
Encyclopedia of Algorithms

DOI 10.1007/978-3-642-27848-8_193-2

© Springer Science+Business Media New York 2014

Learning with the Aid of an Oracle (1996; Bshouty, Cleve, Gavaldà,
Kannan, Tamon)

Christino Tamon�

Department of Mathematics and Computer Science, Clarkson University, Potsdam, NY, USA Q1

Index Terms: Exact learning via queries; Boolean circuits; Disjunctive normal form

Problem Definition

In the exact learning model of Angluin [2], a learning algorithm A must discover an unknown

function f W f0; 1gn ! f0; 1g that is a member of a known class C of Boolean functions. The

learning algorithm can make at least one of the following types of queries about f:

• Equivalence query EQf.g/, for a candidate function g:

The reply is either “yes,” if g , f, or a counterexample a with g.a/ ¤ f.a/, otherwise.

• Membership query MQf.a/, for some a 2 f0; 1gn
:

The reply is the Boolean value f.a/.

• Subset query SubQf.g/, for a candidate function g:

The reply is “yes,” if g ) f, or a counterexample a with f.a/ < g.a/, otherwise.

• Superset query SupQf.g/, for a candidate function g:

The reply is “yes,” if f ) g, or a counterexample a with g.a/ < f.a/, otherwise.

A disjunctive normal formula (DNF) is a depth-2 OR-AND circuit whose size is given by the

number of its AND gates. Likewise, a conjunctive normal formula (CNF) is a depth-2 AND-OR
circuit whose size is given by the number of its OR gates. Any Boolean function can be represented

as both a DNF or a CNF formula. A k-DNF is a DNF where each AND gate has a fan-in of at

most k; similarly, we may define a k-CNF.

Problem For a given class C of Boolean functions, such as polynomial-size Boolean circuits

or disjunctive normal form (DNF) formulas, the goal is to design polynomial-time learning

algorithms for any unknown f 2 C and ask a polynomial number of queries. The output of the

learning algorithm should be a function g of polynomial size satisfying g , f . The polynomial

functions bounding the running time, query complexity, and output size are defined in terms of

the number of inputs n and the size of the smallest representation (Boolean circuit or DNF) of the

unknown function f.

Key Results

One of the main results proved in [5] is that Boolean circuits and disjunctive normal formulas are

exactly learnable using equivalence queries and access to an NP oracle.

�E-mail: tino@clarkson.edu

Page 1 of 6



Encyclopedia of Algorithms

DOI 10.1007/978-3-642-27848-8_193-2

© Springer Science+Business Media New York 2014

Theorem 1. The following tasks can be accomplished with probabilistic polynomial-time algo-
rithms that have access to an NP oracle and make polynomially many equivalence queries:

• Learning DNF formulas of size s using equivalence queries that are depth-3 AND-OR-AND
formulas of size O.sn2= log2 n/.

• Learning Boolean circuits of size s using equivalence queries that are circuits of size O.sn C
n log n/.

The idea behind this result is simple. Any class C of Boolean functions is exactly learnable

with equivalence queries using the Halving algorithm of Littlestone [11]. This algorithm asks

equivalence queries that are the majority of candidate functions from C. These are functions in

C that are consistent with the counterexamples obtained so far by the learning algorithm. Since

each such majority query eliminates at least half of the candidate functions, log2 jCj equivalence

queries are sufficient to learn any function in C. A problem with using the Halving algorithm here

is that the majority query has exponential size. But, it can be shown that a majority of a polynomial

number of uniformly random candidate functions is a good enough approximator to the majority of

all candidate functions. Moreover, with access to an NP oracle, there is a randomized polynomial

time algorithm for generating random uniform candidate functions due to Jerrum, Valiant, and

Vazirani [7]. This yields the result.

The next observation is that subset and superset queries are apparently powerful enough to

simulate both equivalence queries and the NP oracle. This is easy to see since the tautology

test g , 1 is equivalent to SubQf.g/ ^ SubQf.g/, for any unknown function f; and, EQf.g/ is

equivalent to SubQf.g/^ SupQf.g/. Thus, the following generalization of Theorem 1 is obtained.

Theorem 2. The following tasks can be accomplished with probabilistic polynomial-time algo-
rithms that make polynomially many subset and superset queries:

• Learning DNF formulas of size s using equivalence queries that are depth-3 AND-OR-AND
formulas of size O.sn2= log2 n/.

• Learning Boolean circuits of size s using equivalence queries that are circuits of size O.sn C
n log n/.

Stronger deterministic results are obtained by allowing more powerful complexity-theoretic

oracles. The first of these results employ techniques developed by Sipser and Stockmeyer [12,13].

Theorem 3. The following tasks can be accomplished with deterministic polynomial-time
algorithms that have access to an †

p
3 oracle and make polynomially many equivalence queries:

• Learning DNF formulas of size s using equivalence queries that are depth-3 AND-OR-AND
formulas of size O.sn2= log2 n/.

• Learning Boolean circuits of size s using equivalence queries that are circuits of size O.sn C
n log n/.

In the following result, C is an infinite class of functions containing functions of the form

f W f0; 1g? ! f0; 1g. The class C is p-evaluatable if the following tasks can be performed in

polynomial time:

Page 2 of 6



Encyclopedia of Algorithms

DOI 10.1007/978-3-642-27848-8_193-2

© Springer Science+Business Media New York 2014

• Given y, is y a valid representation for any function fy 2 C?

• Given a valid representation y and x 2 f0; 1g?
, is fy.x/ D 1?

Theorem 4. Let C be any p-evaluatable class. The following statements are equivalent:

• C is learnable from polynomially many equivalence queries of polynomial size (and unlimited
computational power).

• C is learnable in deterministic polynomial time with equivalence queries and access to a †
p
5

oracle.

For exact learning with membership queries, the following results are proved.

Theorem 5. The following tasks can be accomplished with deterministic polynomial-time
algorithms that have access to an NP oracle and make polynomially many membership queries
(in n, DNF and CNF sizes of f, where f is the unknown function):

• Learning monotone Boolean functions.
• Learning O.log n/-CNF

T
O.log n/-DNF.

The ideas behind the above result use techniques from [2,4]. For a monotone Boolean function f,
the standard closure algorithm uses both equivalence and membership queries to learn f using

candidate functions g satisfying g ) f. The need for membership can be removed using the

following observation. Viewing :f as a monotone function on the inverted lattice, we can learn f
and :f simultaneously using candidate functions g; h, respectively, that satisfy g ) h. The NP
oracle is used to obtain an example a that either helps in learning f or in learning :f; when no such

example can be found, we have learned f.

Theorem 6. Any class C of Boolean functions that is exactly learnable using a polynomial
number of membership queries (and unlimited computational power) is exactly learnable in
expected polynomial time using a polynomial number of membership queries and access to an
NP oracle.

Moreover, any p-evaluatable class C that is exactly learnable from a polynomial number
of membership queries (and unlimited computational power) is also learnable in deterministic
polynomial time using a polynomial number of membership queries and access to a †

p
5 oracle.

Theorems 4 and 6 showed that information-theoretic learnability using equivalence and

membership queries can be transformed into computational learnability at the expense of using

the †
p

5 and NP oracles, respectively.

Applications

The learning algorithm for Boolean circuits using equivalence queries and access to an NP oracle

has found an application in complexity theory. Watanabe (see [10]) showed an improvement on a

known theorem of Karp and Lipton [8]: if NP has polynomial-size circuits, then the polynomial-

time hierarchy PH collapses to ZPPNP. Subsequently, Aaronson (see [1]) showed that queries to

Page 3 of 6



Encyclopedia of Algorithms

DOI 10.1007/978-3-642-27848-8_193-2

© Springer Science+Business Media New York 2014

the NP oracle used in the learning algorithm (for Boolean circuits) cannot be parallelized by any

relativizing techniques.

Some techniques developed in Theorem 5 for exact learning using membership queries of

monotone Boolean functions have found applications in data mining [6].

Open Problems

It is unknown if there are polynomial-time learning algorithms for Boolean circuits and DNF
formulas using equivalence queries (without complexity-theoretic oracles). There are strong

cryptographic evidence that Boolean circuits are not learnable in polynomial-time (see [3] and

the references therein). The best running time for learning DNF formulas is 2
QO.n1=3/ as given by

Klivans and Servedio [9]. It is unclear if membership queries help in this case.

Experimental Results

None reported.

Data Sets

None reported.

URL to Code

None reported.

Cross References

For related learning results, see

�Learning DNF Formulas (1997; Jackson)Q2

�Learning Automata (2000; Beimel, Bergadano, Bshouty, Kushilevitz, and Varricchio)Q3

in this encyclopedia.

Recommended Reading

1. Aaronson S (2006) Oracles are subtle but not malicious. In: Proceedings of the 21st annualQ4

IEEE conference on computational complexity (CCC’06), Prague, pp 340–354

2. Angluin D (1988) Queries and concept learning. Mach Learn 2:319–342

3. Angluin D, Kharitonov M (1995) When Won’t Membership Queries Help? J Comput Syst Sci

50:336–355

Page 4 of 6



Encyclopedia of Algorithms

DOI 10.1007/978-3-642-27848-8_193-2

© Springer Science+Business Media New York 2014

4. Bshouty NH (1995) Exact learning boolean function via the monotone theory. Inf Comput

123:146–153

5. Bshouty NH, Cleve R, Gavaldà R, Kannan S, Tamon C (1996) Oracles and queries that are

sufficient for exact learning. J Comput Syst Sci 52(3):421–433

6. Gunopolous D, Khardon R, Mannila H, Saluja S, Toivonen H, Sharma RS (2003) Discovering

all most specific sentences. ACM Trans Database Syst 28:140–174

7. Jerrum MR, Valiant LG, Vazirani VV (1986) Random generation of combinatorial structures

from a uniform distribution. Theor Comput Sci 43:169–188

8. Karp RM, Lipton RJ (1980) Some connections between nonuniform and uniform complexity

classes. In: Proceedings of the 12th annual ACM symposium on theory of computing, Los

Angeles, pp 302–309

9. Klivans AR, Servedio RA (2004) Learning DNF in time 2
QO.n1=3/. J Comput Syst Sci 68:303–318

10. Köbler J, Watanabe O (1998) New collapse consequences of np having small circuits.

SIAM J Comput 28:311–324

11. Littlestone N Learning quickly when irrelevant attributes abound: a new linear-threshold

algorithm. Mach Learn 2:285–318 (1987)

12. Sipser M (1983) A complexity theoretic approach to randomness. In: Proceedings of the 15th

annual ACM symposium on theory of computing, Boston, pp 330–334

13. Stockmeyer LJ (1985) On approximation algorithms for #P . SIAM J Comput 14:849–861

Page 5 of 6


