1, . . . , bm) at time t⋆.

2. Let G be an n-vertex regular graph with perfect state transfer between vertex a and b. For m ≥ 1, the m-fold
self-join G+m has perfect state transfer between vertices a and b (in the same copy of G) provided ∆ = 0, where

∆ = (mn)−1
(
(m− 1)(eitn − 1) + e−it(m−1)n − 1

)
〈1n|e−itAG |a〉. (27)

where AG is the adjacency matrix of G and |1n〉 is the all-one column vector of length n.

The proof of the above theorem relied in showing that 〈0, b|e−itA
Ĝ |0, a〉 = 〈b|e−itAG |a〉 + ∆, where Ĝ = G(+m),

the m-fold self-join of G. Since the expression 〈1n|e−itAG |a〉 is related to a uniform mixing requirement on G, this
connects a perfect state transfer property to a non-uniform mixing property.
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FIG. 4: Standard circulant joins on C4. From left to right: (a) Cartesian bunkbed C4 +I C4; (b) Self-join C4 +J C4; (see
Angeles-Canul et al. [15] for a similar but distinct illustration).

V. PERIODICITY IN INTEGRAL CIRCULANTS

Saxena et al. [30] initiated the study of periodic quantum dynamics on circulant graphs. This is akin to a recurrent
behavior of classical random walks on graphs. To achieve periodic behavior, they proved that the integrality of the
graph spectrum is a necessary and sufficient condition. Perfect state transfer is a property which implies periodicity.
Note that if the quantum walk achieves a perfect state transfer from a to b at time t⋆, then it is periodic for a in time
2t⋆. Bašić et al. [17, 33] proved the following powerful results on perfect state transfer in integral circulants.

Theorem 5 (Bašić et al. [17, 33]) The following results hold:

1. Integral circulants with odd order have no perfect state transfer.

2. The only integral circulants in ICGn({1}) with perfect state transfer are K2 and C4.

3. The integral circulants ICGn({1, n/4}) and ICGn({1, n/2}), for n divisible by 8, have perfect state transfer.

In this class of integral circulants, we have an example of graphs with perfect state transfer between non-antipodal
vertices. This answers a question posed by Godsil [28], since prior to this, most examples exhibit perfect state transfer
only between antipodal vertices.

FIG. 5: Integral circulants with perfect state transfer. From left to right: (a) ICG8({1, 2}); (b) ICG8({1, 4}). Perfect state
transfer occurs from x to x + 4 at time π/2 in both graphs (see [33]); (see Angeles-Canul et al. [15] for a similar but distinct
illustration).

Angeles-Canul et al. [15] described new constructions of perfect state transfer integral circulants. This is achieved
by using a new graph operator which preserves perfect state transfer as well as the circulant property of the graph
inputs. For a n-vertex graph G and a n×n Boolean matrix C, define the circulant join G = G+CG as a graph whose
adjacency matrix is

AG =

(
AG C
CT AG

)
. (28)

That is, we take two copies of G and connect vertices from the corresponding copies using the matrix C. Here, we do
not require that C be the adjacency matrix of a graph. This operation interpolates between the standard join G+G
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and the bunkbed (hypercube) operator K2 ⊕ G. The Cartesian product K2 ⊕ G is recovered by taking C = I, and
the standard join G+G (where all edges between vertices from the distinct copies of G are present) by taking C = J
(the all-one matrix).

The next theorem shows that if G has perfect state transfer at time t⋆, then so does G +C G at time t⋆ provided

cos(t⋆
√
CTC) = ±I. Moreover, G+CG is a circulant graph whenever C is a palindrome circulant; that is, the sequence

which defines C is a palindrome. This yields a construction of new families of circulants with perfect state transfer,
namely, ICGn({2, n/2b} ∪ Q), b ∈ {1, 2}, where n is divisible by 16 and Q is a subset of the odd divisors of n. For
these constructions where there are two copies of a graph G involved, if u is a vertex of G, then we denote (u, 0) as
vertex u in the first copy of G and (u, 1) as vertex u in the second copy of G.

Theorem 6 (Angeles-Canul et al. [15]) Let C be a n × n circulant matrix. If G is a n-vertex circulant graph with
perfect state transfer from a to b at time t⋆, then the circulant join G+CG has perfect state transfer from vertex (a, 0)
to vertex (b, s), s ∈ {0, 1}, at time t⋆ provided that

[
cos(t⋆

√
B)
]1−s [

sin(t⋆
√
B)B−1/2CT

]s
= ±I (29)

where B = CTC, and B−1 exists whenever s = 1. Moreover, G+CG is a circulant graph if C is a palindrome circulant
matrix, where cj = cn−1−j, for j = 0, . . . , n− 1.

For n = 2u, where u ≥ 3, the only Boolean circulant matrices C that yield a circulant graph G +C G, for an
n-vertex G, are the trivial matrices, namely, C ∈ {In, Jn, On}, where On is the n × n all-zero matrix. The next
theorem shows that for n that is a multiple of 8, if n has a non-trivial odd divisor, then there exist integral circulant
graphs ICG2n(D), for |D| ≥ 3, with perfect state transfer which are obtained from non-trivial circulant joins. This
generalizes the integral circulants found by Bašić et al. [17, 33].

Theorem 7 (Angeles-Canul et al. [15]) Let n = 2um, where u ≥ 3 and m ≥ 3 is an odd number. Suppose that
G = ICGn(D), for D = {1, n/4} or D = {1, n/2}. For any subset Q ⊂ Dm, there is a Boolean circulant matrix
C 6∈ {In, Jn, On} so that

G+C G = ICG2n(2D ∪Q) (30)

has perfect state transfer from 0 to n/2 in G at time t⋆ = π/2,

Recently, Bašić and Petković [34] extended their work to integral circulants whose order are non-square-free.

VI. PATHS AND WEIGHTS

Another limiting behavior was given by P3. Christandl et al. [32] showed that Pn with n ≥ 4 has no perfect
state transfer between the antipodal vertices (endpoints). But, Christandl et al. [31] then showed that a hypercubic
weighting scheme applied to the edges of Pn yields antipodal perfect state transfer (see Figure 6). This is essentially
a projection of the n-cube onto the path on n vertices. It is unclear if this weighting scheme for Pn is unique, but it
underscores the (potential) positive role of edge weights to achieve perfect state transfer.
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FIG. 6: Universal near-perfect state transfer on any weighted graph. (a) Qn has vertex-to-vertex PST (Bernasconi et al. [20])
(b) Hypercubic-weighted Pn has antipodal PST (Christandl et al. [32]) (c) Hypercubic weighting of any path between source
and target; (see Angeles-Canul et al. [27] for a similar but distinct illustration).
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Here, we consider edge-weighted graphs G̃ = (V,E, ω), where ω : E → R is a map assigning weights to edges. In
the simplest case, we start with an unweighted graph G = (V,E) and add self-loops with weight α to all vertices and

assign a weight of β to all edges; we denote such a graph by G̃(α, β). The adjacency matrix of G̃ is αI + βAG.
On the role of weights for perfect state transfer, Casaccino et al. [2] made the following interesting observation.

Although Kn does not have perfect state transfer (between any two vertices due to vertex transitivity), it has perfect
state transfer between a pair of vertices if the two vertices are given self-loops with a certain weighting. We describe
this idea by looking at an explicit example involving K3.

FIG. 7: Perfect state transfer on K3 with weights and self-loops; no perfect state transfer otherwise.

The eigenvalues of K3 are 2 (simple) and −1 (with multiplicity two) with eigenvectors |Fk〉, where |Fk〉 are the

columns of the Fourier matrix, with 〈j|Fk〉 = ωjk
3 /

√
3, for j, k ∈ {0, 1, 2} (see Biggs [22]). The quantum walk on K3

yields

〈1|e−itK3 |0〉 = 〈1|
{

2∑

k=0

e−itλk |Fk〉〈Fk|
}
|0〉 = −2

3
ie−it/2 sin(3t/2). (31)

So, it is clear that there is no perfect state transfer on K3. We add self-loops on the first two vertices (say, vertex 0

and vertex 1) with weight µ and a edge weight of η between them. The adjacency matrix of K̃3 is given by

K̃3 =




µ η 1
η µ 1
1 1 0



 (32)

with eigenvalues λ0 = µ− η and λ± = 2α±, where α± = 1
4 (δ ± ∆), δ = µ+ η and ∆ =

√
δ2 + 8. The corresponding

(unnormalized) orthogonal eigenvectors are |v0〉 =
(
1 −1 0

)T
and |v±〉 =

(
α± α± 1

)T
. The perfect state transfer

between the first two vertices are given by

〈1|e−it eK3 |0〉 = 〈1|e−it eK2 |0〉 +
1

2
e−itδ

{
eitδ/2

[
cos

(
∆

2
t

)
− i

δ

∆
sin

(
∆

2
t

)]
− 1

}
, (33)

where K̃2 is K̃2(µ, η). This is reminiscent of Theorem 4. Since on K2 we have 〈1|e−itK2 |0〉 = −i sin(t), the weighted

K̃2 has perfect state transfer at time t⋆ = (2Z + 1)π/2η (since µ becomes an irrelevant phase factor and η translates
into a time-scaling).

So, for perfect state transfer, it suffices to require cos(δπ/4η) cos(∆π/4η) = 1. Equivalently, it suffices to have the
following three conditions:

• A = δ/4η be an integer;

• B = ∆/4η be an integer; and

• A ≡ B (mod 2) or that A and B have the same parity.

From the first two conditions, we require that δ/∆ be a rational number p/q < 1 with gcd(p, q) = 1. After simplifica-

tions, we obtain δ = p/Γ and ∆ = q/Γ, where Γ =
√

(q2 − p2)/8. So, choose η = 1/4Γ so that both δ/4η and ∆/4η
are integers. That is, choose odd integers p and q satisfying gcd(p, q) = 1; this satisfies all three conditions above.
Thus, there are infinitely many weights µ and η (through choices of odd integers p and q) which allow perfect state

transfer on K̃3.
The above analysis shows that edge weights are sufficient for perfect state transfer, complementing results of

Casaccino et al. [2] for self-loop weights on Kn. This analysis is generalized to an arbitrary join of two regular graphs
in the following theorem.
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Theorem 8 (Angeles-Canul et al. [27]) For j ∈ {1, 2}, let G̃j(µj , ηj) be a kj-regular graph on nj vertices, where each
vertex has a self-loop with weight µj and each edge has weight ηj. Also, for j ∈ {1, 2}, let κj = µj + ηjkj. Suppose

that a and b are two vertices in G̃1. Let G = G̃1(µ1, η1) + G̃2(µ2, η2) be the join of the weighted graphs. Then,

〈b|e−itAG |a〉 = 〈b|e−itA eG1 |a〉 +
e−itκ1

n1

{
eitδ/2

[
cos

(
∆t

2

)
− i

(
δ

∆

)
sin

(
∆t

2

)]
− 1

}
(34)

where δ = κ1 − κ2 and ∆ =
√
δ2 + 4n1n2.

As a corollary of Theorem 8, we can analyze perfect state transfer in a weighted double-cone on any regular graph.
Here we consider weighting both components of the cone using a set of uniform weightings. The following corollary
is a generalization of a similar result observed by Casaccino et al. [2].

Corollary 9 (Angeles-Canul et al. [27]) For any k-regular graph G on n vertices and any b ∈ {0, 1}, there exist

weights µ, η ∈ R+ so that the double-cone K̃b
2(µ, η) +G has perfect state transfer between the two vertices of K̃b

2.

Given that weighting the source and target vertices is useful for perfect state transfer in the complete graph (or in
a join with any regular graph), it is natural to ask if this scheme works also in other settings. Casaccino et al. [2]
made the following interesting conjecture on the role of weighted self-loops on paths (their conjecture was supported
by numerical experiments).

FIG. 8: (a) Complete graph minus an edge: perfect state transfer (between disconnected vertices) exists with weighted self-loops
(b) Perfect state transfer conjecture on n-path with weighted self-loops. See Casaccino et al. [2].

Conjecture 10 (Path teleportation) Let P̃n(α) be a path on n vertices where its two endpoint vertices are given

self-loops with weight α. For any n, there is a choice of α so that P̃n(α) has antipodal perfect state transfer.

VII. DISCRETE-TIME WALKS

The equivalent properties for discrete-time quantum walks are less well studied, in part because analytical methods
are more involved due to the coin degrees of freedom and discrete nature of the dynamics. Results for the continuous-
time walk rarely carry over to the discrete time walk for perfect state transfer, even the hypercube, which admits the
same solution method [24], does not exhibit perfect state transfer for the discrete-time walk. Notable work has been
done by Krovi and Brun [35] to characterize the opposite to perfect state transfer, the conditions under which hitting
times become infinite, i.e., no transfer occurs at all. The continuous-time equivalent of this in disordered systems was
first described by Anderson [36] and is by now well known. Their work emphasizes the importance of symmetry for
obtaining nice properties such as perfect state transfer or fast mixing with quantum walks.

The scattering theory methods developed by Feldman and Hillery [37, 38] also provide a powerful analytical tools
for analyzing discrete-time quantum walks on graphs. Two tails are attached to the starting and ending states, the
quantum walk sent in on the incoming tail, and the time taken for it to emerge on the outgoing tail determined.
They provide a method for combining graphs, but although the method is obviously highly suited to state transfer
calculations, it has not been used for this purpose to date.

Perfect state transfer for discrete-time walks has been recently studied by Lovett et al. [39], where the goal was to
provide a “wire” structure on which a discrete-time walk would propagate deterministically. This can be achieved on
a path Pn, using either a Pauli X coin operator, or the identity (depending on how the edges are labeled). This is
a somewhat trivial solution that does not allow the wire to be connected to vertices of greater degree without some
reflection occurring.

Less trivially, on structures with vertices of even degree, perfect state transfer occurs when half the edges are joined
with each neighbor, to form structures like that shown in figure 9. In contrast to most of the graphs studied for the
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FIG. 9: Chains formed from vertices of degree 4 and degree 6.

continuous-time quantum walk, these are not simple graphs, the multiple edges between pairs of nodes are necessary
to achieve perfect state transfer. The coin operator used at each vertex is the Grover coin operator. The chain can
be terminated by vertices of half the degree, provided the initial coin state and coin operator are suitably chosen to
distribute the amplitude equally over all vertices. It is easily seen that

C
(G)
d




α
...
α
0
...
0




=




2
d − 1 2

d · · · 2
d

2
d

2
d − 1 · · · 2

d
...

...
. . .

...
2
d

2
d · · · 2

d − 1







α
...
α
0
...
0




=




0
...
0
α
...
α




. (35)

It is now possible to join these wires together, e.g., four of the wires in the top example in fig. 9 can converge at
a vertex of degree 8, provided two of the wires are “incoming” and two are “outgoing” in the propagation of the
quantum walk. From this, it is possible to construct many graphs on which the discrete-time walk can exhibit perfect

ba

FIG. 10: Graph with perfect state transfer between vertices a and b, formed by combining chain units to preserve equal
amplitude on each edge.

state transfer, a simple example is given in fig. 10. The coin degree of freedom allows more possibilities than for
the continuous-time walk. However, they have not been succinctly characterized, not even for this method using the
Grover coin operator.

VIII. PERIODICITY IN CYCLES

Perfect state transfer often occurs half way through a periodic cycle, as with the examples already give in section V
for integral circulants with the continuous-time walk. The first explicit mention of periodic behaviour in discrete-time
quantum walks was by Travaglione and Milburn [40], who noted that the discrete-time quantum walk is exactly
periodic on C4. Tregenna et al. [41] then found numerically that (for suitable choices of coin parameters) C2 has
period 2, C3 period 12, C4 period 8, C5 period 60, C6 period 12, C8 period 24, and C10 period 60, see table I. It is
known from these numerical results that, for half the period the even cycles up to C10 provide perfect state transfer
between opposite pairs of vertices, and for cycles divisible by four, perfect instantaneous mixing at a quarter of the
period.

Following Tregenna et al. [41], the condition for periodicity in cycles can be derived analytically. The discrete-time
quantum walk on a cycle has been solved exactly [42], by transforming into the Fourier basis of the position x ∈ Zn.
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TABLE I: Known periods in a walk on a cycle. Coin phase δ = 0 unless specified.

n period Ω bias in coin ρ

2 2 1
2

3 12 1
3
, δ = π

3

4 8 1
2

5 60
“

sin(π/6)
sin(π/5)

”2

, δ = 3π
5

6 12 1
3

8 24 1
2

10 60
“

sin(π/6)
sin(π/5)

”2

≃ 0.7236

16 chaotic 1
2

The finite state space of the particle gives rises to a discrete, finite momentum space defined by

|ψ̃n(k, t)〉 =
1√
n

n∑

x=0

|ψn(x, t)〉e2πikx/n, (36)

for k ∈ {0, 1, ...n− 1}. In momentum space, the evolution operator becomes

C
(n)
k =

( √
ρe2πik/n

√
1 − ρei(2πk/n+θ)

√
1 − ρei(−2πk/n+φ) −√

ρei(−2πk/n+θ+φ)

)
. (37)

A single step of the walk becomes

|ψ̃(k, t+ 1)〉 = C
(n)
k |ψ̃(k, t)〉, (38)

and t steps

|ψ̃(k, t+ 1)〉 = (C
(n)
k )t|ψ̃(k, 0)〉. (39)

The operator C
(n)
k may be diagonalized, yielding eigenvalues

λ±k = ±eiδe±iω
(n)
k , (40)

where

sin(ω
(n)
k ) =

√
ρ sin(2πk/n− δ), (41)

and δ = (θ+φ)/2. The possible solutions for ω
(n)
k are bounded by sin−1(

√
ρ), e.g., for ρ = 1/2, there are two solutions

for ω
(n)
k one in each of the regions [π/4, 3π/4] and [−π/4,−3π/4]. The first solution corresponds to λ+

k and the second

to λ−k . Expressing C
(n)
k in terms of its eigenvalues and eigenvectors, (C

(n)
k )t = (λ+

k )t|ξ̃+k 〉〈ξ̃+k | + (λ−k )t|ξ̃−k 〉〈ξ̃−k |, gives

|ψ̃(k, t)〉 = (λ+
k )t|ξ̃+k 〉〈ξ̃+k |ψ̃(k, 0)〉 + (λ−k )t|ξ̃−k 〉〈ξ̃−k |ψ̃(k, 0)〉 (42)

The condition that must be satisfied for exact periodicity Ω is that the wavefunctions |ψ(k, t)〉 and |ψ(k, t+ Ω)〉 must
be equal, giving

(λ±k )Ω = 1 ∀ k ∈ {0, 1 . . . n− 1}. (43)

Using the expression for the eigenvalues this becomes,

(δ + ωk)Ω = 2πj+,

(δ − ωk + π)Ω = 2πj−, (44)
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where j± are integers. Substituting these into eq. (41) gives

cos

(
πj

Ω

)
=

√
ρ cos

(
2πk

n
− πm

Ω

)
∀ k, (45)

where ρ is the bias in the coin operator, m is an integer specifying the relative phases in the coin operator through
mπ/Ω − π/2 = δ = (θ + φ)/2, k is the integer Fourier variable, and j is an integer that can be different for each k,
but must be odd or even to match whether m is odd or even. Clearly, the larger n is, the harder it is to find solutions
for eq. (45) for all k at the same time (apart from the trivial solutions for ρ = 0 or 1). Tregenna et al. [41] conjecture
that there are only a finite number of such solutions and that they have found nearly all, if not all of them.

Tregenna et al. also briefly explored periodicity on two dimensional torii, where a section of a 2-dimensional grid
is joined up at opposite edges (periodic boundary conditions). When a Hadamard coin operator is used for each
pair of opposite directions, and a torus made from suitable small rectangles, periodicity is also obtained in the cases
predictable from Table I. For a closed Möbius strip or Klein bottle, the twisted dimension is only periodic if the size
is half that in Table I, because the twist causes the walk to traverse the cycle twice before returning to its initial
state. The Grover coin operator shows the same periodicities as the Hadamard coin operator. However, a DFT coin
operator only shows periodicity for a torus of dimensions 4× 4, and not at all on the twisted surfaces. This is due to
the asymmetry of the DFT coin operator compared to the Grover and Hadamard coin operators. During the double
circuit of the twisted surface, the wavefunction interferes with a mirror image of itself, so periodicity will only be
observed with coin operators that produce suitably mirror symmetric distributions.

IX. SUMMARY AND OUTLOOK

A summary of known results on perfect state transfer (PST) on finite graphs for continuous-time quantum walks
is given in table II.

TABLE II: Perfect state transfer with continuous-time quantum walk on several classes of graphs.

Graph family PST

Complete graphs No[14] (unless weighted[2, 27])

Paths (greater than 3) No[32] (unless weighted[31, 43])

Hypercubic graphs Yes[20]

Hamming graphs Yes (if weighted[27])

Integral circulants Partial[3, 15, 17, 33]

For the discrete-time quantum walk, the cycles C2, C4, C6, C8, and C10, and related torii that can be formed
from them, are the only simple graphs for which perfect state transfer is known to be possible for the discrete-time
quantum walk. When multiple edges are allowed, chains and derived structures exhibiting perfect state transfer can
be constructed using the Grover coin and equal numbers of incoming and outgoing edges.

Nonetheless, useful structures for providing communications between components in a quantum computer are
provided by the known cases. For the continuous-time quantum walk, the weighted paths are the most promising,
if engineered coupling strengths can be achieved, with a variety of multi-path graphs to choose from if not. For the
discrete-time quantum walk the chain also gives an unlimited length, if multiple edges can be engineered. For simple
graphs, the path formed from cycles up to C10 can provide perfect transfer up to 5 steps.

Among the many interesting open questions related to perfect state transfer for continuous-time quantum walk on
graphs we note in particular:

• a characterization of integral circulants with perfect state transfer;

• a characterization of periodic graphs (see Godsil [28]);

• a proof of a conjecture made by Casaccino et al. [2] on perfect state transfer for Pn using weighted self-loops.

For the discrete-time walk much more remains unexplored. A proof of the periodicity property for small cycles,
and a complete characterization of the types of graphs obtained from the chains would provide insights to enable
these results to be extended to further classes of graphs. For both continuous- and discrete-time quantum walks, the
robustness of perfect state transfer under imperfect dynamics due to a noisy environment is of practical concern for
all these methods, and deserves further study.



15

Acknowledgments

CT was funded by National Science Foundation grant DMS-0646847 and National Security Agency grant H98230-
09-1-0098. VK is funded by a UK Royal Society University Research Fellowship.

[1] S. Bose. Quantum communication through an unmodulated spin chain. Phys. Rev. Lett., 91(20):207901, 2003.
[2] A. Casaccino, S. Lloyd, S. Mancini, and S. Severini. Quantum state transfer through a qubit network with energy shifts

and fluctuations. Int. J. Quant. Inf., 7(8):1417–1427, 2009.
[3] D. Tsomokos, M. Plenio, I. de Vega, and S. Huelga. State transfer in highly connected networks and a quantum babinet

principle. Phys. Rev. A, 78:062310, 2008.
[4] J. Kempe. Quantum random walks hit exponentially faster. In Proc. 7th Int. Workshop on Rand. and Approx. in

Comp. Sci., Lect. Notes in Comp. Sci., pages 354–369. Springer, Heidelberg, 2003. quant-ph/0205083.
[5] J. Kempe. Discrete quantum walks hit exponentially faster. Probability Th. and Related Fields, 133:215–235, 2005.

quant-ph/0205083.
[6] A. Childs, R. Cleve, E. Deotto, E. Farhi, S. Gutmann, and D. Spielman. Exponential algorithmic speedup by a quantum

walk. In Proc. 35th ACM Symp. Theory of Computing, pages 59–68, 2003.
[7] V. Kendon. Decoherence in quantum walks – a review. Math. Struct. in Comp. Sci., 17(6):1169–1220, 2007.
[8] A. Ambainis. Quantum walks and their algorithmic applications. Int. J. Quant. Inf., 1(4):507–518, 2003.
[9] S. Bose. Quantum communication through spin chain dynamics: an introductory overview. Contemp. Phys., 48(13–30):13,

2007.
[10] A. Kay. A review of perfect state transfer and its applications as a constructive tool, 2009. quant-ph/0903.4274.
[11] R. Graham, D. Knuth, and O. Patashnik. Concrete Mathematics. Addison-Wesley, second edition, 1994.
[12] L. Lovász. Combinatorial Problems and Exercises. American Mathematical Society, second edition, 2007.
[13] A. Schwenk and R. Wilson. Eigenvalues of graphs. In L. Beineke and R. Wilson, editors, Selected Topics in Graph Theory,

pages 307–336. Academic Press, 1978.
[14] S. Bose, A. Casaccino, S. Mancini, and S. Severini. Communication in xyz all-to-all quantum networks with a missing link.

Int. J. Quant. Inf., 7(4):713–723, 2009.
[15] R.J. Angeles-Canul, R. Norton, M. Opperman, C. Paribello, M. Russell, and C. Tamon. On quantum perfect state transfer

on weighted join graphs. Int. J. Quant. Inf., 7(8):1429–1445, 2009.
[16] W. So. Integral circulant graphs. Discrete Mathematics, 306:153–158, 2005.
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