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Abstract—Protecting data is a critical part of life in the modern 

world. The science of protecting data, known as cryptography, 

makes use of secret keys to encrypt data in a format that is not 

easily decipherable. However, most modern cryptography 

systems use passwords to perform user authentication. These 

passwords are a weak link in the security chain, and are a 

common point of attack on cryptography schemes. One 

alternative to password usage is biometrics: using a person’s 

physical characteristics to verify whom the person is and 

unlock the data correspondingly. This study focuses on the 

Cambridge biometric cryptosystem, a system for performing 

user authentication based on a user’s iris data. We converted 

our implementation of this algorithm from a single-core system 

to a system that can run on multiple cores. The experiment 

takes place on an Intel Single Chip Cloud Computer (SCC), an 

experimental processor created by Intel Labs. A design pattern 

has been created for the parallelization of software functions 

using multiple cores. Using this design pattern, two functions 

in the system were accelerated. The system generated by this 

acceleration process produced limited computational speedup, 

but provided results that can be applied to a variety of 

hardware acceleration problems. (Abstract) 

Keywords- Biometric Cryptosystem; Hadamard Code; 

Hardware Acceleration; Multi-Core; Iris Recognition; Reed-
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I.  INTRODUCTION 

In the modern world, data is becoming more prolific, and 
much of it is digitally accessible [1]. This widespread 
availability of data leads to sensitive information becoming 
vulnerable, meaning that it must be protected. One way for 
this protection to happen is through cryptography, the 
science of encoding or decoding information. Cryptography 
works by taking data to be protected, known as a “secret”, 
and performing a transformation on that data to make it 
appear as though the data is a random sequence of bits or 
characters. This transformation is known as “encryption”. 
Intended users of the data will be able to make sense of the 
random sequence, or to “decrypt” the data, through a 
methodology known only to them. Other parties that do not 
have access to the decryption instructions will not be able to 
make sense out of the data. If done correctly, converting the 
random sequence of bits back to the real meaningful data 
with no knowledge of the decryption key should be 
computationally complex, meaning that it cannot be 

achieved with current computing technology within a 
reasonable amount of time. 

Many current cryptography systems make use of 
passwords for verifying user authenticity. However, 
passwords are not ideal in that they are prone to being lost, 
stolen, or forgotten. To overcome the weakness of traditional 
password-based design, many research groups have 
investigated the use of biometrics, which are unique physical 
or behavioral characteristics of people, to protect 
cryptographic keys. Several researchers have developed 
algorithms using a biometric measurement for cryptography 
systems in a secure and accurate manner. These 
implementations, called biometric cryptosystems, combine 
biometrics and cryptography in a manner that allows the 
matching of biometrics in an encrypted, secure domain [2].  

In order to take advantage of biometric cryptosystem 
design, the algorithm needs to be able to run at a speed that is 
effective for use in commercial products. For most 
applications, this means calculations and cryptography must 
occur in real-time. This study attempts to achieve that goal 
by performing multi-core acceleration of a biometric 
cryptosystem algorithm. 

Hardware acceleration allows a biometric cryptosystem 

algorithm to be executed more quickly by providing a 

hardware platform that can more easily handle the 

computation. For each function that was accelerated, the 

single core software code was replaced with software 

making use of multiple CPU cores, allowing multiple 

computations to be run simultaneously, which improves the 

speed of the function relative to running on the single-core 

processor only. This performance increase often 

significantly outweighs the extra power consumed by the 

additional core(s), reducing the total energy consumed by 

the system for the given task.   

The performance improvement presented in this study 

provides a template for making biometric cryptosystems 

more viable in an industrial setting, where they can provide 

secure access to data without passwords. In addition to the 

practical benefits of cryptography, this study provides 

insights on the strengths and weaknesses of the hardware 

acceleration process. Analysis of what target function 

characteristics lead to the greatest efficiency gain provides a 

framework for determining the most efficient use of 



hardware acceleration. This will also allow more effective 

usage of hardware acceleration in other applications, 

including those beyond the scope of biometric 

cryptosystems. 

The rest of the paper is organized as follows: a brief 
overview of biometric cryptosystems is provided in Section 
II; Section III discusses the reference biometric cryptosystem 
design in detail; hardware acceleration methods and benefits 
are discussed in Section IV; Section V provides details on 
the experimental setup and procedure; results and associated 
discussion are provided in Section VI and final conclusions 
are drawn in Section VII. 

II. BIOMETRIC CRYPTOSYSTEMS 

Traditional cryptography methods make use of password 

protection and cryptographic keys to guard valuable 

information from attackers. The key is used to encrypt or 

decrypt data as necessary and is usually long and difficult to 

guess or memorize. This has led to keys being released 

based on password authentication, which allows users to 

memorize a relatively short password while providing data 

encryption that is still strong enough to resist attackers [3]. 

However, passwords themselves are a relatively vulnerable 

medium. Passwords are often poorly chosen, allowing them 

to be compromised through intelligent guessing or brute 

force attacks [3]. Additionally, passwords are often recorded 

on unsecure mediums, such as unencrypted files or pieces of 

paper that are left lying around. If the password is not 

recorded, it must be memorized, causing the existence of 

password recovery services, which take additional time and 

provide additional potential for security flaws. These 

weaknesses have caused a significant amount of research 

into alternatives to passwords.  

One alternative method to the utilization of passwords is 

the biometric cryptosystem. A biometric cryptosystem takes 

data about a particular feature of each user, called a 

“biometric”, and records that data. Biometrics are defined as 

behavioral or physiological characteristics of a user. 

Examples of biometrics include fingerprints, iris scans, 

facial patterns, hand geometry, signatures, and keystrokes. 

Biometric systems enroll users by storing information about 

the users’ biometrics. If a user attempts to gain access to the 

system under protection, the user’s biometric is checked. If 

the biometric data matches an entry in the system that has 

the appropriate privileges, the user is granted access. If the 

biometric data does not match, or matches an entry without 

the required privileges, then the user is denied access to the 

system. This eliminates the need for passwords and the 

security risks associated with their usage. 

There are several issues associated with the use of 

biometrics prior to their application to cryptography. In 

order for a biometric to be useful, it must be able to be 

collected and accurately compared to other data collections. 

The difficulty of biometric collection is usually due to the 

requirement of a specific hardware setup, and is therefore 

irrelevant to our discussion. Accurate comparison, however, 

is a relevant issue. When biometric collection occurs, there 

is a high variance in the data collected due to differing 

positions of the subject of the collection, variance in the 

machine, noise, and other issues [2]. Additionally, biometric 

data can change due to human growth, injury, habit changes, 

and other real-world events [2]. A biometric system must be 

able to handle these data variances in order to be effective. 

Complicating matters, the analysis system must also be able 

to distinguish between the biometric data of different 

people. Biometric systems must seek to minimize the false 

acceptance rate (FAR), where two different people are 

identified as the same person, and the false rejection rate 

(FRR), where one person is not identified as himself/herself 

on separate data collections [3]. This dual constraint poses a 

significant challenge to biometric systems even prior to their 

application in cryptography. 

There are also problems that arise specifically when 

biometrics are applied to cryptography. The first of these 

issues is privacy. If biometric templates are stored 

unencrypted on the system, attackers could potentially steal 

the biometric data of users of the system [4]. This has 

privacy implications that cause the system to be 

unreasonable from both ethical and economic standpoints. 

In addition to these issues, the scenario of a specific account 

being compromised must be taken into consideration. It is 

important that this scenario would not result in any other 

system that uses the same biometric being compromised. 

Revocability, or the ability to generate multiple secure 

identities for a user, is a requirement used to prevent a 

security breach from permanently compromising a user’s 

access to a system. This prevents the use of the raw 

biometric data, and instead necessitates using a 

transformation that is not based exclusively on the biometric 

data. However, working with biometric templates post-

transformation provides significant challenges in coming up 

with alignment processes necessary to deal with the 

variances and tolerances that must be accounted for as 

discussed above [5].  

A large amount of research has been performed 

attempting to solve these problems [5]. Many of them failed 

to achieve their goal or produced a result under unrealistic 

assumptions or with limited applications. However, some 

research results do seem promising. One of these is an 

algorithm using iris biometrics through an error correction 

method proposed by Anderson et al. from a research group 

in Cambridge University [6]. This algorithm is referred to 

herein as the “Cambridge biometric cryptosystem”, which 

we will discuss in detail next. 



III. THE CAMBRIDGE BIOMETRIC 

The Cambridge biometric cryptosystem is an algorithm 

that confirms user authenticity through the use of an iris 

template. Each user in the system is enrolled by providing a 

256-byte iris template and receiving a randomly generated 

140-bit key. These two inputs are used to generate two 

variables that are stored on a physical token that the user 

receives. The first of the generated variables is a hash of the 

original 140-bit key. This hash function is a mapping 

function that is used to obscure the original 14

second variable, called a locked template, is the result of 

performing an exclusive-or (XOR) function between the 

enrollment template and the result of putting the randomly 

generated key through Reed-Solomon and Hadamard 

encoding sequentially [6] [7]. When a user attempts to gain 

access to the system, they provide an iris sample and their 

physical token. The locked template is XORed with user’s 

sample template, producing the encoded key with errors 

introduced by the differences between the en

template and the sample template. This result is then put 

through Hadamard decoding, followed by Reed

decoding. If the person attempting to access the system is a 

valid user with the correct token, the result of the decoding 

will be the original key. If someone is trying to access the 

system using someone else’s token, the result will be 

different. The key is hashed after calculation using the same 

hash method used in the enrollment process, and then 

compared to the hashed result stored on 

are the same, the user is deemed valid and given access. If 

the results are different, then the user is treated as an 

imposter and is not given access to the system. A block 

diagram of this cryptosystem is shown in Fig. 1. 

The Cambridge biometric cryptosystem makes use of 

Reed-Solomon error-correction code to handle burst errors 

in the iris template. These are large errors that affect many 

contiguous bits of an iris template. Burst errors are often 

caused by eyelashes blocking views of t

devices that cause significant error in the picture. Reed

Solomon code handles these errors by dividing the input 

into several blocks. The blocks are interpreted as 

coefficients to a polynomial using the domain of a Galois 

field. Additional parity blocks are added to create a resulting 

Figure 1 Cambridge Biometric Cryptosystem
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hash method used in the enrollment process, and then 

compared to the hashed result stored on the token. If they 

are the same, the user is deemed valid and given access. If 

the results are different, then the user is treated as an 

imposter and is not given access to the system. A block 

diagram of this cryptosystem is shown in Fig. 1.  

biometric cryptosystem makes use of 

correction code to handle burst errors 

in the iris template. These are large errors that affect many 

contiguous bits of an iris template. Burst errors are often 

caused by eyelashes blocking views of the iris or other 

devices that cause significant error in the picture. Reed-

Solomon code handles these errors by dividing the input 

into several blocks. The blocks are interpreted as 

coefficients to a polynomial using the domain of a Galois 

l parity blocks are added to create a resulting 

polynomial that is evenly divisible by the defining 

polynomial of the Galois field. During the decoding process, 

the division is performed on the input blocks, and the 

remainder is used to locate blocks that 

error blocks are then entirely recalculated based on the 

results. This means the number of errors in a particular 

block does not matter, only the number of blocks that are in 

error. For the Cambridge biometric cryptosystem, the 140

bit input is divided into 20 blocks of 7 bits. 12 parity blocks 

are added to create a result of 32 blocks of 7 bits. This 

allows the system to correct up to 6 block errors for any 

given encoding and decoding process. 

Hadamard coding is used by the Cambridge b

cryptosystem to handle random errors in the iris template. 

These are small errors that may be caused by transmission 

errors, or may be related to minor changes in the image of 

the iris taken. Hadamard coding is based on the concept of 

the Hadamard matrix, a matrix containing positive and 

negative values with a magnitude of one, where the values 

are arranged in a particular order. The initial Hadamard 

matrix, of order one, is shown in Equation 1.

 �� �

Subsequent Hadamard matrices are comput

in Equation 2.  

 �� � ���
A Hadamard code uses a matrix that differs from a 

Hadamard matrix in two ways. The first is that the additive 

inverse of the Hadamard matrix is stacked below the 

original matrix as shown in Eq

all negative ones in the Hadamard matrix are replaced by 

zeros. 

 ��
Hadamard encoding interprets its input as a series of 

blocks. Each block is treated as a row index. The output 

result of the block is the entirety of the row corresponding to 

that index. During the decoding process, each block is 

compared to every row of the Hadamard matrix, and the row 

index corresponding to the row with the least bit differences 

from the input block is the output. This allows the system to 

return the correct output if the number of bit errors is less 

than half the minimum distance between

For the Cambridge biometric cryptosystem, the input 

consists of 32 7-bit blocks. A block size of seven means that 

there are 2 ^ 7 = 128 rows in the matrix. Since the matrix 

used is constructed from two square matrices stacked on top 

 
Cambridge Biometric Cryptosystem 
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A Hadamard code uses a matrix that differs from a 

Hadamard matrix in two ways. The first is that the additive 

inverse of the Hadamard matrix is stacked below the 

original matrix as shown in Equation 3. The second is that 

all negative ones in the Hadamard matrix are replaced by 

�  �	�� (3) 

Hadamard encoding interprets its input as a series of 

blocks. Each block is treated as a row index. The output 

result of the block is the entirety of the row corresponding to 

that index. During the decoding process, each block is 

he Hadamard matrix, and the row 

index corresponding to the row with the least bit differences 

from the input block is the output. This allows the system to 

return the correct output if the number of bit errors is less 

than half the minimum distance between rows of the matrix. 

For the Cambridge biometric cryptosystem, the input 

bit blocks. A block size of seven means that 

there are 2 ^ 7 = 128 rows in the matrix. Since the matrix 

used is constructed from two square matrices stacked on top 



of each other, this means that each row consists of 64 bits. 

Thus the resulting output is 32 64-bit blocks. This choice 

allows each block to contain up to 15-bit errors before 

becoming a burst error.  

The Cambridge biometric cryptosystem appears to 

successfully fulfill the requirements of a strong and safe 

biometric cryptosystem. According to tests performed by 

Anderson et al., the system performed with a 99.5% correct 

match rate [6]. The algorithm answers security concerns by 

storing only modified versions of the key and iris template, 

protecting these from being accessed by intruders. In the 

event that a user’s access data is compromised, a new 

random key can be generated for that user, resetting the 

system without loss of functionality. This combination of 

accuracy and security makes the Cambridge biometric 

cryptosystem a strong choice for software implementation 

and subsequent hardware acceleration. 

IV. HARDWARE ACCELERATION 

Since the development of the computer, people have been 

trying to make computation faster. This was initially 

achieved through increasing the speed of Central Processing 

Units (CPUs) that handle a single stream of instructions. But 

recently, CPUs have started to reach a level where their 

performance cannot be increased without generating more 

heat than can be dissipated in a reasonable amount of time 

and space [8]. This has caused the growth of research into 

new areas of computational acceleration. 

New methods of computation focus on two aspects: 

running multiple instruction sequences (known as “threads”) 

simultaneously, and decreasing the execution time of certain 

instructions. These goals are usually accomplished through 

the use of multiple CPU cores running in parallel, a 

graphical processing unit (GPU), or custom hardware. Using 

multiple CPU cores allows the execution of multiple threads 

simultaneously on one CPU. This makes it effective in 

scenarios where programs have many sequences of 

instructions that are not dependent on one another. 

However, the fact that the hardware in the CPU is not being 

modified, just made more plentiful, means that instructions 

are not executed any faster. This means that programs 

without opportunity for parallel computation do not benefit 

from a multi-core hardware architecture. Similarly, making 

use of a GPU allows significantly increased parallelism by 

performing multiple calculations simultaneously. In 

addition, GPUs are optimized to perform certain types of 

calculations commonly used in graphics processing, 

allowing faster execution time for these instructions. The 

disadvantage of GPUs is that they are optimized for 

particular types of calculations, reducing the benefits they 

provide for computation of a more general type. 

Alternatively, custom hardware allows particular hardware 

units to be defined to handle certain computations [9]. This 

means that systems can be custom designed to optimize for 

the most common form of computation in the target 

application. For custom hardware, the amount of parallelism 

in computation is defined by the amount of hardware space 

allocated by the designer for additional hardware for each 

particular functionality. The disadvantage of this method is 

that custom hardware must be designed specifically for the 

system it is intended for, as opposed to off-the-shelf CPUs 

or GPUs. This takes significant amounts of design time, and 

also requires the use of customizable hardware resources, 

whether a Field Programmable Gate Array (FPGA) or a 

Complex Programmable Logic Device (CPLD). These 

hardware devices consist of a variety of hardware resources 

that can be configured in varying manners to produce the 

custom hardware.  

Hardware acceleration also changes energy efficiency in 

addition to processing speed. A system using hardware 

acceleration has more hardware to power than the same 

system without hardware acceleration, causing an increase 

in power consumed. However, the energy usage also 

depends on the time, which typically decreases during the 

process of hardware acceleration [10]. Depending on the 

rates of change in time and power consumption, total energy 

usage per computation can increase, remain the same, or 

decrease after hardware acceleration occurs.  

This project makes use of the Intel Single-chip Cloud 

Computer (SCC) for the implementation and testing of the 

biometric cryptosystem. The Single-chip Cloud Computer 

experimental processor [11] is a 48-core concept vehicle 

created by Intel Labs as a platform for multi-core software 

research. It contains 48 Pentium class IA-32 cores on a 2D 

mesh network. The chip provides hardware that allows 

communication between the cores, in addition to a shared 

memory model that cores can use via off-chip DRAM. 

These communication capabilities in combination with the 

fact that inter-core communication does not require 

changing chips makes this platform ideal for testing multi-

core acceleration. Multi-core acceleration was chosen due to 

its increasing availability in the computing environment. 

Commercially available computers are transitioning towards 

greater numbers of cores, making this acceleration method 

something that could be adopted relatively easily. The fact 

that the SCC contains 48 cores allows the scalability of the 

algorithms to be tested. 

V. METHODOLOGY 

The process used to generate a multi-core implementation 

of the Cambridge Biometric Cryptosystem was broken up 

into several steps. The first step of this process was to port 

the initial C implementation of the system over to the SCC 

hardware setup. Once this step had been completed, it was 

necessary to design a core-scalable method for data sharing 

and communication between the cores involved in the 



process. After the inter-core communication setup had been 

decided upon, the algorithms for multi-core computation 

were designed and implemented. The final step in the 

process was to update the software system so that it could 

run under a variety of operating voltages and frequencies. 

This process produced a working multi-core implementation 

of the Cambridge Biometric Cryptosystem. 

The process of performing multi-core acceleration began 

by adapting the existing software to run on the Intel SCC. 

This involved adapting the software to make use of the Intel 

RCCE library, which handles system initialization, 

hardware interfacing, and inter-core communication [12]. 

Porting the initial software implementation to this platform 

involved adjusting the code entry and exit sections to handle 

the appropriate initialization and conclusion steps. After the 

completion of this process, the software could be run on the 

SCC. However, each core would perform the exact same 

steps, duplicating computations. Adding a check to the 

program to ensure that only the core designated as the lead 

core would perform computation fixed this issue and 

generated a software system compatible with the target 

hardware platform.  

Once a compatible software project was completed, a 

methodology for data transmission and synchronization 

needed to be designed. Since the majority of computations 

for this system were confined to one core, this core would 

have a significantly different software stack than the cores 

designated as helper cores. This means that the cores could 

not simply run the same function with the same arguments 

and perform the computation appropriately. The problem 

was solved using a design pattern being referred to as the 

controller-helper design pattern.  

The controller-helper is a software design pattern 

intended to help solve problems involving multiple cores 

performing computation on data originating from a single 

core. Fig. 2 shows a system where the results are returned to 

the core the data originated from, but the pattern could be 

extended to return data to a different core. The core dealing 

with the input and output data is known as the controller. 

The other cores participating in the computation are referred 

to as helpers.  

The pattern involves three functions, the controller 

function, the helper function, and the worker function. At 

the start of the function being accelerated, the controller 

calls the controller function and the helpers call the helper 

function. Both of these functions attempt to allocate a 

shared memory pointer for each input and output argument. 

This is done using the RCCE_shmalloc function, which 

allocates an area of shared memory and returns each core a 

pointer to the same memory location [12]. The controller 

then places the input data in the shared memory, making it 

accessible to all of the cores. Once each core has gained 

access to this data, the situation has become similar to a 

traditional multi-core problem. From this point, both the 

controller and the helpers call the worker function. The 

worker function takes pointers to the input arguments to the 

original function as its input arguments. At this point the 

multi-core algorithm can divide up jobs as it deems fit 

without having to worry about securing input data. Each 

worker function deposits its output results into the shared 

memory pointer created for the output data. Once a worker 

function finishes its computations, it returns. After all 

computations are complete, the controller function reads the 

results of the computation from the shared memory into 

local memory. Upon completion of this data transfer, each 

core uses an RCCE_shfree command to free the shared 

memory [12]. At this stage, the helper functions have 

completed their work, and the controller function can pass 

the data to its caller. This design pattern can be generalized 

to any other multi-core setup by replacing the 

RCCE_shmalloc and RCCE_shfree calls with the 

appropriate calls for allocating and freeing shared memory, 

respectively. A diagram displaying this design pattern is 

shown above in Fig. 2.  

Once a memory management model had been created, 

attention was turned to the individual function to be 

profiled. The target functions, mult_polys and 

hadamard_decode, were chosen based on the results of 

profiling the original software implementation. These 

functions took approximately 45 and 20 percent of the total 

system runtime, respectively.  

The mult_polys function performed polynomial 

multiplication across a Galois field. This process is similar 

to polynomial multiplication, where individual terms are 

multiplied, and then terms of the same order are gathered 

and added together. The difference with this function is that 

the multiplication operation is replaced with multiplication 

across a Galois field, and like term gathering makes use of 

the XOR operation rather than addition. This function takes 

two arrays of 24 integers as input, and returns one 48 integer 

array as an output. The multi-core algorithm for this 

function asked each core to solve for a certain set of the 

output terms. This involved performing Galois 

multiplication for each pair of inputs that resided in different 

input arrays with indices that added up to the index of the 

 
Figure 2 Controller-Helper Design Pattern 
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output being computed. After each computation, the result 

was XORed with the total. Thus each core computed some 

number of terms of the resultant polynomial. This algorithm 

allowed evenly distributed simultaneous computation 

without conflicting writes to the shared memory locations. 

Since input accesses were read-only, they did not cause data 

dependency. This algorithm was completed and tested to 

ensure that it performed to specification.  

The second function targeted for acceleration was the 

hadamard_decode function. This function takes 32 blocks 

containing 64 bits each as its input. Each of these blocks is 

converted to a seven-bit block as described in Section II 

above. Similar to the process used for the mult_polys, this 

function was accelerated by assigning each core a group of 

output blocks to decode. The core will compare the input 

block to each row of the Hadamard matrix, and will put the 

index number of the row with the least bitwise differences 

in the output location. This function has also been 

implemented and tested to ensure its effectiveness.  

The software system generated was designed to allow the 

user to choose whether they wanted the system to use either 

or both of the accelerators programmed. This was completed 

by adding additional runtime parameters. These parameters 

were checked whenever an accelerated function would be 

called. On one input, the accelerated function would be 

called, while on another the original function would be 

called. This configuration permits the user to control how 

they would like to perform their computation and allows for 

easier runtime testing.  

The final step in the process used to generate a multi-core 

system that takes advantage of the functionality of the SCC 

was adding voltage and frequency control. These were also 

added as additional parameters provided at function 

runtime. The RCCE library functions were used to change 

the core operating voltage and frequency to the desired 

values prior to performing computation and return the 

system to its original state upon the completion of the 

program.  

VI. RESULTS AND DISCUSSION 

The methodology used in this project resulted in a 

software implementation of the Cambridge Biometric 

Cryptosystem that functions on the Intel SCC. This software 

system can make use of four possible computational 

methods and several different voltage and frequency 

settings.  

In order to test the effectiveness of the hardware 

acceleration, the system was profiled using the default 

operating characteristics of 1.1 Volts and 533 megahertz. 

Tests were performed on the system making use of no 

hardware acceleration, each accelerated function 

individually, and using both accelerated functions. Each 

configuration was tested using 1, 2, 4, 8, and 16 cores on the 

SCC for enrollment, verification, and the two processes 

sequentially. Due to issues with the hardware, the system 

was unable to be tested using larger numbers of cores. Each 

test was performed three times and the average runtime 

between the tests was used for the calculation.  

The results of the testing when running enrollment and 

verification sequentially are shown in Fig. 3. This graph 

shows that the best runtime for the system with these 

operating characteristics occurs when the non-accelerated 

system is run using one core. It is interesting to note that the 

runtime of the non-accelerated version increases with the 

increased number of cores. This is likely due to the 

synchronization constraints that were placed on the system 

to handle the multi-core algorithms. Not all of these 

synchronization points are disabled when using the non-

accelerated version of the system. The increased number of 

cores requires additional coordination messages leading to 

increased latency for the system.  

It is also important to note that the runtime of the 

accelerated versions of the system generally compare poorly 

to the non-accelerated versions. In all instances except the 

hadamard_decode using 8 or 16 cores the accelerated 

function is actually slower than the non-accelerated version 

using the same number of cores. The accelerated function in 

these particular situations has a better runtime than the non-

accelerated system using the same number of cores but 

worse than the single core version. This means that this 

acceleration cycle is having a small positive effect on the 

runtime, but that the coordination costs overall outweigh 

this benefit. 

The general results discussed above are confirmed by the 

graphs of enrollment and verification run individually in 

Fig. 4 and Fig. 5, respectively.  

Fig. 4 provides two important takeaways. The first is that 

the runtime of the hadamard_decode accelerated enrollment 

is roughly the same as the non-accelerated version of 

 
Figure 3 Enrollment and Verification Runtimes at 

533 MHz 
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enrollment. Since the enrollment process does not call the 

hadamard_decode function, this is expected. The second 

concept to notice from this graph is the noise. There are 

significant spikes in the runtimes recorded that do not 

appear to agree with the general trend of the graph. These 

are likely due to variations in the system at runtime.  

Fig. 5 shows the runtimes of the various systems when 

performing verification. This graph provides evidence that 

appears to confirm the conclusions drawn previously: the 

high levels of noise, the ineffectiveness of the mult_polys 

acceleration, and the limited effectiveness of the 

hadamard_decode acceleration.  

In addition to performing tests at the default operating 

characteristics, a small subset of tests were performed at a 

higher operating frequency of 875 megahertz. The tests 

performed at this frequency were the same as the tests 

detailed above, but the algorithm was only run using 

enrollment and verification run sequentially. The results of 

these tests are shown in Fig. 6. The hardware acceleration 

shows more promise in these results. The mult_polys 

function still has higher runtimes than the non-accelerated 

system. However, the accelerated hadamard_decode 

functionality using 8 or 16 cores has the lowest total 

runtime, eclipsing the original system run with one core. 

The runtime drops from approximately 1.93 milliseconds to 

approximately 1.64 milliseconds, a speedup of about 1.18.  

The results of testing done on this system indicate that the 

Cambridge biometric cryptosystem is likely not 

computationally intensive enough to gain significant 

benefits from multi-core acceleration. However, even on 

this system, one function was found where acceleration 

proved effective to a certain degree. Based on the algorithm 

design, we believe that this performance improvement will 

scale to 32 cores, at which point there become as many 

cores as total outputs to be processed. 

VII. CONCLUSION 

Improving the efficiency of biometric cryptography allows 

it to more easily become part of modern life. This is an 

important step towards creating a world where data can be 

protected efficiently. Biometric cryptosystems provide a 

secure method of providing user security without the 

drawbacks of passwords. The biometric cryptosystem 

developed by Anderson, Daugman, and Hao at the 

University of Cambridge provides a strong algorithm for a 

biometric cryptosystem that overcomes many of the 

challenges of biometric cryptography while providing 

security and accuracy.  

Combining hardware acceleration with software 

optimization allows for an increased improvement in 

computation. Hardware acceleration works well for 

functions that have long series of computations, especially 

when many of the calculations are independent of one 

another. This allows the increased parallelism that leads to 

better performance improvements. However, there are 

situations, such as less computationally intensive and less 

parallel functions, where the communication required to use 

multiple cores is less than ideal. Knowing how and when to 

apply this approach allows system designers to generate 

systems with much better efficiency than a naive approach.  

 
Figure 4 Enrollment Runtimes at 533 MHz 
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Figure 5 Verification Runtimes at 533 MHz 
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Figure 6 Enrollment and Verification Runtimes at 

875 MHz 
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In this work, a multi-core software implementation of the 

Cambridge biometric cryptosystem has been implemented 

and tested. The resulting system has varied performance, 

achieving a speedup of 1.18X using one acceleration 

method at 875 megahertz. This same acceleration method at 

533 MHz, and the other acceleration method result in an 

increase in the overall runtime of the system. The result is a 

system that can perform user enrollment and verification in 

1.64 milliseconds on an Intel Single-chip Cloud Computer.  

In addition to providing a concrete implementation of a 

multi-core biometric cryptosystem, this project provides a 

process that can be used as a guideline for future 

applications of hardware acceleration to biometric 

cryptosystems. Making use of the controller-helper design 

pattern generated will allow for the development of systems 

that take significantly less runtime and possibly less energy 

per computation, significantly increasing their useful 

potential. This could also be compared to the results of 

porting this algorithm onto GPU and FPGA platforms in 

order to assess the potential of these varying platforms.  
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