
IAS/PCMI Summer Session 2000
Clay Mathematics Undergraduate Program
Basic Course on Computational Complexity

Lecture 5: The Landscape of Complexity Classes

David Mix Barrington and Alexis Maciel
July 21, 2000

1. Our Current Knowledge

In this first week of lectures, we have defined a number of complexity classes. In this
lecture we try to relate them to each other.

In the world of machines, we have that

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE = NPSPACE ⊆ EXP.

The inclusions L ⊆ NL and P ⊆ NP are trivial since deterministic machines can
be viewed as special kinds of nondeterministic machines. The equality PSPACE =
NPSPACE is a consequence of Savitch’s Theorem and the inclusion NL ⊆ P can also
be obtained by that same idea of reducing to graph reachability. The fact that EXP
contains PSPACE, and therefore NPSPACE, was pointed out just before the proof of
Savitch’s Theorem. In the lecture on nondeterminism, we showed that NP ⊆ EXP.
The inclusion NP ⊆ PSPACE can be established by examining the space requirements
of that simulation.

In the world of circuits, we have

NC0 ⊆ AC0 ⊆ NC1 ⊆ AC1 ⊆ PSIZE.

The bounded-depth classes can be generalized as follows. Define ACi to be the class
of languages decidable by circuit families of depth logi n and polynomial size, with no
restriction on the fan-in. NCi is defined as the fan-in two version of ACi. In addition,
let AC =

⋃
i≥0 ACi and NC =

⋃
i≥0 NCi. It should be clear that AC and NC are

actually equal so we get the following:

NC0 ⊆ AC0 ⊆ NC1 ⊆ AC1 ⊆ · · · ⊆ NC = AC ⊆ PSIZE.

1



What we want to do next is relate to each other the machine and the circuit
classes. One key point will be that of the uniformity of the circuits. Without any
uniformity condition, that is, by simply defining a circuit family without providing
any means for actually constructing the circuits, it is possible to define simple circuit
families that decide languages that are not decidable by any machine whatsoever. To
avoid this situation, we will require that circuits be uniform, in the sense that they
can be somehow constructed.

We define uniformity more precisely by saying that a circuit family is uniform if
there are machines that can answer the following questions:

1. Given an input length n and a gate number i, what is the function computed
by gate i?

2. Given an input length n, a gate number i and a number k, what is the number
of the kth input of gate i?

The uniformity of the circuit family can be further qualified by the complexity of these
questions. For example, we talk of polynomial-time uniformity if these questions can
be answered in polynomial time. Note that time here is measured with respect to
the input length n of the circuit, not with respect to the length of the input of the
questions themselves. This detail can be enforced by requiring that the input to the
questions be followed by a string of n 1’s.

The advanced course will deal with the very restrictive notion of logarithmic-time
uniformity. In this lecture and the rest of the basic course, the more generous notion
of logarithmic-space uniformity will be perfectly adequate.

As an example of a uniform circuit, consider the AC1 circuit for NL that was
presented in the previous lecture. The circuit is in two parts or stages. The first
stage computes the configuration graph of the machine for the given input while the
second stage computes the appropriate power of the adjacency matrix of that graph.
It should be clear that the second stage is uniform. The key to seeing the details
of this clearly is to carefully number the gates of the circuit so that their names
make it easy to identify their role in the circuit. The first stage of the circuit is also
uniform but now the machines answering the above questions will need to examine
the input and consider the program of the machine we are simulating. This is all fine
since knowledge of that program can be included in the program of the “constructor”
machines.

2



2. Simulation of Circuits by Machines

In this section, we show that small-depth circuits can be simulated by space-efficient
machines and that small-size circuits can be simulated by time-efficient machines.

Theorem 1 Logspace-uniform NC1 is contained in L.

Proof The idea is to simply evaluate the circuit using a depth-first search, which
can be defined inductively as follows: visit the output gate of the circuit, visit the
gates of the left subcircuit, visit the gates of the right subcircuit. At any moment,
we store the number of the current gate, the path that led us there (as a sequence of
left’s and right’s) and any partial values that were already computed. For example,
we could have L, R (0), R (1), L, L, 347. This would mean that we are visiting gate
347 and we got there by going left, right, right, left and left. The 0 after the first R
indicates that the left input of the second gate on the path evaluated to 0.

When we are done visiting a gate (and computed its value), we return to the
previous gate on the path. Note that we can recompute the number of that gate by
following the path from the beginning. The space requirements of this algorithm are
therefore determined by the maximum length of the path, which is equal to the depth
of the circuit. The uniformity of the circuit is used when traveling through the circuit
and evaluating its gates. ut

Theorem 2 P-uniform PSIZE is contained in P.

Proof Here we simply use the polynomial-time circuit evaluation algorithm presented
in the second lecture. First compute a representation of the circuit, using the fact
that it is uniform, and then evaluate it on the given input. ut

Now that we have these two simulations, we can combine our machine and circuit
classes as follows. Here all circuit classes below L must be logspace uniform while
those between NL and P can either be all logspace uniform or all P uniform.

AC0 ⊆ NC1 ⊆ L ⊆ NL ⊆ AC1 ⊆ · · · ⊆ NC ⊆ PSIZE ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXP.

3. Circuit Definition of P

In this section, we establish the converse of the previous simulation: uniform
polynomial-size circuits can simulate polynomial-time machines. In fact, we will

3



obtain logspace-uniform circuits. This implies that the class P can be equivalently
defined in terms of polynomial-time machines or uniform polynomial-size circuits.

Theorem 3 P = P-uniform PSIZE = logspace-uniform PSIZE.

Proof We have already shown that P-uniform PSIZE circuits can be evaluated in P.
Logspace-uniform PSIZE is contained in P-uniform PSIZE because L ⊆ P. Therefore,
we only need to show that P is contained in logspace-uniform PSIZE.

The computation of a polynomial-time machine M on an input x of length n
can be represented by a table. Each row of this table corresponds to a step of the
computation and describes the configuration of M after that step. The first row is
the initial configuration of M on x. Each row contains information about the current
state of M , the location of its heads and the contents of its memory.

To each piece of information in each row, we associate a circuit. That circuit is
responsible for computing that particular piece of information. The input to these
circuits is the information from the previous row. For example, the circuit responsible
for computing the contents of a particular memory location will examine the previous
row for the precise conditions needed for that memory location to take on the various
possible values. In a sense, these circuits encode the behavior of M .

The output of the circuit is simply whether the last row of the table contains the
accept state. The size of each row is linear in the running time of M since M cannot
use more memory than that. The total size of the table and of the circuit is therefore
polynomial in the running time of M . Is not difficult to see that the circuit is uniform.
Its overall structure is simple and its gate connections are easy to determine given
the program of M . Note that the only subcircuits that need to access the input are
those associated with the first row. ut

Given this characterization of P in terms of uniform polynomial-size circuits, we
can simplify our landscape of classes as follows. Once again, all the circuit classes
below L must be logspace uniform while those between NL and P can either be all
logspace uniform or all P uniform.

AC0 ⊆ NC1 ⊆ L ⊆ NL ⊆ AC1 ⊆ · · · ⊆ NC ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXP.

Note that only one of these containments is known to be strict: AC0 ⊂ NC1. All
the others have been conjectured to be strict but so far no proof has been found.
However, it is known that NL ⊂ PSPACE and that P ⊂ EXP. This implies that
some of these other containments must be strict.

4



4. Summary of Circuit-Machine Simulations

In this and the previous lectures, we have established several circuit-machine simu-
lations that show how some resource in one model can be simulated by some other
resource in the other model. Some of these simulations were done for specific classes
but it is not hard to see that the techniques we used apply to a more general setting.
In this section, we summarize the simulations that were obtained and state their
generalizations.

First, we consider the simulation of circuit depth by machine space. Using the
idea of a depth-first search, in this lecture we showed that logspace-uniform NC1 ⊆ L.
This can be generalized as follows:

Theorem 4 Every language decided by DSPACE(s)-uniform circuits of fan-in 2 and
depth s can be decided in DSPACE(s).

Second, we simulated circuit size by machine time when we showed that PSIZE ⊆
P using our simple circuit evaluation algorithm. This can be generalized to

Theorem 5 Every language decided by DTIME(t)-uniform circuits of size t can be
decided in DTIME(tO(1)).

Third, in the previous lecture, we established a general simulation of machine space
by circuit depth when we proved that every language in NSPACE(s) can be decided
by a family of unbounded fan-in circuits of depth O(s) and size 2O(s), provided s(n) ≥
log n. As a consequence, NL ⊆ AC1. The more general result can be strengthened
by examining the uniformity of the resulting circuit in the proof. A first result is
that the circuits are DSPACE(s2) uniform. More uniformity is possible but under
the condition that the function s be space constructible. That is, given 1n, the binary
representation of s(n) can be computed in space O(s(n)).

Theorem 6 Provided s(n) ≥ log n, every language in NSPACE(s) can be decided by
the following:

1. a family of DSPACE(s2)-uniform unbounded fan-in circuits of depth O(s) and
size 2O(s), and

2. a family of DSPACE(s)-uniform unbounded fan-in circuits of depth O(s) and
size 2O(s), if s is space constructible.

5



Fourth and last, in this lecture we showed that P machines can be simulated by
polynomial-size circuits. We did this by constructing a circuit that computes the
successive configurations of the machine. This simulation of machine time by circuit
size can be generalized as follows:

Theorem 7 Every language in DTIME(t) can be decided by a family of
DSPACE(log t)-uniform circuits of size tO(1), provided t(n) ≥ n and log t is space
constructible.

5. Exercises

1. Show that the NC1 parity circuit is uniform.

2. Show that L-uniform AC1 is contained in DSPACE(log2 n). (Note that this
provides an alternate proof that NL ⊆ DSPACE(log2 n).)

3. Provide further detail on the circuit in the proof of the polynomial-size simula-
tion of P. In particular, justify the claim that the circuit is logspace uniform.

4. A circuit is levelled if its gates can be divided into sets l1, . . . , ld such that each
gate at level i has children that are either gates at level i − 1 or input gates.
The width of such a circuit is the size of the largest level. Show that a language
can be decided by logspace-uniform circuits of O(log n) width and polynomial
size if and only if it is in L.

5. Use the general simulation results to obtain a different proof of Savitch’s The-
orem that NSPACE(s) is contained in DSPACE(s2), provided s(n) ≥ log n.

6. Establish the more uniform version of the general space by depth simulation.

7. Show that NSPACE(s) ⊆ DTIME(2O(s)). Do you need any hypotheses on the
function s?

6


