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We provide a brief survey of perfect state transfer in quantum walks on finite graphs. The ability
to transfer a quantum state from one part of a quantum computer to another is a key ingredient
of scalable architectures. Transfer through structures that do not require locally varying dynamic
control simplifies the design and hence reduces the opportunities for errors to arise. Continuous time
walks quantum walks on highly structured graphs exhibit perfect state transfer for the complete
graph of size 2, the path of length 3, and the cycle of size 4. From these, larger graphs can be
constructed, and the use of edge weights widens this set considerably. Discrete-time quantum walks
have more flexibility through exploiting the coin degrees of freedom, but with the disadvantage that
local control of the coin is required if the degree of the vertices varies. The closely related property
of periodicity (exact return to the starting state) is also mentioned.
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I. INTRODUCTION

Quantum walks on finite graphs provide useful simple models for quantum transport phenomena, and have been
applied to spin chains for communication links in quantum computing [1], and exciton transfer in photosynthetic
molecules [2, 3]. Transport problems are also known as hitting problems in computer science. Start and end points
are specified, and the task is to efficiently travel between them. Hitting between the opposite corners of a hypercube
[4, 5], and between the roots of two randomly joined binary trees [6], provided the first exponential computational
speed up for algorithms based on quantum walks.

We distinguish three cases, provided by the examples just mentioned: perfect state transfer, highly desirable for
quantum communications links; transfer with high fidelity, providing efficient energy or charge transfer for photo-
synthesis; and hitting probabilities that are at least not exponentially small, so that normal amplification techniques
produce an efficient algorithm. One way to achieve approximate state transfer with high fidelity is to add a small
amount of decoherence to the otherwise perfectly quantum dynamics. The recent results in the context of photosyn-
thetic molecules all require this to match experimental data. Decoherence effects in quantum walks were reviewed by
Kendon [7], while algorithmic use of quantum walks, including the hitting time algorithms, were reviewed by Ambainis
[8].

In this paper we focus on the case of perfect state transfer. Recent reviews from the perspective of spin chain
engineering have been provided by Bose [9] and Kay [10]. The problem is to find an arrangement of n interacting
qubits in a network which allows perfect transfer of any quantum state over various distances. The network is
typically described by a graph where the vertices represent the location of the qubits and the edges represent the
pairwise coupling of the qubits. The graph has two special vertices labeled a and b which represent the input (source)
and output (target) qubits, respectively. In most cases of interest, it is required that perfect state transfer be achieved
without dynamic control over the interactions between the qubits. These are the so-called permanently coupled
(unmodulated) spin networks. Our approach treats only quantum walk dynamics in the abstract environment of
undirected graphs. We also discuss the closely related property of periodicity — exactly returning to the starting point
at regular intervals — since perfect state transfer is often obtained from half a cycle of such periodic dynamics.

We begin by providing a summary of the basic graph theory used in this review, followed by a description of
continuous- and discrete-time quantum walks on finite graphs. The extra degrees of freedom in the discrete-time
quantum walk provided by the coin allow more instances of perfect state transfer to be achieved. Consequently,
the problem has been studied in more detail in the continuous-time quantum walk, and we focus on the efforts to
characterize the graphs on which perfect state transfer is possible. The continuous-time quantum walk is also more
widely applicable as a model for physical and biological systems.
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II. BASIC GRAPH THEORY

For any logical statement S, we use the notation [S] to mean 1 if S is true and 0 otherwise (see Graham et al. [11]).
Let Z, denote the additive group of integers {0,...,n — 1} modulo n. For a matrix A, we denote A* as the k-th
column of A and A; as the j-th row of A. As is standard, we use I,, and J,, to denote the n x n identity and all-one
matrices, respectively; we drop the subscript n whenever the context is clear. We use X,Y, Z to denote the Pauli
matrices.

The graphs G = (V, E) which we will study are finite, mostly simple, undirected, regular, and connected. The
adjacency matrix Ag of a graph G is defined as

1 if (u,v) e B
Aglu,v] = [(u,v) € E] = { 0 o(therlvise

(1)
We call a graph k-regular if each of its vertex has k adjacent neighbors. In most cases, GG is also vertex-transitive,
that is, for any a,b € V, there is an automorphism 7 which maps a to b, that is, w(a) = b. A graph is called integral
if its adjacency matrix has only integer eigenvalues. We use the standard notation K, for the complete graph on n
vertices, C,, for the cycle on n vertices, and P, for the path on n vertices. Also, we use K,, , to denote the complete
bipartite graph with partitions of sizes m and n, respectively.

The complement G of a graph G is defined on the same set of vertices but with the edge set £ = {(z,v) : (z,9) € E}.
The Cartesian product G @ H of graphs G and H is a graph whose adjacency matrix is

Agon =I® A+ Ag® 1 (2)

(see page 617 of Lovész [12]). The join G + H of graphs G and H is defined to satisfy G + H = G U H; that is, we
connect all vertices of G with all vertices of H (see Schwenk and Wilson [13]). Equivalently, the adjacency matrix of
G + H is given by

Ag J
AG+H = ( JG AH> ) (3)

with the appropriate dimensions on the all-one J matrices.
The n-dimensional hypercube (or n-cube for short) @, is defined recursively as

Qi=Ky, Qun=Ko®Qn_1= (Q7}1 Q51> , forn>2 (4)

with the appropriate dimensions on the identity I matrices. Similarly, the Hamming graph H(q,n) is defined as K, SB”,
which may be viewed as a ¢-ary n-cube.

A cone on a graph G is the graph K; + G. Similarly, a (dis-)connected double cone on a graph G is the graph
Ky + G, Ky + G, respectively. When G is a complete graph, the connected double-cone is simply another complete
graph whereas the disconnected double-cone is a complete graph with a missing edge (see [2, 14]).

A graph G is called a circulant if its adjacency matrix Ag is a circulant matrix. Recall that a circulant matrix A is

completely specified by its first row, say [ag, a1, ..., a,—1], and is defined as A[j, k] = ar_; (mod n), Where j,k € Zy; or
aq ay ... Ap—1
Ap—1 aAg ... Ap—2
A=| . : ()
aq as ... aq

Note that ap = 0, for simple graphs, and a; = a,_j, for undirected graphs. The best known families of circulant
graphs include the complete graphs K, and cycles C),.

Alternatively, a circulant graph G = (V, E) can be specified by a subset S C Z,,, where (j, k) € Eif k—j € S. Thus,
S defines the set of edge distances between adjacent vertices. In this case, we write G = Circ(n, S). We assume that S
is closed under taking inverses: if d € S, then —d € S. For a divisor d of n, let G,,(d) = {k : ged(n, k) =d,1 < k < n}.
It was proved by So [16] that a circulant Circ(n, S) is integral if and only if S = |J,;cp Grn(d), for some subset D of
D,,, where D,, = {d : d|n,1 < d < n} is the set of divisors of n. That is, a circulant is integral if its edge distances
are elements of G, (d), d € D, for some subset D C D,,. We denote this family of integral circulants as ICG,,(D)
(following the notation used by Bagié¢ et al. [17]).
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FIG. 1: Examples of circulants of order 8. From left to right: (i) the cycle Cs. (ii) the 3-dimensional cube @Qs. (iii) the complete
graph Kj; (see Angeles-Canul et al. [15] for a similar but distinct illustration).

All circulant graphs G on n vertices are diagonalizable by the n x n Fourier matrix F}, whose columns |Fk) are
defined as (j|EF¥) = wi*/\/n, where w,, = exp(2mi/n). In fact, we have FAFT = \/n - diag(F Ay), for any circulant A,
where A° = A|0) is the first column of A. This shows that the eigenvalues of A are simply given by

n—1
Aj = Z an,kwflk. (6)
k=0

A generalized notion of circulant graphs may be defined using group theory (see Diaconis [18]). Let G be a finite
group of order n and f : G — C be a complex-valued function over G. A G-circulant matrix defined by f isan xn
matrix whose rows and columns are indexed by elements of G. The G-circulant matrix Circ(G, f) defined by f is given
by Circ(G, f)ap = f(b-a™1), for a,b € G. Our standard circulant matrices (and graphs) defined above are simply
the class of Z,-circulants. The generalized n-cubes considered by Adamczak et al. [19] and Bernasconi et al. [20]
are simply Zy-circulants. One may also view the Cayley graph of the symmetric group S, studied in Gerhardt and
Watrous [21], as a Sj,-circulant.

For more background on algebraic graph theory, we refer the reader to the monograph by Biggs [22] and to the
survey article by Schwenk and Wilson [13].

III. QUANTUM WALKS ON FINITE GRAPHS

Just as for classical random walks, quantum walks can be defined for both discrete time steps and continuous time
evolution. The basic properties of quantum walks have been covered in depth elsewhere (see Kempe [23] for a useful
review), here we provide brief definitions to establish notation and properties relevant to this work.

A. Continuous-time quantum walk

A continuous-time quantum walk on a graph G = (V, E) is defined using the Schrodinger equation with the real
symmetric adjacency matrix Ag as the Hamiltonian. If |¢(¢)) € CIVI is a time-dependent amplitude vector on the
vertices of GG, then the evolution of the quantum walk is given by

[%(2)) = e~ [3(0)), (7)

where [1(0)) is the initial amplitude vector. We usually assume that |¢)(0)) is a unit vector, with (z]|¢(0)) = [z = a],
for some start vertex a € V(G). The amplitude of the quantum walk on vertex a at time ¢ is given by 1, (t) = (al) (1)),
while the probability of vertex a at time ¢ is p,(t) = [{a|(t))|*.

We say G has perfect state transfer from vertex a to vertex b at time ¢ if

|(Ble™ ¢ a)] =1, (8)

where |a), |b) denote the unit vectors corresponding to the vertices a and b, respectively. The graph G has perfect
state transfer if there exist vertices a and b in G and a time ¢ € RT so that Equation (8) holds. We say that G has
universal perfect state transfer if (8) occurs between all distinct pairs of vertices a and b of G. We call a graph G
periodic if for any state |¢), there is a time ¢ so that |(1)|e "4 )| = 1.



B. Discrete-time quantum walks

In correspondence with discrete-time classical random walks, a discrete-time quantum walk has a quantum coin
that is “tossed” each time step to determine which direction to move in. The coin is a quantum system of size dyax,
the largest degree of any vertex in the graph. The full quantum system is thus a combination of the position and the
coin, we write the basis states as |z, ¢) where the first label is the vertex and the second the coin. A general state of
a discrete-time quantum walk at time ¢ can thus be written

[(8) =D aue(t)la, e, 9)

where oy (1) € C.
The coin is “tossed” by applying a unitary operator, usually designed to ensure that only available paths can be
chosen, i.e., based on the degree d < dp.x at each vertex. A common choice is the unitary based on the Grover

diffusion operator, which has elements Ci(jc) = 2/d — §;;. For example, the d = 3 case is

1 2 2
1

c@=_| 2-1 2. (10)
3\ 2 2

Except in the d = 4 case, the Grover coin operator is biased, since the incoming direction (corresponding to the
diagonal entry) is treated differently from the outgoing directions. However, it is symmetric under interchange of any
outgoing coin directions, and is in fact the symmetric unitary operator furthest from the identity [24]. The d = 4
Grover coin operator is unbiased, since all the entries are :I:%,

-1 1

a 1 1 -1
CEL )= 5 1 1 (11)
1

1

—_ =

1
1
-1
1

The DFT (discrete Fourier transform) coin operator is unbiased for all d, but asymmetric in that you cannot inter-
change the labels on the directions without changing the coin operator: each direction acquires its own phase shift.
For d = 3, it looks like

L1t
CP = — 1w 2|, (12)
V3 1 w? ws

2im/3 e—2im/3

where w3 = e and w? = are the complex cube roots of unity.
A conditional shift operator is then used to move the quantum walker to adjacent vertices. This requires a (classical)
mapping between coin states and the ends of the edges to be specified [25, 26].

C: Ly X La = Ly % La = (2,¢) = ((2,¢) = (y: k), (13)
where (z,¢) and (y, k) label each end of edge (x,y). The shift then acts as
Sla,c) =y, k), (14)

which updates the position of the walker and the coin state according to the mapping ¢ in eq. (13). In other words,
the shift operator moves the walker and coin to the vertex u along edge (x,y). We note that, by our stipulation that
c and k label opposite ends of (x,y), it follows that S = S~!, and is thus unitary as required for quantum evolution.

The sequence of a coin toss and a conditional swap is a transition over the unit time step, which we denote by
unitary T = SC. A walk of ¢ steps is thus produced by applying T' repeatedly ¢ times, [(t)) = Tt (0)). We can
now define the same useful quantities as for the continuous-time walk. For a walk starting at vertex a, we generally
have the freedom to specify the coin states,

[$(0)) = > @a,c(0)]a, ). (15)



The probability of vertex a is po(t) = >_. |(a, c[t)(t))|?, i.e., we combine all the coin states at the chosen vertex. The
equivalent condition for perfect state transfer is

D lb,elTa o) = 1 (16)

¢,Co

where ¢ are the coin states at vertex b and ¢y are the chosen initial coin states on vertex a. In other words, we don’t
care about the coin states, only that the walker started at vertex a and arrives at vertex b.

IV. SIMPLE GRAPHS

We start by describing the known results for perfect state transfer using a continuous-time quantum walk on simple
graphs, those without self-loops or multiple edges between the same pair of vertices. From the small graphs on which
perfect state transfer is achieved, larger graphs which still support perfect state transfer can be constructed.

A. Small graphs

It is elementary to verify that Ko, P3 and Q2 = Cy all have perfect state transfer between their antipodal vertices.
These small graphs exhibit interesting limiting cases as well since it can also be shown (using elementary means) that
K3, Py, and K4 do not have perfect state transfer.

L. [

FIG. 2: Small perfect state transfer graphs. From left to right: (a) Ka2; (b) Ps; (¢) Ch.

On K5, the continuous-time quantum walk has a time-dependent amplitude vector given by
_—itAygy _ [ cos(t)
(o) =40 = (50, (1)

which implies P(t) = (cos?(t) sin2(t))T. This exhibits perfect state transfer at times t = (2Z + 1)7/2.
The adjacency matrix of P3 (a path on three vertices) is given by

A= (18)

o = O
—_ O =
o~ O

The eigenvalues of A are A\g = 0 and Ay = ++/2 with eigenvectors |vy) = % (—1 0 1)T, and |vy) = % (1 +v/2 1)T
Thus, a continuous-time quantum walk on Ps has a time-dependent amplitude vector given by

[B(6) = e=410) = Elug) + = 3 TtV y) = 1 (—135&6% (19)
V2 27 2 cos(v/2t) — 1

Thus, the instantaneous probability distribution at time ¢ is:
po(t) = (1—20)%, pi(t) =40(1 —TA?), po(t) = (213, (20)

where T' = sin®(¢/v/2)/2. Combining the first and third expressions, we get \/pa(t) = 1 — /po(t), which shows
that ¢ can be chosen so that any probability distribution on the three vertices is reached. This implies that Ps; has
(end-to-end) perfect state transfer.

The argument for Cy is similar to Ky by viewing it as a hypercube (treated in detail in section IV C).



B. Cliques and joins

It is easy to show that K, for n > 3, does not have perfect state transfer. But, Bose et al. [14] found an interesting
way to create perfect state transfer in K,, between a pair of vertices a and b: simply remove the edge between a and
b. This result was stated in the XYZ (Laplacian) interaction model. For the XY (adjacency) model, this observation
was generalized using graph joins in Angeles-Canul et al. [15, 27]. Note that K,, for n > 3, is simply the graph
join of Ko and K,,_o. More specifically, Bose et al. [14] studied the graph join of K5 and K, _». A natural question
which arises here is what properties of a regular graph G' do we need so that the joins { K, K5} + G has perfect state
transfer. This was studied in [15] where precise conditions on G were given so that the join graph has perfect state
transfer. For a prime p, we denote Sy(n) to be the largest non-negative integer j so that p’ divides n.

Theorem 1 (Angeles-Canul et al. [15]) Let G be a k-regular graph on n vertices.

1. Let A = k2 +8n. Then, Ko+ G has perfect state transfer between the two (non-adjacent) vertices of Ko if A
is an integer and k, A =0 (mod 4) with Sa(k) # S2(A),

2. Let k =k —1 and A = Vk? + 8n. Then, Ky + G has perfect state transfer between the two (adjacent) vertices
of Ko if A is an integer and k, A =0 (mod 8).

Using k = 0 (mod 4),n = k + 2, A = k + 4 satisfy the conditions of Theorem 1, and thus the graph G = Ko + G
has perfect state transfer. In this case, G can be represented by a type of circulant graph called a hyperoctahedral, or
cocktail-party, graph (see Biggs [22] and Figure 3). These graphs are formed by removing n/2 + 1 disjoint edges from
K, 2. This class of graphs, also known as cross polytope graphs, was studied earlier by Tsomokos et al. [3].

FIG. 3: Double Cones. From left to right: (a) K2 + Cs; (b) K2 + Cs; (c) Cocktail Party graph; (see Angeles-Canul et al. [15]
for a similar but distinct illustration).

Godsil [28] (Section 10, question (b)) asked if there is a construction for an infinite family of non-periodic graphs
with the perfect state transfer property. We describe a construction of such a family using Theorem 1.

Corollary 2 (Angeles-Canul et al. [15]) For £ > 2, Ko+ (Ca(20—1) ® C2p41) is a non-periodic graph which has perfect
state transfer.

Proof Let G = Cy2p—1) ® Capy1, for £ > 2. Note that G is a k-regular graph with £ = 4 and n = 2(40? — 1) vertices.

Using the notation of Theorem 1, we have A = v/k? + 8n = 8(. The eigenvalues of G are given by the sum of the
eigenvalues of the two cycles:

AMG) = MCa20-1)) + A(C2r41)- (21)

Recall that the eigenvalues of an n-cycle are given by 2cos(2nk/n), for k = 0,...,n — 1. So, each cycle has 2
(its degree) as its largest eigenvalue. Thus, the sums of the cycle eigenvalues contain both integers and irrational
numbers. For n =5 and n > 7, at least some of these values are irrational. This is because the only rational values of
cos((a/b)m), for a,b € Z, are {0,£1/2,+1} (see Corollary 3.12 in Niven [29]). Note that 2(2/ —1) >5and 2/+1>5
hold for ¢ > 2, and that both expressions cannot equal 6.

The eigenvalues of G = K + G will then be all of the eigenvalues of G (except for 4), 0, and Ay = 3(4+8() = 2+4¢
(by the proof of Theorem 1). This means that G has a mixture of integral and irrational eigenvalues. By Lemma 4.1
in Godsil [28], this implies that the graph G is non-periodic. Since A = 8¢ is an integer and Sa(k) # S2(A), Theorem
1 shows that G has perfect state transfer. [l
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Taking ¢ = 2 in Corollary 2, we get G = Ko + C5 @ Cg. Again by Lemma 4.1 in Godsil [28], G is non-periodic since
its eigenvalues contain both integers and irrational numbers. By Corollary 2, we know it has perfect state transfer
although it violates the eigenvalue ratio condition (see Saxena et al. [30] and Godsil [28])

Ak — Ag
Ar — As

for A, # As. This is in contrast to Theorem 2.1 of Godsil [28] and to the mirror-symmetric networks of in Christandl
et al. [31] (see Section IIT). The double-cone construction in Corollary 2 is mirror-symmetric with respect to the two

vertices of K.

e Q, (22)

C. Hypercubes

In contrast to Ko, the 4-cycle Cy is not a limiting case. Christandl et al. [32] showed that the n-cube @, has
perfect state transfer, for any n This includes Ko = @1, and Cy = @2, the two-dimensional binary hypercube. This
property of the n-cube also follows from the proof of a uniform mixing theorem due to Moore and Russell [24]. The
Moore-Russell theorem essentially shows that (), behaves like n highly synchronized but independent copies of K.
In fact, for regular graphs G and H, the adjacency matrix of G @& H is a sum of commuting terms I ® H and G ® I.
Thus,

Wear(t)) = e MFOH gy hy) (23)
= ¢ MIOH) =GR (1g0) @ [hy)) (24)
= (e7"%go)) ® (e7"|hg)) (25)
= [¢Ye(t) @ [Yu(t)), (26)

where we have used exp(I ® A) = I ® exp(A). This implies that G @ H is uniform mixing at time ¢* if and only if
both G and H are uniform mixing at time ¢*. We can recursively apply the above observation to n copies of Ko and
obtain the seminal theorem of Moore and Russell. Perfect state transfer between the all-zero and the all-one vertices,
also follows immediately from this.

Theorem 3 (Moore and Russell [24]) For any n > 0, we have |¢q, (t)) = [k, (t))®™. Moreover, |¢q, (£))|0)®™ =
cos™(t), which implies that at t* = (2Z + 1)w/4, we have uniform mizing.

Generalizing this observation further, Bernasconi et al. [20] completely characterized the Z-circulant graphs (see
Diaconis [18]) by proving that they all have antipodal perfect state transfer at times that are multiples of 7/2. The
proof utilizes Fourier analysis over the Abelian group Zj.

D. Closure graph operators

It is natural to study operators which can preserve perfect state transfer on graphs. Two most natural ones are the
Cartesian product G @ H and the join G + H of graphs G and H. The following theorem is a natural generalization
of an observation made by Christandl et al. [32] on K§" and P5”" and of Theorem 3. It is a closure theorem for the
Cartesian product and join operators on graphs.

Theorem 4 (Angeles-Canul et al. [15]) We have the following results:

1. The graphs G, where 1 < j < m, have perfect state transfer from a; to b; at time t* if and only if G = EB;n:l G;
has perfect state transfer from (a1,...,am) to (b1,...,by) at time t*.

2. Let G be an n-vertex reqular graph with perfect state transfer between vertex a and b. For m > 1, the m-fold
self-join GT™ has perfect state transfer between vertices a and b (in the same copy of G) provided A = 0, where

A = (mn)~! ((m —1)(e* — 1) 4 e~ tm=1n _ 1) (1,]e~ ¢ |a). (27)
where Ag 1is the adjacency matriz of G and |1,) is the all-one column vector of length n.

The proof of the above theorem relied in showing that (0,ble=*4¢|0,a) = (ble~"A¢|a) + A, where G = GH™),
the m-fold self-join of G. Since the expression (1,|e~"“¢|a) is related to a uniform mixing requirement on G, this
connects a perfect state transfer property to a non-uniform mixing property.



FIG. 4: Standard circulant joins on Cy. From left to right: (a) Cartesian bunkbed Ci +: Cy; (b) Self-join C4 +; C4; (see
Angeles-Canul et al. [15] for a similar but distinct illustration).

V. PERIODICITY IN INTEGRAL CIRCULANTS

Saxena et al. [30] initiated the study of periodic quantum dynamics on circulant graphs. This is akin to a recurrent
behavior of classical random walks on graphs. To achieve periodic behavior, they proved that the integrality of the
graph spectrum is a necessary and sufficient condition. Perfect state transfer is a property which implies periodicity.
Note that if the quantum walk achieves a perfect state transfer from a to b at time ¢*, then it is periodic for a in time
2t*. Basié et al. [17, 33] proved the following powerful results on perfect state transfer in integral circulants.

Theorem 5 (Basié et al. [17, 33]) The following results hold:
1. Integral circulants with odd order have no perfect state transfer.
2. The only integral circulants in ICG,,({1}) with perfect state transfer are Ko and Cy.
3. The integral circulants ICG,,({1,n/4}) and ICG,,({1,n/2}), for n divisible by 8, have perfect state transfer.

In this class of integral circulants, we have an example of graphs with perfect state transfer between non-antipodal
vertices. This answers a question posed by Godsil [28], since prior to this, most examples exhibit perfect state transfer

only between antipodal vertices.

SEK

/N

FIG. 5: Integral circulants with perfect state transfer. From left to right: (a) ICGs({1,2}); (b) ICGs({1,4}). Perfect state
transfer occurs from z to x + 4 at time 7/2 in both graphs (see [33]); (see Angeles-Canul et al. [15] for a similar but distinct
illustration).

Angeles-Canul et al. [15] described new constructions of perfect state transfer integral circulants. This is achieved
by using a new graph operator which preserves perfect state transfer as well as the circulant property of the graph
inputs. For a n-vertex graph G and a n x n Boolean matrix C, define the circulant join G = G+, G as a graph whose

adjacency matrix is
Aq C
Ag = (C% Ac) . (28)

That is, we take two copies of G and connect vertices from the corresponding copies using the matrix C'. Here, we do
not require that C be the adjacency matrix of a graph. This operation interpolates between the standard join G+ G



and the bunkbed (hypercube) operator Ks @& G. The Cartesian product Ks & G is recovered by taking C' = I, and
the standard join G + G (where all edges between vertices from the distinct copies of G are present) by taking C' = J
(the all-one matrix).

The next theorem shows that if G has perfect state transfer at time ¢*, then so does G 4+ G at time t* provided
cos(t*VCT(C) = £1. Moreover, G+.G is a circulant graph whenever C' is a palindrome circulant; that is, the sequence
which defines C' is a palindrome. This yields a construction of new families of circulants with perfect state transfer,
namely, ICG,,({2,7/2°} U Q), b € {1,2}, where n is divisible by 16 and @ is a subset of the odd divisors of n. For
these constructions where there are two copies of a graph G involved, if u is a vertex of G, then we denote (u,0) as
vertex u in the first copy of G and (u, 1) as vertex w in the second copy of G.

Theorem 6 (Angeles-Canul et al. [15]) Let C be a n x n circulant matriz. If G is a n-vertex circulant graph with
perfect state transfer from a to b at time t*, then the circulant join G +.G has perfect state transfer from vertex (a,0)
to vertex (b, s), s € {0,1}, at time t* provided that

1—s

cos(t*VB)|  [sin(tVB)B-V2CT] = +1 (29)
| [ ]

where B = CTC, and B~! exists whenever s = 1. Moreover, G+.G is a circulant graph if C is a palindrome circulant
matriz, where ¢c; = ¢,—1—j, for j=0,...,n—1.

For n = 2%, where u > 3, the only Boolean circulant matrices C' that yield a circulant graph G +. G, for an
n-vertex G, are the trivial matrices, namely, C € {I,,J,,O,}, where O, is the n x n all-zero matrix. The next
theorem shows that for n that is a multiple of 8, if n has a non-trivial odd divisor, then there exist integral circulant
graphs ICGay, (D), for |D| > 3, with perfect state transfer which are obtained from non-trivial circulant joins. This
generalizes the integral circulants found by Basié et al. [17, 33].

Theorem 7 (Angeles-Canul et al. [15]) Let n = 2%m, where v > 3 and m > 3 is an odd number. Suppose that
G = 1CG, (D), for D = {1,n/4} or D = {1,n/2}. For any subset Q C D,,, there is a Boolean circulant matriz
C ¢ {l,,J,,On} so that

G+.G=1CG2,(2DUQ) (30)
has perfect state transfer from 0 to n/2 in G at time t* = w/2,

Recently, Basi¢ and Petkovi¢ [34] extended their work to integral circulants whose order are non-square-free.

VI. PATHS AND WEIGHTS

Another limiting behavior was given by Ps. Christandl et al. [32] showed that P, with n > 4 has no perfect
state transfer between the antipodal vertices (endpoints). But, Christandl et al. [31] then showed that a hypercubic
weighting scheme applied to the edges of P, yields antipodal perfect state transfer (see Figure 6). This is essentially
a projection of the n-cube onto the path on n vertices. It is unclear if this weighting scheme for P, is unique, but it
underscores the (potential) positive role of edge weights to achieve perfect state transfer.

V10 V6
[ ]
V3
V4
°
V3
NG

FIG. 6: Universal near-perfect state transfer on any weighted graph. (a) @, has vertex-to-vertex PST (Bernasconi et al. [20])
(b) Hypercubic-weighted P, has antipodal PST (Christandl et al. [32]) (¢) Hypercubic weighting of any path between source
and target; (see Angeles-Canul et al. [27] for a similar but distinct illustration).
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Here, we consider edge-weighted graphs G = (V,E,w), where w : F — R is a map assigning weights to edges. In
the simplest case, we start with an unweighted graph G = (V, E) and add self-loops with weight « to all vertices and

assign a weight of § to all edges; we denote such a graph by G(«, 5). The adjacency matrix of Gis al 4+ BAg.

On the role of weights for perfect state transfer, Casaccino et al. [2] made the following interesting observation.
Although K,, does not have perfect state transfer (between any two vertices due to vertex transitivity), it has perfect
state transfer between a pair of vertices if the two vertices are given self-loops with a certain weighting. We describe
this idea by looking at an explicit example involving K.

FIG. 7: Perfect state transfer on K3 with weights and self-loops; no perfect state transfer otherwise.

The eigenvalues of K3 are 2 (simple) and —1 (with multiplicity two) with eigenvectors |F), where |F}) are the
columns of the Fourier matrix, with (j|Fy) = w%k/\/g, for j,k € {0,1,2} (see Biggs [22]). The quantum walk on K3
yields

2

(Lle= 50y = (1] {Ze“k|Fk><Fk|} 0) =~ Zie~ /2 sin(31/2). (31)

k=0

So, it is clear that there is no perfect state transfer on K3. We add self-loops on the first two vertices (say, vertex 0
and vertex 1) with weight p and a edge weight of 1 between them. The adjacency matrix of K3 is given by

K3 = (32)

—_3 T
—_E 3
O = =

with eigenvalues \g = u — 1 and Ay = 2a4, where ar = i(& +A), 6 =p+nand A =2+ 8. The corresponding

(unnormalized) orthogonal eigenvectors are |vg) = (1 —1 O)T and |vy) = (ax ax l)T. The perfect state transfer
between the first two vertices are given by

<1|e*i”~<3|0> = <1|eﬂ”~(2|0> + %eﬂ't‘s {eiw/z {cos (%t) - z% sin (%tﬂ - 1} , (33)

where K5 is Ko (u,n). This is reminiscent of Theorem 4. Since on Ky we have (1|e~#2|0) = —isin(t), the weighted
l~(2 has perfect state transfer at time t* = (2Z + 1)7/2n (since p becomes an irrelevant phase factor and 7 translates
into a time-scaling).

So, for perfect state transfer, it suffices to require cos(dw/4n) cos(An/4n) = 1. Equivalently, it suffices to have the
following three conditions:

e A =0/4n be an integer;
e B = A/4n be an integer; and
e A= B (mod 2) or that A and B have the same parity.

From the first two conditions, we require that §/A be a rational number p/q < 1 with ged(p, ¢) = 1. After simplifica-
tions, we obtain § = p/T" and A = ¢/T", where I' = /(¢%? — p?)/8. So, choose n = 1/4T so that both §/4n and A/4n
are integers. That is, choose odd integers p and ¢ satisfying ged(p, ) = 1; this satisfies all three conditions above.
Thus, there are infinitely many weights p and 7 (through choices of odd integers p and ¢) which allow perfect state
transfer on K 3.

The above analysis shows that edge weights are sufficient for perfect state transfer, complementing results of
Casaccino et al. [2] for self-loop weights on K,,. This analysis is generalized to an arbitrary join of two regular graphs
in the following theorem.
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Theorem 8 (Angeles-Canul et al. [27]) For j € {1,2}, let G;(u;,1;) be a kj-regular graph on n; vertices, where each
vertex has a self-loop with wezght i and each edge has wezght n;. Also, for j € {1,2}, let k; = pj + njk;. Suppose

that a and b are two vertices in G1. Let G = Gl(,ul, m) + Gg(ug, 12) be the join of the weighted graphs. Then,

—itﬁl
—itAg| ) — (ple— e |g) 4 E { gitos2 At (0N (A
(ble la) = (ble la) + o {e [cos( 5 i\ x)sin{ 5 1 (34)
where 0 = k1 — Ko and A = /62 + 4nino.

As a corollary of Theorem 8, we can analyze perfect state transfer in a weighted double-cone on any regular graph.
Here we consider weighting both components of the cone using a set of uniform weightings. The following corollary
is a generalization of a similar result observed by Casaccino et al. [2].

Corollary 9 (Angeles-Canul et al. [27]) For any k-regular graph G on n vertices and any b € {0,1}, there exist
weights 1,7 € RY so that the double-cone K§(p,m) + G has perfect state transfer between the two vertices of K.

Given that weighting the source and target vertices is useful for perfect state transfer in the complete graph (or in
a join with any regular graph), it is natural to ask if this scheme works also in other settings. Casaccino et al. [2]
made the following interesting conjecture on the role of weig