
IAS/PCMI Summer Session 2000
Clay Mathematics Undergraduate Program

Advanced Course on Computational Complexity

Lecture 11: Measuring the Complexity of Proofs

David Mix Barrington and Alexis Maciel
July 31, 2000

1. How Do We Prove a Tautology?

Consider formulas with Boolean variables, the connectives NOT, AND and OR (usu-
ally written ¬, ∧ and ∨), but no quantifiers. For example,

F = x ∧ y → x ∨ y

is such a formula where the connective A→ B is simply seen as an abbreviation for
¬A∨B. (We are assuming the following precedence rule: ¬, then ∧ and ∨, then→.)
How do you convince someone that this formula is always true, i.e., that it evaluates
to true no matter what Boolean values are assigned to the variables? Formulas with
this property are called tautologies.

One way would be to present that person with a truth table:

x y x ∧ y x ∨ y F
0 0 0 0 1
0 1 0 1 1
1 0 0 1 1
1 1 1 1 1

Now what about the formula

Fn = x1 ∧ x2 ∧ · · · ∧ xn → x1 ∨ x2 ∨ · · · ∨ xn?

We could again present a truth table for this formula, but that table would have size
at least n2n, which is exponential in the size of Fn. So just to look at the entire table
requires time exponential in the size of the formula.

Can we do better? For example, can we convince someone that Fn is a tautology
by presenting a proof that has size polynomial in the size of Fn? The answer is yes
and here is how. First, let us go back to F . Consider the following sequence of steps:

1

1. x→ x

2. x ∧ y → x

3. x ∧ y → x ∨ y

It is clear that the first line is a tautology and that this implies that the second line
is a tautology too. The third line follows from the second one since it is clear that
if x ∧ y → x is a tautology, then x ∧ y → x ∨ y is one too. What we have here is
a more sophisticated type of proof, at least when compared to truth tables. We are
relying on accepted axioms like x→ x and on inference rules such as “if x→ x, then
x ∧ y → x”.

Note that the above proof is convincing even if x and y are replaced by arbitrary
formulas. This is because the axiom A→ A and the inference rules “if A→ B, then
A ∧ C → B” and “if A → B, then A → B ∨ C” all make sense even if A and B
are replaced by arbitrary formulas. Therefore, what we have is a convincing proof of
A ∧B → A ∨B, where A and B are arbitrary formulas.

Now let A = x1 and B = x2 ∧ · · · ∧ xn. Then the above gives us a proof of Fn.
And this proof has size O(n), which is much better than the n2n we got with truth
tables.

Let us look a slightly more serious example. Let

G = A ∨ (B ∧ C)→ (A ∨B) ∧ (A ∨ C).

This states that ∨ distributes over ∧. A proof of G could go as follows:

1. A→ A

2. A→ A ∨B

3. B → B

4. B ∧ C → A ∨B

5. A ∨ (B ∧ C)→ A ∨B, from lines 2 and 4

6. A→ A

7. A→ A ∨ C

8. C → C

2

9. B ∧ C → A ∨ C

10. A ∨ (B ∧ C)→ A ∨ C, from lines 7 and 9

11. A ∨ (B ∧ C)→ (A ∨B) ∧ (A ∨ C), from lines 5 and 10

Now consider the generalized form of this “Distributivity Law”:

Gn = A ∨ (B1 ∧ · · · ∧Bn)→ (A ∨B1) ∧ · · · ∧ (A ∨Bn).

The following is a proof of Gn:

1. A∨ (B1∧ · · ·∧Bn)→ (A∨B1)∧ (A∨ (B2∧ · · ·∧Bn)), by using the above proof
with B = B1 and C = B2 ∧ · · · ∧Bn

2. A ∨ (B1 ∧ · · · ∧Bn)→ (A ∨B1), from line 1

3. A ∨ (B1 ∧ · · · ∧Bn)→ A ∨ (B2 ∧ · · · ∧Bn), from line 1

4. A ∨ (B2 ∧ · · · ∧Bn)→ (A ∨B2) ∧ · · · ∧ (A ∨Bn) (see below for an explanation
of this one)

5. A ∨ (B1 ∧ · · · ∧Bn)→ (A ∨B2) ∧ · · · ∧ (A ∨Bn), by combining lines 3 and 4

6. Gn, from lines 2 and 5

A proof for line 4 can be constructed recursively, by repeating the process that proved
Gn given line 4. At each step in this recursion, line 4 gets simpler until it becomes
A ∨ (Bn−1 ∧ Bn) → (A ∨ Bn−1) ∧ (A ∨ Bn), which we can prove directly. Or, in
other words, the existence of a proof of the formula on line 4 can be established by
induction on the number of Bi’s. Either way, we get a convincing proof of Gn and
its size is O(n2), which once again is much better than the size of the corresponding
truth table.

2. The Sequent Calculus

What we have established in the previous two examples are the basic elements of a
proof system called the Sequent Calculus. Lines in a Sequent Calculus proof are called
sequents and are formulas of the form (A1 ∧ · · · ∧Am)→ (B1 ∨ · · · ∨Bn). Since they
always have this general form, sequents are written as A1, . . . , Am → B1, . . . , Bn. By
convention, the empty sequent “→” is considered false, “→ F” is considered equivalent

3

to F , and “F →” is considered equivalent to ¬F . We will allow unbounded fan-in
connectives in our formulas and these will be written as follows: ∧(A1, . . . , An) and
∨(A1, . . . , An).

In the Sequent Calculus, the axioms, or initial sequents, are “A → A”, “→ ∧()”
and “∨()→”. The inference rules are divided into three groups: the structural rules,
the logical rules, and the cut rule. The structural rules are:

Weakening: if Γ1,Γ2 → ∆, then Γ1, A,Γ2 → ∆. Similarly on the right.

Permutation: if Γ1, A,B,Γ2 → ∆, then Γ1, B,A,Γ2 → ∆. Similarly on the
right.

Contraction: if Γ1, A,A,Γ2 → ∆, then Γ1, A,Γ2 → ∆. Similarly on the right.

The logical rules are:

NOT-left: if Γ→ A,∆, then ¬A,Γ→ ∆.

NOT-right: if A,Γ→ ∆, then Γ→ ¬A,∆.

AND-left: if A1,∧(A2, . . . , An),Γ→ ∆, then ∧(A1, . . . , An),Γ→ ∆.

AND-right: if Γ → A1,∆ and Γ → ∧(A2, . . . , An),∆, then Γ →
∧(A1, . . . , An),∆.

OR-left: if A1,Γ→ ∆ and ∨(A2, . . . , An),Γ→ ∆, then ∨(A1, . . . , An),Γ→ ∆.

OR-right: if Γ→ A1,∨(A2, . . . , An),∆, then Γ→ ∨(A1, . . . , An),∆.

Finally, the cut rule is:

Cut rule: if A,Γ→ ∆ and Γ→ A,∆, then Γ→ ∆.

In each of these rules and axioms, A and the Ai’s can be replaced by arbitrary formulas
(in a consistent way). In the rules, the Γ’s and ∆’s stand for arbitrary sequences of
formulas.

A Sequent Calculus proof is a finite sequence of lines, each consisting of either
an initial sequent or a sequent that can be derived from previous ones by one of the
inference rules. A proof of formula F can be either

1. a proof whose last line is “→ F”,

4

2. a proof whose last line is the sequent A1, . . . , Am → B1, . . . , Bn, if F is of the
form A1 ∧ · · · ∧ Am → B1 ∨ · · · ∨Bn, or

3. a proof that uses “F →” as an additional axiom and whose last line is the empty
sequent “→”.

This last form of proof is called a refutation of ¬F . The size of a proof is the total
number of symbols in it.

It should be clear that Sequent Calculus proofs are convincing, in the sense that
they can only prove tautologies. This property is called soundness and follows from
the fact that each of the axioms and inference rules are themselves sound.

Now does every tautology have a Sequent Calculus proof? The answer is yes and
can be illustrated by the proof we presented earlier for the formula G = A∨(B∧C)→
(A ∨ B) ∧ (A ∨ C). If we read the proof backwards, starting with the bottom line
and following each application of the inference rules in the reverse order, towards
the axioms, we realize that each inference rule is simplifying the current sequent by
eliminating a connective. For example, A ∨ (B ∧ C) → A ∨ B is broken down into
A → A ∨ B and B ∧ C → A ∨ B. Now, except for weakening, each inference rule
has a property we can call reverse soundness: if its conclusion is a tautology, then
each of its hypotheses is a tautology. We can use this to recursively break down the
formula we are trying to prove until we end up with sequents that must be axioms.
(The details are left as an exercise.) Therefore, we say that the Sequent Calculus is
complete.

From our first example, we get that the formula Fn = A1 ∧ A2 ∧ · · · ∧ An →
A1 ∨ A2 ∨ · · · ∨ An has a truth table of size at least n2n but a Sequent Calculus
proof of size O(n). More precisely, what we have here is a sequence of formulas
F1, F2, F3, . . . and a sequence of proofs P1, P2, P3, . . . such that Pi is a proof of Fi.
Equivalently, we can view these sequences as a single (parametrized) formula Fn and
a single (parametrized) proof Pn. We measure the complexity of Pn as a function of
n. For example, in the case of Sequent Calculus proofs, the size of Pn is the total
number of symbols in Pn, expressed as a function of n.

The proof of completeness of the Sequent Calculus outlined above actually shows
that every formula has a Sequent Calculus proof of size O(n2n). And we have two
examples of tautologies, Fn and Gn, that have Sequent Calculus proofs that are much
smaller than that: O(n) and O(n2), respectively. So we can say that as proof systems,
the Sequent Calculus is more powerful than truth tables since the truth table of a
formula with n variables is always of size Θ(n2n).

But does every tautology have a Sequent Calculus proof of polynomial size? The

5

answer is not known and we will see in the next section that a positive answer would
have very interesting consequences.

In the meantime, let us say that the Sequent Calculus is closely related to Frege
proof systems. As in the Sequent Calculus, a proof in these systems is a sequence
of formulas, each of which of is either an axiom or a formula that can be derived
from previous ones by an inference rule. A particular Frege proof system is defined
by a finite, sound and implicationally complete set of axioms and inference rules. A
proof system is implicationally complete if whenever A→ B is a tautology, there is a
proof of B that uses A as an additional axiom. Note that neither A nor B need to
be tautologies themselves. Since for any axiom A, A→ B is a tautology whenever B
is, implicational completeness implies completeness.

As in the Sequent Calculus, the axioms and rules of a Frege system are schemas,
meaning that they can be used with arbitrary formulas. Any two Frege systems are
equivalent to each other in the sense that a formula has a polynomial-size proof in
one system if and only if it has a polynomial-size proof in the other. The idea is that
the logical implication corresponding to a rule in one system can be proved in the
other by using implicational completeness. (The details are left as an exercise.) The
Sequent Calculus is also equivalent to any Frege system. In contrast, we know from
the examples of the previous section that the Sequent Calculus and truth tables are
not equivalent.

3. A Formal Notion of Proof System

Now that we have defined the Sequent Calculus, and explored its relationship to truth
tables and other Frege systems, let us step back and ask what a proof system is after
all. In a proof system, given any string x and a formula F , it should be possible to
determine whether x is a proof of F . So the predicate “x is a proof of F” should be
computable. But we normally also want proofs to be easy to verify. So we will also
insist that this predicate be computable in time polynomial in the length of 〈x, F 〉.
For example, whether a table is the correct truth table of a given formula can be
determined in time linear in the size of the table. And determining whether a list of
sequents constitutes a Sequent Calculus proof of a given formula can be done in time
polynomial in the size of the list.

So our formal, abstract notion of a proof system will be this: a polynomial-time
computable predicate R(x, F), where x is any string and F is any formula. The
meaning of R is that x is a proof of F , but it is R that defines what a proof is. The
proof system is complete if for every tautology F , there is x such that R(x, F) = 1

6

(and then we say that x is a proof of F). The proof system is sound if F is tautology
whenever there is x such that R(x, F).

In the previous section, we said that any two Frege systems are equivalent in
the sense that a formula has a polynomial-size proof in one system if and only if
it has a polynomial-size proof in the other. Now we add the condition that proofs
in one system can be efficiently translated into proofs in the other. We say that a
proof system S polynomially simulates (P-simulates) a proof system T if there is a
polynomial-time computable function f such that for every pair 〈x, F 〉, x is a proof
of F in T if and only if f(x) is a proof of F in S. (Notice the similarity to the notion
of polynomial-time reducibility.) We then say that two systems are polynomially
equivalent (P-equivalent) if they P-simulate each other. The Sequent Calculus P-
simulates truth tables, but truth tables do not P-simulate the Sequent Calculus. All
Frege systems are P-equivalent to each other.

Now let us go back to a question we asked earlier: does every tautology have a
Sequent Calculus proof of polynomial size? We can define the complexity of a proof
system as the following function of n: the maximum over all tautologies F of size n
of the minimum length of a proof of F ,

max
F :|F |=n

min
P :P is a proof of F

|P |.

For example, the truth tables proof system has Θ(n2n) complexity. Proof sys-
tems of complexity nO(1) are called polynomially bounded. Asking whether there
is a polynomial-size Sequent Calculus proof of every tautology is the same as asking
whether the Sequent Calculus is polynomially bounded.

There is currently no proof system known to be polynomially bounded. And if
one was found, then this would imply that NP is closed under complement. One way
to show that P 6= NP is to show that NP is not closed under complement. This is
because we know that P is closed under complement, so P and NP could not possibly
be the same class. Therefore, if a single polynomially bounded proof system was
found, then this approach to showing that P 6= NP would be invalidated.

Theorem 1 There is a polynomially bounded (sound and complete) proof system if
and only if NP is closed under complement.

Proof Suppose that NP is closed under complement. Consider the language TAUT
consisting of all tautologies: TAUT = {F : F is a tautology}. The complement of
TAUT is in NP. Therefore, by hypothesis, TAUT is in NP. This implies that TAUT
has a polynomial-time verifier V . Consider the predicate R computed by V . If F /∈

7

TAUT, then R(P, F) = 0 for every P . If F ∈ TAUT, then there is P of length at
most |F |O(1) such that R(P, F) = 1. Therefore, R is a polynomially bounded proof
system.

Now suppose that there is a polynomially bounded proof system R. Then the
polynomial-time machine that decides R constitutes a polynomial-time verifier for
TAUT. Therefore, TAUT is in NP. If a formula F is satisfiable, then its negation
¬F is not a tautology, and vice-versa. Therefore, SAT ≤P TAUT, which implies that
TAUT is NP-complete. Now suppose that A ∈ NP. Then A ≤P TAUT, which implies
that A ≤P TAUT. Therefore, A ∈ NP since TAUT ∈ NP. This shows that NP is
closed under complement. ut

In the previous proof, we showed that TAUT ∈ NP if and only if there is a
polynomially bounded proof system. This leads to a more general idea. Say that R is
a proof system for a language L if R is computable in polynomial time and if w ∈ L
if and only if there is a string P such that R(P,w) = 1. Then NP is exactly the class
of languages that have polynomially bounded proof systems.

Why study the complexity proof systems? Here are three reasons. First, to answer
some very natural and fundamental questions such as “What is a proof?”, “What is
an efficient proof system?” and “Do efficient proofs systems exist?”.

Second, because of the connections to the P versus NP question we just explained.
If we could show that there are no polynomially bounded proof systems, then we
would have shown that P 6= NP. This gives us the following approach for proving
that P 6= NP: start with proof systems known not to be polynomially bounded
(like truth tables) and prove that increasingly more powerful proof systems are not
polynomially bounded.

Third, consider the problem of finding a proof for a given tautology. Typically, the
weaker the proof system, the more efficient the proof search algorithm. So relatively
weak proof systems are studied in the context of automated theorem proving and
understanding their exact power (i.e., the class of tautologies that have polynomial-
size proofs in these systems) is therefore important.

4. Exercises

1. Consider a Frege system with only one rule “if P and P → Q, then Q” (modus
ponens) and with the following ten axioms:

(a) (P ∧Q)→ P

8

(b) (P ∧Q)→ Q

(c) P → (P ∨Q)

(d) Q→ (P ∨Q)

(e) ¬¬P → P

(f) (P → Q)→ [(P → ¬Q)→ ¬P]

(g) P → (Q→ P ∧Q)

(h) (P → R)→ [(Q→ R)→ (P ∨Q→ R)]

(i) P → (Q→ P)

(j) (P → Q)→ [(P → [Q→ R])→ (P → R)]

Give Sequent Calculus proofs of each of these axioms. Then give a sequent
calculus proof that simulates the modus ponens rule, in the sense that it proves
the sequent Q using the sequents → P and → (P → Q) as additional axioms.

2. Provide the details of a proof that the Sequent Calculus is complete.

3. Show that the Sequent Calculus is implicationally complete.

4. In the version of the Sequent Calculus we defined, there are three possible
ways to prove a formula F . Show that they are interchangeable by proving the
following:

(a) For any tautology F , a direct proof of F can be transformed in polynomial
time into a refutation of ¬F , and vice-versa.

(b) If F is of the form A1 ∧ · · · ∧ Am → B1 ∨ · · · ∨ Bn, then a proof whose
last line is the sequent → F can be transformed in polynomial time into a
proof whose last line is the sequent A1, . . . , Am → B1, . . . , Bn.

5. Show that any two Frege systems are P-equivalent.

6. Show that the Sequent Calculus is P-equivalent to any Frege system.

7. Show that a proof system for TAUT is also a proof system for the complement
of SAT.

8. Show that a language is in NP if and only if it has a polynomially bounded
proof system.

9. Suppose that S P-simulates T . Show that the class of tautologies T can prove in
polynomial size is contained in the class of tautologies S can prove in polynomial
size. Show that if T is polynomially bounded, then so is S.

9

