
IAS/PCMI Summer Session 2000
Clay Mathematics Undergraduate Program
Basic Course on Computational Complexity

Lecture 1: Problems, Models, and Resources

David Mix Barrington and Alexis Maciel
July 17, 2000

1. Overview

Complexity theory is the mathematical study of computation and the resources it re-
quires. Saunders Mac Lane, in Mathematics: Form and Function, gives the following
description of the mathematical method:

Mathematics, at the beginning, is sometimes described as the science of
Number and Space—better, of Number, Time, Space, and Motion. The
need for such a science arises with the most primitive human activities.
These activities presently involve counting, timing, measuring, and mov-
ing, using numbers, intervals, distances, and shapes. Facts about these
operations and ideas are gradually assembled, calculations are made, un-
til finally there develops an extensive body of knowledge, based on a few
central ideas and providing formal rules for calculation. Eventually this
body of knowledge is organized by a formal system of concepts, axioms,
definitions, and proofs.

The human activity that we want to abstract and study is computation, in partic-
ular discrete computation. Humans have computed things by hand for millenia, and
more recently have begun to do so using electronic computers. We have found our
ability to compute to be limited by constraints on certain resources as well as by our
limited knowledge — we can write computer programs for computations that require
more time or memory than any conceivable computer could provide.

Although we certainly hope that complexity theory will have practical conse-
quences, we will stick closely to the mathematical method that Mac Lane describes.
We will choose formal models for problems and computations that are simple (so we

1



can do mathematics on them easily) but practical (so that they are related to compu-
tation in the real world). We will know that we are on the right track if these models
turn out to be robust, that is, if the same mathematical objects occur in our theories
despite changes in the definitions, and if apparently different definitions give rise to
the same objects.

A good example to keep in mind is the definition of what is computable. In the
1930’s, several different mathematicians proposed definitions of “computable func-
tions”: Turing machines, Church’s lambda-calculus, Kleene’s recursive functions, and
Post’s rewriting systems. It was found that in each system there was a class of func-
tions computable by terminating computations (Turing-decidable, recursive) and a
larger class of functions definable by computations that do not terminate (Turing-
recognizable, recursively enumerable). Furthermore, the corresponding classes in each
system are provably the same class, telling us that these two classes are important
mathematical objects and not just artifacts of the definitions.

2. Problems

Our basic notion of a problem will be the decision problem for a formal language.
Our input will be considered to be a sequence of bits, or sometimes as a sequence of
letters in some finite alphabet. (This corresponds with actual practice in computers,
as all data is represented as bits, sometimes broken into groups of bits such as bytes,
words, or characters in ASCII or Unicode.) We represent the set of all finite bit
strings by the notation {0, 1}∗, and the set of all finite strings over an alphabet A by
the notation A∗. A formal language over the alphabet A is any subset of A∗, that
is, any set of strings whose letters are in A. For example, the set of all words in a
given dictionary forms a (finite) formal language over A = {a, b, . . . , z}. The set of all
words over this alphabet with an even number of j’s, for example, forms an infinite
formal language.

The decision problem for a formal language is to take an input string and deter-
mine whether it is in the language. Naturally, there are different kinds of problems
we want to solve with discrete computations. A more general definition of a problem
might be to compute a function from strings to strings. But given our models and
resource measures, we will find that most of the difficulty of computations can be
captured by particular decision problems. For example, if f is a function from A∗

to A∗, we can look at the graph of f , which is the set of ordered pairs 〈a, b〉 such
that f(a) = b. The decision problem for the graph is roughly equivalent to the prob-
lem of computing the function. Similarly, other kinds of discrete problems can be
represented as decision problems for formal languages.

2



It is convenient, then, to think of a set of problems as a set of formal languages. In
computability theory, for example, we can now speak of the set of recursive languages,
or the set of recursively enumerable languages. The basic object of our study will be
a complexity class — the set of languages whose decision problems are solvable under
a given resource constraint.

3. Asymptotics

Typically, the resources needed to solve an instance of a decision problem increase as
the size of the input increases. We thus define the complexity of a language according
to some resource measure as a function, where f(n) is the greatest amount of resource
used to solve the decision problem for any input of size n. (In these lectures we will
deal only with this worst-case complexity measure — in other settings we might
be interested in the resources used on an average input of size n, or in still other
measures.) We thus need a mathematical formalism to deal with such functions.

In general our greatest concern is the way in which the complexity function in-
creases as n goes to infinity. Because the units with which the resources are measured
are often arbitrary, we don’t worry about multiplying the function by constant factors.
And if the complexity function should jump around rather than steadily increase, we
are most interested in those values of n where it is large (since we would like to have
a guarantee that a particular resource bound always works).

Any correct decision algorithm gives an upper bound on the complexity, because it
shows that the problem can be solved with certain resource constraints. More difficult
in general are lower bounds on complexity, which are proofs that no algorithm can
solve the decision problem without using certain resources.

Our primary means for talking about functions will be asymptotic notation, a
mechanism for comparing functions and/or deeming them to be equivalent. We define
five relations on functions, corresponding to the five order relations <, ≤, =, ≥, and
>:

• f = o(g) means that for all ε there exists an nε such that f(n) ≤ εg(n) whenever
n > nε. (For most purposes it is equivalent to say that the limit as n goes to
infinity of f(n)/g(n) is zero.)

• f = O(g) means that for some c and some n0, f(n) ≤ cg(n) whenever n > n0.

• f = Θ(g) means that f = O(g) and g = O(f).

3



• f = Ω(g) means that for some c and for infinitely many n, f(n) ≥ cg(n).

• f = ω(g) means that for every c, f(n) ≥ cg(n) for infinitely many n.

Any good algorithms book, such as Introduction to Algorithms by Cormen, Leis-
erson, and Rivest, will contain many examples and exercises concerning this notation.
We give a few exercises below as well.

In complexity theory we often use an even coarser measure on functions. It often
happens that a language can be recoded, or expressed in a different way that changes
the input size by a polynomial factor. For example, a graph with n vertices and O(n)
edges requires O(n2) bits to represent as an adjacency matrix but O(n log n) bits to
represent by an adjacency list. Our favorite resource bounds, therefore, are chosen to
be robust with respect to polynomial changes in n:

• A constant function is one that is O(1), that is, there is some constant c such
that f(n) ≤ c for all (sufficiently large) n.

• A logarithmic bound is one that is O(log n). Note that either a change in the
base of the logarithm, or a polynomial change in n such as replacing it by nc for
some c, multiplies log n by a constant and thus keeps the meaning of “O(log n)”
the same.

• A polynomial bound is one that is nO(1), that is, that there is some c such that
f(n) ≤ nc for all sufficiently large n. Note that a polynomial change in n would
simply change the value of c.

• An exponential bound is 2n
O(1)

, which we can think of as a polynomial bound
on log(f).

The distinction between polynomial and exponential running time, for example,
has consequences that should be familiar. If f(n) is a polynomial function of n, for
example, and we double n, then f(n) gets multiplied by some constant. If f(n) is
an exponential function of n and we double n, however, f(n) gets raised to some
power. Exponential functions become inconceivably large for relatively small values
of n — for example, 21000 is much larger than the number of electrons that would fit
into the observed universe. But polynomial functions, particularly the ones with small
exponents that usually occur in the analysis of algorithms, in general take conceivable
numbers to conceivable numbers.

4



4. Models of Computation

In these lectures we will consider only two of the many possible models of computation,
machines and circuits. A machine will be an abstraction of the typical computer that
reads some input, operates by performing simple computations on its internal memory,
and reports an output. A circuit will be an abstraction of the electronic circuits inside
computer chips, and an important general model of parallel computation.

Our model of a machine is a particular variant of the original Turing machine
from the 1930’s. The input is considered to be a string, which can be read by the
machine one letter at a time, and which is read-only. For definiteness, we will say
that the machine has an input read head which begins at the first letter of the input
string, sees only the letter under it, and can be moved left or right one position on
each computation step. The memory of the machine is also a sequence of letters
that can be read and written by the machine. For definiteness, we will say that the
machine has a constant number of read/write heads in this memory, which see the
letter under them and can both write a new letter and move one position right or left
on each computation step. The basic action of a computation step, then, is to see
what is under each of the heads, decide what to do, write a new character under each
read/write head, and move each of the heads.

To “decide what to do”, the machine has a program and an internal state. The
number of possible internal states (unlike the size of the memory) must be constant,
independent of the size of the input. The program is a lookup table, giving a single
behavior for each possible observable state of the machine. A behavior consists of
move and write instructions for each head, and a new internal state. An observable
state consists of the internal state plus the letters seen by each head. Perhaps the
easiest way to see this is to give a typical instruction, such as “if we are in state 3, see
an a on the input head, see a b on memory head 1, and see an a on memory head 2,
we should go to state 7, move the input head left, write a b with memory head 1 and
move it right, and write a c with memory head 2 and move it right.” The number
of instructions like this may be large, but note that it is constant with respect to
the input size. Also note that the machine is deterministic — its behavior depends
only on the things that it can observe and same observables always lead to the same
behavior.

A machine gives its output by entering one of two special internal states, the
accepting halt state or the rejecting halt state. A decision algorithm eventually enters
the accepting state (if the input is in the language) or the rejecting state (if it isn’t)
and then stops processing.

We will also sometimes consider machines that can output a string rather than

5



just accept or reject. These have a write-only output stream, and each instruction
in the program must be altered so that it either does or doesn’t output a letter in
addition to its other behavior.

Our other model, the boolean circuit, consists of gates and wires. A particular
circuit has a fixed input size — let us say that it receives n boolean inputs (bits)
x1, . . . , xn and will give us one boolean output: 0 if the string x1 . . . xn is not in the
desired language and 1 if it is. Note that to decide an entire language, which may
contain strings of arbitrary lengths, we need a family of boolean circuits, one for each
input length. (Our resource measures will thus again be functions of the input size
n.)

The gates of the circuit consist of the n input gates and some number of AND,
OR, and NOT gates. Each gate evaluates to some boolean value once the values of
the input bits are decided. A non-input gate has some number of input wires, each
of which is an output wire of some other gate. The circuit must be acyclic, that is,
it must be impossible to go from any gate to itself by following wires in the correct
direction. The value of an AND gate is 1 if all of its input wires carry the value 1
(including the special case where there are no input wires). The value of an OR gate
is 1 if at least one of its input wires carries the value 1 (so an OR gate with no inputs
evaluates to 0). A NOT gate is required to have exactly one input, and outputs the
negation of that input. The output of the circuit is the value of a designated output
gate.

A normal form for circuits that is sometimes convenient is to “push all the NOTs
to the bottom”. Using the two DeMorgan laws, we can transform any boolean circuit
to an equivalent one (computing the same function from the inputs to the output)
that has NOT gates only immediately above the input gates.

We will sometimes consider boolean circuits with multiple output gates, so that
they compute a function from {0, 1}n to {0, 1}m for some number m. A family of such
circuits computes a function from {0, 1}∗ to itself rather than deciding a language.
We can also consider the input to be a string over some alphabet other than {0, 1},
if we choose some way to code each input letter as a sequence of bits.

5. Resource Measures

We can now define two explicit resource measures for each of our models of compu-
tation. In Lecture 2 we will see some examples of decision algorithms, and analyze
carefully how much of these resources each one uses. The measures for machines are
time and space, for boolean circuits size and depth.

6



The running time of a machine algorithm is the number of individual computation
steps it takes before halting. Because we are using asymptotic analysis to compare
running times, we aren’t too concerned with exactly what can happen on a single
step, only what can happen in O(1) steps. Running times of less than n tend to be
less interesting, as in our current model a machine needs O(n) steps to read all of
its input. The most important time classes are the class P (languages decidable in
polynomial time) and the class EXP (languages decidable in exponential time). More
generally, DTIME(f) refers to the class of languages decidable in O(f) time. (The D
stands for “deterministic”.)

Informally, P is often thought of as the set of feasibly decidable languages, because
running times greater than polynomial are prohibitive except for small inputs, and
most polynomial decision procedures known have small exponents and thus scale
reasonably well with increasing input size.

The space used by a machine algorithm is the number of bits in its memory. In
general DSPACE(f) is the class of languages that can be decided using O(f) space.
We will be particularly interested in three classes:

• DSPACE(1) is the class of languages decidable in constant space, independent of
the input size. Since the contents of the memory of a DSPACE(1) machine can
only have a constant number of different values, the contents of the memory can
be recorded in the internal states of the machine so we can think of DSPACE(1)
machines as having no memory at all other than the internal state.

You may be familiar with a similar model of finite-state machines or determin-
istic finite automata. A DFA is a special kind of DSPACE(1) machine, one
with no memory and restricted so it that its input head moves right at every
step of the computation. In addition, a DFA does not have halting states. The
computation simply ends when the head moves past the right end of the input.
Some states are declared as accepting or final. If the computation ends in one
of these states, the DFA accepts; otherwise, it rejects. It is easy to see that
every language decided by a DFA can be decided by a DSPACE(1) machine. In
the advanced course, we will prove that the reverse is also true.

• DSPACE(log n) or L is the class of languages decidable in logarithmic space.
In O(log n) bits of memory, the machine can keep a pointer into its input, a
number in the range from 0 to n − 1. This allows the machine to knowingly
revisit the same place in the input, for example, something the DSPACE(1)
machine cannot do. In fact, there is a sense in which any L machine can be
thought of as keeping a constant number of pointers into the input, and nothing
else, in its memory.

7



• PSPACE or DSPACE(nO(1)) is the class of languages decidable in polynomial
space. Any language not in PSPACE is certainly not going to be practically
decidable except for small inputs, because the memory requirements will go up
to fast. But we will see that PSPACE also contains languages for which no P
algorithm is known, and for which it is believed that none exists.

We now turn to our two resource measures for circuits. The size of a circuit is the
total number of gates it contains. In our definition, every circuit contains at least n
gates, the input gates. We will be concerned with the class PSIZE of languages decid-
able by circuit families where the size of each circuit is bounded by some polynomial
in n. (Practically, a family of circuits is unlikely to be manufacturable unless it obeys
a polynomial size bound.) In general, SIZE(f) is the class of languages decidable by
circuit families where the size of the n-input circuit is O(f(n)).

The depth of a circuit is the length of the longest path from an input gate to
the output gate. (Remember that the circuit must be acyclic, so that this is finite.)
Depth is important because it corresponds to the time needed to evaluate the circuit
in parallel (with something potentially happening at each gate). In a real electronic
circuit, some physical event must happen at each gate to bring it to its correct value,
taking some amount of time. The depth corresponds to the maximum number of
these events that must occur one after the other to make the output gate have its
correct value.

We will consider the classes AC0 (constant depth, polynomial size) and AC1 (log-
arithmic depth, polynomial size). (In this notation, the exponent refers to the power
of log n being considered as a bound on the depth of the circuits.) Another set of
classes includes a restriction on the circuits, that the fan-in of each AND and OR gate
must be at most two. (The fan-in of a gate is the number of input wires coming into
it.) Any circuit can be converted into an equivalent one obeying this restriction (see
the exercises) but this conversion may increase the depth. We define NC0 to be the
class of languages decidable by circuit families with constant depth, polynomial size,
and fan-in two. NC1 is the class decidable by circuit families of logarithmic depth,
polynomial size, and fan-in two.

Finally, we must mention a further resource used by circuit families. Our defini-
tions above say that a language is in a given class if a certain circuit exists. But in
the real world if a circuit is to be used to decide whether a string is in a language,
that circuit must first be constructed. The simple classes we have defined so far are
called non-uniform circuit classes. Later, when we want to establish relationships
between circuit classes and machine classes, we will need to define uniform circuit
classes, where there is a restriction on how difficult it can be to construct the circuits.

8



6. Exercises

1. What is A∗ if A is the empty set? What if A has only one element? If A is
finite, is A∗ countable or uncountable?

2. Find the asymptotic relations among the following functions:
√
n, 3n+6, 0.01n+

1000000 log n+ 17, πn, 2n + n3, log2 n, and logπ n.

3. Prove that if f = O(g), then f + g = Θ(g).

4. Find a function f that satisfies f = (log n)ω(1) and f = no(1).

5. Prove that log(n!) = Θ(n log n). (Hint: Show that (n/2)n/2 ≤ n! ≤ nn.)

6. Find an explicit function f such that f(n)! = nΘ(1).

7. Prove that pushing NOTs to the bottom does not change the depth of a circuit,
or its total number of AND and OR gates. How could the size of the circuit be
affected? (Hint: Use induction on the number of AND and OR gates.)

8. Find a function f such that every language is in SIZE(f).

9. Argue that NC0 ⊆ AC0 ⊆ NC1 ⊆ AC1. (Hint: Replace a gate with large fan-in
by a binary tree of gates each with fan-in two.)

10. Argue that a language is in NC0 iff for every n there is a set of O(1) variables
such that membership in the language depends only on those variables.

9


