
Multi-core Approach towards Efficient Biometric

Cryptosystems

Charles McGuffey Chen Liu

Department of Electrical and Computer Engineering

Clarkson University

Potsdam, NY 13699, USA

e-mail: {mcguffcj, cliu}@clarkson.edu

Abstract—Protecting data is a critical part of life in the modern

world. The science of protecting data, known as cryptography,

makes use of secret keys to encrypt data in a format that is not

easily decipherable. However, most modern cryptography

systems use passwords to perform user authentication. These

passwords are a weak link in the security chain, and are a

common point of attack on cryptography schemes. One

alternative to password usage is biometrics: using a person’s

physical characteristics to verify whom the person is and

unlock the data correspondingly. This study focuses on the

Cambridge biometric cryptosystem, a system for performing

user authentication based on a user’s iris data. We converted

our implementation of this algorithm from a single-core system

to a system that can run on multiple cores. The experiment

takes place on an Intel Single Chip Cloud Computer (SCC), an

experimental processor created by Intel Labs. A design pattern

has been created for the parallelization of software functions

using multiple cores. Using this design pattern, two functions

in the system were accelerated. The system generated by this

acceleration process produced limited computational speedup,

but provided results that can be applied to a variety of

hardware acceleration problems. (Abstract)

Keywords- Biometric Cryptosystem; Hadamard Code;

Hardware Acceleration; Multi-Core; Iris Recognition; Reed-

Solomon Code (key words)

I. INTRODUCTION

In the modern world, data is becoming more prolific, and
much of it is digitally accessible [1]. This widespread
availability of data leads to sensitive information becoming
vulnerable, meaning that it must be protected. One way for
this protection to happen is through cryptography, the
science of encoding or decoding information. Cryptography
works by taking data to be protected, known as a “secret”,
and performing a transformation on that data to make it
appear as though the data is a random sequence of bits or
characters. This transformation is known as “encryption”.
Intended users of the data will be able to make sense of the
random sequence, or to “decrypt” the data, through a
methodology known only to them. Other parties that do not
have access to the decryption instructions will not be able to
make sense out of the data. If done correctly, converting the
random sequence of bits back to the real meaningful data
with no knowledge of the decryption key should be
computationally complex, meaning that it cannot be

achieved with current computing technology within a
reasonable amount of time.

Many current cryptography systems make use of
passwords for verifying user authenticity. However,
passwords are not ideal in that they are prone to being lost,
stolen, or forgotten. To overcome the weakness of traditional
password-based design, many research groups have
investigated the use of biometrics, which are unique physical
or behavioral characteristics of people, to protect
cryptographic keys. Several researchers have developed
algorithms using a biometric measurement for cryptography
systems in a secure and accurate manner. These
implementations, called biometric cryptosystems, combine
biometrics and cryptography in a manner that allows the
matching of biometrics in an encrypted, secure domain [2].

In order to take advantage of biometric cryptosystem
design, the algorithm needs to be able to run at a speed that is
effective for use in commercial products. For most
applications, this means calculations and cryptography must
occur in real-time. This study attempts to achieve that goal
by performing multi-core acceleration of a biometric
cryptosystem algorithm.

Hardware acceleration allows a biometric cryptosystem

algorithm to be executed more quickly by providing a

hardware platform that can more easily handle the

computation. For each function that was accelerated, the

single core software code was replaced with software

making use of multiple CPU cores, allowing multiple

computations to be run simultaneously, which improves the

speed of the function relative to running on the single-core

processor only. This performance increase often

significantly outweighs the extra power consumed by the

additional core(s), reducing the total energy consumed by

the system for the given task.

The performance improvement presented in this study

provides a template for making biometric cryptosystems

more viable in an industrial setting, where they can provide

secure access to data without passwords. In addition to the

practical benefits of cryptography, this study provides

insights on the strengths and weaknesses of the hardware

acceleration process. Analysis of what target function

characteristics lead to the greatest efficiency gain provides a

framework for determining the most efficient use of

hardware acceleration. This will also allow more effective

usage of hardware acceleration in other applications,

including those beyond the scope of biometric

cryptosystems.

The rest of the paper is organized as follows: a brief
overview of biometric cryptosystems is provided in Section
II; Section III discusses the reference biometric cryptosystem
design in detail; hardware acceleration methods and benefits
are discussed in Section IV; Section V provides details on
the experimental setup and procedure; results and associated
discussion are provided in Section VI and final conclusions
are drawn in Section VII.

II. BIOMETRIC CRYPTOSYSTEMS

Traditional cryptography methods make use of password

protection and cryptographic keys to guard valuable

information from attackers. The key is used to encrypt or

decrypt data as necessary and is usually long and difficult to

guess or memorize. This has led to keys being released

based on password authentication, which allows users to

memorize a relatively short password while providing data

encryption that is still strong enough to resist attackers [3].

However, passwords themselves are a relatively vulnerable

medium. Passwords are often poorly chosen, allowing them

to be compromised through intelligent guessing or brute

force attacks [3]. Additionally, passwords are often recorded

on unsecure mediums, such as unencrypted files or pieces of

paper that are left lying around. If the password is not

recorded, it must be memorized, causing the existence of

password recovery services, which take additional time and

provide additional potential for security flaws. These

weaknesses have caused a significant amount of research

into alternatives to passwords.

One alternative method to the utilization of passwords is

the biometric cryptosystem. A biometric cryptosystem takes

data about a particular feature of each user, called a

“biometric”, and records that data. Biometrics are defined as

behavioral or physiological characteristics of a user.

Examples of biometrics include fingerprints, iris scans,

facial patterns, hand geometry, signatures, and keystrokes.

Biometric systems enroll users by storing information about

the users’ biometrics. If a user attempts to gain access to the

system under protection, the user’s biometric is checked. If

the biometric data matches an entry in the system that has

the appropriate privileges, the user is granted access. If the

biometric data does not match, or matches an entry without

the required privileges, then the user is denied access to the

system. This eliminates the need for passwords and the

security risks associated with their usage.

There are several issues associated with the use of

biometrics prior to their application to cryptography. In

order for a biometric to be useful, it must be able to be

collected and accurately compared to other data collections.

The difficulty of biometric collection is usually due to the

requirement of a specific hardware setup, and is therefore

irrelevant to our discussion. Accurate comparison, however,

is a relevant issue. When biometric collection occurs, there

is a high variance in the data collected due to differing

positions of the subject of the collection, variance in the

machine, noise, and other issues [2]. Additionally, biometric

data can change due to human growth, injury, habit changes,

and other real-world events [2]. A biometric system must be

able to handle these data variances in order to be effective.

Complicating matters, the analysis system must also be able

to distinguish between the biometric data of different

people. Biometric systems must seek to minimize the false

acceptance rate (FAR), where two different people are

identified as the same person, and the false rejection rate

(FRR), where one person is not identified as himself/herself

on separate data collections [3]. This dual constraint poses a

significant challenge to biometric systems even prior to their

application in cryptography.

There are also problems that arise specifically when

biometrics are applied to cryptography. The first of these

issues is privacy. If biometric templates are stored

unencrypted on the system, attackers could potentially steal

the biometric data of users of the system [4]. This has

privacy implications that cause the system to be

unreasonable from both ethical and economic standpoints.

In addition to these issues, the scenario of a specific account

being compromised must be taken into consideration. It is

important that this scenario would not result in any other

system that uses the same biometric being compromised.

Revocability, or the ability to generate multiple secure

identities for a user, is a requirement used to prevent a

security breach from permanently compromising a user’s

access to a system. This prevents the use of the raw

biometric data, and instead necessitates using a

transformation that is not based exclusively on the biometric

data. However, working with biometric templates post-

transformation provides significant challenges in coming up

with alignment processes necessary to deal with the

variances and tolerances that must be accounted for as

discussed above [5].

A large amount of research has been performed

attempting to solve these problems [5]. Many of them failed

to achieve their goal or produced a result under unrealistic

assumptions or with limited applications. However, some

research results do seem promising. One of these is an

algorithm using iris biometrics through an error correction

method proposed by Anderson et al. from a research group

in Cambridge University [6]. This algorithm is referred to

herein as the “Cambridge biometric cryptosystem”, which

we will discuss in detail next.

III. THE CAMBRIDGE BIOMETRIC

The Cambridge biometric cryptosystem is an algorithm

that confirms user authenticity through the use of an iris

template. Each user in the system is enrolled by providing a

256-byte iris template and receiving a randomly generated

140-bit key. These two inputs are used to generate two

variables that are stored on a physical token that the user

receives. The first of the generated variables is a hash of the

original 140-bit key. This hash function is a mapping

function that is used to obscure the original 14

second variable, called a locked template, is the result of

performing an exclusive-or (XOR) function between the

enrollment template and the result of putting the randomly

generated key through Reed-Solomon and Hadamard

encoding sequentially [6] [7]. When a user attempts to gain

access to the system, they provide an iris sample and their

physical token. The locked template is XORed with user’s

sample template, producing the encoded key with errors

introduced by the differences between the en

template and the sample template. This result is then put

through Hadamard decoding, followed by Reed

decoding. If the person attempting to access the system is a

valid user with the correct token, the result of the decoding

will be the original key. If someone is trying to access the

system using someone else’s token, the result will be

different. The key is hashed after calculation using the same

hash method used in the enrollment process, and then

compared to the hashed result stored on

are the same, the user is deemed valid and given access. If

the results are different, then the user is treated as an

imposter and is not given access to the system. A block

diagram of this cryptosystem is shown in Fig. 1.

The Cambridge biometric cryptosystem makes use of

Reed-Solomon error-correction code to handle burst errors

in the iris template. These are large errors that affect many

contiguous bits of an iris template. Burst errors are often

caused by eyelashes blocking views of t

devices that cause significant error in the picture. Reed

Solomon code handles these errors by dividing the input

into several blocks. The blocks are interpreted as

coefficients to a polynomial using the domain of a Galois

field. Additional parity blocks are added to create a resulting

Figure 1 Cambridge Biometric Cryptosystem

 CRYPTOSYSTEM

The Cambridge biometric cryptosystem is an algorithm

that confirms user authenticity through the use of an iris

template. Each user in the system is enrolled by providing a

byte iris template and receiving a randomly generated

puts are used to generate two

variables that are stored on a physical token that the user

receives. The first of the generated variables is a hash of the

bit key. This hash function is a mapping

function that is used to obscure the original 140-bit key. The

second variable, called a locked template, is the result of

or (XOR) function between the

enrollment template and the result of putting the randomly

Solomon and Hadamard

. When a user attempts to gain

access to the system, they provide an iris sample and their

physical token. The locked template is XORed with user’s

sample template, producing the encoded key with errors

introduced by the differences between the enrollment

template and the sample template. This result is then put

through Hadamard decoding, followed by Reed-Solomon

decoding. If the person attempting to access the system is a

valid user with the correct token, the result of the decoding

iginal key. If someone is trying to access the

system using someone else’s token, the result will be

different. The key is hashed after calculation using the same

hash method used in the enrollment process, and then

compared to the hashed result stored on the token. If they

are the same, the user is deemed valid and given access. If

the results are different, then the user is treated as an

imposter and is not given access to the system. A block

diagram of this cryptosystem is shown in Fig. 1.

biometric cryptosystem makes use of

correction code to handle burst errors

in the iris template. These are large errors that affect many

contiguous bits of an iris template. Burst errors are often

caused by eyelashes blocking views of the iris or other

devices that cause significant error in the picture. Reed-

Solomon code handles these errors by dividing the input

into several blocks. The blocks are interpreted as

coefficients to a polynomial using the domain of a Galois

l parity blocks are added to create a resulting

polynomial that is evenly divisible by the defining

polynomial of the Galois field. During the decoding process,

the division is performed on the input blocks, and the

remainder is used to locate blocks that

error blocks are then entirely recalculated based on the

results. This means the number of errors in a particular

block does not matter, only the number of blocks that are in

error. For the Cambridge biometric cryptosystem, the 140

bit input is divided into 20 blocks of 7 bits. 12 parity blocks

are added to create a result of 32 blocks of 7 bits. This

allows the system to correct up to 6 block errors for any

given encoding and decoding process.

Hadamard coding is used by the Cambridge b

cryptosystem to handle random errors in the iris template.

These are small errors that may be caused by transmission

errors, or may be related to minor changes in the image of

the iris taken. Hadamard coding is based on the concept of

the Hadamard matrix, a matrix containing positive and

negative values with a magnitude of one, where the values

are arranged in a particular order. The initial Hadamard

matrix, of order one, is shown in Equation 1.

 �� �

Subsequent Hadamard matrices are comput

in Equation 2.

 �� � ���
A Hadamard code uses a matrix that differs from a

Hadamard matrix in two ways. The first is that the additive

inverse of the Hadamard matrix is stacked below the

original matrix as shown in Eq

all negative ones in the Hadamard matrix are replaced by

zeros.

 ��
Hadamard encoding interprets its input as a series of

blocks. Each block is treated as a row index. The output

result of the block is the entirety of the row corresponding to

that index. During the decoding process, each block is

compared to every row of the Hadamard matrix, and the row

index corresponding to the row with the least bit differences

from the input block is the output. This allows the system to

return the correct output if the number of bit errors is less

than half the minimum distance between

For the Cambridge biometric cryptosystem, the input

consists of 32 7-bit blocks. A block size of seven means that

there are 2 ^ 7 = 128 rows in the matrix. Since the matrix

used is constructed from two square matrices stacked on top

Cambridge Biometric Cryptosystem

polynomial that is evenly divisible by the defining

polynomial of the Galois field. During the decoding process,

the division is performed on the input blocks, and the

remainder is used to locate blocks that are in error. These

error blocks are then entirely recalculated based on the

results. This means the number of errors in a particular

block does not matter, only the number of blocks that are in

error. For the Cambridge biometric cryptosystem, the 140-

input is divided into 20 blocks of 7 bits. 12 parity blocks

are added to create a result of 32 blocks of 7 bits. This

allows the system to correct up to 6 block errors for any

given encoding and decoding process.

Hadamard coding is used by the Cambridge biometric

cryptosystem to handle random errors in the iris template.

These are small errors that may be caused by transmission

errors, or may be related to minor changes in the image of

the iris taken. Hadamard coding is based on the concept of

matrix, a matrix containing positive and

negative values with a magnitude of one, where the values

are arranged in a particular order. The initial Hadamard

matrix, of order one, is shown in Equation 1.

� �� �
� 	
 (1)

Subsequent Hadamard matrices are computed as shown

����� ����
���� 	����� (2)

A Hadamard code uses a matrix that differs from a

Hadamard matrix in two ways. The first is that the additive

inverse of the Hadamard matrix is stacked below the

original matrix as shown in Equation 3. The second is that

all negative ones in the Hadamard matrix are replaced by

� �	�� (3)

Hadamard encoding interprets its input as a series of

blocks. Each block is treated as a row index. The output

result of the block is the entirety of the row corresponding to

that index. During the decoding process, each block is

he Hadamard matrix, and the row

index corresponding to the row with the least bit differences

from the input block is the output. This allows the system to

return the correct output if the number of bit errors is less

than half the minimum distance between rows of the matrix.

For the Cambridge biometric cryptosystem, the input

bit blocks. A block size of seven means that

there are 2 ^ 7 = 128 rows in the matrix. Since the matrix

used is constructed from two square matrices stacked on top

of each other, this means that each row consists of 64 bits.

Thus the resulting output is 32 64-bit blocks. This choice

allows each block to contain up to 15-bit errors before

becoming a burst error.

The Cambridge biometric cryptosystem appears to

successfully fulfill the requirements of a strong and safe

biometric cryptosystem. According to tests performed by

Anderson et al., the system performed with a 99.5% correct

match rate [6]. The algorithm answers security concerns by

storing only modified versions of the key and iris template,

protecting these from being accessed by intruders. In the

event that a user’s access data is compromised, a new

random key can be generated for that user, resetting the

system without loss of functionality. This combination of

accuracy and security makes the Cambridge biometric

cryptosystem a strong choice for software implementation

and subsequent hardware acceleration.

IV. HARDWARE ACCELERATION

Since the development of the computer, people have been

trying to make computation faster. This was initially

achieved through increasing the speed of Central Processing

Units (CPUs) that handle a single stream of instructions. But

recently, CPUs have started to reach a level where their

performance cannot be increased without generating more

heat than can be dissipated in a reasonable amount of time

and space [8]. This has caused the growth of research into

new areas of computational acceleration.

New methods of computation focus on two aspects:

running multiple instruction sequences (known as “threads”)

simultaneously, and decreasing the execution time of certain

instructions. These goals are usually accomplished through

the use of multiple CPU cores running in parallel, a

graphical processing unit (GPU), or custom hardware. Using

multiple CPU cores allows the execution of multiple threads

simultaneously on one CPU. This makes it effective in

scenarios where programs have many sequences of

instructions that are not dependent on one another.

However, the fact that the hardware in the CPU is not being

modified, just made more plentiful, means that instructions

are not executed any faster. This means that programs

without opportunity for parallel computation do not benefit

from a multi-core hardware architecture. Similarly, making

use of a GPU allows significantly increased parallelism by

performing multiple calculations simultaneously. In

addition, GPUs are optimized to perform certain types of

calculations commonly used in graphics processing,

allowing faster execution time for these instructions. The

disadvantage of GPUs is that they are optimized for

particular types of calculations, reducing the benefits they

provide for computation of a more general type.

Alternatively, custom hardware allows particular hardware

units to be defined to handle certain computations [9]. This

means that systems can be custom designed to optimize for

the most common form of computation in the target

application. For custom hardware, the amount of parallelism

in computation is defined by the amount of hardware space

allocated by the designer for additional hardware for each

particular functionality. The disadvantage of this method is

that custom hardware must be designed specifically for the

system it is intended for, as opposed to off-the-shelf CPUs

or GPUs. This takes significant amounts of design time, and

also requires the use of customizable hardware resources,

whether a Field Programmable Gate Array (FPGA) or a

Complex Programmable Logic Device (CPLD). These

hardware devices consist of a variety of hardware resources

that can be configured in varying manners to produce the

custom hardware.

Hardware acceleration also changes energy efficiency in

addition to processing speed. A system using hardware

acceleration has more hardware to power than the same

system without hardware acceleration, causing an increase

in power consumed. However, the energy usage also

depends on the time, which typically decreases during the

process of hardware acceleration [10]. Depending on the

rates of change in time and power consumption, total energy

usage per computation can increase, remain the same, or

decrease after hardware acceleration occurs.

This project makes use of the Intel Single-chip Cloud

Computer (SCC) for the implementation and testing of the

biometric cryptosystem. The Single-chip Cloud Computer

experimental processor [11] is a 48-core concept vehicle

created by Intel Labs as a platform for multi-core software

research. It contains 48 Pentium class IA-32 cores on a 2D

mesh network. The chip provides hardware that allows

communication between the cores, in addition to a shared

memory model that cores can use via off-chip DRAM.

These communication capabilities in combination with the

fact that inter-core communication does not require

changing chips makes this platform ideal for testing multi-

core acceleration. Multi-core acceleration was chosen due to

its increasing availability in the computing environment.

Commercially available computers are transitioning towards

greater numbers of cores, making this acceleration method

something that could be adopted relatively easily. The fact

that the SCC contains 48 cores allows the scalability of the

algorithms to be tested.

V. METHODOLOGY

The process used to generate a multi-core implementation

of the Cambridge Biometric Cryptosystem was broken up

into several steps. The first step of this process was to port

the initial C implementation of the system over to the SCC

hardware setup. Once this step had been completed, it was

necessary to design a core-scalable method for data sharing

and communication between the cores involved in the

process. After the inter-core communication setup had been

decided upon, the algorithms for multi-core computation

were designed and implemented. The final step in the

process was to update the software system so that it could

run under a variety of operating voltages and frequencies.

This process produced a working multi-core implementation

of the Cambridge Biometric Cryptosystem.

The process of performing multi-core acceleration began

by adapting the existing software to run on the Intel SCC.

This involved adapting the software to make use of the Intel

RCCE library, which handles system initialization,

hardware interfacing, and inter-core communication [12].

Porting the initial software implementation to this platform

involved adjusting the code entry and exit sections to handle

the appropriate initialization and conclusion steps. After the

completion of this process, the software could be run on the

SCC. However, each core would perform the exact same

steps, duplicating computations. Adding a check to the

program to ensure that only the core designated as the lead

core would perform computation fixed this issue and

generated a software system compatible with the target

hardware platform.

Once a compatible software project was completed, a

methodology for data transmission and synchronization

needed to be designed. Since the majority of computations

for this system were confined to one core, this core would

have a significantly different software stack than the cores

designated as helper cores. This means that the cores could

not simply run the same function with the same arguments

and perform the computation appropriately. The problem

was solved using a design pattern being referred to as the

controller-helper design pattern.

The controller-helper is a software design pattern

intended to help solve problems involving multiple cores

performing computation on data originating from a single

core. Fig. 2 shows a system where the results are returned to

the core the data originated from, but the pattern could be

extended to return data to a different core. The core dealing

with the input and output data is known as the controller.

The other cores participating in the computation are referred

to as helpers.

The pattern involves three functions, the controller

function, the helper function, and the worker function. At

the start of the function being accelerated, the controller

calls the controller function and the helpers call the helper

function. Both of these functions attempt to allocate a

shared memory pointer for each input and output argument.

This is done using the RCCE_shmalloc function, which

allocates an area of shared memory and returns each core a

pointer to the same memory location [12]. The controller

then places the input data in the shared memory, making it

accessible to all of the cores. Once each core has gained

access to this data, the situation has become similar to a

traditional multi-core problem. From this point, both the

controller and the helpers call the worker function. The

worker function takes pointers to the input arguments to the

original function as its input arguments. At this point the

multi-core algorithm can divide up jobs as it deems fit

without having to worry about securing input data. Each

worker function deposits its output results into the shared

memory pointer created for the output data. Once a worker

function finishes its computations, it returns. After all

computations are complete, the controller function reads the

results of the computation from the shared memory into

local memory. Upon completion of this data transfer, each

core uses an RCCE_shfree command to free the shared

memory [12]. At this stage, the helper functions have

completed their work, and the controller function can pass

the data to its caller. This design pattern can be generalized

to any other multi-core setup by replacing the

RCCE_shmalloc and RCCE_shfree calls with the

appropriate calls for allocating and freeing shared memory,

respectively. A diagram displaying this design pattern is

shown above in Fig. 2.

Once a memory management model had been created,

attention was turned to the individual function to be

profiled. The target functions, mult_polys and

hadamard_decode, were chosen based on the results of

profiling the original software implementation. These

functions took approximately 45 and 20 percent of the total

system runtime, respectively.

The mult_polys function performed polynomial

multiplication across a Galois field. This process is similar

to polynomial multiplication, where individual terms are

multiplied, and then terms of the same order are gathered

and added together. The difference with this function is that

the multiplication operation is replaced with multiplication

across a Galois field, and like term gathering makes use of

the XOR operation rather than addition. This function takes

two arrays of 24 integers as input, and returns one 48 integer

array as an output. The multi-core algorithm for this

function asked each core to solve for a certain set of the

output terms. This involved performing Galois

multiplication for each pair of inputs that resided in different

input arrays with indices that added up to the index of the

Figure 2 Controller-Helper Design Pattern

C
o

n
tr

o
ll

er
C

o
n

tr
o

ll
er

H
elp

er
H

elp
er

Worker

Core 0

Synchronize

RCCE_shmalloc

Initialize Data

Perform
Computation

Read Data

RCCE_shfree

Return data

Core 1

Synchronize

RCCE_shmalloc

Wait for data
transfer

Perform
Computation

Wait for data
transfer

RCCE_shfree

Exit

Core 2

Synchronize

RCCE_shmalloc

Wait for data
transfer

Perform
Computation

Wait for data
transfer

RCCE_shfree

Exit

output being computed. After each computation, the result

was XORed with the total. Thus each core computed some

number of terms of the resultant polynomial. This algorithm

allowed evenly distributed simultaneous computation

without conflicting writes to the shared memory locations.

Since input accesses were read-only, they did not cause data

dependency. This algorithm was completed and tested to

ensure that it performed to specification.

The second function targeted for acceleration was the

hadamard_decode function. This function takes 32 blocks

containing 64 bits each as its input. Each of these blocks is

converted to a seven-bit block as described in Section II

above. Similar to the process used for the mult_polys, this

function was accelerated by assigning each core a group of

output blocks to decode. The core will compare the input

block to each row of the Hadamard matrix, and will put the

index number of the row with the least bitwise differences

in the output location. This function has also been

implemented and tested to ensure its effectiveness.

The software system generated was designed to allow the

user to choose whether they wanted the system to use either

or both of the accelerators programmed. This was completed

by adding additional runtime parameters. These parameters

were checked whenever an accelerated function would be

called. On one input, the accelerated function would be

called, while on another the original function would be

called. This configuration permits the user to control how

they would like to perform their computation and allows for

easier runtime testing.

The final step in the process used to generate a multi-core

system that takes advantage of the functionality of the SCC

was adding voltage and frequency control. These were also

added as additional parameters provided at function

runtime. The RCCE library functions were used to change

the core operating voltage and frequency to the desired

values prior to performing computation and return the

system to its original state upon the completion of the

program.

VI. RESULTS AND DISCUSSION

The methodology used in this project resulted in a

software implementation of the Cambridge Biometric

Cryptosystem that functions on the Intel SCC. This software

system can make use of four possible computational

methods and several different voltage and frequency

settings.

In order to test the effectiveness of the hardware

acceleration, the system was profiled using the default

operating characteristics of 1.1 Volts and 533 megahertz.

Tests were performed on the system making use of no

hardware acceleration, each accelerated function

individually, and using both accelerated functions. Each

configuration was tested using 1, 2, 4, 8, and 16 cores on the

SCC for enrollment, verification, and the two processes

sequentially. Due to issues with the hardware, the system

was unable to be tested using larger numbers of cores. Each

test was performed three times and the average runtime

between the tests was used for the calculation.

The results of the testing when running enrollment and

verification sequentially are shown in Fig. 3. This graph

shows that the best runtime for the system with these

operating characteristics occurs when the non-accelerated

system is run using one core. It is interesting to note that the

runtime of the non-accelerated version increases with the

increased number of cores. This is likely due to the

synchronization constraints that were placed on the system

to handle the multi-core algorithms. Not all of these

synchronization points are disabled when using the non-

accelerated version of the system. The increased number of

cores requires additional coordination messages leading to

increased latency for the system.

It is also important to note that the runtime of the

accelerated versions of the system generally compare poorly

to the non-accelerated versions. In all instances except the

hadamard_decode using 8 or 16 cores the accelerated

function is actually slower than the non-accelerated version

using the same number of cores. The accelerated function in

these particular situations has a better runtime than the non-

accelerated system using the same number of cores but

worse than the single core version. This means that this

acceleration cycle is having a small positive effect on the

runtime, but that the coordination costs overall outweigh

this benefit.

The general results discussed above are confirmed by the

graphs of enrollment and verification run individually in

Fig. 4 and Fig. 5, respectively.

Fig. 4 provides two important takeaways. The first is that

the runtime of the hadamard_decode accelerated enrollment

is roughly the same as the non-accelerated version of

Figure 3 Enrollment and Verification Runtimes at

533 MHz

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0 5 10 15 20

R
u

n
ti

m
e

 (
se

cs
)

Number of Cores

Enrollment and Verification Runtime

No Acceleration Mult_Polys Accelerated

Hadamard_Decode Accelerated Both Accelerated

R

u

nt

i

m

e

enrollment. Since the enrollment process does not call the

hadamard_decode function, this is expected. The second

concept to notice from this graph is the noise. There are

significant spikes in the runtimes recorded that do not

appear to agree with the general trend of the graph. These

are likely due to variations in the system at runtime.

Fig. 5 shows the runtimes of the various systems when

performing verification. This graph provides evidence that

appears to confirm the conclusions drawn previously: the

high levels of noise, the ineffectiveness of the mult_polys

acceleration, and the limited effectiveness of the

hadamard_decode acceleration.

In addition to performing tests at the default operating

characteristics, a small subset of tests were performed at a

higher operating frequency of 875 megahertz. The tests

performed at this frequency were the same as the tests

detailed above, but the algorithm was only run using

enrollment and verification run sequentially. The results of

these tests are shown in Fig. 6. The hardware acceleration

shows more promise in these results. The mult_polys

function still has higher runtimes than the non-accelerated

system. However, the accelerated hadamard_decode

functionality using 8 or 16 cores has the lowest total

runtime, eclipsing the original system run with one core.

The runtime drops from approximately 1.93 milliseconds to

approximately 1.64 milliseconds, a speedup of about 1.18.

The results of testing done on this system indicate that the

Cambridge biometric cryptosystem is likely not

computationally intensive enough to gain significant

benefits from multi-core acceleration. However, even on

this system, one function was found where acceleration

proved effective to a certain degree. Based on the algorithm

design, we believe that this performance improvement will

scale to 32 cores, at which point there become as many

cores as total outputs to be processed.

VII. CONCLUSION

Improving the efficiency of biometric cryptography allows

it to more easily become part of modern life. This is an

important step towards creating a world where data can be

protected efficiently. Biometric cryptosystems provide a

secure method of providing user security without the

drawbacks of passwords. The biometric cryptosystem

developed by Anderson, Daugman, and Hao at the

University of Cambridge provides a strong algorithm for a

biometric cryptosystem that overcomes many of the

challenges of biometric cryptography while providing

security and accuracy.

Combining hardware acceleration with software

optimization allows for an increased improvement in

computation. Hardware acceleration works well for

functions that have long series of computations, especially

when many of the calculations are independent of one

another. This allows the increased parallelism that leads to

better performance improvements. However, there are

situations, such as less computationally intensive and less

parallel functions, where the communication required to use

multiple cores is less than ideal. Knowing how and when to

apply this approach allows system designers to generate

systems with much better efficiency than a naive approach.

Figure 4 Enrollment Runtimes at 533 MHz

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

0 5 10 15 20

R
u

n
ti

m
e

 (
se

cs
)

Number of Cores

Enrollment Runtime

No Acceleration Mult_Polys Accelerated

Hadamard_Decode Accelerated Both Accelerated
Figure 5 Verification Runtimes at 533 MHz

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

0 5 10 15 20

R
u

n
ti

m
e

 (
se

cs
)

Number of Cores

Verification Runtime

No Acceleration Mult_Polys Accelerated

Hadamard_Decode Accelerated Both Accelerated

Figure 6 Enrollment and Verification Runtimes at

875 MHz

0

0.001

0.002

0.003

0.004

0.005

0.006

0 5 10 15 20

R
u

n
ti

m
e

 (
se

cs
)

Number of Cores

Enrollment and Verification Runtime

No Acceleration Mult_Polys Accelerated

Hadamard_Decode Accelerated Both Accelerated

R

u

nt

i

m

e

R

u

nt

i

m

e

Run

time

(sec

s)

In this work, a multi-core software implementation of the

Cambridge biometric cryptosystem has been implemented

and tested. The resulting system has varied performance,

achieving a speedup of 1.18X using one acceleration

method at 875 megahertz. This same acceleration method at

533 MHz, and the other acceleration method result in an

increase in the overall runtime of the system. The result is a

system that can perform user enrollment and verification in

1.64 milliseconds on an Intel Single-chip Cloud Computer.

In addition to providing a concrete implementation of a

multi-core biometric cryptosystem, this project provides a

process that can be used as a guideline for future

applications of hardware acceleration to biometric

cryptosystems. Making use of the controller-helper design

pattern generated will allow for the development of systems

that take significantly less runtime and possibly less energy

per computation, significantly increasing their useful

potential. This could also be compared to the results of

porting this algorithm onto GPU and FPGA platforms in

order to assess the potential of these varying platforms.

ACKNOWLEDGMENT

The authors would like to thank Gildo Torres at Clarkson

University. The knowledge, helpfulness, and energy that

Mr. Torres displayed in support of this project was beyond

the call of duty, and integral to the success of the resulting

system. This work is supported by the National Science

Foundation under Grant Numbers IIP-1332046, IIP-

1068055, ECCS-1301953. Any opinions, findings, and

conclusions or recommendations expressed in this material

are those of the authors and do not necessarily reflect the

views of the National Science Foundation.

REFERENCES

[1] Hey, T., Tansley, S., Tolle, K., [The fourth paradigm, data-intensive
scientific discovery], Microsoft Research, Redmond, WA.

[2] Jain, A.; Ross, A., Uludag, U., “Biometric template security:
challenges and solutions,” European Signal Processing Conference,
(2005).

[3] Uludag, U.; Pankanti, S.; Prabhakar, S.; Jain, A.K., “Biometric
cryptosystems: issues and challenges,” Proceedings of the IEEE,
vol.92 (6), pp.948-960 (2004).

[4] Ross, A.; Othman, A., “Visual cryptography for biometric privacy,”
IEEE Transactions on Information Forensics and Security, vol. 6 (1),
pp. 70-81 (2011).

[5] Rathgeb, C., Uhl, A., “A survey on biometric cryptosystems and
cancelable biometrics,” Journal on Information Security, vol. 2011,
pp. 3 (2011).

[6] Anderson, R., Daugman, J, Hao, F., “Combining cryptography with
biometrics effectively,” Technical Report 640, University of
Cambridge, 2005.

[7] Clark, C., “Reed-Solomon error correction,” British Broadcasting
Company Research and Development White Paper, WHP 031, July
2012.

[8] Liu, C., Duarte, R., Granados, O., Tang, J., Liu, S., Andrian, J.,
“Critical path based hardware acceleration for cryptosystems,”
International Journal of Advancements in Computing Technology,
vol. 4 (1), pp.438-452 (2012).

[9] Lau D.; Blackburn J., Jenkins, C., “Using c-to-hardware acceleration
in FPGAs for waveform baseband processing,” Software Defined
Radio Technical Conf. Product Exposition, (2006).

[10] Liu, C., Granados, O., Duarte, R., Andrian, J., “Energy efficient
architecture using hardware acceleration for software defined radio
components,” Journal of Information Processing Systems, vol. 8 (1),
pp. 133-144 (2012).

[11] Mattson, T., van der Wijngaart, R., Riepen, M., Lehnig, T., Brett, P.,
Haas, W., Kennedy, P., Howard, J., Vangal, S., Borkar, N., Ruhl, G.,
and Dighe, S., “The 48-core scc processor: the programmer’s view,”
in High Performance Computing, Networking, Storage and Analysis
(SC), 2010 International Conference for, Nov 2010, pp. 1–11.

[12] Mattson, T., van der Wijngaart, R., “RCCE: a small library for many-
core communication,” Intel Labs, Jan 2011.

