
Iris Matching Algorithm on Many-Core Platforms

Chen Liu, Benjamin Petroski, Guthrie Cordone, Gildo Torres, Stephanie Schuckers
Department of Electrical and Computer Engineering

Clarkson University
Potsdam, New York 13699

Email: {cliu, petrosbg, cordonga, torresg, sschucke}@clarkson.edu

Abstract—Biometrics matching has been widely adopted as a
secure way for identification and verification purpose. However,
the computation demand associated with running this algorithm
on a big data set poses great challenge on the underlying
hardware platform. Even though modern processors are equipped
with more cores and memory capacity, the software algorithm still
requires careful design in order to utilize the hardware resource
effectively. This research addresses this issue by investigating
the biometric application on many-core platforms. Biometrics
algorithm, specifically Daugman’s iris matching algorithm, is used
to benchmark and compare the performance of several many-
core platforms. The results show the ability of the iris matching
application to efficiently scale and fully exploit the capabilities
offered by many-core platforms and provide insights in how
to migrate the biometrics computation onto high-performance
many-core architectures.

Keywords—Iris matching, Daugman’s algorithm, GPU, Xeon
Phi, Single-Chip Cloud Computer, Many-core

I. INTRODUCTION

The utilization of biometrics in everyday life continues
to increase. The latest example is Touch ID has become an
integrated feature for fingerprint recognition in iPhone 5s,
which also enables Apply Pay in iPhone 6. Associated with
this, the amount of biometric data collected and examined has
dramatically expanded. One major challenge is the operational
capabilities of managing and analyzing large-scale biometric
information in an effective and efficient manner [1]. In 2012,
Sussman et al. suggested the foundation for the next-generation
biometric systems being “expandable, scalable and flexible to
accommodate new technologies and biometric standards, as
well as interoperable with existing systems” [2]. Therefore, it is
of great interest and importance to develop more efficient and
effective large-scale biometric identity management systems.

The biometric application we will utilize in this study is the
iris matching algorithm, one stage of Daugman’s iris recog-
nition algorithm [3]. This algorithm compares two samples
represented by two 2D bit matrices by performing Hamming
Distance calculation. The result in the form of matching score
shows the similarity of the compared samples. Having real-
time access and processing requirements, the iris recognition
algorithm can be classified as a computation-intensive appli-
cation. If purely implemented into software and executed on
a general-purpose processor, the performance will be limited.
In addition, the program structure of iris matching algorithms
shows its code can be highly parallelized. However, the number
of cores on a general-purpose processor is normally small and
can achieve only a limited degree of parallel execution.

With the consistent advancement in VLSI technology,

researchers can implement software algorithms into hardware
which has strong computation capability and can process large
amount of data in parallel. This approach can meet the real-
time performance requirement of iris matching algorithm. We
believe the future solution architectures should consider emerg-
ing many-core processors based on big data processing tech-
niques. While operational systems have clearly demonstrated
the capacity for large data processing, few related approaches
have been proposed. Study of the tradeoffs in system design
can be useful for future developers of large scale systems,
particularly, when considering emerging technologies. The
contribution of this work is to serve as a benchmark study on
how iris recognition algorithm adapts to many-core platforms
and how to explore the parallelism inside the algorithm on
different platforms, as we anticipate that many-core platforms
will be employed by the next-generation biometric systems.

The rest of the paper is organized as follows: in Section II
we introduce the iris matching algorithm itself. In Section III
we briefly go over some related work. Then in Section IV we
discuss the iris matching on the Single-Chip Cloud Computer
platform. Section V we presents the study of iris matching
algorithm on Intel Xeon Phi coprocessor platform. Section
VI we discuss the iris matching on the graphic processing
unit platform. In Section VII we present the performance
comparison across all the platforms. Finally in Section VIII
conclusions and future work are described.

II. IRIS MATCHING ALGORITHM

Daugman’s iris matching algorithm [3] consists of a four-
stage process that begins after an iris image has been captured.
This process segments, normalizes, and then performs feature
encoding to prepare the template for matching. The reason
we choose Daugman’s iris recognition algorithm is because
the widely acceptance of Daugman’s algorithm in the research
community for iris recognition. And the availability of the
implementation in Matlab from our previous research also
aided this choice since we need to translate the previous
implementation from Matlab to C to MPI/OpenMP/CUDA to
conduct this research.

This work only focuses on the last stage of the iris recogni-
tion algorithm, which is the matching stage. If the application
only needs to compare one iris template, then the matching
stage may not be the most computationally intensive. However,
when the application needs to cross-comparing hundreds of iris
templates as we did in this study, the matching stage apparently
becoming the most computationally intensive stage.

The iris matching algorithm compares two samples based
on the matrix Hamming Distance calculation. The calculated



matching score represents the number of different bits between
the samples. The lower the score is, the more similar the
samples are. In this project we refer to the normalized score,
the value of which varies between 0 and 1.

The size of the iris template is that each iris template
consists of two matrices (template and mask) of the same size,
20 rows by 480 columns, and each entry is a single bit, so the
size of matrix is 9600 bits.

The first matrix is the template representing the iris pattern.
The second matrix is the mask matrix representing aspects
that should not be considered in the matching, such as eyelid,
eyelash, and noise (e.g., spectacular reflections) which may
mask parts of the iris. The template matrix is computed by the
following steps. First, iris region is segmented from a near-IR
image of an eye and transformed from a circular image into a
rectangular image. Next, Gabor filtering is used to extract the
most discriminating information from iris pattern as a matrix.

The main body of the algorithm is a 17-round for-loop
structure with the index shift from −8 to 8. Suppose the
matrices of the first sample are named as template1 and mask1,
and the matrices of the second sample are named as template2
and mask2, respectively. In each round, first, template1 and
mask1 are left-rotated if shift is less than 0 or right-rotated
if shift is larger than 0 for 2 × abs(shift) columns to form
two intermediate matrices, named template1s and mask1s.
Next, we XOR template1s with template2 into temp and OR
mask1s with mask2 into mask. Finally, the matrix temp will
be ANDed with the matrix mask to form the matrix result. So
the Hamming Distance for this round is calculated by dividing
the number of 1s of the matrix result by the total number of
the 2D matrix entries (which is 20×480) minus the number of
1s in matrix temp. The minimum-valued Hamming Distance
of all 17 iterations is the calculated Hamming Distance, which
is returned as the matching score of the two samples, showing
their similarity.

III. RELATED WORK

There are previous works that implemented the iris recog-
nition algorithm on a single hardware platform, such as GPU,
FPGA, DSP, and many-core processor.

There are many works for Field Programmable Gate Array
(FPGA) prototyping of iris recognition. The straight forward
way is to implement the time-consuming parts of the iris
recognition algorithm into hardware for accelerating its ex-
ecution. Rakvic et al. [4] did code parallelization for the
iris segmentation, template creation, and template matching
and implemented it on FPGA platform. They compared the
performance of FPGA with that of the state-of-the-art CPU
and showed speedups of 9.6, 324, and 19 folds, respectively, in
the three iris matching parts. This was achieved with moderate
hardware usage.

Profiling work helps to identify the time-consuming part of
the iris recognition. Raida et al. [5] did computation workload
profiling and identified Gabor filter, Gaussian masque, Canny,
and Hough transform as the most time-consuming components
of the iris recognition algorithm. These parts were then imple-
mented directly into hardware IP.

Neural network mechanisms can be adopted in FPGA im-
plementation to enhance the iris recognition accuracy. Mohd-
Yasin et al. [6] employed neural network concepts to imple-
ment iris recognition on Altera FPGA board to improve the
efficiency and accuracy of iris recognition.

Miyazawa et al. [7] applied the phase-based image match-
ing based on technique using phase components in 2D DFT
to two parts of the iris recognition algorithm: image alignment
and matching score calculation. Then, they implemented the
modified iris recognition algorithm into DSP as the prototype,
while our work focus on many-core architecture. Their pro-
posed implementation has low error rate and meets real-time
requirement with low hardware cost.

Prior research has been performed on Graphical Processing
Unit (GPU) but with different iris template properties, methods
for template-mask data transfer from host to device, kernel
launch characteristics, and bit-shifting while calculating ham-
ming distances [8], [9].

Chang et al. [10] performed detailed profiling and binary
instrumentation on the iris matching algorithm. But they fo-
cused on profiling the iris recognition algorithm and getting
the generic workload characteristics for processor-in-memory
(PIM) architecture, not focusing on many-core implementation.

Torres et al. [11] performed detailed analysis of iris match-
ing algorithm, but only on a single hardware platform, Single-
chip Cloud Computer (SCC), while our work implemented on
multiple platforms and performed crossed-platform compari-
son, which complements the previous work on this subject.

Different from previous work, in our research, we employ
three innovative many-core architecture platforms (GPU, SCC
and Xeon Phi) with abundant hardware resources for parallel
computation. The iris samples to be compared are distributed to
many processing elements and processed in a parallel fashion.
In addition, we directly observe and compare the performance
differences across these many-core platforms, which provide
more thorough insights than the previous works. To the best
of our knowledge, our work is also the first to implement the
iris matching algorithm on Xeon Phi coprocessor.

IV. IRIS MATCHING ON SINGLE-CHIP CLOUD COMPUTER

In the first experiment, we use Intel’s Single-chip Cloud
Computer (SCC) as the many-core platform for executing
the iris matching algorithm. The Single-chip Cloud Computer
experimental processor [12] is a 48-core concept vehicle
created by Intel Labs as a platform for many-core software
research. It consists of 48 Pentium class IA-32 cores put on
a 6 × 4 2D-mesh network of tiles, with each tile housing 2
cores. Containing four memory controllers, the SCC divides
the 6× 4 2D-mesh of tiles into four memory domains, where
each controller serves to the cores inside its own domain.

SCC integrates advanced power management technologies.
Containing a configurable voltage regulator controller (VRC),
the programmer has the ability of independently changing
the voltage across the entire chip [12]. In addition to the
physical platform, SCC also comes with the RCCE library.
It is a many-core communication environment, very similar
to Message Passing Interface (MPI), specially developed for
the SCC. Please note SCC is the predecessor of Intel’s Many



Integrated Core (MIC) architecture, which we will employ in
next section.

A. Experimental methodology

Although iris recognition is typically a computation per-
formed in real-time, a data set of iris templates, consisting
of left and right irises, was prepared for this experiment to
reveal speedup on the computationally intensive matching step.
All the iris data we use throughout this study are from the
Q-FIRE database [13]. The results presented in this section
correspond to executing the iris matching application over an
iris data set consisted of 573 templates and 573 masks, giving
573 unique iris samples. Each sample is compared against the
entire dataset following an N vs N approach, resulting in a
total of 163, 878 comparisons. To compile the code, we use icc
version 8.1 and RCCE version 1.0.13.x, with no optimization
flag.

Knowing that the iris matching application is an embarrass-
ingly parallel algorithm, where each comparison can be com-
pleted independently and in parallel, we ran two experiments
with different configurations (Frequency/Voltage settings) on
the SCC. For both of these experiments we completed the
comparison of all the iris samples using a varying number of
cores from 1 to 48, in order to show how such application
would benefit from an increasing usage of hardware resources
(cores).

For the first experiment we configured the cores on the
SCC with voltage and frequency of [533MHz - 0.8V] in what
we called the “Low-Gear” setting. In the second experiment,
which we refer as “High-Gear” setting, we configured the SCC
cores with voltage and frequency of [800MHz - 1.2V].

In order to avoid a bottleneck when several cores try
accessing memory for loading their data files through the same
memory controller at the same time, we evenly distributed
the cores involved on each run from 1 to 48 cores amongst
the four memory controllers. Experimental results showed no
performance degradation for different core allocation policies,
meaning that our specific application does not saturate the
bandwidth offered by the SCC memory controllers.

B. Experimental results

Figure 1 presents the performance results obtained from
running both the High-Gear and Low-Gear experiments on
the SCC platform. It shows how effectively the iris matching
algorithm scales on the SCC, resulting in an almost linear
speedup as the number of cores increases from 1 to 48. Both
cases appear to have very similar behaviors when varying the
number of cores, having some fluctuation when reaching the
maximum number of SCC cores. The setting running at higher
frequency of 800MHz shows a better performance for all cases.
The fastest computation time was 290 seconds with 46 cores.

V. IRIS MATCHING ON XEON PHI COPROCESSOR

In this experiment, we use Intel Xeon Phi coprocessor as
the many-core platform to execute the iris matching algorithm.
The Intel Xeon Phi coprocessor is Intel’s latest implementation
of its Many Integrated Core (MIC) architecture. The Xeon Phi
coprocessor we used in this study is Model 5110P running

Fig. 1. Performance on SCC

at 1.053GHz. This model contains 60 cores that each has
four hardware threads, giving a total of 240 threads across
a single device [14]. We use the high level of hardware
parallelism within the Xeon Phi coprocessor to exploit the
inherent parallelism presented in the iris matching algorithm.
Here, we port the iris matching algorithm onto the Xeon Phi
coprocessor and explore the speedup of the computation as we
increase the number of parallel threads.

A. Programming model

We use the offload programming model to port the iris
matching algorithm onto the Xeon Phi coprocessor. With
the offload programming model, code is executed from a
traditional ’host’ processor which ’offloads’ work to the co-
processor if specified. The host processor we use for our
offloading model is an Intel Xeon E5-2670 processor running
at 2.60 GHz. The region of the code for the Xeon to offload
to the Xeon Phi is specified via specific compiler directives.
Any code within the offload region is sent to the coprocessor
to execute. The benefit of the offload model is that the Xeon
processor can perform the serial computations while the Xeon
Phi coprocessor can perform the parallel computations, which
capitalizes on the strengths of each processor [15].

For our experiment, we read and sort the iris data with the
Xeon host and offload the sorted data to the Xeon Phi. Using
the sorted data, the Xeon Phi performs comparisons in parallel
to determine the hamming distance between every iris sample
in the data set. The individual hamming distances for each iris-
to-iris comparison are stored in a vector on Xeon Phi, which
is sent back to the Xeon host once all of the comparisons
are completed. The host then compares each of the individual
hamming distances to determine which one is the smallest,
effectively identifying the two irises within the data set that
are closest to being identical.

B. Parallelization

To fully exploit the power of the Xeon Phi, we need to
reach a level of parallelism within our code that can equal the
parallel capabilities of the platform. To parallelize our code,
we use the OpenMP API for C. OpenMP offers a simple
way to create and run a large amount of parallel threads
within our code. To use OpenMP, we specify a region of the
code to parallelize with the compiler directive “#pragma omp



parallel”, which spawns a number of threads determined by the
environment variable “OMP NUM THREADS”. Each thread
spawned will execute the code presented within the parallel
region simultaneously. To divide the work between threads we
specify private variables for each thread using the ‘private’
clause and divide the work within a ‘for’ loop using the
“#pragma omp parallel for” compiler directive. The ‘parallel
for’ compiler directive divides the work load of a ‘for’ loop
between all of the parallel threads [15]. To compile the code,
we use icc version 14.0.2 and OpenMP version 4.0, with no
optimization flag.

For our experiment, we initialize the parallel region within
our code immediately after the offload region, causing the
parallel threads to spawn once the code is offloaded to the
Xeon Phi. Each iris-to-iris comparison is handled by a single
thread, meaning that a number of comparisons are performed
simultaneously on the coprocessor depending on how many
threads are spawned. The scheduling of the comparisons
between the threads is handled by a ‘parallel for’ compiler
directive. Each thread performs the iris matching algorithm and
finds a hamming distance value for each unique comparison.
The parallel region ends once every possible comparison
between the irises in the data set is performed. The lowest
hamming distance value found among all the comparisons
within each thread is stored in a public vector at a location
unique to the thread number. This vector is then sent back to
the Xeon host for a final comparison and determination of the
two iris templates with the lowest hamming distance between
them.

C. Experiment results

The workload is the same as in Section IV, with 573 iris
samples and a total of 163,878 comparisons. For each result,
we ran the code with a specific thread number three times and
recorded the average time taken to perform the computation.
We varied the number of threads of the computation from
one thread, using a base 2 increase (1, 2, 4, 8, etc.), until
we reached 1024 threads. We also recorded data with thread
numbers that were of interest due to the specific hardware
features of the Xeon Phi coprocessor: such as 60, 120, 180, and
240 threads. These numbers were of interest because they are
multiples of the number of logical cores on the platform, with
the maximum simultaneous thread capability of the Xeon Phi
being 240 hardware threads. We expected the execution time
to decrease as the number of threads is increased up to 240,
because until that point all execution threads can be mapped 1-
to-1 to the coprocessor hardware threads. Beyond 240 threads
we expected the execution time to increase with the number
of threads due to the bottleneck of 240 simultaneous threads
on the Xeon Phi, where eventually more than one execution
thread would be mapped to some or all of the existing hardware
threads.

The results of our experiment are shown in Figure 2, where
we see that the platform behaved as hypothesized: execution
time decreased as the threads increased up to 240 threads,
and increased beyond 240 threads. The fastest computation
time was 252 seconds with 240 threads (maximum parallel
capability of the Xeon Phi). The slowest computation time
was 3843 seconds with one thread (serially). These results
show that there was a 15X speedup of the execution time from

Fig. 2. Performance on Xeon Phi

the computation with one thread to the computation with 240
threads.

VI. IRIS MATCHING ON GRAPHIC PROCESSING UNIT

The use of Graphic Processing Units (GPUs) to perform
general purpose processing has become much more prevalent
in the recent past [16]. GPUs are designed to perform computa-
tions in parallel using many compute cores. Each core contains
a floating point unit and an integer unit for performing generic
computations. The GPU we used in this study is an Nvida
GeForce GTS 450 (192 cores with 783 MHz Graphics Clock
and 1.566 GHz Processor Clock). The CPU used in association
with the GPU is Intel Core i7-2600 running 2.8GHz.

A. Experimental methodology

Through using Nvidia’s CUDA framework, algorithms may
be parallelized by writing a dedicated kernel to be launched on
the GPU. CUDA is useful for quickly accelerating computa-
tions, especially for computations that are inherently parallel.
Many computations involved with biometrics share this char-
acteristic due to the need to perform comparisons between
data sets. The comparison of iris samples using Daugman’s
iris matching algorithm to calculate a hamming distance is one
such example and will be used to understand and compare the
performance speedup when using CUDA. To compile the code,
we use gcc version 4.6.3 and nvcc release 4.0, V0.2.1221, with
no optimization flag.

In order to launch a kernel that is able to reference specific
templates and masks, the template files and the mask files were
each converted to a 1-D array and copied into global memory
on the GPU. The characteristics of the kernel, specifically the
number of thread blocks and the number of threads were then
used to locate a specific template or mask within the 1-D
global memory array to be used in each comparison. Once
the templates and masks had been stored in local memory,
the kernel performed Daugman’s iris matching algorithm.
However, due to the limitation on our GPU implementation,
mainly due to the size of the scratchpad memory of the GPU,
we were not able to load all 573 iris samples to the GPU



to perform the comparison. The results we presented in this
section are from up to 128 iris samples with 8128 comparisons.

To identify the fastest speed up and to understand the
process by which kernels are launched on the GPU when
performing Daugman’s iris matching algorithm, the character-
istics of the kernels were varied across several thread sizes
and template counts. The execution time was the primary
basis of comparison to verify an improved performance as the
techniques for customizing GPU computations beyond kernel
characteristics are limited. Despite this, varying the kernel
characteristics and measuring the execution time revealed a
significant difference between CPU and GPU runtime, as well
as between varying CUDA kernel thread-level granularities.

B. Experimental results

After running several kernels with varying threads on mul-
tiple data sets, the execution time and hamming distance results
were compared to a serialized CPU version of Daugman’s
iris matching algorithm. The hamming distance was used to
confirm that the GPU computation was returning the same
result as the CPU. Once this was confirmed, the execution
time for each computation was compared, as shown in Figure
3.

Fig. 3. Performance on GPU

Several conclusions were made from this comparison. The
first was that there is clearly an overhead when using GPUs for
computation relative to CPUs, which is seen when performing
the computation on small biometric data sets. The execution
time of the iris matching is slightly faster when performed
serially on the CPU-only side for biometric data sets of 32
or fewer template files (16 or fewer samples as each sample
contains one template file and one mask file). But for larger
numbers of templates, namely 64 or more (32 samples or
more), the GPU begins to significantly outperform the CPU.
Additionally, there appeared to be a decrease in runtime as
the number of threads in the kernel on the GPU side doubled.
Despite this trend, the largest speedup occurred with a kernel
thread size of 64. At 256 template files (128 samples), we
achieved a speedup of 15X compared with that of the CPU
only case. The execution time of kernels with 128 and 256
threads was very close to the results from 64 threads hence the
results are omitted here. The execution results reveal that the

exponential growth of the iris matching runtime is much more
significant on CPUs than on GPUs. Furthermore, by varying
the thread-level granularity of kernels launched on the GPU,
additional speedup may be achieved.

VII. PERFORMANCE COMPARISON ACROSS PLATFORMS

In this section we present a head-to-head comparison of
the performance obtained from running the same workload
on all four different platforms (CPU, SCC, Xeon Phi, and
GPU). With each platform running the same workload, this
experiment consists of comparing 128 samples, where each
sample contains a template and a mask. It follows an all-to-all
comparison pattern, completing a total of 8128 comparisons.
Please note this workload is different from the workload in
the SCC and Xeon Phi sections, which consists of 573 iris
templates with a total of 163,878 comparisons. This mainly due
to the limitation of our GPU implementation, as we mentioned
in the previous section.

Each platform was configured as follows:

For the CPU-only case, we use Intel Core i7-2600. Even
though it has 4 cores and supports up to 8 threads, we only
ran the single-thread case on CPU.

For the case of the SCC, it was configured using 46
cores running at 800 MHz and 1.2 Volts. Basically it is the
fastest configuration for the iris matching algorithm on SCC,
following the results from Section IV. SCC follows a message
passing programming model, with each core comminutes with
another core through messages. It is different from Xeon Phi
and GPU, which are both thread-based.

Following the results from Section V, the Xeon Phi plat-
form was configured to use 240 threads (one-to-one software
to hardware thread mapping) for the iris matching algorithm,
when it offered the best performance.

Following the results from Section VI, the NVIDIA’s GPU-
based architecture is configured using 64 threads. when the
best results were obtained. Basically the total 8128 compar-
isons are divided into 127 thread blocks, with each thread block
configured to 64 threads.

Clearly GPU achieves the best performance overall, as
shown in Figure 4. The performance results show the GPU
architecture being 12.2 times faster than CPU, 3.2 times faster
than SCC, and 2.8 times faster than the Xeon Phi platform,
respectively; while the performance of Xeon Phi is 13% faster
than that of SCC.

All the execution time we presented in this study includes
the entire execution time, from loading the files to identifying
the matching. When reporting the performance of a parallel
system, one can exclude the time to reading/writing files,
putting it away as I/O time while only report the pure execution
time; or one can report the entire time as a whole, e.g.,
including the file I/O. We took the latter approach. And we
did not employ any special memory optimization techniques
such as cache striping, etc.

VIII. CONCLUSION

Iris matching has been widely adopted as an effective bio-
metrics for secure identification and verification. This research



Fig. 4. Cross-platform performance results

focused on studying the performance aspect of iris matching
on several different many-core platforms. We modified and
ported this application onto Intel’s Single-chip Cloud Com-
puter, Intel’s Xeon Phi coprocessor, and Nvidia’s Graphic
Processing Unit. The high core count of the hardware platforms
and the internal parallelism existed in the software application
allowed us to achieve solid performance enhancements across
the platforms. The results as a whole showed the ability of the
iris matching application to efficiently scale and fully exploit
the capabilities offered by future many-core platforms.

As for future work, we will apply our methodology to other
stages of the iris recognition algorithm. In addition, we are also
planning to incorporate other biometric applications, such as
fingerprint and facial recognition to further take advantage of
the computing capability that many-core platform can provide.

ACKNOWLEDGMENT

This work is supported by the National Science Founda-
tion under Grant Numbers IIP-1332046, IIP-1068055, ECCS-
1301953. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the authors
and do not necessarily reflect the views of the National Science
Foundation.

REFERENCES

[1] “The national biometrics challenge,” September 2011, National Science
and Technology Council, Subcommittee on Biometrics and Identity
Management.

[2] A. Sussman, “Biometrics and cloud computing,” in The Biometrics
Consortium Conference, September 2012.

[3] J. Daugman, “High confidence visual recognition of persons by a test
of statistical independence,” Pattern Analysis and Machine Intelligence,
IEEE Transactions on, vol. 15, no. 11, pp. 1148–1161, Nov 1993.

[4] R. Rakvic, B. Ulis, R. Broussard, R. Ives, and N. Steiner, “Parallelizing
iris recognition,” Information Forensics and Security, IEEE Transactions
on, vol. 4, no. 4, pp. 812–823, Dec 2009.

[5] H. Raida and M. A. YassineAoudni, “Hw\ sw implementation of iris
recognition algorithm in the fpga,” International Journal of Engineering
Science, vol. 4, 2012.

[6] F. Mohd-Yasin, A. Tan, and M. Reaz, “The fpga prototyping of iris
recognition for biometric identification employing neural network,” in
Microelectronics, 2004. ICM 2004 Proceedings. The 16th International
Conference on, Dec 2004, pp. 458–461.

[7] K. Miyazawa, K. Ito, T. Aoki, K. Kobayashi, and H. Nakajima, “A
phase-based iris recognition algorithm,” in Proceedings of the 2006
International Conference on Advances in Biometrics, ser. ICB’06.
Berlin, Heidelberg: Springer-Verlag, 2006, pp. 356–365. [Online].
Available: http://dx.doi.org/10.1007/11608288 48

[8] F. Sakr, M. Taher, and A. Wahba, “High performance iris recognition
system on gpu,” in Computer Engineering Systems (ICCES), 2011
International Conference on, Nov 2011, pp. 237–242.

[9] N. Vandal and M. Savvides, “Cuda accelerated iris template matching
on graphics processing units (gpus),” in Biometrics: Theory Applications
and Systems (BTAS), 2010 Fourth IEEE International Conference on,
Sept 2010, pp. 1–7.

[10] J.-T. Chang, F. Hua, G. Torres, C. Liu, and S. Schuckers, “Workload
characteristics for iris matching algorithm: A case study,” in Technolo-
gies for Homeland Security (HST), 2013 IEEE International Conference
on, Nov 2013, pp. 633–638.

[11] G. Torres, J.-T. Chang, F. Hua, C. Liu, and S. Schuckers, “A power-
aware study of iris matching algorithms on intel’s scc,” in Parallel
Processing (ICPP), 2013 42nd International Conference on, Oct 2013,
pp. 1028–1037.

[12] T. Mattson, R. van der Wijngaart, M. Riepen, T. Lehnig, P. Brett,
W. Haas, P. Kennedy, J. Howard, S. Vangal, N. Borkar, G. Ruhl, and
S. Dighe, “The 48-core scc processor: the programmer’s view,” in High
Performance Computing, Networking, Storage and Analysis (SC), 2010
International Conference for, Nov 2010, pp. 1–11.

[13] “Biometric dataset collections.” [Online]. Available:
http://www.citer.wvu.edu/biometric dataset collections

[14] J. Reinders, “An overview of programming for intel xeon processors
and intel xeon phi coprocessors,” 2012, intel Developer Zone.

[15] J. Jeffers and J. Reinders, Intel Xeon Phi High-Performance Program-
ming. Morgan Kaufmann, 2013.

[16] J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, and J. Phillips,
“Gpu computing,” Proceedings of the IEEE, vol. 96, no. 5, pp. 879–899,
May 2008.


